Wykłady specjalistyczne. oferowane na kierunku matematyka. w roku akademickim 2018/2019 (semestr zimowy) studia stacjonarne II stopnia, 2 rok

Podobne dokumenty
Wykłady specjalistyczne. oferowane na kierunku matematyka. w roku akademickim 2019/2020 (semestr zimowy) studia stacjonarne II stopnia, 2 rok

Wykłady specjalistyczne. oferowane na kierunku matematyka. w roku akademickim 2017/2018. studia stacjonarne II stopnia, 2 rok

Wykłady specjalistyczne. (specjalność: Matematyka w finansach i ekonomii) oferowane na stacjonarnych studiach I stopnia (dla 3 roku)

Wykłady specjalistyczne. (Matematyka w finansach i ekonomii; Matematyczne podstawy informatyki)

Wykłady specjalistyczne. oferowane na kierunku matematyka. w roku akademickim 2016/2017. studia stacjonarne II stopnia, 2 rok

Wykłady specjalistyczne. (Matematyka w finansach i ekonomii; Matematyczne metody informatyki)

Wykłady specjalistyczne. (Matematyka w finansach i ekonomii; Matematyczne metody informatyki)

Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne

Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne

Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne

Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne

Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne

Opisy przedmiotów do wyboru

Uniwersytet Śląski w Katowicach WYDZIAŁ MATEMATYKI, FIZYKI I CHEMII. Kierunek Matematyka. Studia stacjonarne i niestacjonarne I i II stopnia

Przedmioty do wyboru oferowane na stacjonarnych studiach I stopnia (licencjackich) dla II roku w roku akademickim 2015/2016

Przedmioty do wyboru oferowane na stacjonarnych studiach II stopnia (magisterskich) dla II roku w roku akademickim 2015/2016

Wykłady specjalistyczne. (wszystkie specjalności oprócz specjalności nauczycielskiej) oferowane na stacjonarnych studiach II stopnia (dla 2 roku)

Kluczowe przedmioty dla studentów studiów licencjackich i magisterskich na WNE UW od roku 2017/2018. Studia I stopnia

Teoria opcji SYLABUS

Matematyka Stosowana na Politechnice Wrocławskiej. Komitet Matematyki PAN, luty 2017 r.

Propozycje przedmiotów do wyboru. oferowane na stacjonarnych studiach I stopnia (dla 2 roku) w roku akademickim 2013/2014

INFORMACJA O PRZEDMIOTACH OFEROWANYCH W ROKU AKADEMICKIM 2019/20

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI

Opisy przedmiotów do wyboru

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI

PLAN STUDIÓW STACJONARNYCH DRUGIEGO STOPNIA DLA KIERUNKU INFORMATYKA I EKONOMETRIA

PLAN STUDIÓW STACJONARNYCH DRUGIEGO STOPNIA DLA KIERUNKU INFORMATYKA I EKONOMETRIA

PLAN STUDIÓW STACJONARNYCH DRUGIEGO STOPNIA DLA KIERUNKU INFORMATYKA I EKONOMETRIA

Teoria opcji 2015/2016

MODUŁ KSZTAŁCENIA (SYLABUS) dla przedmiotu Inżynieria Finansowa na kierunku Zarządzanie

3-letnie (6-semestralne) stacjonarne studia licencjackie kier. matematyka stosowana profil: ogólnoakademicki. Semestr 1. Przedmioty wspólne

PLAN STUDIÓW STACJONARNYCH DRUGIEGO STOPNIA DLA KIERUNKU MATEMATYKA NA WYDZIALE MATEMATYKI, INFORMATYKI I EKONOMETRII UNIWERSYTETU ZIELONOGÓRSKIEGO

Specjalności Kierunek Matematyka - II rok II stopnia - studia stacjonarne semestr zimowy 2016/2017

Uniwersytet Śląski w Katowicach WYDZIAŁ MATEMATYKI, FIZYKI I CHEMII. Kierunek Matematyka. Studia stacjonarne i niestacjonarne I i II stopnia

