IDEA ZESPOLONEJ METODY DIAGNOZOWANIA TRANSFORMATORÓW ENERGETYCZNYCH WYSOKIEGO NAPIĘCIA OPARTEJ NA POMIARACH WNZ



Podobne dokumenty
LOKALIZACJA WYŁADOWAŃ NIEZUPEŁNYCH W OLEJOWYCH TRANSFORMATORACH ENERGETYCZNYCH METODĄ EMISJI AKUSTYCZNEJ Z WYKORZYSTANIEM DESKRYPTORA ADP

DIAGNOZOWANIE TRANSFORMATORÓW WN METODĄ ŁĄCZNĄ POMIARU WYŁADOWAŃ NIEZUPEŁNYCH

Próba oceny właściwości eksploatacyjnych przekładników prądowych w oparciu o obrazy fazowo-rozdzielcze z pomiaru wnz

OKREŚLENIE WPŁYWU WYŁĄCZANIA CYLINDRÓW SILNIKA ZI NA ZMIANY SYGNAŁU WIBROAKUSTYCZNEGO SILNIKA

Technika wysokich napięć : podstawy teoretyczne i laboratorium / Barbara Florkowska, Jakub Furgał. Kraków, Spis treści.

METODY BADAŃ POMIAROWYCH W WIEJSKICH STACJACH TRANSFORMATOROWYCH

POMIARY WYŁADOWAŃ NIEZUPEŁNYCH W DIAGNOSTYCE UKŁADÓW IZOLACYJNYCH URZĄDZEŃ ELEKTROENERGETYCZNYCH

8. Wyniki procesu identyfikacji

WYKORZYSTANIE SYSTEMU PD SMART DO PORÓWNANIA WYŁADOWAŃ NIEZUPEŁNYCH W OLEJU MINERALNYM I ESTRZE SYNTETYCZNYM

PRACE INŻYNIERSKIE Rok akademicki 2009/2010

IMPLEMENTATION OF THE SPECTRUM ANALYZER ON MICROCONTROLLER WITH ARM7 CORE IMPLEMENTACJA ANALIZATORA WIDMA NA MIKROKONTROLERZE Z RDZENIEM ARM7

Układ aktywnej redukcji hałasu przenikającego przez przegrodę w postaci płyty mosiężnej

PN-EN :2012

Badanie wyładowań niezupełnych w transformatorach energetycznych wysokiego napięcia metodami EA, HF i UHF

Elektrotechnika II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Spis treœci. Spis skrótów Spis oznaczeñ Wstêp... 15

Zadanie nr II-22: Opracowanie modelu aktywnego ustroju dźwiękochłonno-izolacyjnego o zmiennych tłumieniu i izolacyjności

7. Identyfikacja defektów badanego obiektu

Doskonalenie lokalizacji wyładowań niezupełnych metodą triangulacyjną z wykorzystaniem cewki Rogowskiego

Obciążenia nieliniowe w sieciach rozdzielczych i ich skutki

BADANIA WYSOKOCZĘSTOTLIWOŚCIOWE TRANSFORMATORÓW

POLITECHNIKA ŚLĄSKA INSTYTUT AUTOMATYKI ZAKŁAD SYSTEMÓW POMIAROWYCH

Pomiar pojemności i rezystancji izolacji międzyzwojowej uzwojeń transformatorów determinujące niezawodność

WPŁYW TEMPERATURY NA WYŁADOWANIA NIEZUPEŁNE W UKŁADZIE UWARSTWIONYM W OLEJU MINERALNYM ORAZ ESTRZE SYNTETYCZNYM

Parametry częstotliwościowe przetworników prądowych wykonanych w technologii PCB 1 HDI 2

APPLICATION OF ACOUSTIC MAPS IN THE ANALYSIS OF ACOUSTIC SCREENS EFFICIENCY ON THE SECTION OF NATIONAL ROAD NO.94 IN DĄBROWA GÓRNICZA

OCENA JAKOŚCI DOSTAWY ENERGII ELEKTRYCZNEJ

PRACE INśYNIERSKIE STUDIA NIESTACJONARNE Rok akademicki 2011/2012

OCENA PARAMETRÓW JAKOŚCI ENERGII ELEKTRYCZNEJ DOSTARCZANEJ ODBIORCOM WIEJSKIM NA PODSTAWIE WYNIKÓW BADAŃ

MATEMATYCZNY MODEL PĘTLI HISTEREZY MAGNETYCZNEJ

Zastosowanie procesorów AVR firmy ATMEL w cyfrowych pomiarach częstotliwości

Wzmacniacze operacyjne

Ćwiczenie 3,4. Analiza widmowa sygnałów czasowych: sinus, trójkąt, prostokąt, szum biały i szum różowy

Usługi kontrolno pomiarowe

PROTOTYP KALIBRATORA MIERNIKA WYŁADOWAŃ NIEZUPEŁNYCH

Badania wyładowań niezupełnych w aspekcie zjawiska migracji wody w układzie papier olej. P. Przybyłek W. Sikorski K.

SESJA Barbara Florkowska: Profesor Stanisław Bladowski - Twórca Laboratorium Wysokich Napięć na Wydziale ELEKTRYCZNYM AGH

Paweł Rózga, Marcin Stanek Politechnika Łódzka Instytut Elektroenergetyki

NAPRĘŻENIA ŚCISKAJĄCE PRZY 10% ODKSZTAŁCENIU WZGLĘDNYM PRÓBEK NORMOWYCH POBRANYCH Z PŁYT EPS O RÓŻNEJ GRUBOŚCI

PRZEWODNIK PO PRZEDMIOCIE

Kamera do detekcji wyładowań ulotowych

Nazwa przedmiotu INSTRUMENTARIUM BADAWCZE W INŻYNIERII MATERIAŁOWEJ Instrumentation of research in material engineering

Odbiorniki nieliniowe problemy, zagrożenia

Dr hab. inż. Kazimierz Jagieła, prof. ATH Częstochowa, Akademia Techniczno-Humanistyczna w Bielsku-Białej RECENZJA

Wybór specjalności na studiach: stacjonarnych 1 stopnia. Elektroenergetyka prowadzi: Instytut Elektroenergetyki

Demodulator FM. o~ ~ I I I I I~ V

WYZNACZANIE ENERGII PROMIENIOWANIA ELEKTROMAGNETYCZNEGO EMITOWANEGO PRZEZ WYŁADOWANIA ELEKTRYCZNE

Politechnika Łódzka. Instytut Systemów Inżynierii Elektrycznej

Wyznaczanie budżetu niepewności w pomiarach wybranych parametrów jakości energii elektrycznej

W tym krótkim artykule spróbujemy odpowiedzieć na powyższe pytania.

NATĘŻENIE POLA ELEKTRYCZNEGO PRZEWODU LINII NAPOWIETRZNEJ Z UWZGLĘDNIENIEM ZWISU

POLITECHNIKA OPOLSKA w Opolu Wydział Elektrotechniki i Automatyki AUTOREFERAT ROZPRAWY DOKTORSKIEJ

WYBÓR PUNKTÓW POMIAROWYCH

JAKOŚĆ ENERGII ELEKTRYCZNEJ JAKO PODSTAWA KOMPATYBILNOŚCI ELEKTROMAGNETYCZNEJ W ELEKTROENERGETYCE

WYKRYWANIE USZKODZEŃ W LITYCH ELEMENTACH ŁĄCZĄCYCH WAŁY

PROPAGACJA PRZEPIĘĆ W STACJI ELEKTROENERGETYCZNEJ SN/NN NA TERENIE TVP KATOWICE

WERYFIKACJA MODELU DYNAMICZNEGO PRZEKŁADNI ZĘBATEJ W RÓŻNYCH WARUNKACH EKSPLOATACYJNYCH

Oferta badawcza Politechniki Gdańskiej dla przedsiębiorstw

Mechatronika i inteligentne systemy produkcyjne. Paweł Pełczyński ppelczynski@swspiz.pl

WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI

Pomiary rezystancji izolacji

POPRAWA EFEKTYWNOŚCI EKSPLOATACJI MASZYN

WZORCOWANIE URZĄDZEŃ DO SPRAWDZANIA LICZNIKÓW ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO

BADANIA WARUNKÓW PRACY LOKATORA AKUSTYCZNEGO

ROZPORZĄDZENIE MINISTRA INFRASTRUKTURY 1) z dnia 30 grudnia 2009 r.

