TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 7: Structured Prediction 1

Podobne dokumenty
TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 8: Structured PredicCon 2

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction

deep learning for NLP (5 lectures)

TTIC 31190: Natural Language Processing

Previously on CSCI 4622

Linear Classification and Logistic Regression. Pascal Fua IC-CVLab

tum.de/fall2018/ in2357

Hard-Margin Support Vector Machines

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

Helena Boguta, klasa 8W, rok szkolny 2018/2019

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Tychy, plan miasta: Skala 1: (Polish Edition)

Machine Learning for Data Science (CS4786) Lecture 24. Differential Privacy and Re-useable Holdout

SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like


Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS.

Revenue Maximization. Sept. 25, 2018

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

OpenPoland.net API Documentation

ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL


Presented by. Dr. Morten Middelfart, CTO

Gradient Coding using the Stochastic Block Model

Emilka szuka swojej gwiazdy / Emily Climbs (Emily, #2)

Katowice, plan miasta: Skala 1: = City map = Stadtplan (Polish Edition)

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Stargard Szczecinski i okolice (Polish Edition)

Realizacja systemów wbudowanych (embeded systems) w strukturach PSoC (Programmable System on Chip)

Instrukcja konfiguracji usługi Wirtualnej Sieci Prywatnej w systemie Mac OSX

MaPlan Sp. z O.O. Click here if your download doesn"t start automatically

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

Egzamin maturalny z języka angielskiego na poziomie dwujęzycznym Rozmowa wstępna (wyłącznie dla egzaminującego)

Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)

Pielgrzymka do Ojczyzny: Przemowienia i homilie Ojca Swietego Jana Pawla II (Jan Pawel II-- pierwszy Polak na Stolicy Piotrowej) (Polish Edition)

EGZAMIN MATURALNY Z JĘZYKA ANGIELSKIEGO POZIOM ROZSZERZONY MAJ 2010 CZĘŚĆ I. Czas pracy: 120 minut. Liczba punktów do uzyskania: 23 WPISUJE ZDAJĄCY

Agnostic Learning and VC dimension

Lecture 18 Review for Exam 1

Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)

Jak zasada Pareto może pomóc Ci w nauce języków obcych?

Ankiety Nowe funkcje! Pomoc Twoje konto Wyloguj. BIODIVERSITY OF RIVERS: Survey to students

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Mixed-integer Convex Representability

Zarządzanie sieciami telekomunikacyjnymi

Instrukcja obsługi User s manual

Dolny Slask 1: , mapa turystycznosamochodowa: Plan Wroclawia (Polish Edition)

Wroclaw, plan nowy: Nowe ulice, 1:22500, sygnalizacja swietlna, wysokosc wiaduktow : Debica = City plan (Polish Edition)

Few-fermion thermometry


POLITYKA PRYWATNOŚCI / PRIVACY POLICY

Leba, Rowy, Ustka, Slowinski Park Narodowy, plany miast, mapa turystyczna =: Tourist map = Touristenkarte (Polish Edition)

Convolution semigroups with linear Jacobi parameters

Rev Źródło:


PLSH1 (JUN14PLSH101) General Certificate of Education Advanced Subsidiary Examination June Reading and Writing TOTAL

Surname. Other Names. For Examiner s Use Centre Number. Candidate Number. Candidate Signature

Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019

SNP SNP Business Partner Data Checker. Prezentacja produktu

Miedzy legenda a historia: Szlakiem piastowskim z Poznania do Gniezna (Biblioteka Kroniki Wielkopolski) (Polish Edition)

Miedzy legenda a historia: Szlakiem piastowskim z Poznania do Gniezna (Biblioteka Kroniki Wielkopolski) (Polish Edition)

Steps to build a business Examples: Qualix Comergent


Learning about Language with Normalizing Flows Graham Neubig Language Technologies Institute, Carnegie Mellon University


EGZAMIN MATURALNY Z JĘZYKA ANGIELSKIEGO POZIOM ROZSZERZONY MAJ 2010 CZĘŚĆ I. Czas pracy: 120 minut. Liczba punktów do uzyskania: 23 WPISUJE ZDAJĄCY

JĘZYK ANGIELSKI ĆWICZENIA ORAZ REPETYTORIUM GRAMATYCZNE

Bardzo formalny, odbiorca posiada specjalny tytuł, który jest używany zamiast nazwiska

y = The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Explain your answer, write in complete sentences.


The Overview of Civilian Applications of Airborne SAR Systems

Supervised Hierarchical Clustering with Exponential Linkage. Nishant Yadav

Compatible cameras for NVR-5000 series Main Stream Sub stream Support Firmware ver. 0,2-1Mbit yes yes yes n/d

Klaps za karę. Wyniki badania dotyczącego postaw i stosowania kar fizycznych. Joanna Włodarczyk

Neural Networks (The Machine-Learning Kind) BCS 247 March 2019

EPS. Erasmus Policy Statement

Arrays -II. Arrays. Outline ECE Cal Poly Pomona Electrical & Computer Engineering. Introduction

No matter how much you have, it matters how much you need

Rachunek lambda, zima

EGZAMIN MATURALNY Z JĘZYKA ANGIELSKIEGO

MoA-Net: Self-supervised Motion Segmentation. Pia Bideau, Rakesh R Menon, Erik Learned-Miller

LEARNING AGREEMENT FOR STUDIES

KONSPEKT DO LEKCJI MATEMATYKI W KLASIE 3 POLO/ A LAYER FOR CLASS 3 POLO MATHEMATICS

HAPPY ANIMALS L01 HAPPY ANIMALS L03 HAPPY ANIMALS L05 HAPPY ANIMALS L07

HAPPY ANIMALS L02 HAPPY ANIMALS L04 HAPPY ANIMALS L06 HAPPY ANIMALS L08

Poland) Wydawnictwo "Gea" (Warsaw. Click here if your download doesn"t start automatically

SNP Business Partner Data Checker. Prezentacja produktu

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Projekt: Mikro zaprogramowane na sukces!

Dolny Slask 1: , mapa turystycznosamochodowa: Plan Wroclawia (Polish Edition)

MAGNESY KATALOG d e s i g n p r o d u c e d e l i v e r

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

SubVersion. Piotr Mikulski. SubVersion. P. Mikulski. Co to jest subversion? Zalety SubVersion. Wady SubVersion. Inne różnice SubVersion i CVS

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

Network Services for Spatial Data in European Geo-Portals and their Compliance with ISO and OGC Standards

ABOUT NEW EASTERN EUROPE BESTmQUARTERLYmJOURNAL

. Natural Language Processing. Jan Daciuk Department of Intelligent Interactive Systems ETI Faculty, Gdańsk University of Technology.

Transkrypt:

TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 7: Structured Prediction 1 1

intro (1 lecture) Roadmap deep learning for NLP (5 lectures) structured prediction (4 lectures) introducing/formalizing structured prediction, categories of structures inference: dynamic programming, greedy algorithms, beam search inference with non-local features learning in structured prediction generative models, latent variables, unsupervised learning, variational autoencoders (2 lectures) Bayesian methods in NLP (2 lectures) Bayesian nonparametrics in NLP (2 lectures) review & other topics (1 lecture) 2

Assignments we will briefly go over Assignment 1 today Assignment 2 was posted last week, due May 1 st reminder: for those graduating this quarter, Assignment 5 is optional 3

