A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume Issue 3

Podobne dokumenty
Opracowanie technologii wytwarzania wyrobów ze. stopów Mg o podwyższonej biozgodności. Development of technologies of the production of Mg

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

Modelowanie pola naprężeń we wlewku odlewanym w sposób ciągły Streszczenie Abstract Słowa kluczowe Key words: Wstęp

MODELOWANIE ODLEWANIA CIĄGŁEGO WLEWKÓW ZE STOPU AL

Lecture 18 Review for Exam 1

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and

Akademia Morska w Szczecinie. Wydział Mechaniczny

THE INFLUENCE OF THE ENGINE LOAD ON VALUE AND TEMPERATURE DISTRIBUTION IN THE VALVE SEATS OF TURBO DIESEL ENGINE

Compression strength of pine wood (Pinus Sylvestris L.) from selected forest regions in Poland, part II

SYMULACJA TŁOCZENIA ZAKRYWEK KORONKOWYCH SIMULATION OF CROWN CLOSURES FORMING

Conception of reuse of the waste from onshore and offshore in the aspect of

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

ROZPRAWY NR 128. Stanis³aw Mroziñski

Standardized Test Practice

SYMULACJA NUMERYCZNA KRZEPNIĘCIA KIEROWANEGO OCHŁADZALNIKAMI ZEWNĘTRZNYMI I WEWNĘTRZNYMI

WPŁYW SZYBKOŚCI STYGNIĘCIA NA WŁASNOŚCI TERMOFIZYCZNE STALIWA W STANIE STAŁYM

A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume Issue 4

Adres do korespondencji: Instytut Metalurgii i Inżynierii Materiałowej PAN, Kraków, ul. Reymonta 25

ROZPRAWA DOKTORSKA. Model obliczeniowy ogrzewań mikroprzewodowych

Materiałowe i technologiczne uwarunkowania stanu naprężeń własnych i anizotropii wtórnej powłok cylindrycznych wytłaczanych z polietylenu

Towards Stability Analysis of Data Transport Mechanisms: a Fluid Model and an Application

ANALIZA WPŁYWU UŻYCIA WYLEWU ZANURZENIOWEGO NA ROZKŁAD POLA TEMPERATUR I PRĘDKOŚCI WEWNĄTRZ WLEWKA CIĄGŁEGO

Tytuł pracy w języku angielskim: Microstructural characterization of Ag/X/Ag (X = Sn, In) joints obtained as the effect of diffusion soledering.

POLA TEMPERATURY I PRĘDKOŚCI W UKŁADZIE WLEWEK-KRYSTALIZATOR COS

Outline of a method for fatigue life determination for selected aircraft s elements

TYRE PYROLYSIS. REDUXCO GENERAL DISTRIBUTOR :: ::

MODELOWANIE NUMERYCZNE POWSTAWANIA NAPRĘŻEŃ W KRZEPNĄCYCH ODLEWACH

PROCEEDINGS OF THE INSTITUTE OF VEHICLES 2(106)/2016 (12 pt)

IDENTYFIKACJA I ANALIZA PARAMETRÓW GEOMETRYCZNYCH I MECHANICZNYCH KOŚCI MIEDNICZNEJ CZŁOWIEKA

Inquiry Form for Magnets

WPŁYW DOGRZEWANIA I EKRANÓW CIEPLNYCH NA ZMIANĘ TEMPERATURY PASMA WALCOWANEGO W LINII LPS

Medical electronics part 10 Physiological transducers

BARIERA ANTYKONDENSACYJNA

A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume Issue 1 DOI: /amm

Nazwa projektu: Kreatywni i innowacyjni uczniowie konkurencyjni na rynku pracy


THERMODYNAMICS OF OXYGEN IN DILUTE LIQUID SILVER-TELLURIUM ALLOYS

photo graphic Jan Witkowski Project for exhibition compositions typography colors : : janwi@janwi.com

Optymalizacja konstrukcji wymiennika ciepła

ZASTOSOWANIE SYMULACJI NUMERYCZNEJ DO OPRACOWANIA TECHNOLOGII COS DLA WLEWKÓW O PRZEKROJU KOŁOWYM ODLEWANYCH NA URZĄDZENIU O MAŁYM PROMIENIU ŁUKU

PRZEWODNIK PO PRZEDMIOCIE. Negotiation techniques. Management. Stationary. II degree

Knovel Math: Jakość produktu

Latent Dirichlet Allocation Models and their Evaluation IT for Practice 2016

Przewody do linii napowietrznych Przewody z drutów okrągłych skręconych współosiowo

The analysis of the energy demand for heating and cooling of the house built on the basis of the traditional Canadian wood-frame construction

H γ0 - the standard enthalpy of g phase. H β γ - the transition enthalpy of b to g

POLITECHNIKA WARSZAWSKA. Wydział Zarządzania ROZPRAWA DOKTORSKA. mgr Marcin Chrząścik

Hard-Margin Support Vector Machines

DETERMINATION OF TEMPERATURE DISTRIBUTION IN ACTIVE COVERING DURING PRODUCING OF COATINGS BY CASTING METHOD.