Komputerowe systemy pomiarowe. Dr Zbigniew Kozioł - wykład Mgr Mariusz Woźny - laboratorium

KIERUNEK STUDIÓW: ELEKTROTECHNIKA NAZWA PRZEDMIOTU: TECHNIKA WYSOKICH NAPIĘĆ. (dzienne: 30h wykład, 30h laboratorium) Semestr: W Ć L P S V 2E 2

REZYSTANCYJNY DZIELNIK NAPIĘCIA DO POMIARÓW WYŻSZYCH HARMONICZNYCH W SIECIACH 400 KV

System monitoringu jakości energii elektrycznej

Karta (sylabus) modułu/przedmiotu Transport Studia I stopnia

Politechnika Warszawska

Stosowane metody wykrywania nieszczelności w sieciach gazowych

Detekcja asymetrii szczeliny powietrznej w generatorze ze wzbudzeniem od magnesów trwałych, bazująca na analizie częstotliwościowej prądu

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 269

Pomiary i automatyka w sieciach elektroenergetycznych laboratorium

RADIO DISTURBANCE Zakłócenia radioelektryczne

ANALIZA JAKOŚCI ENERGII ELEKTRYCZNEJ

RADIO DISTURBANCE Zakłócenia radioelektryczne

Ćwiczenie 2a. Pomiar napięcia z izolacją galwaniczną Doświadczalne badania charakterystyk układów pomiarowych CZUJNIKI POMIAROWE I ELEMENTY WYKONAWCZE

BADANIA MODELOWE OGNIW PALIWOWYCH TYPU PEM

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 269

WYKORZYSTANIE MES DO WYZNACZANIA WPŁYWU PĘKNIĘCIA W STOPIE ZĘBA KOŁA NA ZMIANĘ SZTYWNOŚCI ZAZĘBIENIA

Zestaw ćwiczeń laboratoryjnych z Biofizyki dla kierunku Fizjoterapia

Pomiary parametrów jakości energii elektrycznej i ich interpretacja przy naliczaniu bonifikat

PROPOZYCJA ZASTOSOWANIA WYMIARU PUDEŁKOWEGO DO OCENY ODKSZTAŁCEŃ PRZEBIEGÓW ELEKTROENERGETYCZNYCH

Pomiary i automatyka w sieciach elektroenergetycznych laboratorium

termowizyjnej, w którym zarejestrowane przez kamerę obrazy, stanowiące (13)B1 (12) OPIS PATENTOWY (19)PL (11) PL B1 G01N 21/25 G01N 25/72

WYZNACZANIE SPADKÓW NAPIĘĆ W WIEJSKICH SIECIACH NISKIEGO NAPIĘCIA

POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN. Ćwiczenie D - 4. Zastosowanie teoretycznej analizy modalnej w dynamice maszyn

Diagnostyka układu izolacyjnego stojana generatora

Podstawy diagnostyki środków transportu

Urządzenie i sposób pomiaru skuteczności filtracji powietrza.

Projekt współfinansowany ze środków Europejskiego Funduszu Rozwoju Regionalnego w ramach Programu Operacyjnego Innowacyjna Gospodarka

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

Urządzenie do monitoringu wibracji i diagnostyki stanu technicznego (w trybie online) elementów stojana turbogeneratora

POZNAN UNIVERSITY OF TECHNOLOGY ACADEMIC JOURNALS No 94 Electrical Engineering DOI /j

ANALIZA TEORETYCZNA CIŚNIENIA AKUSTYCZNEGO PROPAGOWANEGO PRZEZ STRUKTURĘ MODELU FIZYCZNEGO KONDENSATORA ELEKTROENERGETYCZNEGO

Kierunek i rodzaj studiów (Specjalność) Rodzaj pracy Nazwa jednostki Opiekun pracy Temat pracy (j.polski i j.angielski)

RP R O O WO W O

Transkrypt:

ELEKTRYKA 2009 Zeszyt 4 (212) Rok LV Zbigniew GACEK 1), Marek SZADKOWSKI 1), Franciszek WITOS 2) 1) Instytut Elektroenergetyki i Sterowania Układów, Politechnika Śląska w Gliwicach 2) Katedra Optoelektroniki, Politechnika Śląska w Gliwicach IDEA ZESPOLONEJ METODY DIAGNOZOWANIA TRANSFORMATORÓW ENERGETYCZNYCH WYSOKIEGO NAPIĘCIA OPARTEJ NA POMIARACH WNZ Streszczenie. Artykuł jest wstępną informacją o tym, że na Wydziale Elektrycznym Politechniki Śląskiej rozpoczęto prace nad tzw. zespoloną metodą diagnozowania transformatorów. W założeniu metoda ta ma polegać na jednoczesnym pomiarze wyładowań niezupełnych w transformatorze metodą elektryczną i metodą emisji akustycznej oraz - pośrednio - metodą chromatografii gazowej, a następnie na jednoczesnej analizie uzyskanych wyników pomiarów. Omówiono skrótowo aktualny stan wiedzy w zakresie wykorzystania wyników pomiaru wyładowań niezupełnych do celów diagnostycznych, ze szczególnym uwzględnieniem jednostki macierzystej. Zgodnie z tytułem artykułu, opisano jedynie ideę zespolonej metody diagnostycznej, która po pełnym udokumentowaniu powinna znaleźć praktyczne zastosowanie w diagnozowaniu stanu technicznego eksploatowanych transformatorów energetycznych olejowych wysokiego napięcia. Słowa kluczowe: zespolona metoda diagnozowania, transformatory energetyczne wysokiego napięcia, pomiary WNZ IDEA OF A JOINT ELECTRO-ACOUSTIC METHOD APPLIED TO DIAGNOSE OF HIGH VOLTAGE POWER TRANSFORMERS BASED ON MEASUREMENTS OF PARTIAL DISCHARGES Summary. The aim of the paper is to inform that at the Faculty of Electrical Engineering of the Silesian University of Technology in Gliwice the work on the socalled joint electro-acoustic method applied to diagnosis of power transformers has been started. It has been assumed that this method is to consist in simultaneous measurements of partial discharges within a transformer made by means of the electrical and acoustic emission method and indirectly by means of the DGA method, and simultaneous analysis of the obtained results. The present state of knowledge on how measurements of partial discharges can be used, particularly at the mother unit, is presented. The paper title signals that this is only an idea of such a method which after its full documentation should be applied to practical diagnosis of high voltage oil power transformers during their operation. Keywords: joint electro-acoustic method, high voltage power transformers, partial discharges