What is Structured Prediction? 4

<latexit sha1_base64="u0xwf3yzhfhquldgyizfugbiywg=">aaa1bxicnvtbc922ezbtw6reknb61e6hrasjhuuqjhonmaseiwkrdiekqtpybqksaukchki8gqdpxqz7w/pp+tbx9qv/obsazyejgjiczdgigg8xi8xuynfrucrmyl29f91643vf/8epf/tmj9d/8tof/fwxb739yy9exvkqpg/zjodfbutqhgx0uwqyov8vnji0soixwevdbp9ysrlgexyifwu9s0mcsteliysq87dvpdvkkml04udembah2hjhizakhk9v+smre55wy4b6tj+loazm9bb+8owesllf8r54pufxsubn1al2p/a2fjypaubuhdzy1bityc5ph5e32pb6/na/u8+6zvepctdy/5lqemnrfwvhg59fdgw94901qvwjqwqqosuzmg0oxz9/a2nvd0/9epbhqpnywgt+js/ffu+wh+vhmdjmqkgfjvykevyrllmy0hrdlwutshhjynoknxljqtir1ptx3hburn445/avk56q7vjujbvikqaarb0isw0rxw2nprx/efaxrcglzuld0bhmpjl7aetexdhoivnabwk5a1m9cei4csvy3hqvmwjssris7w2lknquwzwt+ruxj8wehfn+bvomkvf81q8n8ynlypln/epxcnzltpzrkcwp5ursgzmahhglozaaof/bqd0macpe0xe3vruh/jbhrjcdqsfeheypl+weagiqxwuonfgakck+ulmwpvdhodynqu7sfp0ogzglzdhihpeqec5rsx3gkyydoa2rrmbhszzd/ezse8bqa6ptgrelmbucdmg4mb5mbryhrapbdhkkn5mhkvdhp6suk5wvkohbhoyixmuidjipkqkgwctqcj5ruz88jmvfmnbosnyegqpqp6hxyevcqyyhl1o8qd72amjl6ixmuxalq4eqmuktl0smjnxlbzrmwaumt/itekdwraqugglcwzwmla+mjhz1tuftutugcgysap+p9nbvm610lfmissyre1cfrjhmh1hyvq0fglowrf5x4wdvsanu+zdfjn8wnvp0dazbsrkotemvjcxfuy09rrzv1nsyets7nx0/pmu0seksefgaxi72n51zwhboqfl9p5s+z/feeg6zvnlwzht2aokob55cjyoooh4dxi0qvy/pr+mrzmlcvwdhpdtnjy3xkxgjak3hl8lqkuklwa6tculo4zlw3psfvsxh0jsmgl4eh0u7voo8eln7d5/tcbuxslivrueyv9odxebxvozlc6xwqui6evfpp8lzuqka2spnmzmrnhis2qqwwz9byriwf7lhuphzizdbig1+uuvbyoilnvfdtxl3miyusu22o8l23gswxqd5rjm+ha69sayjgfoebvxawgfvidda8ytcxtbp0buchjgugrgikuwtp19ud10i0fwhsmnciprbsqa4fopgojobft84ymos4ycxarcwydhbxkthlgoyuqlvzppuo9rff3jofasg/cnbzwbksliyg04goyysuwc5t0ngk+cqb785z9akzrg4qlbxbwradd/bc+9bb35naiqmlpcl6ja7uw+rljhfpamgssunojeshham41w5rypexti3nuhx5xv7mkpfznaetf+hq3yxeftz3druy0ccegsw1lezealyrr54pf9a8/j2fhtxx25jc6zb+4i4kqvnkpx10b6qhfk1sfph9eccqxzephp42i4dvq3wxvohstueapnlvecadc61psle29wybq6y9shnr4fhs9n+txbmngsiezdjshftecverauldo6efc2kmhanbenbsxd2jhzzywclbobiscjjc4gyczksycvc2mkgwssifkesu1q/ugeaxsytar6n1itt6msydshdwc4jymexzct8cytisqd1axrlnkqdlsynpwboxccifu91ltcgip0/gxy/bqeowcamczkoo+psnzy+iihccsvink3zecdpgoxmdqynuqkte/rtryvkt6u8jmoscygmy5xktnhhqaud0e6iphystluv0f+cckxnwgknlyedvdw0jyhrflh/mw7k0b/zhewlsbymsaaegbbh+7ydw140gqqfq6gxlql4g5fn7bkthuy1x6yal1znkdg32avc6gzlhpkln97wo5fkiwb8pih3q486pwdtdc5pe8cw2bbkxt72gqzmej30o5hyjkijvjgtbxu7ydvur5tymujzcets1l7ln/3urtciazuhes2xguu1lk9ivnjh1klryldaq80kh4kchmelt1edxcr/h2qb+5um6w6tjr2f3hyflcyjqim3frppdw+eo381alzf08u0rv1vn6izmgzduxdowlg9ysncftb6ektmqpxtbmajgpponfssnvdmxl7b/gkq4sjfqyq1ojwqwps8ytgfvglhx1so6wqpf7vssrfyxpveefdms2vdfjmdmxpoqipfjoeyt2hgyj72mqdcjhhrxs5ncuc1u7ozhxbxnqmi0zadlm7sge3xhdqv3q7yag0h/lq2vjzc/10dzqfhgdnkcimdvgkvtyxzcikcruzedhjzeststparubedrrycm0b2xdaypty0sicdrma7i2pgj4n+6aqpu6jr8cfd3uigdzvkolpohcuo2gokbdckj0mk+z+rn8wqg/tn75ud5jwee9bt9wemacsq66egbtkizwf8zs/6cnzhaf+yy8kzhs5xre5kv1splxcr0yqxoswokohic/ezhk7tne78siqqn8a40ybn1swnyaohrk6rb0r7wx5uqzzmscztl2uegacaeywj+5ip3hpepj1bhp4luc8flxnixh9d3iavr0/vnrkjjgl8otq4p7jhnkochutgynlkeupj6lzuj0fckkzlqmdsj2fxszfcw8oew2jgda0jewxsj2ghxgd7ailo9corme8qwn0huqkr01sh+fqnxtayt8tvjsgqwwahgc0orhcidiziaxgjstzt6kq8fzebgaeelyjnqj76gm11dpxkab1nlcvdr9uosv6hjipfvuqsdixjmyrpolebjultse5usvtnl2mrjnikpu2djcxwd0b6ckrjdejderygllybnoqzqj/lfjcgmhwnsjrnteu6a19g9jvjbvij7lljkjbdobc3riw9iu2glwsh1cgkma5zbzukquho6r7aa/9y2guea1vdawybkgzh5jsovdvclzuih2g0diou9a3c1nlg5runklaodbjvadxopbr91eczlgjhc1qjrhce1v9rltwfbox0inxmrprj2vtmvde67urcdmdbxcz5z63fgnmbqyq2hqvmdrshea6e7cgkrsc8paj4awsax3h43og1bmi4bjordcq1itznmhrinhsfmdmmkjnoi/ystiwuc5tolzwrybuzyqhbmppex1+0qeqmlpmu6iloietsmfodngip5pqvkgrjn1c9tulp45x0jvvuyxup6uxu8ptgxafpbn7klebgfq9xg9tbu47gdt1elgrjdun3dhqq3vzmnkexuewkkorluy3wjdmxttbvaa+pm9rneg6uspcadpr9nn8sd8ctdr7q3jqax8n4yejk1bam31mcptlf4lgpiekdvlfwvvbrgkxytjqh8zgo4mffagde2afshh1mfq20c5k+liw7eiyadictfzf2c2mzakjh0uer57knjsggkhw3qmwlcigqantsnb8+6gbfr3bwpcp52okfr7a6hh57sayvwdjfelnebj4rw+sdlicmi0uhcsjctcbwqxubjqgl9mkr5s0cvvv+yb6wg7qkniwk9rlep5koouvgzqnnjhuk9vr2uge2j/rt1sl/rantczst5/atwigpv2stwi+3hbuj3gaxftmhkkltrzrlngxng5lny2aam7hnvsupybhsot0ze5cqyirdphjunal6dgqtq5c2y5von9d7tz07glhkmpgozfegslp77tcq1toxjk8zj8lsjdjr8lqfivxogcaiiikiiqv1pmxx70oxrja28qwzj0orxlnp3p99a/cuzwkgazfqgompzrvu0xygzckvjtzq+2zc4b1qzvfbhs5r1chrt8t80f/wladvftsmc6yxwkyezkoqoq1b11alk40l80r5qs45jnwpzmheqqvmgz7oz8znzzccj27jxfgqumndwaysgbqfwqqaa/sf+ncpzb0xsyrfo/l+6lg0ylnefnnt06xui433e/z9wx8wv+zgbhhndcwre+djswbe583vic6w2c/crhuln0zmui6yuoo0w0cc4bwfbrgn7poxgvv6rszk60z8x5lr0cca7xa1g903klfeqr7my4sqb5y+rfqywkj+ktkf++pjo0r0we79mk09+nnyduyfdiwzdgp1lhctmu7dz9vrxfftt/ukuz0tplxhydc0qkecercwqdit3a9cd65++om38d/hyefwcnq1tnhb863anofbespzqhw4hd7pik7fez6aqsxvtmdup2sbu/v2ttajschvdl+i0yfdb56mnuf2dq9usaedky8dbe38ur5qhvvmxee6hupabiwe5xzsdeq4l1sreqlbpg7igexlobbzcml9xy/ievsfu5f9p48pqk1fmwdjhuaurvnxvvncazchc5hwasx98z2k1krxdnc9lfcymujcbbutjffpwpt3j3i2sum3lzuk8benoyv+dlp4twidk4c9xuhwr3okrfrpemtjdtlivwkq+2ly+yiruiuvk7sbpcvxtkonucrccyi/ww2/fdbcv4tgplymqt825+qusa54hibrboprbu/vfugaxvw9rfaypcb8yggiyxgc1rky+952809hwqhfefztqvldvyfnx6mg6h3nwq9w8lzihvrs6tom8qw67tt24ghoc7b2vuiah67qetce4rvtcztu5r4ek3b+2ce81ru9ulvmdocp2sp117y9wzv/kfnxze+rybgmm9/4rzmj809k7i8v7u2o9nzhf39/45m/n38+8+bab9b+shz7bbt2p7vp1p6sha89xwtv/fpwv2/959z/3//f/v/f/+3932nog7caml+t9x7uv/n/igns0g==</latexit> <latexit sha1_base64="bn/zsaedvk1udtj0wpzbn/egj8m=">aaa1bnicnvtbc922ezz6tdvb0s70pdmpw0lto5zuhsdom0k9e8v27u4uvbxlxczkgpde4yhemwhwxmywf6y/pi99bv/6e7ol8bysacjj0ywtavh2svjslhyxbuxchnzf/9f6d777ve//4idv/wjjxz/56c9+/vy7v/hc5cup6fmwt3l+vuaetvhgn0sme/pvwsljg4r+gvw+wpyvp5qllmcnclhqs5tegruzkeioon9n/wq7s4rrhx95yukeyoofj0ksel6x7adetnhalrvqw/6uhrka1zv6w5ctkkl927vv+ythkzmfv4va/9jb9lmmqiftdvhjvctohdmnhv7eysfr8/uwxeuwrt0kwaaas0jbjo3txw98ftev9rz3x6jyjwspb2/4wz6vaud5xvnbm/t7++rhsz9gzcfmwvnzfp7oe+t+lidlsjopbn062i/kwuw4zgfc6w2/flqg4swj6sl8zisl4qxs819721ateeocw79meqq2s1grvihfggasdsdmnqx0tz2wcvzhwcwyopq0c3vh4zlxzo6hmxkr46cfzaefjoqmzpxcceeklgbyg71ucjaqybk8n5rk0rkm87to18acfbmwzvu1azlixvnzvzbmpyylzz71q8cp8c0z2a+lmd+ue0knzmgyyiym2migdgij9pikkxtn393xvhzww4z73gwenxgtmqvelnscieecl6byrmmmcpvqtsh4wcgd2pweoun7daimxiw2r4st3qviuutf9ognga+etkyagr0lcq7zm0nvgkmpje5nrczavhdqiengejc1wrwqkww5zjdczizk3oedkljocr6gho9wmcmqlymyykzkiojmeumjeeblqfkafh/jwdnbwhnkked9of4hfwmtshy+ahg/+tiros2jm5pnqzqmhapqpk+8kpmy1juf0jhllzrcyk9ianetevaapgkfc5puvpo6wttvpk3rbomimleifkba37tnttkxtceksazuqx0srtifrmfxnrrgzfqyekona7wjjvdnxxyxfsn46tprgqqp5towdvwqlbrhnfa0crxtb3pk7e5+dvz4rnhgiktgxbtyotp4dmyjqzgfyq+ebvmcxrnjomz61qmjo7pxe0s9ehi1kqkievjoalspenx+ty80s+o6entuq33+2bi/itgc1nr8iqyekrsa9daaj4q+ngphlf/zqxigvwuc6cvwubrdpc5hr/b+4xm6rjzhfquykajjarqzgpzkl7f8idvksfxhij7tvhg+v0btw/ksczlcbonvw9uy63nlwrbmqvyykn4+exjhscevtyhigbhujr6jke8mk5eytsl2ndmumwzw+dspanknw7uxisexuj/aob4yk6wqerp4nks4goyjekoqennfefckpaj158vqjgsbmutadk1irdny1hsxfw4oqrlh8cjbhpycb7lmg7aew9n2ijpmgcputxhjnqfe0chbg0oviaxlh9lqbloclcuydalzywsnost5ggjboyc4+okcwzowreakqv0vkgk1fg8tvg+8+e0bkdkywc+rw+x2pusyybarjhgmlzyarriyqjcmc+uudxpnsd/yhf+fv+z+qh6zwrmyfrmo2r3guwv3ulonhxfiembs387icwc3e+dxfahn41vzncvtu40tmg7tc+jefpypcnzf+6pysnuitr3tawmucnit6sfhow74tlp7zyfkvnsitjb1ggm2onf2ihhva3o0nwdajz4/ojxemvybsjpnjbongexwumjpwyzmlsihcyekachfhdshsnpourmzschaplgwaerkek5acjrnyjralhhsfgmvjkb0o5kc0vrlxqp0km4r8g20jmlhj5a1cx7och5bdo5pjuzpwbrlaqgfocizirpomwk4buarbhatekpzuqyr6fzjsptpc3ainmzcyhhyuzeqsfrbdbrwwbb3bjqhahngygdqmdjrtz2y0g8/kig7xeulgzzmcgqcq1r2ijsowu2o9ky0tzcw3aqm/hduydottmh4crno5zy5qynii/2pcsoh/pgnlcqftwbimiumhd06sb0y9qijjpgyco11scubjgxql20tnkr5ytv84wqgxlnjxhvgz1s2zfz49lbeivranoandbwfettpawtnchmaaibndlqu9rhxmdwd6ktfwcqyquqkimw92ngfq6f6w5tlfmpcwgkj9i3/7hdvhuecqanra44nxkp1erlzlqujfl0hu9vabsb5sbqwdfu4jrogvvn/iavy3zrdd2gt6sjktiugzeletby10h16+og5+lejzlu0xuxj1p92gzqlady1byeujnujnixkya0vswqmxdlfajygmencuc/scwvu7bxmlwypllwurfiduwmjtc+tjfpamxb2tewwtpdyvyuvdchptu8mcwu2wzbelzkym4confhmci77fgas7gmvaypmgpfv5diud1wzqzvtarfxosasdtng4syo2htdof3a7yan0hbar2trxcp939vrfhcwku2umdlam1bxxdihj8hpze7kgjetscxmaxmzgztgzcuwawrpbcpry00jezjgzla7oaz+muihtvcwk7ogfzlsjw74semoquvesykqpubkckpwmksy/xl5uwy5qd/8xttbxuk5yt1df2aktgkxhmpgic3ahmzn9qyvwbco8iu5jjxr6bxx5k70u5vycbe6txihwowqgyi8cj9p6nto6csvsgjxy4wbddhuxxkarhra6rq6r7s/7ee2xgmeyzx9u+yjcac4xzkyj5nkpedn2rnt4bka9flxkohm9dffdvjx+vtumzhakmyvq827intmm8pzugsene0mmz6mzuv+gcqkyvqodcz1gby3g8m1rowxlabg0dcyxyd1gbzqdlcvjojer7wc86sc1r2smxaxvxwar9xoby3xrfxdiaisdbyc2ijcdcfcyii0hjgizd2lrsrbcbmjced5gtks6qov0vzhv0+o1theutj1vi2s5bvkmlhcpstpujk8qzkue7vrkjsv5e6vtnx0mrzigkdq2t5jwmj1z6spodpoj9slz2vaygfast6d+lluaqoqwdeis3lgu6r79mvexznwjpxalpsmcdkvcnvrytit0gtaqnzihuka6zp1uemshism7gs88i+fvey5udu0ybaaaxzlvotctcndwylwgezrn+ja3ypsnqdwxtgaauvaifgvxu1eqtfpdttlihy2r5vgdefq/bvwwfpp5kinygfmspmuvcvufa3jrs7tabbmzzj31losmbcypgjbswdushsa4udihkjqbmzbq4q3tqdxhyfhjv5diixdoblrp1xbanmeo4fmuvcam8ogmum0ws9ky+iysilwwbkkvpehhrofm0/89uwbsm7ckk+plukcum4gm9xjkfzgtlkhszb0c9vjk/48zknnwe+vxjeszuqmt2lmhpdk5qdcaq5u8qa3qr2862js0e1eszbkmh5nrwhhbw/mgxqrxu6iqli222jdkh3bbfmv8pq4qx2u50aje6/hqnlh881ydzxh56vuran5piwhhqrcbwv6psvgkl0mhvuymd5adwvdaxutycrhsxkyh+miflysducffsdn0wdw0uc7koldybgdwqhod9jyewm3l5yjibomfr55ltvoigygwnejvlyih6icts3w+evdbvb9aaffo5ynnvhwzktl6lchy/ckjvmemetf4bmxtd7hamk6uhsyimlfbak3uhfygrbglxzz3ilgw++x7au7oavoyajql0f8momsu2tunhduwqfgv2+p+2b7qn9unfzhota2tznxbt+kffh4rtap9xjludnqbrdblxmqmtt1slpgwda8idm6baa4hxvmo5wkfsge0zmzaqmjtdheikddk6rhody5dgmzvil+a71f27mdgusgg4/sfg8iq7vxdqnarxpb+jrxmmxwir0bt/uryowuyyyimcgssldpw3z1pntjamkbxzd7obtplfxm/d81co/snaasfgkfmp7ywug2zafklllryko+byye3ghlhb9k6lxghbj+s8wx/w9mefdmt80wx3qpxutipaqz07b1dvwy0lgyt5sn6pzdwp3oheasumqe4el8ztx0dinw4pbmhquhndyvbmocqpgppqo4sf+ad/1y1huzrfi0ku+phkulnetmmt01xeo+0ng/yd+39qhza27eftdcx7y2dz6wboz13lyd6gyb/szmutd6w2su64ijpu4zdmqzxvvpftvornmhcabfzek2bsr3nbkvdazzdlcz2h0jgeul5mu8tkh6yoldpculloqnkl2wr960o0qf7n0l09qdn23v0byajnggyazeeqjv0334uxqt6376qz5kqmfclcss7jpgnyhdahy2fxu1+1xo7tvpp/e2/ls8+dxetq+wcxtrvlxbm3bltzklqa63wwdzxokfhkdmksub05lbkvng7r59ru0iusjbw69ododqmydjzzg93asb0sfgyumaqro/ri+urz1tv7ioxziwayvhoqc7gxlujdvqxskwj4m4ifmzqmw8qlrf14u43n7b7uxg6enh1zavgybxd3pxoqz4qizhdzjqouyrgjl++fzsatiro7heyiuztcehgo1wkqtnlcr7ezxb2flbli1f+jcg0ei/hyn8w4golcoelisr1zlsvqo0iouku2yxqjsi/ts5fmhi3mkxfdpnnpi4ptftxbkhbmgf4yzf3h+hx0jwuysg1w+bc3xkwfc8dsa1d8b1d/brpisnyq4eiivmpma+sddrzqybagnze2+n+aejliqick5p1fyuq5pm41rq9y7mracref7kqi1p9wltevydd2p78ddnovg7x3tad1z1pwhc8dqphr2qcg+csti/7gce6ooeqf1zo8chbewga97erzo/ykmr5vdvmaygzw/8o5mr+scy9scxd/dg+3ujv7+/+cmfmz+fewvt12u/x7u1nlr709ona0/wjteer4xr/1z/9/p/1v/7/v/u/ereb+79vko/s97q/hkt93pv1v8brphtaq==</latexit> Classifiers a function from inputs x to outputs y one simple type of classifier: for any input x, assign a score to each output y, parameterized by parameters w: classify by choosing highest-scoring output: 5