Kierunek Ekonomia - studia stacjonarne pierwszego stopnia

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU

SYLABUS PRZEDMIOTU rok akademicki 2012/2013

PLAN STUDIÓW STACJONARNYCH DRUGIEGO STOPNIA DLA KIERUNKU MATEMATYKA NA WYDZIALE MATEMATYKI, INFORMATYKI I EKONOMETRII UNIWERSYTETU ZIELONOGÓRSKIEGO

KIERUNEK MATEMATYKA, II ROK, STUDIA STACJONARNE II STOPNIA

PLAN STUDIÓW STACJONARNYCH PIERWSZEGO STOPNIA DLA KIERUNKU INFORMATYKA I EKONOMETRIA

Marcin Bartkowiak Krzysztof Echaust INSTRUMENTY POCHODNE WPROWADZENIE DO INŻYNIERII FINANSOWEJ

PLAN STUDIÓW STACJONARNYCH PIERWSZEGO STOPNIA DLA KIERUNKU MATEMATYKA

Wydział Zarządzania i Modelowania Komputerowego Politechnika Świętokrzyska Plan studiów Kierunek Ekonomia - studia stacjonarne pierwszego stopnia

PLAN STUDIÓW STACJONARNYCH PIERWSZEGO STOPNIA DLA KIERUNKU MATEMATYKA NA WYDZIALE MATEMATYKI, INFORMATYKI I EKONOMETRII UNIWERSYTETU ZIELONOGÓRSKIEGO

PLAN STUDIÓW STACJONARNYCH DRUGIEGO STOPNIA DLA KIERUNKU INŻYNIERIA DANYCH

Spis treści. Przedmowa 11

Opisy przedmiotów do wyboru

Ekonometria dynamiczna i finansowa Kod przedmiotu

Propozycje przedmiotów do wyboru. oferowane na niestacjonarnych studiach II stopnia (dla 2 roku) w roku akademickim 2013/2014

PLAN STUDIÓW STACJONARNYCH PIERWSZEGO STOPNIA DLA KIERUNKU INFORMATYKA I EKONOMETRIA

INFORMATYKA. PLAN STUDIÓW STACJONARNYCH INŻYNIERSKICH 2-go STOPNIA STUDIA ROZPOCZYNAJĄCE SIĘ W ROKU AKADEMICKIM 2018/19.

LISTA KURSÓW PLANOWANYCH DO URUCHOMIENIA W SEMESTRZE ZIMOWYM 2015/2016

Wstęp do ochrony własności intelektualnej Akademickie dobre wychowanie 5 0 Razem

Akademickie dobre wychowanie 5 0 Razem

ECTS Razem 30 Godz. 330

PLAN STUDIÓW STACJONARNYCH PIERWSZEGO STOPNIA DLA KIERUNKU INŻYNIERIA DANYCH

ZARZĄDZANIE I INŻYNIERIA PRODUKCJI studia stacjonarne pierwszego stopnia obowiązuje od roku akademickiego 2013/2014

LITERATURA I TREŚCI PROGRAMOWE STUDIÓW PODYPLOMOWYCH MATEMATYKA FINANSOWA I UBEZPIECZENIOWA

9 Eksploatacja maszyn produkcyjnych Zarządzanie projektem Razem

Minima programowe - WYDZIAŁ NAUK EKONOMICZNYCH UW

INFORMATYKA. PLAN STUDIÓW STACJONARNYCH INŻYNIERSKICH 1-go STOPNIA STUDIA ROZPOCZYNAJĄCE SIĘ W ROKU AKADEMICKIM 2018/19.

3. Plan studiów PLAN STUDIÓW. Faculty of Fundamental Problems of Technology Field of study: MATHEMATICS

SEMINARIA DYPLOMOWE - studia II stopnia kierunek: informatyka i ekonometria oraz matematyka

Kierunek: Inżynieria Akustyczna Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. Wykład Ćwiczenia

Matematyka finansowa i ubezpieczeniowa Kod przedmiotu

PLAN STUDIÓW STACJONARNYCH DRUGIEGO STOPNIA DLA KIERUNKU INŻYNIERIA DANYCH

Opisy przedmiotów do wyboru

PLAN STUDIÓW STACJONARNYCH PIERWSZEGO STOPNIA DLA KIERUNKU MATEMATYKA NA WYDZIALE MATEMATYKI, INFORMATYKI I EKONOMETRII UNIWERSYTETU ZIELONOGÓRSKIEGO

Interdyscyplinarne seminaria

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU

INFORMATYKA. PLAN STUDIÓW STACJONARNYCH INŻYNIERSKICH 1-go STOPNIA STUDIA ROZPOCZYNAJĄCE SIĘ W ROKU AKADEMICKIM 2019/2020.