58 Z. Gacek, M. Szadkowski, F. Witos 1. WPROWADZENIE W ciągu ostatnich kilkunastu lat zaobserwowano, że diagnostyka transformatorów będących w eksploatacji staje się coraz bardziej ważna dla ich użytkowników. Składa się na to wiele czynników, ale najważniejszymi z nich są: coraz większy odsetek transformatorów, które przekroczyły przewidziany przez konstruktorów czas eksploatacji (25 do 30 lat) oraz wprowadzanie,,oszczędności w projektowaniu i budowie układów izolacyjnych nowych transformatorów, skutkujące ich większą podatnością na awarie. Należy podkreślić, że każda awaria transformatora związana jest nie tylko z poważnymi stratami finansowymi i podważeniem zaufania do jego właściciela, ale może być przyczyną zagrożenia życia ludzkiego i skażenia środowiska. Mimo to wielu właścicieli transformatorów stara się odsunąć w czasie wymianę wysłużonych jednostek na nowe, a w sytuacji gdy a wymiana nastąpi, chce wiedzieć, jaka jest,,pewność bezawaryjnego działania nowych transformatorów. W obu wymienionych sytuacjach poszukuje się więc miarodajnych, lecz niepowodujących zakłóceń w eksploatacji metod diagnostycznych. W wielu krajach (niestety poza Polską) regułą staje się prowadzenie okresowych pomiarów kontrolnych i gromadzenie dokumentacji eksploatacyjnej poszczególnych transformatorów [6]. Często zadanie to powierza się firmom wyspecjalizowanym w wykonywaniu ich badań diagnostycznych. Firmy te są zobowiązane do ostrzeżenia energetyki o konieczności remontu lub wymiany jednostki zagrożonej awarią. Postępowanie ie jest pomocne wtedy, gdy pogarszanie się stanu izolacji transformatora następuje powoli, co dotyczy dużej liczby analizowanych awarii transformatorów. Znane są jednak też awarie, które rozwijają się bardzo szybko w ciągu tygodni, dni, a nawet godzin. Wtedy jedynym sposobem przewidzenia ich zdarzeń jest diagnostyka prowadzona w sposób ciągły (on-line). Znanych jest wiele metod diagnostycznych stosowanych zarówno w ocenie okresowej, jak i ciągłej transformatorów. Niestety, większość z tych metod dostarcza co najwyżej fragmentarycznej wiedzy o stanie transformatora, głównie o stanie jego układów izolacyjnych. Do grupy metod, za pomocą których można selektywnie wykrywać i lokalizować miejsca zagrożone przebiciem któregoś z układów izolacyjnych, są metody pomiaru wyładowań niezupełnych (wnz). Uważa się jednak, że zastosowanie wyłącznie metody emisji akustycznej do wykrywania wnz w transformatorach podczas ich eksploatacji (szczególnie gdy są to duże transformatory sieciowe) może nie dać zadowalających rezultatów [7]. Przyczyną są zakłócenia akustyczne spowodowane przez szum łożysk wentylatorów, wibracje pokryw urządzeń kontrolnych, luźnych podkładek i innych drgających elementów, które mogą skutecznie,,zamaskować sygnał akustyczny, pochodzący od wyładowań niezupełnych. Jeśli ma się świadomość istnienia zakłóceń zewnętrznych i ich wpływu na wyniki pomiarów wnz oraz gdy wyeliminuje się lub co najmniej znacząco zmniejszy się ten

Idea zespolonej metody 59 niekorzystny wpływ, istnieje możliwość zastosowania wyników pomiaru wnz w celach diagnostycznych. Jednym ze sposobów oddzielania zewnętrznych zakłóceń od impulsów diagnostycznych wytwarzanych przez wnz w izolacji transformatora jest zbadanie stopnia skorelowania sygnałów elektrycznych mierzonych na przepuście i sygnałów akustycznych, zarejestrowanych specjalnymi czujnikami (umocowanymi w różnych miejscach kadzi transformatora). Jeżeli przyjmie się, że wykrycie sygnałów elektrycznych i niewykrycie sygnałów akustycznych spowodowane jest zakłóceniami zewnętrznymi (np. ulotem), a wykrycie sygnałów akustycznych i niewykrycie sygnałów elektrycznych spowodowane jest źródłami dźwięku niezwiązanymi z wnz (drganiami mechanicznymi, uderzeniami ziaren piasku niesionych wiatrem, padającym deszczem itp.), to jednoczesne zastosowanie do pomiarów tzw. metody elektrycznej i metody emisji akustycznej może skutkować uzyskaniem dobrej jakości informacji o stanie układów izolacyjnych transformatora. W przypadku uwzględnienia również wyników pomiarów diagnostycznych pochodzących z trzeciej pośredniej metody wykrywania i pomiaru wnz, jaką jest metoda chromatografii gazowej, informacja a może być podstawą podjęcia właściwych działań w stosunku do diagnozowanego transformatora. Taka idea diagnozowania transformatorów energetycznych olejowych jest tematem artykułu. 2. PODSTAWOWE METODY POMIARU WNZ W UKŁADACH IZOLACYJNYCH TRANSFORMATORÓW Wyładowania niezupełne (wnz) powstające w układach izolacyjnych wysokonapięciowych urządzeń elektroenergetycznych są jednym z ważniejszych źródeł informacji o ich stanie technicznym. Pierwsze odnotowane informacje naukowe o wnz pochodzą aż z 1777 roku, a dynamiczny rozwój tych badań ma swój początek w XX wieku i trwa do dzisiaj. Znaczące opracowanie zawierające przegląd metod i układów do pomiarów wnz pochodzi z 1936 roku [6]. Przez termin ocena wnz rozumie się ich detekcję, pomiar i lokalizację. Natura zjawisk wnz jest wprawdzie elektryczna, ale nie zmienia to faktu, że wyładowaniom niezupełnym towarzyszy wiele innych zjawisk fizycznych, a przede wszystkim: chemiczne zmiany w izolacji, udarowe odkształcenia sprężyste ośrodka i wynikająca stąd generacja fal sprężystych emisji akustycznej (EA) oraz termoemisja i fotoemisja. Aby mierzyć efekty tych zjawisk, stosuje się rozmaite metody pomiarowe i związane z nimi sposoby oceny wnz. I : występowanie impulsów prądowych oraz emisji fal elektromagnetycznych są podstawą elektrycznej metody pomiaru wnz, chemiczne przemiany materiałów izolacyjnych są podstawą metody chromatografii gazowej, udarowe odkształcenia sprężyste i towarzysząca im emisja fal akustycznych są podstawą metody emisji akustycznej, emisja promieniowania świetlnego jest podstawą metody spektrofotometrii

60 Z. Gacek, M. Szadkowski, F. Witos optycznej, lokalny wzrost temperatury w obszarze wnz jest podstawą metody termowizyjnej, a zmiana ciśnienia gazu w kanale wnz jest podstawą pomiaru zmian ciśnienia. Praktyczne znaczenie mają obecnie w zasadzie tylko trzy pierwsze metody oceny wyładowań niezupełnych. W trzech pozostałych przypadkach efekty wyładowań są bowiem bardzo słabe i trudno mierzalne. W wyniku zastosowania elektrycznych metod detekcji i pomiaru wnz uzyskuje się następujące rozkłady mierzonych wielkości: fazowe, amplitudowe i amplitudowo-fazowe [4, 5, 11]. Przyrządami pomiarowymi mogą być najprostsze mierniki ładunku pozornego (w Polsce najbardziej rozpowszechnione są mierniki typu ERA firmy F.C. Robinson lub typu 66/5700 firmy TETTEX) albo złożone szerokopasmowe systemy pomiarowe, np. TE-571 firmy Haefely Trench. Za pomocą detektora TE-571 można dokonywać pomiarów wnz w zakresie częstotliwości napięcia pomiarowego w przedziale 40-420 Hz. Zakres pomiarowy ładunku pozornego mieści się w granicach od zera do 999 nc, natomiast szerokość pasma pomiarowego zawiera się w granicach od 40 khz do 400 khz. Po wykonaniu pomiarów uzyskuje się łącznie 23 rozkłady oraz przebiegi czasowe opisujące badany rodzaj wnz. Są to: - rozkłady fazowe: maksymalnej wartości ładunku pozornego, średniej wartości ładunku pozornego, liczby wyładowań, sumy ładunków; - rozkłady intensywności wyładowań w zależności od wartości ładunku pozornego oraz energii wnz; - wielkości opisujące wnz w dziedzinie czasu: poziom maksymalnej wartości ładunku pozornego, poziom średniej wartości ładunku pozornego, prąd wyładowań niezupełnych, wartość maksymalna energii wyładowań, wartość średnia energii wyładowań, moc wyładowań niezupełnych, wartość chwilowa napięcia zapłonu wyładowań, wartość chwilowa napięcia gaśnięcia wyładowań, liczba impulsów wyładowań, wartość chwilowa wskaźnika D; - rozkłady fazowe następujących wielkości: maksymalnej wartości ładunku pozornego, wartości średniej ładunku pozornego, liczby wyładowań, sumy ładunków (że w funkcji czasu); - rozkłady amplitudowe intensywności i energii wyładowań w funkcji czasu; - rozkłady amplitudowo fazowe intensywności wyładowań: 3 D oraz tzw. Color. Tak szeroki opis wyładowań niezupełnych w badanym obiekcie pozwala na określenie ich rodzaju i charakteru fizycznego. Każda z wymienionych wielkości zawiera jednak tylko część informacji jakościowej i ilościowej o wnz. Podstawą do identyfikacji wnz występujących w badanym układzie izolacyjnym jest jednoczesna analiza informacji zawartej w poszczególnych rozkładach. Możliwości detektora TE-571 rozszerzono dzięki zastosowaniu oprogramowania TE-571 DSW (TEAS). Narzędzia statystyczne zawarte w tym programie umożliwiają uzyskanie pokaźnego zbioru parametrów opisujących badany obiekt,