Notation a vector entry i in the vector a matrix entry (i,j) in the matrix a structured object item i in the structured object 6

<latexit sha1_base64="u0xwf3yzhfhquldgyizfugbiywg=">aaa1bxicnvtbc922ezbtw6reknb61e6hrasjhuuqjhonmaseiwkrdiekqtpybqksaukchki8gqdpxqz7w/pp+tbx9qv/obsazyejgjiczdgigg8xi8xuynfrucrmyl29f91643vf/8epf/tmj9d/8tof/fwxb739yy9exvkqpg/zjodfbutqhgx0uwqyov8vnji0soixwevdbp9ysrlgexyifwu9s0mcsteliysq87dvpdvkkml04udembah2hjhizakhk9v+smre55wy4b6tj+loazm9bb+8owesllf8r54pufxsubn1al2p/a2fjypaubuhdzy1bityc5ph5e32pb6/na/u8+6zvepctdy/5lqemnrfwvhg59fdgw94901qvwjqwqqosuzmg0oxz9/a2nvd0/9epbhqpnywgt+js/ffu+wh+vhmdjmqkgfjvykevyrllmy0hrdlwutshhjynoknxljqtir1ptx3hburn445/avk56q7vjujbvikqaarb0isw0rxw2nprx/efaxrcglzuld0bhmpjl7aetexdhoivnabwk5a1m9cei4csvy3hqvmwjssris7w2lknquwzwt+ruxj8wehfn+bvomkvf81q8n8ynlypln/epxcnzltpzrkcwp5ursgzmahhglozaaof/bqd0macpe0xe3vruh/jbhrjcdqsfeheypl+weagiqxwuonfgakck+ulmwpvdhodynqu7sfp0ogzglzdhihpeqec5rsx3gkyydoa2rrmbhszzd/ezse8bqa6ptgrelmbucdmg4mb5mbryhrapbdhkkn5mhkvdhp6suk5wvkohbhoyixmuidjipkqkgwctqcj5ruz88jmvfmnbosnyegqpqp6hxyevcqyyhl1o8qd72amjl6ixmuxalq4eqmuktl0smjnxlbzrmwaumt/itekdwraqugglcwzwmla+mjhz1tuftutugcgysap+p9nbvm610lfmissyre1cfrjhmh1hyvq0fglowrf5x4wdvsanu+zdfjn8wnvp0dazbsrkotemvjcxfuy09rrzv1nsyets7nx0/pmu0seksefgaxi72n51zwhboqfl9p5s+z/feeg6zvnlwzht2aokob55cjyoooh4dxi0qvy/pr+mrzmlcvwdhpdtnjy3xkxgjak3hl8lqkuklwa6tculo4zlw3psfvsxh0jsmgl4eh0u7voo8eln7d5/tcbuxslivrueyv9odxebxvozlc6xwqui6evfpp8lzuqka2spnmzmrnhis2qqwwz9byriwf7lhuphzizdbig1+uuvbyoilnvfdtxl3miyusu22o8l23gswxqd5rjm+ha69sayjgfoebvxawgfvidda8ytcxtbp0buchjgugrgikuwtp19ud10i0fwhsmnciprbsqa4fopgojobft84ymos4ycxarcwydhbxkthlgoyuqlvzppuo9rff3jofasg/cnbzwbksliyg04goyysuwc5t0ngk+cqb785z9akzrg4qlbxbwradd/bc+9bb35naiqmlpcl6ja7uw+rljhfpamgssunojeshham41w5rypexti3nuhx5xv7mkpfznaetf+hq3yxeftz3druy0ccegsw1lezealyrr54pf9a8/j2fhtxx25jc6zb+4i4kqvnkpx10b6qhfk1sfph9eccqxzephp42i4dvq3wxvohstueapnlvecadc61psle29wybq6y9shnr4fhs9n+txbmngsiezdjshftecverauldo6efc2kmhanbenbsxd2jhzzywclbobiscjjc4gyczksycvc2mkgwssifkesu1q/ugeaxsytar6n1itt6msydshdwc4jymexzct8cytisqd1axrlnkqdlsynpwboxccifu91ltcgip0/gxy/bqeowcamczkoo+psnzy+iihccsvink3zecdpgoxmdqynuqkte/rtryvkt6u8jmoscygmy5xktnhhqaud0e6iphystluv0f+cckxnwgknlyedvdw0jyhrflh/mw7k0b/zhewlsbymsaaegbbh+7ydw140gqqfq6gxlql4g5fn7bkthuy1x6yal1znkdg32avc6gzlhpkln97wo5fkiwb8pih3q486pwdtdc5pe8cw2bbkxt72gqzmej30o5hyjkijvjgtbxu7ydvur5tymujzcets1l7ln/3urtciazuhes2xguu1lk9ivnjh1klryldaq80kh4kchmelt1edxcr/h2qb+5um6w6tjr2f3hyflcyjqim3frppdw+eo381alzf08u0rv1vn6izmgzduxdowlg9ysncftb6ektmqpxtbmajgpponfssnvdmxl7b/gkq4sjfqyq1ojwqwps8ytgfvglhx1so6wqpf7vssrfyxpveefdms2vdfjmdmxpoqipfjoeyt2hgyj72mqdcjhhrxs5ncuc1u7ozhxbxnqmi0zadlm7sge3xhdqv3q7yag0h/lq2vjzc/10dzqfhgdnkcimdvgkvtyxzcikcruzedhjzeststparubedrrycm0b2xdaypty0sicdrma7i2pgj4n+6aqpu6jr8cfd3uigdzvkolpohcuo2gokbdckj0mk+z+rn8wqg/tn75ud5jwee9bt9wemacsq66egbtkizwf8zs/6cnzhaf+yy8kzhs5xre5kv1splxcr0yqxoswokohic/ezhk7tne78siqqn8a40ybn1swnyaohrk6rb0r7wx5uqzzmscztl2uegacaeywj+5ip3hpepj1bhp4luc8flxnixh9d3iavr0/vnrkjjgl8otq4p7jhnkochutgynlkeupj6lzuj0fckkzlqmdsj2fxszfcw8oew2jgda0jewxsj2ghxgd7ailo9corme8qwn0huqkr01sh+fqnxtayt8tvjsgqwwahgc0orhcidiziaxgjstzt6kq8fzebgaeelyjnqj76gm11dpxkab1nlcvdr9uosv6hjipfvuqsdixjmyrpolebjultse5usvtnl2mrjnikpu2djcxwd0b6ckrjdejderygllybnoqzqj/lfjcgmhwnsjrnteu6a19g9jvjbvij7lljkjbdobc3riw9iu2glwsh1cgkma5zbzukquho6r7aa/9y2guea1vdawybkgzh5jsovdvclzuih2g0diou9a3c1nlg5runklaodbjvadxopbr91eczlgjhc1qjrhce1v9rltwfbox0inxmrprj2vtmvde67urcdmdbxcz5z63fgnmbqyq2hqvmdrshea6e7cgkrsc8paj4awsax3h43og1bmi4bjordcq1itznmhrinhsfmdmmkjnoi/ystiwuc5tolzwrybuzyqhbmppex1+0qeqmlpmu6iloietsmfodngip5pqvkgrjn1c9tulp45x0jvvuyxup6uxu8ptgxafpbn7klebgfq9xg9tbu47gdt1elgrjdun3dhqq3vzmnkexuewkkorluy3wjdmxttbvaa+pm9rneg6uspcadpr9nn8sd8ctdr7q3jqax8n4yejk1bam31mcptlf4lgpiekdvlfwvvbrgkxytjqh8zgo4mffagde2afshh1mfq20c5k+liw7eiyadictfzf2c2mzakjh0uer57knjsggkhw3qmwlcigqantsnb8+6gbfr3bwpcp52okfr7a6hh57sayvwdjfelnebj4rw+sdlicmi0uhcsjctcbwqxubjqgl9mkr5s0cvvv+yb6wg7qkniwk9rlep5koouvgzqnnjhuk9vr2uge2j/rt1sl/rantczst5/atwigpv2stwi+3hbuj3gaxftmhkkltrzrlngxng5lny2aam7hnvsupybhsot0ze5cqyirdphjunal6dgqtq5c2y5von9d7tz07glhkmpgozfegslp77tcq1toxjk8zj8lsjdjr8lqfivxogcaiiikiiqv1pmxx70oxrja28qwzj0orxlnp3p99a/cuzwkgazfqgompzrvu0xygzckvjtzq+2zc4b1qzvfbhs5r1chrt8t80f/wladvftsmc6yxwkyezkoqoq1b11alk40l80r5qs45jnwpzmheqqvmgz7oz8znzzccj27jxfgqumndwaysgbqfwqqaa/sf+ncpzb0xsyrfo/l+6lg0ylnefnnt06xui433e/z9wx8wv+zgbhhndcwre+djswbe583vic6w2c/crhuln0zmui6yuoo0w0cc4bwfbrgn7poxgvv6rszk60z8x5lr0cca7xa1g903klfeqr7my4sqb5y+rfqywkj+ktkf++pjo0r0we79mk09+nnyduyfdiwzdgp1lhctmu7dz9vrxfftt/ukuz0tplxhydc0qkecercwqdit3a9cd65++om38d/hyefwcnq1tnhb863anofbespzqhw4hd7pik7fez6aqsxvtmdup2sbu/v2ttajschvdl+i0yfdb56mnuf2dq9usaedky8dbe38ur5qhvvmxee6hupabiwe5xzsdeq4l1sreqlbpg7igexlobbzcml9xy/ievsfu5f9p48pqk1fmwdjhuaurvnxvvncazchc5hwasx98z2k1krxdnc9lfcymujcbbutjffpwpt3j3i2sum3lzuk8benoyv+dlp4twidk4c9xuhwr3okrfrpemtjdtlivwkq+2ly+yiruiuvk7sbpcvxtkonucrccyi/ww2/fdbcv4tgplymqt825+qusa54hibrboprbu/vfugaxvw9rfaypcb8yggiyxgc1rky+952809hwqhfefztqvldvyfnx6mg6h3nwq9w8lzihvrs6tom8qw67tt24ghoc7b2vuiah67qetce4rvtcztu5r4ek3b+2ce81ru9ulvmdocp2sp117y9wzv/kfnxze+rybgmm9/4rzmj809k7i8v7u2o9nzhf39/45m/n38+8+bab9b+shz7bbt2p7vp1p6sha89xwtv/fpwv2/959z/3//f/v/f/+3932nog7caml+t9x7uv/n/igns0g==</latexit> <latexit