INFORMATYKA. PLAN STUDIÓW STACJONARNYCH 2-go STOPNIA (W UKŁADZIE SEMESTRALNYM) STUDIA ROZPOCZYNAJĄCE SIĘ W ROKU AKADEMICKIM A K L S P

INFORMATYKA. PLAN STUDIÓW STACJONARNYCH 1-go STOPNIA (W UKŁADZIE SEMESTRALNYM) STUDIA ROZPOCZYNAJĄCE SIĘ W ROKU AKADEMICKIM A K L S P

Modelowanie stochastyczne Stochastic Modeling. Poziom przedmiotu: II stopnia. Liczba godzin/tydzień: 2W E, 2C

opłaty dla kontynuujących studia - opłaty dla przyjętych od r.a. 2012/2013 wszyscy studenci * Lp. tytuł opłat /usługa edukacyjna wysokość opłaty

Rozwiązywanie równań liniowych. Transmitancja. Charakterystyki częstotliwościowe

Minimum programowe dla studentów MIĘDZYWYDZIAŁOWYCH INDYWIDUALNYCH STUDIÓW SPOŁECZNO-HUMANISTYCZNYCH - studia magisterskie II stopnia

Kierunek:Informatyka- - inż., rok I specjalność: Grafika komputerowa i multimedia

Karta (sylabus) przedmiotu

Kierunek:Informatyka- - inż., rok I specjalność: Grafika komputerowa

Kierunek zarządzanie i inżynieria produkcji

Algorytmy i bazy danych (wykład obowiązkowy dla wszystkich)

SEMINARIA DYPLOMOWE - studia II stopnia kierunek: informatyka i ekonometria oraz matematyka

NOWY PROGRAM STUDIÓW 2016/2017 SYLABUS PRZEDMIOTU AUTORSKIEGO: Wprowadzenie do teorii ekonometrii. Część A

Ekonofizyka 2 (Metody fizyki w ekonomii 2)

OPŁATY ZA ŚWIADCZONE USŁUGI EDUKACYJNE w r.a. 2013/2014 Wydział Nauk Ekonomicznych i Zarządzania Forma Niestacjonarne studiów**

Terminy egzaminów dla I roku MATEMATYKI - studia stacjonarne I stopnia. semestr letni 2018/2019, spec. Nauczanie matematyki i Informatyki

Terminy egzaminów dla I roku MATEMATYKI - studia stacjonarne I stopnia. semestr letni 2018/2019, spec. Nauczanie matematyki i Informatyki

Terminy egzaminów dla I roku MATEMATYKI - studia stacjonarne I stopnia semestr letni 2018/2019, spec. Nauczanie matematyki i Informatyki

Kierunek studiów: Finanse i Rachunkowość Specjalność: Inżynieria finansowa

INFORMATYKA. PLAN STUDIÓW NIESTACJONARNYCH INŻYNIERSKICH 1-go STOPNIA STUDIA ROZPOCZYNAJĄCE SIĘ W ROKU AKADEMICKIM 2018/19.

Kierunek:Informatyka- - inż., rok I specjalność: Grafika komputerowa

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2017/2018

INFORMATYKA. PLAN STUDIÓW NIESTACJONARNYCH 1-go STOPNIA STUDIA ROZPOCZYNAJĄCE SIĘ W ROKU AKADEMICKIM 2015/16. zajęć w grupach A K L S P

Poziom przedmiotu: II stopnia. Liczba godzin/tydzień: 2W E, 2L PRZEWODNIK PO PRZEDMIOCIE

Kierunek: Inżynieria Akustyczna Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. Wykład Ćwiczenia

9 Eksploatacja maszyn produkcyjnych Zarządzanie projektem W-F 15 1 Razem

Egzamin / zaliczenie na ocenę*

Transkrypt:

Wykłady specjalistyczne oferowane na kierunku matematyka w roku akademickim 2018/2019 (semestr zimowy) studia stacjonarne II stopnia, 2 rok