Idea zespolonej metody 61 a przy zastosowaniu wzorca zawartego w bibliotece rozpoznanych obrazów statystycznych wnz lub np. techniki sztucznych sieci neuronowych pozwalają lepiej identyfikować wyładowania niezupełne. Analiza możliwości metod elektrycznych prowadzi do następującego wniosku: dzięki nim można dokonywać detekcji, pomiaru i w niektórych przypadkach lokalizacji wnz. Emisję akustyczną (EA), rozumianą jako zjawisko i jako metodę pomiarową, zastosowano do badań wnz po raz pierwszy w 1965 roku [3] i tematyka ta jest nadal rozwijana, uzyskując coraz większe znaczenie. Badania wnz prowadzone w Polsce metodami EA można podzielić na dwa etapy: etap pierwszy, którego podsumowaniem była monografia wydana w 1993 r. [11] oraz etap drugi współczesny - który opiera się na zaawansowanej analizie sygnałów EA w dziedzinie czasu, częstotliwości, czasu i częstotliwości oraz w dziedzinie progu dyskryminacji. W ramach pierwszego etapu modelowano jednoi wieloźródłowe wnz i na ich modelach prowadzono badania laboratoryjne, analizując następujące deskryptory: sumę oraz tempo zliczeń i zdarzeń, RMS sygnału, maksymalną amplitudę sygnału, widmo amplitudowe sygnału. Zbudowano przewoźne laboratorium diagnostyczne i prowadzono badania na obiektach rzeczywistych. Opis wnz stosowany w tych badaniach polegał na wybraniu wartości progu dyskryminacji, przeprowadzeniu badań EA dla zaplanowanej sytuacji pomiarowej, sporządzeniu mapy" sumy (tempa) zliczeń EA i wyciągnięciu wniosków o aktywności EA. Niestety, badania te wykazały również, że proces pomiarowy zależy silnie od wewnętrznych zakłóceń akustycznych i elektrycznych [10, 11]. Był to m.in. powód tego, że nie zdefiniowano jednoznacznie parametrów wiążących wnz z podstawowymi deskryptorami EA. Analiza rozkładów częstotliwościowych impulsów EA w etapie drugim doprowadziła do zdefiniowania zaawansowanych deskryptorów EA, w szczególności w zakresie dominujących częstotliwości [7]. Określono wartości deskryptorów dla wielu źródeł EA oraz zakłóceń towarzyszących pomiarom wnz. Analiza sygnałów EA w dziedzinie progu dyskryminacji - oparta na kształtach rozkładów amplitudowych sygnałów EA pochodzących od różnych źródeł wnz - została wykonana metodą pattern recognition oraz na podstawie sieci neuronowych [12]. Wyniki analizy wykazują w obu przypadkach istnienie zależności korelacyjnych pomiędzy ładunkiem elektrycznym pozornym wprowadzonym przez źródło wnz a odpowiednim parametrem charakteryzującym stosowaną metodę analizy. Znalezione współzależności są prawdziwe dla sytuacji pomiarowych zdefiniowanych ogólnie przez następujące warunki: wielokrotne instalowanie czujnika EA i źródeł wnz oraz stałą lokalizację czujnika EA i źródła wnz. Istnienie ich korelacji daje możliwość kalibrowania wyników uzyskanych metodą EA za pomocą ładunku elektrycznego pozornego wprowadzanego przez badane źródło wnz. W ten sposób powstała nowa sytuacja badawcza, umożliwiająca ustalenie znacznie bardziej obiektywnych kryteriów do oceny zarówno aktywności, jak i lokalizacji źródeł EA w badanych obiektach.

62 Z. Gacek, M. Szadkowski, F. Witos Metoda EA daje unikalną możliwość obserwacji procesów deformacyjnych. Ma wystarczające cechy, aby stać się ważną uzupełniającą metodą pomiarową. Podstawowe niedogodności i ograniczenia metody powodowane zmianami fal sprężystych EA emitowanych przez źródło wnz w trakcie propagacji w ośrodku, detekcji i obróbki zarejestrowanego sygnału są eliminowane przez dobór odpowiednich deskryptorów EA. Metoda EA pozwala na detekcję i lokalizację, a w niektórych przypadkach - na pomiar wnz. Metoda wykorzystania gazowych produktów rozkładu izolacji olejowo-papierowej do diagnozowania transformatorów liczy sobie prawie sto lat. Od tego czasu rozpoznano mechanizmy degradacji izolacji, określono gazy powstające w tym procesie i czynniki mające wpływ na ich rozpuszczalność w oleju. Wiedza teoretyczna, badania laboratoryjne i praktyka eksploatacyjna pozwoliły na opracowanie liczbowych zależności pomiędzy prawdopodobnymi defektami a stężeniami poszczególnych gazów rozpuszczonych w oleju. Zależności te są jednak ciągle weryfikowane i uaktualniane. Wraz z rozwojem technik komputerowych powstały programy ułatwiające gromadzenie w bazach danych wyników analiz chromatograficznych i ich interpretację metodami klasycznymi, wykorzystującymi statystykę matematyczną i elementy sztucznej inteligencji (sztuczne sieci neuronowe, logika rozmyta, systemy eksperckie). Analiza chromatograficzna gazów rozpuszczonych w oleju DGA (ang. Dissolved Gas Analysis) jest obecnie najbardziej uznaną i skuteczną metodą oceny stanu technicznego transformatorów [15]. Umożliwia ona wykrywanie wolno rozwijających się uszkodzeń wewnętrznych, głównie o charakterze wyładowań o różnej gęstości energii i przegrzań, stwarzając jednocześnie szansę podjęcia w porę środków zaradczych i uniknięcia kosztownych wyłączeń lub awarii [10]. Metodę DGA stosowano do niedawna jeszcze prawie wyłącznie do badania jednostek w eksploatacji. Ciągły rozwój techniki analitycznej, pozwalający na oznaczanie bardzo niskich koncentracji gazów i śledzenie nawet niewielkich ich zmian, stworzył możliwość wykonywania badań chromatograficznych, również na etapie produkcji transformatorów. Pierwsze ie badania podejmowane były za granicą już w latach 80. i dotyczyły głównie prób nagrzewania transformatorów. Zaowocowały one opracowaniem przez Komitet Studiów 12 CIGRE odpowiednich wymagań, dotyczących aparatury i kryteriów oceny wyników [18], które zostały częściowo wprowadzone również do treści norm IEC [16, 17]. Pojawiły się też inne wymagania, głównie amerykańskie, uwzględniające specyfikę tamtejszych materiałów i rozwiązań konstrukcyjnych. Obecnie badania DGA podczas prób fabrycznych wykonywane są przez większość liczących się na świecie producentów transformatorów. Metoda DGA polega na badaniu składu i stężenia wydzielonych gazów. Zawartość gazów rozpuszczonych w oleju transformatorowym może świadczyć o procesie degradacji izolacji zarówno olejowej, jak i papierowej. Interpretacja wyników badania chromatograficznego gazów rozpuszczonych w oleju powinna dać odpowiedź na następujące pytania:

Idea zespolonej metody 63 kiedy w transformatorze występuje uszkodzenie; jeśli występuje uszkodzenie, to jaki jest jego charakter; jak groźne jest to uszkodzenie. Ramowa Instrukcja Eksploatacji Transformatorów, opracowana w 2001r. przez Energopomiar - Elektryka Gliwice [15], traktuje analizę chromatograficzną gazów rozpuszczonych w oleju jako podstawową metodę badań eksploatacyjnych (okresowych) i badań poawaryjnych transformatorów. Metoda DGA stosowana jest również podczas badań odbiorczych nowych transformatorów, a że jednostek modernizowanych (z kompletną wymianą izolacji). Z podanych powyżej informacji wynika, że wyniki badań pochodzące z każdej z zaprezentowanych metod diagnostycznych (elektrycznej, emisji akustycznej i DGA) zawierają w określonych warunkach tylko część informacji o możliwych defektach złożonego układu izolacyjnego urządzenia. Zakłada się, że jednoczesne zastosowanie metod elektrycznej i akustycznej do badań wnz, wspomaganych dodatkowo metodą DGA, stworzy większe możliwości diagnozowania układów izolacyjnych. Jest to idea proponowanej przez autorów zespolonej metody elektryczno-akustycznej badania wnz, ze wspomaganiem DGA. W proponowanej metodzie zakłada się jednoczesną analizę sygnałów diagnostycznych wykorzystywanych do tej pory niezależnie w metodach: elektrycznej, emisji akustycznej i DGA. 3. ZESPOLONA METODA DIAGNOSTYCZNA OPARTA NA POMIARACH WNZ W UKŁADACH IZOLACYJNYCH TRANSFORMATORÓW WN Zespoloną metodę diagnostyczną układów izolacyjnych w wysokonapięciowych transformatorach energetycznych olejowych, polegającą na jednoczesnym wykorzystywaniu pomiarów wnz wykonywanych metodą elektryczno-akustyczną i wspomaganą przez DGA, autorzy określili akronimem ZMEAiC. Termin ten oznacza metodę diagnostyczną, w ramach której: prowadzone są badania wnz równolegle metodami: elektryczną, emisji akustycznej i DGA (metodą umożliwiającą pośrednie wykrywanie wnz); wykonywane są obliczenia miar wielkości opisujących zjawiska wnz w ramach poszczególnych metod; wyniki uzyskiwane trzema metodami wykorzystywane są do wzajemnej weryfikacji i ustalenia opisu końcowego stanu układu izolacyjnego. Takie podejście pozwala na lokalny i globalny opis zjawisk wnz, znacząco zwiększając jakość informacji o źródłach wnz, a jednocześnie zmniejszając możliwość błędnej interpretacji wyników uzyskiwanych tylko jedną metodą pomiarową.

64 Z. Gacek, M. Szadkowski, F. Witos Z zakreślonej tematyki wynikają następujące cele szczegółowe: rozpoznanie możliwości adaptacji zintegrowanej metodyki do stworzenia koncepcji mobilnego systemu pomiarowego; opracowanie algorytmu (metody) postępowania przy ocenie stanu technicznego układów izolacyjnych wysokonapięciowych transformatorów olejowych na podstawie trzech różnych metod diagnostycznych; sprawdzenie możliwości wspólnego zastosowania trzech metod diagnozowania układów izolacyjnych transformatorów; weryfikacja zbieżności wyników diagnostycznych uzyskiwanych różnymi metodami; uzyskanie komplementarności zastosowanych metod w zintegrowanej diagnostyce transformatorów; zbadanie możliwości wzajemnego eliminowania wad poszczególnych metod; zastosowanie dekompozycji falkowej sygnałów EA do opisu zjawisk wnz; zastosowanie sieci neuronowych z nadzorowanym uczeniem (dla sygnałów elektrycznych i akustycznych oraz danych chromatograficznych) do opisu wnz; opracowanie narzędzia interpretacyjnego systemu eksperckiego opartego na trzech wymienionych metodach diagnostycznych. Dzięki badaniom wykonanym na obiektach rzeczywistych tworzona jest obecnie coraz bardziej rozbudowana baza danych, zawierająca wyniki testów rzeczywistych transformatorów wysokiego napięcia. Badania są i będą przeprowadzane zarówno na jednostkach nowych, jak i odstawianych do remontu. Analiza wyników będzie się odbywać z wykorzystaniem zaawansowanego aparatu matematycznego (m.in. sieci neuronowych i dekompozycji falkowych) oraz z zastosowaniem narzędzi informatycznych. W efekcie końcowym zakłada się opracowanie narzędzia interpretacyjnego w postaci systemu eksperckiego przeznaczonego do diagnozowania układów izolacyjnych transformatorów WN opartego na ZMEAiC. 4. DOTYCHCZASOWE DOKONANIA AUTORÓW W DZIEDZINIE DIAGNOZOWANIA WNZ Autorzy od 1999 roku wchodzą w skład interdyscyplinarnego zespołu zajmującego się analizą zagadnień z dziedziny fizyki (emisja akustyczna) oraz techniki wysokich napięć i materiałoznawstwa elektrycznego. Badania na Politechnice Śląskiej w dziedzinie emisji akustycznej rozpoczęto w 1985 roku. Przedmiotem tych badań była emisja akustyczna (EA): w materiałach geologicznych, taśmach przenośnikowych stosowanych w górnictwie [13] i ceramikach będących wysokotemperaturowymi nadprzewodnikami. W badaniach stosowano aparaturę pomiarową

Idea zespolonej metody 65 zbudowaną w IPPT PAN w Warszawie (urządzenia badawczo-pomiarowe EA: DEMA 10, DEMA 20, DEMA 30, DEMA 100 i rezonansowe piezoelektryczne czujniki EA) oraz aparaturę pomiarową firmy Bruel & Kjaer (mikrofon pojemnościowy 4135, rezonansowy piezoelektryczny czujnik EA 8313, wzmacniacze, magnetofony pomiarowe, analizatory widma 2010 i 2034 FFT). Analiza zarejestrowanych danych obejmowała parametry makroskopowe (podstawowe deskryptory EA: tempo zliczeń i suma zliczeń, wartości szczytowe sygnału; zaawansowane deskryptory EA: RMS sygnału, rozkłady amplitudowe tempa i sumy zliczeń) oraz parametry mikroskopowe sygnału (czas trwania, czas narastania funkcji źródła EA). Badania doprowadziły że do zaprojektowania i budowy aparatury umożliwiającej pomiary sumy zdarzeń EA dla taśm przenośnikowych i w górotworze [13]. W dziedzinie techniki wysokich napięć i materiałoznawstwa elektrotechnicznego badania wyładowań niezupełnych rozpoczęto w 1992 roku, przy okazji rozpoczęcia realizacji zadania związanego z projektowaniem i konstruowaniem wysokonapięciowych przepustów transformatorowych o polu elektrycznym sterowanym pojemnościowo. Badania wnz były wówczas wykonywane w ZTS Izo-Erg S.A. w Gliwicach metodą elektryczną, za pomocą miernika ERA firmy F.C. Robinson. Podejmowane działania projektowe i konstruktorskowykonawcze miały na celu odpowiednie wysterowanie pola elektrycznego, a tym samym ograniczenie wyładowań niezupełnych w mających wejść w fazę produkcji izolatorach przepustowych o izolacji miękkiej. Od roku 2000, po zakupie przez IEiSU Politechniki Śląskiej komputerowego systemu pomiarowo-diagnostycznego TE-571, w ZTS Izo-Erg S.A. w Gliwicach wykonywano również badania materiałów elektrotechnicznych w postaci płyt i tulei izolacyjnych. W ramach interdyscyplinarnego zespołu autorzy zrealizowali dwa projekty badawcze KBN: Badanie wyładowań niezupełnych w wysokonapięciowych układach izolacyjnych metodą emisji akustycznej z wykorzystaniem sieci neuronowych do analizy sygnałów i Badanie wyładowań niezupełnych w układach izolacyjnych kalibrowaną metodą emisji akustycznej. W trakcie realizacji wymienionych projektów zbudowano układ pomiarowobadawczy DEMA-COMP, który charakteryzuje się zaawansowanymi możliwościami pomiarowymi i badawczymi, umożliwiając: monitorowanie danych wejściowych, wstępną rejestrację wybranych fragmentów sygnałów EA w pamięci FIFO karty PCI-610E, transmisję zarejestrowanych danych (w paśmie do 2,5 MHz w każdym z czterech torów pomiarowych) do pamięci komputera PC III Portable PFX-12 i zaawansowaną analizę tych sygnałów. Pasmo przenoszenia jest dostosowane do zakresu częstotliwości sygnałów EA, charakterystycznych dla zjawisk wnz w układach izolacyjnych i mieści się w granicach od 20 khz do 500 khz. W ramach zrealizowanych projektów badawczych opracowano nowy opis sygnałów EA, umożliwiający analizę właściwości badanych sygnałów w dziedzinach: czasu, częstotliwości, progu dyskryminacji oraz czasu i częstotliwości (łącznie) dla danych zarejestrowanych