sha1_base64="lvj5f1yayqj0pimo0ef8s222bnc=">aaa1fxicnvtbc922ezz6tdvb0j72ha2kqr1lqo4tj5mknoliq3yniqracm6irafjhb5ivbkaz8um+wp7d/ov+tq+tlsazyejgjiczdgigg8xi8xuynfrucrmyp39f63/4ic/+vfpfvrwzzz+/otf/urxb7/zmy9fxvkqvgjzjodfb0tqhgx0hwqyov8xnji0sohxwdujbp9qsrlgexyqfwu9t0mcsteliysqi3fww+0skuyffeyfcrgcjreecelc+ma2nxi54wm1bkjv+fmaympe7+gpx06ojpvd76hnex6nzh5rlwr/e2/bz5mibk7vuy1vltsr5px2ehmlha/p73t2rvsw9ztlsks0bokvn7y3tne98cvlv/a73j2jyp8q5axewz6vaud5xsxbm/t7++rhsz9gzcfmwvnzcvhoe+t+lidlsjopdha22i/keuw4zgfc6w2/flqg4rwj6rl8zisl4rxs5lb721ateeocw79meqq2s1grvihfggasnslmnqx0tz2vcvzrecwyopq0c3vh4zlxzo6hbxkr46cfzaefjoqmzpxcceeklgcbg71ucraxybk8n5rk0rkm87to18acfbmwzvu1azlixvnzvzbmpyylzz71q8cp8c0z2a+lmd+ue0knzmgmyiym2mig/gij9pikkxtn393xvhzww4z73gwenxgtmqvelnscieecl6byrmmmcpvqtseuwt+d2pweoun7daimxiw2r4st3qviuutf9ofngb6etkyagr0lcq7zm0nvg0mpje5nrczavhdqiengejc1wrwqkww5zjdczozk3oedkvjocr6gho9wmcmqlymyykzkiojmeumjee7lqfkifh/jwdfbwhnkked9of4hfwmtshy+apgw+ssros2jm5pnqzqmhapqpk+8kpmy1juf0jhllzrcyk9iameuevaapgkfc5puvpo6wttvpk3rbomimleifkba33tgttkxtcfcsazuqx0srtifrmfxnrrgzfqyekona7wjjvdnxxuxfsn46rprocqo5towdvwqlbrhnfa0crwzb3pk7e5+fvlkvnhgiktgxbtyot54fm4jqzgfyq+ebfmcxrnjomz61ugx0dnrcak+fxo9kqkienx4papupb64oueapxfdhr73uf88scrpyoygtr6/cktnjc1gebtgcagp58bxy3/+qorbb5ka+gp8fo1qqfpw1d4/fe7h1ebiyluwbwfctxcwg1/5mpyvsvojietixkedcs/ncmhqk59ltkbyylbqq1pmfw4py8jcyb5dxc8nqu4onvjlfgupi5baxpc05b1hmllgntmujtt1k8gsn+yrtfp0upyimeqj6hmy1anjhvulqgppkwgxwzxbbwgsyroi4oqkflx+ffndcyfacx3irgmjaablmulyryodam5yfosgd0uog1xmrvic4wx7er2zjgemj7wxz1pv+odg0zfxkilyj201gynbymimoofkmbjgneu8dygtnemc/pacwzowreakqv0vkhg1fo8svo+8+d0bkdkywc+ro+xupusyybarjhgmlzyarriyqjcmc+uudxpnsd/yhf9fvozhqh6zwrmyfrmo2t3guwx3ulonhxfiembs387ikwc3e+dxfahn4zvzncvdu40tmg7tc+jefpypcnzf+6pysnuitr3tawmucnit6tfrow74tlp7zufkvnsitjb1ggm2onf2ihhva3o0nwdah18ch50stfsn2zlzkolgqcyrxbtnlrozfptqurnstjbiwp0qjg0n3dmzwgqthywyacilcsctbmomzeoglwhpi4ekeyp6huloaf3yvgf6fbci+dzak7sje8vabq9noy8gb8c0e/mnlioladqpujtzea20mdscaqava4twpnw5xioidp5k2p20btgegzmu5djsqevvwpogbgorlit7ps1dgdxnsfe1gjzqpk5m6lcfl5ddrvksdesmbdkovso7xr0hrxzheyoawkjyblvg/wsqmj0jjzs8ggz0asucoetxxf7hujfdf8wtfpxcwjakmrigwh4f2a4me9eeenwmhca6poinrja1ybywgtv8uwq+ddvd4txkrwqjsy0bzi58elfvrcotgvdtbt4ppeosgbuzudxbamnmoyox+8rrmjpbdnlvygkzicvsrbyeboyc1vc9ycplcmuhllfr+5z/9ru3wiao1itonccgltw6pjj52ovri66d3wqtnpn8jaoyhi3crg0qq/x/kaxsb5quo7swdbry2xvqsisijt5a6d47onyb/twowrvnf9my9b/dom5imnvnqaaly/widqtzwotlljkjcu4racdotdp37rn0qpkbew3zy0gksxcfedbgveji7fmk4xtwpov9yzmse6t81uolxcgl7rndxjnnlg3xzq7gzkeddratnms+hrkr+9irgaqt4gv1tttfxdxs6s50wmvndoheqw64uludnl13al9xo2adtb3wm9pa8xd/d32ubyrlzjnrjazwplu8tczbcxiamrm5ygrlllpzwkbmxg4y2qpsgtlt28j6wnping4yme0ujogfdvqhezzsiq7bnw57oxs+7jcd6jp1rkbqd5as3cg8isnmf0befenu0de/13aqv3powe/xn5uirucshxoysis2h/g5pesr8kudfgmocc8aoscvusv9bqvcqqxok1yifqnkbiiv3gcaorvzovgrkkdcgongazzvv5wmqx6wuq4eku1ve7gn8zjhmk9ftnkcagdusyzsy6zyz3mtdm57ec5avxy8zcbz/xv5c1a8prt/biqwivhlavo+4h7tjhiwlhkhz5njjcej87o/bgljmpudhus9hsxtxnadk3smi4exnizsmug9houaa+yriaa3k6/apklgdyfknkrmbx3gazv6qwm8evc3pkgeg4uatqaq3ykwgcktyywowu+pk/fwxg5jhhi+odsr+uhrtnxr9zojdtsxlhqtvamkey2sdbbxkuk6lcrvq6sbrg2uje0luvmlbtw9jk2y4jgatnessfjdgekjqi7tcxxp2rqw2afwks+gfpzbwibqvjtcup7rlumefrnrv461sswwyyzdqnafwt66svsenig2kb1sh5bmumyd1jaeiagp+wip/gnhr3kova0ngaraml2z76jq7xbxviichthajbjrtwpb54gvvzsgwdowsfslcturavqza82yiixnusuyxrbuf61v1ny2odip8rm5uizlbzfvreu4q3m7gavzmesdtryl5gugkdp2ljg77b5aobcyh5aaafp2moktlwh84efxo9cqcomqaebukdcw2jtb6cfz7hxazdcozdin8lpsmrosbkjvvq6cvwsiow7bzbn/fdgmkpuw5foqizgnrrpbthvyhj2yu1zieitdxpxeij9pcti51lml16wkm7njuxotbzy5/slxmonbvmftuafvoho7chnrkiu5jn/zuub425t5bl1eszooejbttlixzcc2wvqfvd5uap/rovdc3ms4upbrflpcnuzyxap762ged+obislx25p+twmyshedxz4mpg9q3vr3wkulmsnruobmxzichxerhxhhh0hz9jlvnnauzppqmu5amalanbrcxnjnpwuciizjn0eeyzy6ihuocnwils3ciaqgbbn1/vq4g3wf28h3oodpjxyc2+os+u3bmrxiyrrbzhoreezsrxe4gjgulh0mihaxgcctbgswiczyi0wwtwj41vsl+8ju6cp6sijusxcfzqlkfbk1j5y7vijy79vjvtk+6rdbj/+xdrtn7uyc27dibt5eku1qvdwsbo56g8t25yrkjk290prxljvvslaumgfu4z75hqecrbdn9mxmqeiiew6r4lhxpooxqe0oxdosb6lfqo83du5g4jlb4km03xvc6u61w6hw61wwvme8jrovsg/a034kcjvlgcmijoqelntzmf89f12ywtrgl8w+dkv6zt1z//cn3lsyp4gkruibpj+2vrgtc4cspvq08qjv2wmbd0a5xwczoq9rh6zflfnf/ztthrz5btpmsv5qmreyj0lmngxdq5wsnjbme+wpoucwvj86hxgrrppnedqfgted3qqcucvzyufijxufm7iaanxqqqio7bfgqz+w9cyskrsnyvutx9ii5xjtte9nl7qpnn5p2pdtfcd8hhuxxq3xma/tny8lgxmdn1cnottmpwuz7rxemjnrumbcqdmma3gg1366xta6g15ohogxmzctg/edz0zfa2u2w9umdt9irnkj+tive6oewpoqackci/qpzbfsqyfuknehew/ctpbgz9s7nbfqmc4wjnvbqrrqug8/v6913u8/1znm9uyycowfxdoobnfiwmkmyq92vwrdvf7pj97gf48nn9vl6duyyw/nt2p7dm7pkwcb1ef2+cclop2j8nrmzxlzonmnjqvc3bevtulecnl3+bwndhx682ssobk3e3vdohhmerwgaoi39yxyqgfqctfxgac2ype452bnumk9pfrns9jycrahzcodtzhxsov7ehhx2y/yvrw8e3jybfmaarj3mhctyoqvyhlegamdw7qkkomp7ywljr22g5ulvjbjfbii2ggluxrworw/wbovlb9t2vkej2kilfqlmmk/fehyoezpqrj6nsnlpuqdwe6yqxarsopyz5krx4zelxxzod3kgyljgj3djrfkepwzbvjlwxh6jqq3twjq/by5v6emdcxjafxzb1x3z7/uq9io5uohsslsa+ydcxndxrcolpc993aafzrkqiic4jpwze+6om0+zgrv72joe7cc50uu1jjwnzwv59vjp7yhd3oeg7xzrqf8afxxgyyur51a2jeq9ycyhporduazruib2jw3a3zcvm645u3dqvn7nlpqfl8hw2dy/my/mhmzfyjjf3x5f2+0vzf6+/ubn/65+fozt9z+t/ahtttro7up1z5de7p2svzilvz/5/q/1/+z/t/3//dg+8hogz0n/cf6q/pbtd7pgw//d9gm8z4=</latexit> Modeling, Inference, Learning inference: solve _ modeling: define score function learning: choose _ 7

Applications of our Classifier Framework task input (x) output (y) output space ( ) size of text classification a sentence gold standard label for x pre-defined, small label set (e.g., {positive, negative}) 2-10 word sense disambiguation instance of a particular word (e.g., bass) with its context gold standard word sense of target word pre-defined sense inventory from WordNet for bass 2-30 learning skipgram word embeddings instance of a word in a corpus a word in the context of x in a corpus vocabulary V part-of-speech tagging a sentence gold standard part-of-speech tags for x all possible part-ofspeech tag sequences with same length as x P x 8

Applications of our Classifier Framework task input (x) output (y) output space ( ) size of text classification word sense disambiguation learning skipgram word embeddings part-of-speech tagging a sentence instance of a particular word (e.g., bass) with its context instance of a word in a corpus a sentence gold standard label for x gold standard word sense of target word pre-defined, small label set (e.g., {positive, negative}) pre-defined sense inventory from WordNet for bass 2-10 2-30 exponential in size of input! a word in the structured prediction context of x in vocabulary V a corpus gold standard part-of-speech tags for x all possible part-ofspeech tag sequences with same length as x P x 9