1. Applied Graph Theory (wykład prowadzony w j. angielskim na studiach Intermaths) (specjalności: Matematyczne metody informatyki, Teoretyczna) The course Applied graph theory focuses on the fundamental concepts of the graph theory and shows several applications in various topics. In particular, the famous problems of the graph theory will be discussed: Minimum Connector Problem, Hall's Marriage Theorem, the Assignment Problem, the Network Flow Problem, the Committee Scheduling Problem, the Four Color Problem, the Traveling Salesman Problem. The short syllabus: Basic concepts of graph theory Trees Bipartite graphs Planarity Colouring problems Eulerian and Hamiltonian graphs Networks and flows Algebraic methods in graph theory Matching Literatura: 1. Bollobas B., Modern Graph Theory, Springer-Verlag, 2001. 2. Diestel G. T., Graph Theory, Springer-Verlag, 1997, 2000. 3. Foulds L. R., Graph Theory Applications, Springer-Verlag, 1992 4. Hartland G., Zhang P., A First Course in Graph Theory (Dover Books on Mathematics), 2012. 5. Matousek J., Nesetril J., An invitation to discrete mathematics, Oxford, 2008. Prowadzący: dr hab. Ekaterina Shulman

2. Robotyka i programowanie (specjalności: Matematyczne metody informatyki, Teoretyczna) Na wykładzie będą omówione różne aspekty programowania z elementami robotyki. Studenci zapoznają się z programowaniem LEGO MINDSTORMS wykorzystując środowiska: Visual Studio (język C#) lub IDLE (język Python), środowisko LEGO MINDSTORMS oparte na ikonach oraz LabView. W czasie wykładu zostanie omówiona praca czujników: dotyku, koloru, światła, żyroskopu, czujnika ultradźwiękowego i podczerwieni. Wymagania wstępne: podstawowa znajomość programowania obiektowego (Python lub C#). Prowadzący: dr Jolanta Sobera

3. Szeregi czasowe (specjalności: Matematyka w finansach i ekonomii, Teoretyczna) Dekompozycja szeregów czasowych, modele liniowych szeregów czasowych, estymacja średniej, auto-kowariancji i auto-korelacji, predykcja, dekompozycja Wolda, estymacja parametryczna w modelach ARMA, procesy ARCH i GARCH, analiza spektralna, modele przestrzeni stanów, filtr Kalmana, wielowymiarowe szeregi czasowe. Literatura: 1. Brockwell, P.J.; Davis, R.A. Time Series: Theory and Methods, New York : Springer- Verlag, 2nd ed,1991 2. Brockwell, P.J.; Davis, R.A. Introduction to Time Series and Forecasting, New York : Springer-Verlag, 2nd ed,2002 Prowadzący: dr Paweł Kozyra

4. Wybrane zagadnienia z modeli rynków finansowych (specjalności: Matematyka w finansach i ekonomii, Teoretyczna) Modele z czasem dyskretnym ( teoria arbitrażu, miary martyngałowe, wycena instrumentów pochodnych, modele zupełne i niezupełne, model CRR). Modele z nieskończonym horyzontem czasowym. Modele z czasem ciągłym (ogólny opis, model Blacka-Scholesa, wycena opcji standardowych, konstrukcja i wycena instrumentów egzotycznych). Modele rynków uwzględniające koszty transakcji. Alternatywny model Gerbera-Shiu (metoda transformaty Esschera). Literatura 1. R.J.Elliott, P.E.Kopp, Mathematics of financial markets, Springer 2004. 2. H.U.Gerber, E.S.W.Shiu, Option pricing by Esscher transforms, Transactions of Society of Actuaries 1994, vol 46, 99-191. 3. J.Jakubowski, Modelowanie rynków finansowych, SCRIPT 2006. 4. J.Jakubowski, A.Palczewski, M.Rutkowski, Ł.Stettner, Matematyka finansowa, instrumenty pochodne, WNT 2003. 5. M.Musiela, M.Rutkowski, Martingale methods in financial modelling, Springer 1997. 6. A.Weron, R.Weron, Inżynieria finansowa, WNT1998. 7. Wybrane prace z czasopisma Finance and Stochastics. Prowadzacy: dr Maria Górnioczek