66 Z. Gacek, M. Szadkowski, F. Witos w trakcie pojedynczej sytuacji pomiarowej lub dla zbioru większej liczby danych. Elementami opisu były: impuls, charakterystyka częstotliwościowa, charakterystyka fazowa, uśredniona charakterystyka fazowa, uśrednione spektrogramy (STFT i Gabora), identyfikacja i lokalizacja maksimów na charakterystyce częstotliwościowej i uśrednionej charakterystyce fazowej modułu sygnału, badanie właściwości rozkładów amplitudowych (metodą deskryptorów i za pomocą sieci neuronowej Kohonena) i identyfikacja procesów deformacyjnych. Do oryginalnych elementów opisu należy zaliczyć: właściwości rozkładów amplitudowych oraz charakterystykę fazową (z podziałem na przedziały odpowiadające okresom napięcia zasilającego), uśrednioną charakterystykę fazową i uśrednione spektrogramy. Konkretną postać opisu dla określonego zbioru danych uzyskiwano dzięki programom stanowiącym pakiet, działającym w środowisku LabView. W trakcie realizacji projektów przeprowadzono badania zamodelowanych źródeł wnz, a że wyładowań w elementach układów technicznych i rzeczywistych układów izolacyjnych. Wyniki badań EA odnoszono każdorazowo do wartości ładunku pozornego wprowadzanego przez badane źródło i w ten sposób stworzono podstawy metody kalibrowanej emisji akustycznej (KEA). W przypadku badań prętów cewek generatorów zaproponowano nowy opis wyładowań, obejmujący lokalizację źródeł wnz metodą EA i identyfikację źródeł metodą elektryczną. Zaproponowane rozwiązanie stwarza większe możliwości diagnostyczne niż metody stosowane dotychczas. Metodę określono terminem zespolonej metody elektrycznoakustycznej (ZMEA); służyła ona do badań wnz w prętach cewek generatorów. Szczegółowe wyniki badań wykazują duże możliwości metody ZMEA. 5. BADANIE WNZ W PRĘTACH CEWEK GENERATORÓW METODĄ ZMEA Przedmiotem badań były pręty cewek generatora 120 MW o napięciu znamionowym Ur = 13,8 kv (z zewnętrznym sterowaniem natężenia pola elektrycznego [14]) i pręty cewek generatora 200 MW o napięciu znamionowym Ur = 15,76 kv (z zewnętrznym i wewnętrznym sterowaniem natężenia pola elektrycznego [14]). Pomiary przeprowadzano na stanowisku pomiarowym u producenta generatorów, w firmie Energoserwis (obecnie TurboCare Poland S.A.) w Lublińcu (rys. 1). Celem badań była analiza zjawisk wnz występujących w prętach cewek generatorów wykonana metodami EA i ZMEA. W ramach przygotowania do badań metodą elektryczną, wykalibrowano system TE-571 wzorcowym ładunkiem pozornym oraz przygotowano system do automatycznego pomiaru napięcia zasilania. Z kolei, w ramach przygotowania do pomiarów metodą EA ustalono, że pomiarami będą objęte części żłobkowe prętów. Dla każdego pręta określono położenie sześciu równomiernie rozłożonych punktów pomiarowych P1, P2,, P6 (rys. 2).

Idea zespolonej metody 67 W punktach pomiarowych PI, P2 i P3 umieszczano czujniki EA (będące elementami torów pomiarowych KI, K2 i K3). Do badanego pręta doprowadzano napięcie zasilania o wartościach wybranych z przedziału (0 2) Un i wykonywano pomiary równocześnie dwiema metodami (elektryczną i emisji akustycznej). W metodzie elektrycznej, dla każdej wartości przyłożonego napięcia zasilania, sygnały wnz rejestrowano każdorazowo przez 120 sekund (minimalna długość czasu rejestracji danych wymagana do wykonania obliczeń w trybie analizy programu TEAS). Sygnały EA rejestrowano dla każdej wartości spośród wybranych napięć zasilania w przedziałach czasu o długości 2 sekund. Po przeprowadzeniu badań dla wszystkich zaplanowanych wartości napięcia zasilania czujniki EA montowano w kolejnym położeniu ( (P2, P3, P4), (P3, P4, P5)...). Rys. 1. Ogólny widok stanowiska pomiarowego do pomiarów wnz w prętach cewek generatorów Fig. 1. A general view of the measuring stand to measure partial discharges in coil bars of generators Rys. 2. Rozmieszczenie punktów pomiarowych stosowanych w trakcie pomiarów wnz metodą EA Fig. 2. Arrangement of measuring points used during measurements of partial discharges with AE method Kolejnych rejestracji impulsów EA dokonywano dla kolejnych położeń czujników na pręcie i zmienianych wartości napięcia zasilania. Proces ten powtarzano do uzyskania danych pomiarowych pochodzących ze wszystkich czujników EA, umieszczanych we wszystkich torach pomiarowych. Poniżej przedstawiono wyniki pomiarów i analizy dla dwóch wybranych prętów, oznaczonych jako: pręt D" (pręt cewki generatora 120 MW, Ur = 13,8 kv), pręt M" (pręt cewki generatora 200 MW, Ur = 15,76 kv).

68 Z. Gacek, M. Szadkowski, F. Witos Metodyka, według której prowadzono pomiary wnz w prętach, pozwala mierzyć ładunek pozorny wnz oraz sygnały EA dochodzące do czujnika EA zamontowanego w wybranym punkcie pomiarowym. Takie pomiary, wykonane metodami elektryczną i emisji akustycznej, pozwalają na opis wnz w pręcie zarówno w sposób globalny, jak i lokalny. Wyniki analizy wskazały, że obszar, z którego sygnały akustyczne docierają do czujnika EA, zależy od wartości napięcia zasilania (które wpływa na intensywność impulsu EA) i pasma częstotliwości, w którym analizowany jest sygnał emisji akustycznej. Obszar ten powiększa się wraz ze wzrostem napięcia zasilania i obniżaniem się pasma częstotliwości. Wykorzystując te zależności, można przeprowadzić analizę tendencji zmian deskryptorów EA w przypadku powiększania się obszaru, z którego sygnały EA docierają do czujnika EA. W tym celu zestawiono deskryptory EA, lokalizujące źródła wnz o maksymalnej aktywności, uzyskane przy różnych napięciach zasilania i pasmach częstotliwości, dla których analizowano sygnały EA w prętach D" i M" (rys. 3). Rys. 3. Zestawienie deskryptorów EA lokalizujących źródła wnz o maksymalnej aktywności w funkcji ładunku pozornego wprowadzanego przez źródła wnz; grupy dla następujących wartości napięcia zasilania: a) 10, 15, 20, 25 i 30 kv, b) 15, 20, 25 i 30 kv, c) 20, 25 i 30 kv Fig. 3. Statement of ADP descriptors locating PD sources with maximum intensity versus apparent electric charge introduced by PD sources; groups for following applied voltages: a) 10, 15, 20, 25 and 30 kv, b) 15, 20, 25 i 30 kv, c) 20, 25 and 30 kv Kolejne rysunki 3a, b i c odpowiadają warunkom dającym powiększenie obszaru, z którego sygnały EA docierają do czujnika EA. Na rysunkach tych widoczne jest polepszanie się" związku między wartościami deskryptorów EA opisującymi źródła wnz o maksymalnej aktywności a ładunkiem elektrycznym pozornym. Polega ono na zmniejszaniu