Applications of Classifier Framework (continued) task input (x) output (y) output space ( ) size of named entity recognition a sentence gold standard named entity labels for x (BIO tags) all possible BIO label sequences with same length as x P x constituency parsing a sentence gold standard constituent parse (labeled bracketing) of x all possible labeled bracketings of x exponential in length of x (Catalan number) dependency parsing a sentence gold standard dependency parse (labeled directed spanning tree) of x all possible labeled directed spanning trees of x exponential in length of x machine translation a sentence a translation of x all possible translations of x potentially infinite 10

<latexit sha1_base64="u0xwf3yzhfhquldgyizfugbiywg=">aaa1bxicnvtbc922ezbtw6reknb61e6hrasjhuuqjhonmaseiwkrdiekqtpybqksaukchki8gqdpxqz7w/pp+tbx9qv/obsazyejgjiczdgigg8xi8xuynfrucrmyl29f91643vf/8epf/tmj9d/8tof/fwxb739yy9exvkqpg/zjodfbutqhgx0uwqyov8vnji0soixwevdbp9ysrlgexyifwu9s0mcsteliysq87dvpdvkkml04udembah2hjhizakhk9v+smre55wy4b6tj+loazm9bb+8owesllf8r54pufxsubn1al2p/a2fjypaubuhdzy1bityc5ph5e32pb6/na/u8+6zvepctdy/5lqemnrfwvhg59fdgw94901qvwjqwqqosuzmg0oxz9/a2nvd0/9epbhqpnywgt+js/ffu+wh+vhmdjmqkgfjvykevyrllmy0hrdlwutshhjynoknxljqtir1ptx3hburn445/avk56q7vjujbvikqaarb0isw0rxw2nprx/efaxrcglzuld0bhmpjl7aetexdhoivnabwk5a1m9cei4csvy3hqvmwjssris7w2lknquwzwt+ruxj8wehfn+bvomkvf81q8n8ynlypln/epxcnzltpzrkcwp5ursgzmahhglozaaof/bqd0macpe0xe3vruh/jbhrjcdqsfeheypl+weagiqxwuonfgakck+ulmwpvdhodynqu7sfp0ogzglzdhihpeqec5rsx3gkyydoa2rrmbhszzd/ezse8bqa6ptgrelmbucdmg4mb5mbryhrapbdhkkn5mhkvdhp6suk5wvkohbhoyixmuidjipkqkgwctqcj5ruz88jmvfmnbosnyegqpqp6hxyevcqyyhl1o8qd72amjl6ixmuxalq4eqmuktl0smjnxlbzrmwaumt/itekdwraqugglcwzwmla+mjhz1tuftutugcgysap+p9nbvm610lfmissyre1cfrjhmh1hyvq0fglowrf5x4wdvsanu+zdfjn8wnvp0dazbsrkotemvjcxfuy09rrzv1nsyets7nx0/pmu0seksefgaxi72n51zwhboqfl9p5s+z/feeg6zvnlwzht2aokob55cjyoooh4dxi0qvy/pr+mrzmlcvwdhpdtnjy3xkxgjak3hl8lqkuklwa6tculo4zlw3psfvsxh0jsmgl4eh0u7voo8eln7d5/tcbuxslivrueyv9odxebxvozlc6xwqui6evfpp8lzuqka2spnmzmrnhis2qqwwz9byriwf7lhuphzizdbig1+uuvbyoilnvfdtxl3miyusu22o8l23gswxqd5rjm+ha69sayjgfoebvxawgfvidda8ytcxtbp0buchjgugrgikuwtp19ud10i0fwhsmnciprbsqa4fopgojobft84ymos4ycxarcwydhbxkthlgoyuqlvzppuo9rff3jofasg/cnbzwbksliyg04goyysuwc5t0ngk+cqb785z9akzrg4qlbxbwradd/bc+9bb35naiqmlpcl6ja7uw+rljhfpamgssunojeshham41w5rypexti3nuhx5xv7mkpfznaetf+hq3yxeftz3druy0ccegsw1lezealyrr54pf9a8/j2fhtxx25jc6zb+4i4kqvnkpx10b6qhfk1sfph9eccqxzephp42i4dvq3wxvohstueapnlvecadc61psle29wybq6y9shnr4fhs9n+txbmngsiezdjshftecverauldo6efc2kmhanbenbsxd2jhzzywclbobiscjjc4gyczksycvc2mkgwssifkesu1q/ugeaxsytar6n1itt6msydshdwc4jymexzct8cytisqd1axrlnkqdlsynpwboxccifu91ltcgip0/gxy/bqeowcamczkoo+psnzy+iihccsvink3zecdpgoxmdqynuqkte/rtryvkt6u8jmoscygmy5xktnhhqaud0e6iphystluv0f+cckxnwgknlyedvdw0jyhrflh/mw7k0b/zhewlsbymsaaegbbh+7ydw140gqqfq6gxlql4g5fn7bkthuy1x6yal1znkdg32avc6gzlhpkln97wo5fkiwb8pih3q486pwdtdc5pe8cw2bbkxt72gqzmej30o5hyjkijvjgtbxu7ydvur5tymujzcets1l7ln/3urtciazuhes2xguu1lk9ivnjh1klryldaq80kh4kchmelt1edxcr/h2qb+5um6w6tjr2f3hyflcyjqim3frppdw+eo381alzf08u0rv1vn6izmgzduxdowlg9ysncftb6ektmqpxtbmajgpponfssnvdmxl7b/gkq4sjfqyq1ojwqwps8ytgfvglhx1so6wqpf7vssrfyxpveefdms2vdfjmdmxpoqipfjoeyt2hgyj72mqdcjhhrxs5ncuc1u7ozhxbxnqmi0zadlm7sge3xhdqv3q7yag0h/lq2vjzc/10dzqfhgdnkcimdvgkvtyxzcikcruzedhjzeststparubedrrycm0b2xdaypty0sicdrma7i2pgj4n+6aqpu6jr8cfd3uigdzvkolpohcuo2gokbdckj0mk+z+rn8wqg/tn75ud5jwee9bt9wemacsq66egbtkizwf8zs/6cnzhaf+yy8kzhs5xre5kv1splxcr0yqxoswokohic/ezhk7tne78siqqn8a40ybn1swnyaohrk6rb0r7wx5uqzzmscztl2uegacaeywj+5ip3hpepj1bhp4luc8flxnixh9d3iavr0/vnrkjjgl8otq4p7jhnkochutgynlkeupj6lzuj0fckkzlqmdsj2fxszfcw8oew2jgda0jewxsj2ghxgd7ailo9corme8qwn0huqkr01sh+fqnxtayt8tvjsgqwwahgc0orhcidiziaxgjstzt6kq8fzebgaeelyjnqj76gm11dpxkab1nlcvdr9uosv6hjipfvuqsdixjmyrpolebjultse5usvtnl2mrjnikpu2djcxwd0b6ckrjdejderygllybnoqzqj/lfjcgmhwnsjrnteu6a19g9jvjbvij7lljkjbdobc3riw9iu2glwsh1cgkma5zbzukquho6r7aa/9y2guea1vdawybkgzh5jsovdvclzuih2g0diou9a3c1nlg5runklaodbjvadxopbr91eczlgjhc1qjrhce1v9rltwfbox0inxmrprj2vtmvde67urcdmdbxcz5z63fgnmbqyq2hqvmdrshea6e7cgkrsc8paj4awsax3h43og1bmi4bjordcq1itznmhrinhsfmdmmkjnoi/ystiwuc5tolzwrybuzyqhbmppex1+0qeqmlpmu6iloietsmfodngip5pqvkgrjn1c9tulp45x0jvvuyxup6uxu8ptgxafpbn7klebgfq9xg9tbu47gdt1elgrjdun3dhqq3vzmnkexuewkkorluy3wjdmxttbvaa+pm9rneg6uspcadpr9nn8sd8ctdr7q3jqax8n4yejk1bam31mcptlf4lgpiekdvlfwvvbrgkxytjqh8zgo4mffagde2afshh1mfq20c5k+liw7eiyadictfzf2c2mzakjh0uer57knjsggkhw3qmwlcigqantsnb8+6gbfr3bwpcp52okfr7a6hh57sayvwdjfelnebj4rw+sdlicmi0uhcsjctcbwqxubjqgl9mkr5s0cvvv+yb6wg7qkniwk9rlep5koouvgzqnnjhuk9vr2uge2j/rt1sl/rantczst5/atwigpv2stwi+3hbuj3gaxftmhkkltrzrlngxng5lny2aam7hnvsupybhsot0ze5cqyirdphjunal6dgqtq5c2y5von9d7tz07glhkmpgozfegslp77tcq1toxjk8zj8lsjdjr8lqfivxogcaiiikiiqv1pmxx70oxrja28qwzj0orxlnp3p99a/cuzwkgazfqgompzrvu0xygzckvjtzq+2zc4b1qzvfbhs5r1chrt8t80f/wladvftsmc6yxwkyezkoqoq1b11alk40l80r5qs45jnwpzmheqqvmgz7oz8znzzccj27jxfgqumndwaysgbqfwqqaa/sf+ncpzb0xsyrfo/l+6lg0ylnefnnt06xui433e/z9wx8wv+zgbhhndcwre+djswbe583vic6w2c/crhuln0zmui6yuoo0w0cc4bwfbrgn7poxgvv6rszk60z8x5lr0cca7xa1g903klfeqr7my4sqb5y+rfqywkj+ktkf++pjo0r0we79mk09+nnyduyfdiwzdgp1lhctmu7dz9vrxfftt/ukuz0tplxhydc0qkecercwqdit3a9cd65++om38d/hyefwcnq1tnhb863anofbespzqhw4hd7pik7fez6aqsxvtmdup2sbu/v2ttajschvdl+i0yfdb56mnuf2dq9usaedky8dbe38ur5qhvvmxee6hupabiwe5xzsdeq4l1sreqlbpg7igexlobbzcml9xy/ievsfu5f9p48pqk1fmwdjhuaurvnxvvncazchc5hwasx98z2k1krxdnc9lfcymujcbbutjffpwpt3j3i2sum3lzuk8benoyv+dlp4twidk4c9xuhwr3okrfrpemtjdtlivwkq+2ly+yiruiuvk7sbpcvxtkonucrccyi/ww2/fdbcv4tgplymqt825+qusa54hibrboprbu/vfugaxvw9rfaypcb8yggiyxgc1rky+952809hwqhfefztqvldvyfnx6mg6h3nwq9w8lzihvrs6tom8qw67tt24ghoc7b2vuiah67qetce4rvtcztu5r4ek3b+2ce81ru9ulvmdocp2sp117y9wzv/kfnxze+rybgmm9/4rzmj809k7i8v7u2o9nzhf39/45m/n38+8+bab9b+shz7bbt2p7vp1p6sha89xwtv/fpwv2/959z/3//f/v/f/+3932nog7caml+t9x7uv/n/igns0g==</latexit> <latexit sha1_base64="lvj5f1yayqj0pimo0ef8s222bnc=">aaa1fxicnvtbc922ezz6tdvb0j72ha2kqr1lqo4tj5mknoliq3yniqracm6irafjhb5ivbkaz8um+wp7d/ov+tq+tlsazyejgjiczdgigg8xi8xuynfrucrmyp39f63/4ic/+vfpfvrwzzz+/otf/urxb7/zmy9fxvkqvgjzjodfb0tqhgx0hwqyov8xnji0sohxwdujbp9qsrlgexyqfwu9t0mcsteliysqi3fww+0skuyffeyfcrgcjreecelc+ma2nxi54wm1bkjv+fmaympe7+gpx06ojpvd76hnex6nzh5rlwr/e2/bz5mibk7vuy1vltsr5px2ehmlha/p73t2rvsw9ztlsks0bokvn7y3tne98cvlv/a73j2jyp8q5axewz6vaud5xsxbm/t7++rhsz9gzcfmwvnzcvhoe+t+lidlsjopdha22i/keuw4zgfc6w2/flqg4rwj6rl8zisl4rxs5lb721ateeocw79meqq2s1grvihfggasnslmnqx0tz2vcvzrecwyopq0c3vh4zlxzo6hbxkr46cfzaefjoqmzpxcceeklgcbg71ucraxybk8n5rk0rkm87to18acfbmwzvu1azlixvnzvzbmpyylzz71q8cp8c0z2a+lmd+ue0knzmgmyiym2mig/gij9pikkxtn393xvhzww4z73gwenxgtmqvelnscieecl6byrmmmcpvqtseuwt+d2pweoun7daimxiw2r4st3qviuutf9ofngb6etkyagr0lcq7zm0nvg0mpje5nrczavhdqiengejc1wrwqkww5zjdczozk3oedkvjocr6gho9wmcmqlymyykzkiojmeumjee7lqfkifh/jwdfbwhnkked9of4hfwmtshy+apgw+ssros2jm5pnqzqmhapqpk+8kpmy1juf0jhllzrcyk9iameuevaapgkfc5puvpo6wttvpk3rbomimleifkba33tgttkxtcfcsazuqx0srtifrmfxnrrgzfqyekona7wjjvdnxxuxfsn46rprocqo5towdvwqlbrhnfa0crwzb3pk7e5+fvlkvnhgiktgxbtyot54fm4jqzgfyq+ebfmcxrnjomz61ugx0dnrcak+fxo9kqkienx4papupb64oueapxfdhr73uf88scrpyoygtr6/cktnjc1gebtgcagp58bxy3/+qorbb5ka+gp8fo1qqfpw1d4/fe7h1ebiyluwbwfctxcwg1/5mpyvsvojietixkedcs/ncmhqk59ltkbyylbqq1pmfw4py8jcyb5dxc8nqu4onvjlfgupi5baxpc05b1hmllgntmujtt1k8gsn+yrtfp0upyimeqj6hmy1anjhvulqgppkwgxwzxbbwgsyroi4oqkflx+ffndcyfacx3irgmjaablmulyryodam5yfosgd0uog1xmrvic4wx7er2zjgemj7wxz1pv+odg0zfxkilyj201gynbymimoofkmbjgneu8dygtnemc/pacwzowreakqv0vkhg1fo8svo+8+d0bkdkywc+ro+xupusyybarjhgmlzyarriyqjcmc+uudxpnsd/yhf9fvozhqh6zwrmyfrmo2t3guwx3ulonhxfiembs387ikwc3e+dxfahn4zvzncvdu40tmg7tc+jefpypcnzf+6pysnuitr3tawmucnit6tfrow74tlp7zufkvnsitjb1ggm2onf2ihhva3o0nwdah18ch50stfsn2zlzkolgqcyrxbtnlrozfptqurnstjbiwp0qjg0n3dmzwgqthywyacilcsctbmomzeoglwhpi4ekeyp6huloaf3yvgf6fbci+dzak7sje8vabq9noy8gb8c0e/mnlioladqpujtzea20mdscaqava4twpnw5xioidp5k2p20btgegzmu5djsqevvwpogbgorlit7ps1dgdxnsfe1gjzqpk5m6lcfl5ddrvksdesmbdkovso7xr0hrxzheyoawkjyblvg/wsqmj0jjzs8ggz0asucoetxxf7hujfdf8wtfpxcwjakmrigwh4f2a4me9eeenwmhca6poinrja1ybywgtv8uwq+ddvd4txkrwqjsy0bzi58elfvrcotgvdtbt4ppeosgbuzudxbamnmoyox+8rrmjpbdnlvygkzicvsrbyeboyc1vc9ycplcmuhllfr+5z/9ru3wiao1itonccgltw6pjj52ovri66d3wqtnpn8jaoyhi3crg0qq/x/kaxsb5quo7swdbry2xvqsisijt5a6d47onyb/twowrvnf9my9b/dom5imnvnqaaly/widqtzwotlljkjcu4racdotdp37rn0qpkbew3zy0gksxcfedbgveji7fmk4xtwpov9yzmse6t81uolxcgl7rndxjnnlg3xzq7gzkeddratnms+hrkr+9irgaqt4gv1tttfxdxs6s50wmvndoheqw64uludnl13al9xo2adtb3wm9pa8xd/d32ubyrlzjnrjazwplu8tczbcxiamrm5ygrlllpzwkbmxg4y2qpsgtlt28j6wnping4yme0ujogfdvqhezzsiq7bnw57oxs+7jcd6jp1rkbqd5as3cg8isnmf0befenu0de/13aqv3powe/xn5uirucshxoysis2h/g5pesr8kudfgmocc8aoscvusv9bqvcqqxok1yifqnkbiiv3gcaorvzovgrkkdcgongazzvv5wmqx6wuq4eku1ve7gn8zjhmk9ftnkcagdusyzsy6zyz3mtdm57ec5avxy8zcbz/xv5c1a8prt/biqwivhlavo+4h7tjhiwlhkhz5njjcej87o/bgljmpudhus9hsxtxnadk3smi4exnizsmug9houaa+yriaa3k6/apklgdyfknkrmbx3gazv6qwm8evc3pkgeg4uatqaq3ykwgcktyywowu+pk/fwxg5jhhi+odsr+uhrtnxr9zojdtsxlhqtvamkey2sdbbxkuk6lcrvq6sbrg2uje0luvmlbtw9jk2y4jgatnessfjdgekjqi7tcxxp2rqw2afwks+gfpzbwibqvjtcup7rlumefrnrv461sswwyyzdqnafwt66svsenig2kb1sh5bmumyd1jaeiagp+wip/gnhr3kova0ngaraml2z76jq7xbxviichthajbjrtwpb54gvvzsgwdowsfslcturavqza82yiixnusuyxrbuf61v1ny2odip8rm5uizlbzfvreu4q3m7gavzmesdtryl5gugkdp2ljg77b5aobcyh5aaafp2moktlwh84efxo9cqcomqaebukdcw2jtb6cfz7hxazdcozdin8lpsmrosbkjvvq6cvwsiow7bzbn/fdgmkpuw5foqizgnrrpbthvyhj2yu1zieitdxpxeij9pcti51lml16wkm7njuxotbzy5/slxmonbvmftuafvoho7chnrkiu5jn/zuub425t5bl1eszooejbttlixzcc2wvqfvd5uap/rovdc3ms4upbrflpcnuzyxap762ged+obislx25p+twmyshedxz4mpg9q3vr3wkulmsnruobmxzichxerhxhhh0hz9jlvnnauzppqmu5amalanbrcxnjnpwuciizjn0eeyzy6ihuocnwils3ciaqgbbn1/vq4g3wf28h3oodpjxyc2+os+u3bmrxiyrrbzhoreezsrxe4gjgulh0mihaxgcctbgswiczyi0wwtwj41vsl+8ju6cp6sijusxcfzqlkfbk1j5y7vijy79vjvtk+6rdbj/+xdrtn7uyc27dibt5eku1qvdwsbo56g8t25yrkjk290prxljvvslaumgfu4z75hqecrbdn9mxmqeiiew6r4lhxpooxqe0oxdosb6lfqo83du5g4jlb4km03xvc6u61w6hw61wwvme8jrovsg/a034kcjvlgcmijoqelntzmf89f12ywtrgl8w+dkv6zt1z//cn3lsyp4gkruibpj+2vrgtc4cspvq08qjv2wmbd0a5xwczoq9rh6zflfnf/ztthrz5btpmsv5qmreyj0lmngxdq5wsnjbme+wpoucwvj86hxgrrppnedqfgted3qqcucvzyufijxufm7iaanxqqqio7bfgqz+w9cyskrsnyvutx9ii5xjtte9nl7qpnn5p2pdtfcd8hhuxxq3xma/tny8lgxmdn1cnottmpwuz7rxemjnrumbcqdmma3gg1366xta6g15ohogxmzctg/edz0zfa2u2w9umdt9irnkj+tive6oewpoqackci/qpzbfsqyfuknehew/ctpbgz9s7nbfqmc4wjnvbqrrqug8/v6913u8/1znm9uyycowfxdoobnfiwmkmyq92vwrdvf7pj97gf48nn9vl6duyyw/nt2p7dm7pkwcb1ef2+cclop2j8nrmzxlzonmnjqvc3bevtulecnl3+bwndhx682ssobk3e3vdohhmerwgaoi39yxyqgfqctfxgac2ype452bnumk9pfrns9jycrahzcodtzhxsov7ehhx2y/yvrw8e3jybfmaarj3mhctyoqvyhlegamdw7qkkomp7ywljr22g5ulvjbjfbii2ggluxrworw/wbovlb9t2vkej2kilfqlmmk/fehyoezpqrj6nsnlpuqdwe6yqxarsopyz5krx4zelxxzod3kgyljgj3djrfkepwzbvjlwxh6jqq3twjq/by5v6emdcxjafxzb1x3z7/uq9io5uohsslsa+ydcxndxrcolpc993aafzrkqiic4jpwze+6om0+zgrv72joe7cc50uu1jjwnzwv59vjp7yhd3oeg7xzrqf8afxxgyyur51a2jeq9ycyhporduazruib2jw3a3zcvm645u3dqvn7nlpqfl8hw2dy/my/mhmzfyjjf3x5f2+0vzf6+/ubn/65+fozt9z+t/ahtttro7up1z5de7p2svzilvz/5/q/1/+z/t/3//dg+8hogz0n/cf6q/pbtd7pgw//d9gm8z4=</latexit> Modeling, Inference, Learning inference: solve _ modeling: define score function learning: choose _ Working definition of structured prediction: size of output space is exponential in size of input or is unbounded (e.g., machine translation) (we can t just enumerate all possible outputs) 11

What is Structured Prediction? however, just because the output is a structured object does not necessarily mean we are doing structured prediction we can model many structured output spaces with traditional local or unstructured predictors today we will aim to make this more formal in short, we may be predicting structures but we might not necessarily be using a structured predictor 12

Example NLP Tasks we ll go through some examples of NLP tasks that involve predicting output structures 13

Sequence Labeling (e.g., Part-of-Speech Tagging) determiner verb (past) prep. proper proper poss. adj. noun determiner verb (past) prep. noun noun poss. adj. noun Some questioned if Tim Cook s first product modal verb det. adjective noun prep. proper punc. modal verb det. adjective noun prep. noun punc. would be a breakaway hit for Apple. 14

Unlabeled Segmentations (Chinese Word Segmentation) some languages are written without whitespace task: insert spaces to form words 莎拉波娃现在居住在美国东南部的佛罗里达 莎拉波娃现在居住在美国东南部的佛罗里达 Sharapova now lives in US southeastern Florida J&M/SLP3

Labeled Segmentations (Named Entity Recognition) Some questioned if Tim Cook s first product would be a breakaway hit for Apple. PERSON ORGANIZATION 16

Labeled Segmentations (Entity Linking) Some questioned if Tim Cook s first product would be a breakaway hit for Apple. 17

Labeled Segmentation as Sequence Labeling O O O B-PERSON I-PERSON O O O Some questioned if Tim Cook s first product O O O O O O B-ORGANIZATION O would be a breakaway hit for Apple. B = begin I = inside O = outside 18

Trees (Constituency Parsing) (S (NP the man) (VP walked (PP to (NP the park)))) S VP NP PP NP DT NN VBD IN DT NN the man walked to the park Key: S = sentence NP = noun phrase VP = verb phrase PP = prepositional phrase DT = determiner NN = noun VBD = verb (past tense) IN = preposition 19

Unlabeled Segmentation + Clustering (Coreference Resolution)

Generation there are many language generation tasks that involve predicting a phrase, sentence, document, or some other textual sequence 21

Answers (Question Answering)

Sentences (Machine Translation)

Summaries (Summarization) The Apple Watch has drawbacks. There are other smartwatches that offer more capabilities. 24

Structured Prediction what is and is not structured prediction? we use the term structured prediction when: we use a structured score function or a structured loss function a structured score/loss function does not decompose across minimal parts of output to apply this definition we need to define parts and minimal parts 25

parts: each part is a subcomponent of entire input/output pair e.g., a single word and its associated POS tag for POS tagging or a sequence of two words and their POS tags or a sequence of two POS tags determiner verb (past) prep. proper proper poss. adj. noun determiner verb (past) prep. noun noun poss. adj. noun Some questioned if Tim Cook s first product modal verb det. adjective noun prep. proper punc. modal verb det. adjective noun prep. noun punc. would be a breakaway hit for Apple. 26

parts: each part is a subcomponent of entire input/output pair parts function = decomposition of input/output pair into a set of parts parts functions defined for score/loss function, rather than for task (many parts functions possible for a task) parts may overlap determiner verb (past) prep. proper proper poss. adj. noun determiner verb (past) prep. noun noun poss. adj. noun Some questioned if Tim Cook s first product modal verb det. adjective noun prep. proper punc. modal verb det. adjective noun prep. noun punc. would be a breakaway hit for Apple. 27

parts: each part is a subcomponent of entire input/output pair parts function = decomposition of input/output pair into a set of parts parts functions defined for score/loss function, rather than for task (many parts functions possible for a task) parts may overlap minimal parts: smallest possible parts for the task minimal parts function defined for task (structured output space), not for structured score/loss function minimal parts are non-overlapping 28

determiner verb (past) prep. proper proper poss. adj. noun determiner verb (past) prep. noun noun poss. adj. noun Some questioned if Tim Cook s first product modal verb det. adjective noun prep. proper punc. modal verb det. adjective noun prep. noun punc. would be a breakaway hit for Apple. minimal parts: smallest possible parts for the task minimal parts function defined for task (structured output space), not for structured score/loss function minimal parts are non-overlapping 29