Idea zespolonej metody 69 się zakresu wartości deskryptorów oraz bardziej monotonicznym charakterze zależności między deskryptorami dla sygnałów lokalizujących źródło wnz a ładunkiem wprowadzanym przez wszystkie źródła wnz w pręcie. Taki związek między deskryptorami dla sygnałów lokalizujących źródło wnz a ładunkiem wprowadzanym przez wszystkie źródła wnz w pręcie (w miarę analizy sygnałów przychodzących do czujnika EA z coraz większych obszarów) świadczy o zgodności pomiarów wykonanych metodami elektryczną i akustyczną. W tabelach 1 i 2 zestawiono wyniki analiz uzyskanych jednocześnie metodami elektryczną i emisji akustycznej, dotyczące badań wnz w prętach D" i M". Zestawienie obejmuje napięcia zasilania i następujące wielkości zmierzone bądź obliczone dla sygnałów zarejestrowanych przy poszczególnych napięciach zasilania: ładunek pozorny, deskryptory ADP dla sygnału EA dającego maksimum w ramach odpowiedniej grupy sygnałów EA (po analizie sygnału w paśmie (150-500) khz i w paśmie (20-60) khz) oraz właściwości źródeł wnz - określone niezależnie od siebie - metodą elektryczną i emisji akustycznej. Właściwościami tymi są: rodzaj wnz określony za pomocą eksperckiego diagnostycznego programu TEAS (metoda elektryczna) i lokalizacja źródeł wnz (metoda emisji akustycznej). Takie zestawienie pozwala na uzyskanie pełniejszej informacji o rodzaju i miejscu występowania wnz. Tabela 1 Zestawienie wyników analizy wnz w pręcie D" (Un =13,8 kv) wykonanej za pomocą zespolonej metodyki elektryczno-akustycznej Metoda elektryczna Metoda emisji akustycznej (EA) U Q p ADP Lokalizacja źródła (Z) Pasmo Identyfikacja wnz wg TEAS w pasmach w pobliżu punktu (trafność analizy w %) 150-150- 20-60 pomiarowego (P) 20-60 500 500 kv nc - khz - khz Wtrąciny przy elektrodzie wn, 10 3,5 wewnątrz i na powierzchni -16,3-4,9 Źródło Zl w pobliżu P2 dielektryka (57%) Wtrąciny przy elektrodzie wn 15 3,8 (41%) Źródło Zl w pobliżu P2 Wtrąciny przy elektrodzie nn -4,2-1,2 (21%) Źródło Z2 w pobliżu P5 nie Wtrąciny wewnątrz dielektryka (15%) 20 2,2 Źródło Zl w pobliżu P2 Wtrąciny przy elektrodzie wn -3,3-2,2 (39%) Źródło Z2 w pobliżu P5 25 2,2 Źródło Zl w pobliżu P2 Wtrąciny przy elektrodzie wn -4,0-2,7 (44%) Źródło Z2 w pobliżu P5 30 2,0 Wtrąciny przy elektrodzie wn (86%) -1,3-1,6 Źródło Zl w pobliżu P2 Ładunek pozorny Qp należy rozumieć jako całkowitą wartość ładunku wprowadzanego przez źródła wnz. Deskryptory ADP opisują stopień zaawansowania sygnału najlepiej

70 Z. Gacek, M. Szadkowski, F. Witos lokalizującego źródło wnz o maksymalnej aktywności (w ramach odpowiedniej podgrupy sygnałów EA). Deskryptory obliczone w trakcie analizy sygnału emisji akustycznej w paśmie (150-500) khz opisują zjawiska lokalnie w okolicach punktu pomiarowego. Deskryptory obliczone w trakcie analizy sygnału EA w paśmie (20-60) khz opisują zjawiska w większym obszarze, mają zatem bardziej globalny charakter niż deskryptory obliczone w trakcie analizy sygnału emisji akustycznej w paśmie (150-500) khz. Źródło najbardziej intensywnych wnz w pręcie D" występuje koło punktu pomiarowego P2, a źródłem tym są wtrąciny przy elektrodzie wysokonapięciowej (wewnątrz dielektryka przy powierzchni pręta). Zapłon wnz w punkcie P2 następuje już przy napięciu zasilania wynoszącym 7 kv (ok. 52% Un); źródło jest aktywne przy wszystkich wartościach napięcia zasilania, mając maksymalne harmoniczne we wszystkich analizowanych pasmach. W pręcie występuje że źródło koło punktu pomiarowego P5. Źródło jest aktywne przy napięciach zasilania 15, 20, 25 i 30 kv, mając harmoniczne we wszystkich analizowanych pasmach oraz przy napięciu 10 kv w paśmie (60-150) khz. Źródłem tym są wtrąciny przy elektrodzie niskonapięciowej. Najbardziej złożony opis wnz uzyskany za pomocą programu TEAS (przy napięciu zasilania 15 kv) odpowiada działaniu źródła Z1 i uaktywnieniu się źródła Z2. Zmniejszenie się ładunku pozornego jest spowodowane właściwościami źródła wnz zlokalizowanego w okolicach punktu P2. Maksymalne wartości deskryptora ADP i ładunku pozornego zarejestrowano w paśmie (20 60) khz przy napięciu zasilania 15 kv. Tabela 2 Zestawienie wyników analizy wnz w pręcie,,m wykonanej za pomocą zespolonej metodyki elektryczno-akustycznej Metoda elektryczna Metoda emisji akustycznej (EA) U Q p ADP Pasmo Identyfikacja wnz wg TEAS w pasmach Lokalizacja źródła (Z) w pobliżu (w % trafność analizy) 150-20-60 punktu pomiarowego (P) 150-20-60 500 500 kv nc - khz - khz 10 2,2 Zakłócenia zewnętrzne (3%) -24,0-2,1 Źródło Z3 pobliżu P3 Źródło w pobliżu P5 nie 15 3,4 Superpozycja wyładowań Źródło Z3 w pobliżu P3-15,8-1,6 wewnętrznych i ulotu Źródło w pobliżu P5 Nie 20 6,5 Wyładowania wewnątrz dielektryka (12%) Źródło Z3 w pobliżu P3-1,4-1,2 Wyładowania Źródło w pobliżu P5 nie powierzchniowe (1%) 25 70 Wielopunktowy ulot (21%), który zdominował wyładowania wewnętrzne -0,4-1,0 Źródło Z3 -w pobliżu P3 Źródło w pobliżu P5 Źródło Z4 w pobliżu P6 nie 30 26 Wielopunktowy ulot (26%), który zdominował wyładowania wewnętrzne -1,0-0,7 Źródło Z3 w pobliżu P3 Źródło w pobliżu P5 Źródło Z4 w pobliżu P6 Źródło najbardziej intensywnych wnz w pręcie M" występuje w okolicach punktu pomiarowego P3. Źródło to stanowią wyładowania wewnętrzne. Dodatkowo, przy napięciach nie nie

Idea zespolonej metody 71 zasilania 25 i 30 kv, aktywne są źródła w obszarze punktów pomiarowych P5 i P6. W paśmie (20-60) khz występuje że źródło w pobliżu punktu pomiarowego P5. Metoda akustyczna wykazuje małą czułość w przypadku wystąpienia wielopunktowego ulotu, dającego wzrost ładunku pozornego o wartości do 70 nc. 6. PRÓBA WYKORZYSTANIA KALIBROWANEJ METODY EA DO POMIARU WNZ W TRANSFORMATORACH BĘDĄCYCH W EKSPLOATACJI Doświadczenie zdobyte podczas pomiaru wnz w izolacji prętów generatorów spróbowano wykorzystać do diagnozowania izolacji transformatorów. Poniżej zaprezentowano wyniki pomiarów dokonanych na jednym z wielu badanych transformatorów sieciowych. Przedmiotem badań był transformator typu TONRLf 25 000/110, oznaczony jako T-2. W transformatorze tym, w wyniku badań przeprowadzonych metodą chromatograficzną DGA, stwierdzono rozpuszczony w oleju wodór oraz inne gazy. Mogło to wskazywać na istnienie wyładowań niezupełnych w układzie izolacyjnym transformatora. Celem pomiarów wykonanych metodą EA było potwierdzenie istnienia wnz oraz określenie miejsc ich występowania. Do pomiarów wykorzystano metodę opisaną powyżej. Sygnały emisji akustycznej (EA) rejestrowano w kilkudziesięciu wybranych, dostępnych dla pomiarów punktach na powierzchniach bocznych kadzi transformatora. Zarejestrowane sygnały poddano obróbce numerycznej, wykorzystując do tego celu oryginalną metodę jednego z autorów artykułu. Wynikiem powyższych działań były mapy deskryptorów ADP lub URMS (rys. 4b, 5b). Obszary oznaczone na rysunku 4b jako L1, L2 i L3 są obszarami o wysokim stopniu zaawansowania sygnałów EA. W trakcie pomiarów zauważono, że sygnały z obszaru L1 występowały regularnie dwukrotnie w trakcie każdego okresu napięcia zasilania oraz miały bardzo duże amplitudy i dominujące pasmo częstotliwości od 40 khz do 60 khz. Ich wkład w całkowitą energię zarejestrowanych sygnałów był dominujący. Sygnały z obszarów L2 i L3 wykazywały inną naturę, ponieważ występowały sporadycznie, miały duże amplitudy i dominujące pasmo częstotliwości jest powyżej 60 khz. Wkład tych sygnałów w całkowitą energię zarejestrowanych sygnałów był niezauważalny. Sygnały zarejestrowane w obszarach L4 i L5 (rys. 5b) pochodziły ze źródeł bardzo rozciągłych, ale znacznie mniej intensywnych. Na podstawie przeprowadzonej analizy stwierdzono, że w badanym transformatorze istnieje kilka źródeł wnz, przy czym źródło umiejscowione w obszarze L1 jest źródłem szczególnie niebezpiecznym i tam należy szukać w pierwszej kolejności przyczyny uszkodzenia układu izolacyjnego transformatora.