Categories of Structured Prediction Problems multi-label classification: each input can be labeled with multiple labels e.g., document classification where each document can have multiple labels 30

Categories of Structured Prediction Problems multi-label classification in NLP: http://bailando.sims.berkeley.edu/enron_email.html

Categories of Structured Prediction Problems 1 Coarse genre 1.1 Company Business, Strategy, etc. (elaborate in Section 3 [Topics]) 1.2 Purely multi-label Personal classification in NLP: 1.3 Personal but in professional context (e.g., it was good working with you) 1.4 Logistic Arrangements (meeting scheduling, technical support, etc) 4 Emotional tone (if not neutral) 4.1 jubilation 4.2 hope / anticipation 4.3 humor 4.4 camaraderie 4.5 admiration 4.6 gratitude 4.7 friendship / affection http://bailando.sims.berkeley.edu/enron_email.html

Categories of Structured Prediction Problems multi-label classification: each input can be labeled with multiple labels if there are N possible labels, output space has size? (Q1 on handout) 33

Categories of Structured Prediction Problems multi-label classification: each input can be labeled with multiple labels if there are N possible labels, output space has size 2 N what are the minimal parts? (Q2 on handout) 34

parts: each part is a subcomponent of entire input/output pair parts function = decomposition of input/output pair into a set of parts parts functions defined for score/loss function, rather than for task (many parts functions possible for a task) parts may overlap minimal parts: smallest possible parts for the task minimal parts function defined for task (structured output space), not for structured score/loss function minimal parts are non-overlapping 35

<latexit sha1_base64="cs2rlstvqqvviaakpmv2nv3uyg0=">aaa6jhicxvtldxy7cea1e8vhhvz1ltkgizlqfslw5pghkzrhtkriovexpvw4lzy1b92n6yhylwfozrranb+rbbljr8kuj4ts8ltsbfrmdwmykvlg1lmxdecrqlwhucg8gjypl+r4+h8/+973/+ip7/zjd/50+8/+/c/+8oc/+vzhx8miehf7exvpib4jqwqpz9kbxvxkvikfo1mysq/dy8fy/vuve5ix+wtvl+wio0nozzyicqqmn9/z3qn5wk4e/iquvci5/xdbrtvcze1wtvtbwksxrdp41dttxfkibe09nrwchr0d1nptoa0cjailzboym8eio9gctkse8odnqxn8mana7b16qpcuiisjy2ltyxv2etg0+w3bkuaa/xfdf86aettvbwnvlmrucdwwlgz367vbe2f7306vfqqtuxyzbvzbiguztb9i8xu7zbyinswvupfnyaepzq0uppo7uuuhdv19u08eeldeaw0+dht62hzy0+/f9l7fm4qdfsuaz22r3zb7y7trwzeivedgzfo7q70adthpb5cwjwtnt/eivc8jy6mizujxiwgqwwtq3sbazqtgil0ywoiy2uli661qd70m7iuq3rwlkb000mcoayho8ap4eovcnsyfh66+hch8zk+v13jtajzuuax+uobqkkihrgp/cq11g/33lvwnac5hij0kwy4vonn02ummjgrbinzcsuib6q9idubvhyujodoijjgjgjwtfoaqq34egwsvtfm6gwuqsellc+c1npjejxjecah86kjs2pxdthcssqmuffypzdmfgzozry1wa/o0wuoyn7trixarbqpnip+v6+xbyby3d4f/dsls+m7ye/rkucqyu4uxftvii7zkqia2pz/aot461j/e/zh0hztb3c/z9poffhbervrllfda4vpjcakuglhiejsydjuojctpdektdg6foc2yvgj0qtwspaijyawq8f+uik4dujq0kzghayk6srsnk31t55wa/fichr+sfmq/09gssokqcc6bjoycrjdw8eejwufwes0pejechxj71e1ju1go82kksqpyukufljcj2ktqcs6j5bg2q1lfrbey10bffc8tvetj6lkgfktcjwszja8tvdglm7qknemrnl5g2gbae65yxj+wnxyqnqf8vterwycgczknv4zkbzfadokqkkkfy7kmhjs7a9efncjs7ufq82xcj6twxhnbwxzwuzuofbp2ddzhleyab2qx+fgafda+8+y+pxpodbqgsgzxqaujlsd1ygjzjkrkunkoml3ncfviddunlzoxomzuhagyixavpyrktknkkuuxryd4xdrj+piw/5zddadvtzghbpodeawqu9bkbxyx8lhzkltqlrmfy69albwnvnmnn3xfctlvmybkcc8bpbhnkniqcj5eqagypgzcad4eeuhy2tbhlguhdzpgwwoym83x0c/svozzliao2he0ohgsis0o7kqfauhsjgu3tr4wozikdcflmea36noety4g0umpa8pqhgnfukszmcyh52rnqg4pvzh7dtfzy80lp/ituzyevlpwhkgcgeqnl3fnekafjpru01orsw9zrh33/hpuzbd15on1qer3+oaghlmejw3z9hse+vkzi36ayartjf4yal7sriqs3tetqp8ogonu8op9burv2gd2huyo+qe259p3r/8acdzrdiyoq6oskrd6upme5lwgevuwq7wqui7e4mpqauutbtrwkha5lxe2wkz6qp7zmfvgia2vasrq8wuovaeadx75ruhkmgcu8t1dew8zga0sl+zqkb36ywcxzidbs8d0upyimsqu+hmytbt0hvulrgfvs1oydwfk7smcudktzgs+3zb3faiw3abyaenilsoyprl85+ggmzsw33nio0qgkqscbkugzh5kvdoec9xwsjitruzot04ev4anz4lpsgnmccvywsylu9jtxo7wesgycniqjctb76bcgbq8hqkqtk05byko735nphly5/ihymgbq54iaeqmkpo7rizgm6ksfcysjxccqc/1pojqbyv6ziccyob5o0n7nncg5optoot3geet38tsmw7eoweis30/iq9bziih4nmyhuyzzkymwx638zqb1regxmqpua5nq3sgkzezwmazz3ggwdut3qz6/klxa76d1lhzc+2riwqmy2bb0ucc2h8rt3z3jrsbxpvpl6cvzlau/yns7dhjzscgblbm0r23xc56umqwxkjzq8q58ekqtb90b2eyzns+wlaaslml0byhqnmgxfhijslwy6dcxshxr0ow1r69b4hejz0cvq3wnbvyxpf2kajfiwliwthnxpwji3jfapubkkp8ew202dscaaaxa4topdw5xieitf5k+f1vd/ainuncqlk0mjeucexblrrwob736qqiapkkwxbtyvdana1iwrj9tilsdp2x5fiyizbxrfpzk9xxsozwcjrhmyoe7vzj9v8zielmngfrjwsgl7v2akwal/apxwr6phypjyvplbikxleowp6eubmy9qipjpgycq11sccbjgx6q+4snlr53br5na8zeucue9uyk225mhvhm2cdxqs2ogv/3chhouefpfb+bfdneedy/ednyg9jx9qoovnxb3phbrlvorknydmfrixqbvsuwygh4yin1nfm57h7jwyiojberdkucgxw1cnknz6mxnq97nzrtz3ki1himwzhnmodsc7/n7ka/u3x9ydwky5bbrsgkp7gzmy7c91vxjx9g/orm7mu2lpmypt/3qz9ftotaxocxvirr2j5so2sl4ninsq7raccozoz3hnm0gvlfuw1zn9tphjno6dsuu4njm4+t3hbag972lfohpwc9hx1ukkfcmrmxcau3gxln/hlhsbcywmdlvncqdgfhsvh2muqszvgbxo5csvd3ezrzp6a9u0teik2tcd61how63pa+61/anzadwj+2zorhu7/ro+yghccbh6nkwhe9ornjjt4qv4n8yi3onkky122jpp5srucba22ney562rjro1kzzc4mttdpiq/3jgpvednu9gn/ovns9ep3zwhn5rrtwcf1xuajojg4rnnmp+z8qyecoox+31wg7y2c8phtv7cfm0n4ipubkv6tk3gf+6or8hvpob3tk541ja4rih86xcv5qridjowuvyyxbiqrek/0zcpnxcsv68oxi0zbjrgu3upwlruaavb5pg2/h7bbqjhhofevakgegia7rgs7gohc89ll3buetwxyksyrriowny9uwur0z7fv7asgm34bbnzx3npwm4ej1amklpnjmgt0wu71kfbkszuho6v0ag+nq43shj1qdfo0dfydvbgh1rraptqktnnxisxtyp5oyc5dre3wwf4wmsvwyin4vohbxrbyigblrjedcithkhrosnknjlqwrw1l9s4b54vamvqpsyw7w10/eayg80di91e1rljxwmki8v1rliei6nbgukmutsjkdti/ltjem0oyyvnekrm/j2mpnf3ruyiajdppl707b1yhga4lrzqvygcymgmkxzjqcjzkptivywyg8fzpflyzdnnqg6fwt6gsoyetigukansj5b2uuyc1nauizft+xip/bpprnkevasngaramknvhkjqvbprl5eex+j9rt44t0rx5qgtv3sg0dkwshwldturgfrlc83zmefdusw+lqibfzeprm53jt2jjnultkvryqqlznhx4hyac/yykqzrlrbscwxa9u1yshfyi4d0inqioqwcxu0jw1tbshhn8lirdatsograuh3ktys+ttf6qekqephzdpvbpxfbxjlol0ddtmqrdbcklth0lzh94m8u2nrye1xiipkijonvbddxnzxjd/aqlyqg6tbxpxpiz7ocdo71dml3kelnboqmjdqdt29/ypuvmc0+4tzogpcdjb3wezgapwxo7+0opklvzt6dlupes1rkx3d7re+ym5fgsge8me7kpdfzoks71/cg3kp5brk7m/ppunvnab4p44ehrdbbmnfpkbjkeiphpjzmdnddovdazq+yydftnrmpdqq/k9c78ni9kby4z9brwewhew6lsweei6dbsc9fzvxceiaa6jimersf6qmjsoekz41q1sm8okrwnzvnr0+gwfejg3xpc5enysgpay5p3h6swiuwbbhkyhsbf9s1+oalionjmmcccb8tcnz6rmafwok7worfj4bvs19yl+w2xuxp61k/balylivbkff3wnnohiljst8e2+2tcbtz8p+yqnvdzisfeytw4umv1axwqy3hzms0qexftuhk0ryry7jgefegzpeyu3ax98z3bjm8hj0nstmbbylmtikuj7rmzyhba3my0uzff/029h5j5x4gphksptryixxwd68drq1e5/ap7lx62mzwin0ct/eryouvxxgrc1mmtnbpwwl90hpfauubx3h3obtptfcsg7/p4otshgaalskdmpnyxen2bquvz5js5nhftxmc74akgq8ytf6jd1k/rvlf4kmtd9789hnmzcy1majzryflfvvtq5ecnjyuuz1ttc5hrx5scrrrrrpnecafmxwd3qqc+ixzyufig/ufm6oeanxqqqmo7bf0x13gy1ky46li6ftkhwjpykiotdgjhi59h2m9n3dv28aa5q03yvun1zef3j2pi4f9nbfujzp7dj+1xffbbjjsdv1yqc1ph4ekx2s/0+i63q0vne7mi0zi1q34jiojo4ez2tf6bidvjooignxzvcntdywdils0xqj5kjkeb/ovcvcinx/9lmpaaj975omyhi5xhefxsoiy0wwffq5f6/qffuonmfqzmbmac7umsqvi0jbhxcvr638venj900+8jf89nnzurybxyis9dd+67rvms6inc5got8mneszy30uiryovutoz/yzwulvvx2vtmjb67zy2dlkjhgbzzk05arr79umggex5pcboejf1hfloz+oan5gxhmzik1khwm+ghhtjvzpxsoutia7iviv6mw+qngjmim62x7b7oxn57gmzgxgg4nyburtr1nx1lvajtngshlvcyxz8xlia0ms7ufnka5lcquieg6200m9a9oxp8wxln+hbdjxhexzbc/sshvc3ju6savz0ev2/zlgq0awnwehzyx6rsxuxv0kvn3ca9pbvhzkml2msspgllolqgudpccovhk1wxkjw0ysgm2+bc33k2dyicwfqhsdupthux5astor+ikwxx4d5uyojlxmivcvi0u8puv9mlivqbme1a7rfbfo6+zixtl+jurjbslguhdrlwnvevv40z4paetwqraheluob+pg6bgrngv479baxujycybiulgeyl6ziborx3ahwsv+57ru3nztdx9a0tff7ohggw+43/thmxp4tgffjq/thk+ojye/+cefx/9t9+cwptv5662+39rcmw7/y+vxw862zrtdb0z33d/7tzr/f+y8h//ngvx7894p/mddvfdbr/nxw6ofb//0/vhkhjq==</latexit> Categories of Structured Prediction Problems multi-label classification: each input can be labeled with multiple labels if there are N possible labels, output space has size 2 N what are the minimal parts? individual labels the mp(y) function defines the set of minimal parts of the structured output y 36

<latexit sha1_base64="cs2rlstvqqvviaakpmv2nv3uyg0=">aaa6jhicxvtldxy7cea1e8vhhvz1ltkgizlqfslw5pghkzrhtkriovexpvw4lzy1b92n6yhylwfozrranb+rbbljr8kuj4ts8ltsbfrmdwmykvlg1lmxdecrqlwhucg8gjypl+r4+h8/+973/+ip7/zjd/50+8/+/c/+8oc/+vzhx8miehf7exvpib4jqwqpz9kbxvxkvikfo1mysq/dy8fy/vuve5ix+wtvl+wio0nozzyicqqmn9/z3qn5wk4e/iquvci5/xdbrtvcze1wtvtbwksxrdp41dttxfkibe09nrwchr0d1nptoa0cjailzboym8eio9gctkse8odnqxn8mana7b16qpcuiisjy2ltyxv2etg0+w3bkuaa/xfdf86aettvbwnvlmrucdwwlgz367vbe2f7306vfqqtuxyzbvzbiguztb9i8xu7zbyinswvupfnyaepzq0uppo7uuuhdv19u08eeldeaw0+dht62hzy0+/f9l7fm4qdfsuaz22r3zb7y7trwzeivedgzfo7q70adthpb5cwjwtnt/eivc8jy6mizujxiwgqwwtq3sbazqtgil0ywoiy2uli661qd70m7iuq3rwlkb000mcoayho8ap4eovcnsyfh66+hch8zk+v13jtajzuuax+uobqkkihrgp/cq11g/33lvwnac5hij0kwy4vonn02ummjgrbinzcsuib6q9idubvhyujodoijjgjgjwtfoaqq34egwsvtfm6gwuqsellc+c1npjejxjecah86kjs2pxdthcssqmuffypzdmfgzozry1wa/o0wuoyn7trixarbqpnip+v6+xbyby3d4f/dsls+m7ye/rkucqyu4uxftvii7zkqia2pz/aot461j/e/zh0hztb3c/z9poffhbervrllfda4vpjcakuglhiejsydjuojctpdektdg6foc2yvgj0qtwspaijyawq8f+uik4dujq0kzghayk6srsnk31t55wa/fichr+sfmq/09gssokqcc6bjoycrjdw8eejwufwes0pejechxj71e1ju1go82kksqpyukufljcj2ktqcs6j5bg2q1lfrbey10bffc8tvetj6lkgfktcjwszja8tvdglm7qknemrnl5g2gbae65yxj+wnxyqnqf8vterwycgczknv4zkbzfadokqkkkfy7kmhjs7a9efncjs7ufq82xcj6twxhnbwxzwuzuofbp2ddzhleyab2qx+fgafda+8+y+pxpodbqgsgzxqaujlsd1ygjzjkrkunkoml3ncfviddunlzoxomzuhagyixavpyrktknkkuuxryd4xdrj+piw/5zddadvtzghbpodeawqu9bkbxyx8lhzkltqlrmfy69albwnvnmnn3xfctlvmybkcc8bpbhnkniqcj5eqagypgzcad4eeuhy2tbhlguhdzpgwwoym83x0c/svozzliao2he0ohgsis0o7kqfauhsjgu3tr4wozikdcflmea36noety4g0umpa8pqhgnfukszmcyh52rnqg4pvzh7dtfzy80lp/ituzyevlpwhkgcgeqnl3fnekafjpru01orsw9zrh33/hpuzbd15on1qer3+oaghlmejw3z9hse+vkzi36ayartjf4yal7sriqs3tetqp8ogonu8op9burv2gd2huyo+qe259p3r/8acdzrdiyoq6oskrd6upme5lwgevuwq7wqui7e4mpqauutbtrwkha5lxe2wkz6qp7zmfvgia2vasrq8wuovaeadx75ruhkmgcu8t1dew8zga0sl+zqkb36ywcxzidbs8d0upyimsqu+hmytbt0hvulrgfvs1oydwfk7smcudktzgs+3zb3faiw3abyaenilsoyprl85+ggmzsw33nio0qgkqscbkugzh5kvdoec9xwsjitruzot04ev4anz4lpsgnmccvywsylu9jtxo7wesgycniqjctb76bcgbq8hqkqtk05byko735nphly5/ihymgbq54iaeqmkpo7rizgm6ksfcysjxccqc/1pojqbyv6ziccyob5o0n7nncg5optoot3geet38tsmw7eoweis30/iq9bziih4nmyhuyzzkymwx638zqb1regxmqpua5nq3sgkzezwmazz3ggwdut3qz6/klxa76d1lhzc+2riwqmy2bb0ucc2h8rt3z3jrsbxpvpl6cvzlau/yns7dhjzscgblbm0r23xc56umqwxkjzq8q58ekqtb90b2eyzns+wlaaslml0byhqnmgxfhijslwy6dcxshxr0ow1r69b4hejz0cvq3wnbvyxpf2kajfiwliwthnxpwji3jfapubkkp8ew202dscaaaxa4topdw5xieitf5k+f1vd/ainuncqlk0mjeucexblrrwob736qqiapkkwxbtyvdana1iwrj9tilsdp2x5fiyizbxrfpzk9xxsozwcjrhmyoe7vzj9v8zielmngfrjwsgl7v2akwal/apxwr6phypjyvplbikxleowp6eubmy9qipjpgycq11sccbjgx6q+4snlr53br5na8zeucue9uyk225mhvhm2cdxqs2ogv/3chhouefpfb+bfdneedy/ednyg9jx9qoovnxb3phbrlvorknydmfrixqbvsuwygh4yin1nfm57h7jwyiojberdkucgxw1cnknz6mxnq97nzrtz3ki1himwzhnmodsc7/n7ka/u3x9ydwky5bbrsgkp7gzmy7c91vxjx9g/orm7mu2lpmypt/3qz9ftotaxocxvirr2j5so2sl4ninsq7raccozoz3hnm0gvlfuw1zn9tphjno6dsuu4njm4+t3hbag972lfohpwc9hx1ukkfcmrmxcau3gxln/hlhsbcywmdlvncqdgfhsvh2muqszvgbxo5csvd3ezrzp6a9u0teik2tcd61how63pa+61/anzadwj+2zorhu7/ro+yghccbh6nkwhe9ornjjt4qv4n8yi3onkky122jpp5srucba22ney562rjro1kzzc4mttdpiq/3jgpvednu9gn/ovns9ep3zwhn5rrtwcf1xuajojg4rnnmp+z8qyecoox+31wg7y2c8phtv7cfm0n4ipubkv6tk3gf+6or8hvpob3tk541ja4rih86xcv5qridjowuvyyxbiqrek/0zcpnxcsv68oxi0zbjrgu3upwlruaavb5pg2/h7bbqjhhofevakgegia7rgs7gohc89ll3buetwxyksyrriowny9uwur0z7fv7asgm34bbnzx3npwm4ej1amklpnjmgt0wu71kfbkszuho6v0ag+nq43shj1qdfo0dfydvbgh1rraptqktnnxisxtyp5oyc5dre3wwf4wmsvwyin4vohbxrbyigblrjedcithkhrosnknjlqwrw1l9s4b54vamvqpsyw7w10/eayg80di91e1rljxwmki8v1rliei6nbgukmutsjkdti/ltjem0oyyvnekrm/j2mpnf3ruyiajdppl707b1yhga4lrzqvygcymgmkxzjqcjzkptivywyg8fzpflyzdnnqg6fwt6gsoyetigukansj5b2uuyc1nauizft+xip/bpprnkevasngaramknvhkjqvbprl5eex+j9rt44t0rx5qgtv3sg0dkwshwldturgfrlc83zmefdusw+lqibfzeprm53jt2jjnultkvryqqlznhx4hyac/yykqzrlrbscwxa9u1yshfyi4d0inqioqwcxu0jw1tbshhn8lirdatsograuh3ktys+ttf6qekqephzdpvbpxfbxjlol0ddtmqrdbcklth0lzh94m8u2nrye1xiipkijonvbddxnzxjd/aqlyqg6tbxpxpiz7ocdo71dml3kelnboqmjdqdt29/ypuvmc0+4tzogpcdjb3wezgapwxo7+0opklvzt6dlupes1rkx3d7re+ym5fgsge8me7kpdfzoks71/cg3kp5brk7m/ppunvnab4p44ehrdbbmnfpkbjkeiphpjzmdnddovdazq+yydftnrmpdqq/k9c78ni9kby4z9brwewhew6lsweei6dbsc9fzvxceiaa6jimersf6qmjsoekz41q1sm8okrwnzvnr0+gwfejg3xpc5enysgpay5p3h6swiuwbbhkyhsbf9s1+oalionjmmcccb8tcnz6rmafwok7worfj4bvs19yl+w2xuxp61k/balylivbkff3wnnohiljst8e2+2tcbtz8p+yqnvdzisfeytw4umv1axwqy3hzms0qexftuhk0ryry7jgefegzpeyu3ax98z3bjm8hj0nstmbbylmtikuj7rmzyhba3my0uzff/029h5j5x4gphksptryixxwd68drq1e5/ap7lx62mzwin0ct/eryouvxxgrc1mmtnbpwwl90hpfauubx3h3obtptfcsg7/p4otshgaalskdmpnyxen2bquvz5js5nhftxmc74akgq8ytf6jd1k/rvlf4kmtd9789hnmzcy1majzryflfvvtq5ecnjyuuz1ttc5hrx5scrrrrrpnecafmxwd3qqc+ixzyufig/ufm6oeanxqqqmo7bf0x13gy1ky46li6ftkhwjpykiotdgjhi59h2m9n3dv28aa5q03yvun1zef3j2pi4f9nbfujzp7dj+1xffbbjjsdv1yqc1ph4ekx2s/0+i63q0vne7mi0zi1q34jiojo4ez2tf6bidvjooignxzvcntdywdils0xqj5kjkeb/ovcvcinx/9lmpaaj975omyhi5xhefxsoiy0wwffq5f6/qffuonmfqzmbmac7umsqvi0jbhxcvr638venj900+8jf89nnzurybxyis9dd+67rvms6inc5got8mneszy30uiryovutoz/yzwulvvx2vtmjb67zy2dlkjhgbzzk05arr79umggex5pcboejf1hfloz+oan5gxhmzik1khwm+ghhtjvzpxsoutia7iviv6mw+qngjmim62x7b7oxn57gmzgxgg4nyburtr1nx1lvajtngshlvcyxz8xlia0ms7ufnka5lcquieg6200m9a9oxp8wxln+hbdjxhexzbc/sshvc3ju6savz0ev2/zlgq0awnwehzyx6rsxuxv0kvn3ca9pbvhzkml2msspgllolqgudpccovhk1wxkjw0ysgm2+bc33k2dyicwfqhsdupthux5astor+ikwxx4d5uyojlxmivcvi0u8puv9mlivqbme1a7rfbfo6+zixtl+jurjbslguhdrlwnvevv40z4paetwqraheluob+pg6bgrngv479baxujycybiulgeyl6ziborx3ahwsv+57ru3nztdx9a0tff7ohggw+43/thmxp4tgffjq/thk+ojye/+cefx/9t9+cwptv5662+39rcmw7/y+vxw862zrtdb0z33d/7tzr/f+y8h//ngvx7894p/mddvfdbr/nxw6ofb//0/vhkhjq==</latexit> minimal parts: Multi-Label Classification if score & loss functions factor across minimal parts, then we are not doing structured prediction e.g., we could build N binary classifiers, one for each label, and use them to independently predict each label for each input this would not be considered structured prediction 37