72 Z. Gacek, M. Szadkowski, F. Witos a) b) 250 200 150 100 50 L1 L3 L2 0 0 50 100 150 200 250 300 350 400 Mapa deskryptora ADP (transformator Klajpeda T-2, powierzchnia A - od strony WN) -2-3 -4-5 -6-7 -8-9 -10-11 -12-13 -14-15 -16-17 Rys. 4. Transformator typu TONRLf 25 000/110): a) widok ogólny ściany A (od strony WN), b) mapa deskryptora ADP (ściana A od strony WN); Wymiary liniowe w cm Fig. 4. Transformer of TONRLf type 25 000/110: a) a general view of A wall (from HV side), b) a descriptor map (A wall, from HV side); line dimensions in cm a) b) 250 200 150 100 50 0-150 -100-50 0 L4 L5-2 -3-4 -5-6 -7-8 -9-10 -11-12 -13-14 -15-16 -17 Rys. 5. Transformator typu TONRLf 25 000/110: a) widok ogólny ściany B (od strony przełącznika zaczepów), b) mapa deskryptora ADP (ściana B od strony PZ); Wymiary liniowe w cm Fig. 5. Transformer of TONRLf type 25 000/110: a) a general view of B wall (from a tap-changer side), b) ADP descriptor map (B wall, from tap-changer side); line dimensions in cm

Idea zespolonej metody 73 7. ZAKOŃCZENIE Badania diagnostyczne transformatorów powinny być tym pełniejsze (obszerniejsze), im większe jest techniczne znaczenie danej jednostki. Diagnozowanie transformatora jest czynnością bardzo złożoną, opartą na jednoczesnej ocenie wartości wielu rozmaitych wielkości cząstkowych, często sobie przeciwstawnych. Dobrą podstawę do podejmowania właściwych decyzji dotyczących dalszej eksploatacji diagnozowanego transformatora może być system ciągłego monitoringu. Najlepszy wydaje się być system zespolony (mieszany), tzn. rejestrujący automatycznie aktywność" akustyczną, elektryczną i chemiczną transformatora w zakresie wytwarzania zawsze przecież niepokojących wyładowań niezupełnych. W ciągu kilku najbliższych lat autorzy mają nadzieję stworzyć i system w ramach prac interdyscyplinarnego zespołu badawczego. BIBLIOGRAFIA 1. Arman A.N., Starr A.T.: The measurement of discharges in dielectrics. Journal of IEEE, 1936, No. 475, p. 67-81. 2. Boczar T., Dąbrowski A.: Wyniki analizy częstotliwościowej sygnałów zakłócających generowanych przez wyładowania ulotowe. V Ogólnopolskie Sympozjum Inżynieria Wysokich Napięć, Poznań Kiekrz 2000, s. 51-56. 3. Carpenter J.H., Kresge J.S., Music C.B.: Ultrasonic Corona Detection in Transformers. IEEE Trans. 1965, PAS 84, p. 647. 4. Florkowska B.: Wyładowania niezupełne w układach izolacyjnych wysokiego napięcia - analiza mechanizmów, form i obrazów. IPPT PAN, Warszawa 1997. 5. Gulski E.: Diagnozowanie wnz w urządzeniach wn w eksploatacji. Prace Naukowe Pol. Warszawskiej, Warszawa 2003, z.128. 6. Lachman M.F.: Field measurements of transformer single-phase exciting current as a diagnostic tool, and influence of load tap changers. IEEE Trans. 1994, Vol. PWRD-9, No. 3, p. 1446. 7. Malewski R.: Diagnostyka transformatorów w eksploatacji. Rozdział 3.3 w książce Inżynieria wysokich napięć w elektroenergetyce. Wydawnictwo Politechniki Poznańskiej, Poznań 1996, s. 265-316. 8. Olech W., Olejniczak H., Buchacz T.: Skuteczność wykrywania uszkodzeń transformatorów metodą DGA zweryfikowana wynikami przeglądów wewnętrznych. Międzynarodowa Konferencja Transformatorowa Transformator 99, Kołobrzeg 1999. 9. Skubis J.: Emisja akustyczna w badaniach izolacji urządzeń elektroenergetycznych. IPPT PAN, Warszawa 1993.

74 Z. Gacek, M. Szadkowski, F. Witos 10. Skubis J.: Charakterystyka akustycznej metody WNZ i przewoźnego laboratorium diagnostycznego zbudowanego dla jej potrzeb. Konf. Izolacja Transformatorów, Rudy Raciborskie 1992, 4-5.06, s. 40-54. 11. Skubis J.: Stan opracowania metody EA w WSI Opole i kierunki jej rozwoju. ZN WSI Opole nr 184, Elektryka z. 36, Opole 1992, s. 5-30. 12. Witos F., Gacek Z.: Investigations of Partial Discharges in Generator Coil Bars by Means of Acoustic Emission: Acoustic Images and Location, CIGRE 39th Int. Session, Paris 2002 no.11 p. 101. 13. Witos F.: Analiza procesów niszczenia materiałów górniczych poprzez pomiary parametrów AE. Praca doktorska, IPPT PAN, Warszawa 1989. 14. Witos F.: Badania wyładowań niezupełnych metodą emisji akustycznej i metodą elektryczną. Monografia, Wydawnictwo Politechniki Śląskiej, Gliwice 2008. 15. Ramowa Instrukcja Eksploatacji Transformatorów, opracowana przez Energopomiar Elektryka, Gliwice 2001. 16. IEC 60567, Guide for the sampling of gases and oil from oil filled electrical equipment and for the analysis of free and dissolved gases, 1992. 17. IEC 61181, Application of DGA to factory test on electrical equipment, 1993. 18. Raport Komitetu Studiów 12, CIGRE. Elektra 1982, No. 82, s. 31-46. Wpłynęło do Redakcji dnia 19 października 2009 r. Recenzent: Prof. dr hab. inż. Barbara Florkowska Abstract Diagnosis of power transformers being in operation from between ten and twenty years becomes more and more important. Each failure of a transformer is connected both with great loss of many and undermining of the trust to its owner as well as it can be a source of threat of the live and environmental contamination. The only way to predict of failure of a transformer is its diagnosis. There are many assembly of diagnostic methods. Unfortunately, the most of them provides at most fragmentary knowledge about the state of a transformer and concerns principally its insulating systems. Methods which use to selective measure and detect of places threatened by breakdown of an insulating system are methods concerned partial discharge measurements. When one is conscious that outer noises influence on PD measurement results and such noises can be eliminated, there is possible to apply of methods concerned measure of partial discharges to diagnosis of transformers being in operation. One of ways leading to separation of outer noises from diagnostic electric signals generated by partial discharges within insulating systems of a transformer is measurement how is degree of correlation between electric signals in transformer bushing (measured by means of different

Idea zespolonej metody 75 sensors fastened to different places of the tank) and acoustic signals measured by means of special sensors. In the case when the third, i.e. chromatographic method is e account simultaneously such an information can be a base to proper activities into diagnosed transformer. Such an idea (conception) of just diagnostic method of oil high voltage power transformers is the subject of the article.