ANDRZEJ GONTARZ, ANNA DZIUBIŃSKA

Streszczenie rozprawy doktorskiej

Sargent Opens Sonairte Farmers' Market

A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume Issue 3 DOI: /v

Krytyczne czynniki sukcesu w zarządzaniu projektami

OpenPoland.net API Documentation

Helena Boguta, klasa 8W, rok szkolny 2018/2019

A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume Issue 4 DOI: /v

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

MULTI CRITERIA EVALUATION OF WIRELESS LOCAL AREA NETWORK DESIGNS


Dr inż. Łukasz Rogal zatrudniony jest w Instytucie Metalurgii i Inżynierii Materiałowej Polskiej Akademii Nauk na stanowisku adiunkta

Mgr inż. Krzysztof KRAWIEC. Rozprawa doktorska. Streszczenie

Has the heat wave frequency or intensity changed in Poland since 1950?

Aerodynamics I Compressible flow past an airfoil

Cracow University of Economics Poland

NIESTACJONARNY PRZEPŁYW CIEPŁA W TŁOKU DOŁADOWANEGO SILNIKA Z ZAPŁONEM SAMOCZYNNYM

WPLFE. WPLFE Economy Line. The shortest right angle planetary gearbox with flange output shaft and maximum torsional stiffness

23/7 Solidification of Metais and Alloys, No 23, 1995

Few-fermion thermometry

Linear Classification and Logistic Regression. Pascal Fua IC-CVLab

QUANTITATIVE AND QUALITATIVE CHARACTERISTICS OF FINGERPRINT BIOMETRIC TEMPLATES

KONTROLA STALIWA GXCrNi72-32 METODĄ ATD

DETECTION OF MATERIAL INTEGRATED CONDUCTORS FOR CONNECTIVE RIVETING OF FUNCTION-INTEGRATIVE TEXTILE-REINFORCED THERMOPLASTIC COMPOSITES

ZASTOSOWANIE METOD SYMULACJI FIZYCZNEJ I MATEMATYCZNEGO MODELOWANIA DO PRZEWIDYWANIA POWSTAWANIA WAD WLEWKA W PROCESIE CIĄGŁEGO ODLEWANIA STALI

WYKAZ PRÓB / SUMMARY OF TESTS

PRACE INSTYTUTU ODLEWNICTWA TRANSACTIONS OF FOUNDRY RESEARCH INSTITUTE

Międzynarodowa aktywność naukowa młodej kadry Wydziału Metali Nieżelaznych AGH na przykładzie współpracy z McMaster University w Kanadzie

TECHNICAL CATALOGUE WHITEHEART MALLEABLE CAST IRON FITTINGS EE

APPLICATION. Journal of Machine Construction and Maintenance Problemy eksploatacji QUARTERLY ISSN /2017 (107) p

BIOPHYSICS. Politechnika Łódzka, ul. Żeromskiego 116, Łódź, tel. (042)

PRZEPISY RULES PUBLIKACJA NR 83/P PUBLICATION NO. 83/P

Arrays -II. Arrays. Outline ECE Cal Poly Pomona Electrical & Computer Engineering. Introduction

deep learning for NLP (5 lectures)

DOŚWIADCZALNY DOBÓR KSZTAŁTU WLEWKA W PROCESIE WYCISKANIA STOPÓW METALI NA GORĄCO


Walyeldeen Godah Małgorzata Szelachowska Jan Kryński. Instytut Geodezji i Kartografii (IGiK), Warszawa Centrum Geodezji i Geodynamiki

Surname. Other Names. For Examiner s Use Centre Number. Candidate Number. Candidate Signature

Patients price acceptance SELECTED FINDINGS

Zarządzanie sieciami telekomunikacyjnymi

Relaxation of the Cosmological Constant

FUNKCYJNY OPIS KRZYWEJ HARTOWNOŚCI. JURA Stanisław., BARTOCHA Dariusz Katedra Odlewnictwa, Politechniki Śląskiej, Gliwice Towarowa 7, POLAND

General Certificate of Education Ordinary Level ADDITIONAL MATHEMATICS 4037/12

OKREŚLANIE ZALEŻNOŚCI POMIĘDZY CZASEM KRYSTALIZACJI EUTEKTYCZNEJ A ZABIELANIEM ŻELIWA. Z. JURA 1 Katedra Mechaniki Teoretycznej Politechniki Śląskiej

INSPECTION METHODS FOR QUALITY CONTROL OF FIBRE METAL LAMINATES IN AEROSPACE COMPONENTS

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

NUMERYCZNA SYMULACJA ROZTAPIANIA DRUTÓW ALUMINIOWYCH WPROWADZANYCH DO CIEKŁEJ STALI

A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume Issue 3

SHEAR LAG EFFECT IN THE NUMERICAL EXPERIMENT

Transkrypt:

A R C H I E S O M E T A L L U R G Y A N D M A T E R I A L S olume 55 200 Issue 3 T. REC, A. MILENIN NUMERICAL MODELING O MACROSEGREGATION AND STRESS-STRAIN STATE DISTRIBUTION IN SLAB DURING CONTINUE CASTING WITH SOT REDUCTION NUMERYCZNE MODELOWANIE MAKROSEGREGACJI, STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ WE WLEWKU PŁASKIM ODLEWANYM W SPOSÓB CIĄGŁY Z UWZGLĘDNIENIEM PROCESU SOT REDUCTION The center segregation is forming in the slab during continuous casting process. The segregation of elements in the slab is negative influences on mechanical, chemical and microstructure of final product. One of the methods of decrease the center segregation is mechanical soft reduction process. The efficiency of soft reduction is dependent on value and localization of soft reduction and parameters of continuous casting process. Moreover, the soft reduction process to change the stress-strain state in the slab and it can cause formation cracks on slab surface. The purpose of this paper is to develop a numerical EM model of continuous casting process with soft reduction process and optimization of parameters of soft reduction for industrial example. The proposed numerical model of slabs casting with soft reduction technology takes into ac-count the processes of crystallization, thermal stress, diffusion, macrosegregation and mechanical deformation. Keywords: continuous casting process, macrosegregation, mechanical soft reduction, numerical modeling W procesie krzepnięcia wlewków odlewanych w sposób ciągły zachodzi zjawisko segregacji pierwiastków. Zjawisko to powoduje powstawanie niejednorodnej struktury we wlewku co niekorzystnie wpływa na własności mechaniczne chemiczne i mikrostrukturalne wyrobów finalnych. Jedną z metod obniżenia segregacji we wlewkach ciągłych jest zastosowanie odkształcenie wlewka w stanie półciekłym w końcowym etapie odlewania. Efektywność tej metody zależy od momentu i wielkości przyłożenia odkształcenia, prędkości odlewania czy składu chemicznego odlewanej stali. Ponad to, zadany gniot zmienia stan naprężenia i odkształcenia we wlewku co może prowadzić do powstawania pęknięć na powierzchni wlewka. W pracy przedstawiono model numeryczny procesu ciągłego odlewania stali uwzględniający zjawisko krzepnięcia wlewka, segregacji pierwiastków oraz stanu odkształcenia i naprężenia w stanie półciekłym. W oparciu o opracowany model numeryczny podjęto próbę optymalizacji parametrów procesu odkształcenia w stanie półciekłym w celu zmniejszenia segregacji pierwiastków dla warunków przemysłowych. Wykonano porównanie wyników modelowania rozkładu segregacji w przekroju wlewku z danymi doświadczalnymi.. Introduction Macrosegregation is one of the most severe problems encountered in continuous casting CC of steel billets and slabs. ormation and evolution of central segregation in continuously cast ingot dependent on many factors (steel chemical composition, casting speed, cooling regime, machine geometry etc.). One of the possibility of decrease of macrosegregation by deformation of billet in a semi-solid state (Mechanical Soft Reduction, MSR). In this process by applying a small thickness reduction liquid phase is squeezing in the direction opposite to the casting that cause decrease segregation elements. Research presented in papers [-4] show that efficiency of MRS is dependents on the values reduction, contents of liquid phase in centre of ingot moreover parameters of continuous casting process. The development of the optimal parameters of the MSR process taking into consideration the industrial conditions of the CC process, is a difficult task. However, application of the computer simulations and numerical methods can be used to solve this problem. This work presents numerical models of crystallization, macrosegregation, stress-strain state in continuously cast ingot taking into consideration of MRS process. Base on developed model continuous casting process a series of computer simulation were performer for the industrial conditions. Computer simulation made for slab 220 580 mm at casting speeds 7 and 20 mm/s. Numerical results has been compare with experiment results. DEPARTMENT O APPLIED COMPUTER SCIENCE AND MODELING, AGH UNIERSITY O SCIENCE AND TECHNOLOGY, 30-059 KRAKÓW, 30 MICKIEWICZA STR., POLAND

96 2. Mathematical models description Presented here for the main assumptions of developed a mathematical model of continuous casting process. A detailed description of the model presented in the works [5-7]. The mathematical model of the crystallization of the ingot CC is based on the effective specific heat method: c e f f (T) ρ (T) dt dt = div (λ (T) grad (T)), () where: ρ(t) metal density, t temperature, τ time, λ(t) heat conductivity coefficient, c e f f (t) effective specific heat: c e f f = c S (T) for T < T S, c e f f = c f + L d f S dt c f + L T L T S for T S < T < T L, c e f f = c L for T > T L. (2) In order to solve the equation () the variational problem formulation is used. This is based on the minimization of the functional J [8]: [ 2 λ(t) ( ) t 2 ( ) x + λ(t) t 2 y 2ce f f (t)ρ(t) dt ]d+ t + α 2 (t t ) 2 d, (3) where: α effective coefficient of heat exchange, area of contact metal with tool; volume; t temperature of the environment. The model for the evolution of the macrosegregation in the ingot CC was developed based on follow principles. The concentration solute in the first portion solid phase is given by the equation: C S = C L k, (4) where: k partition coefficient of the solute elements between the liquid and the solid phases. The concentration of solute in the liquid phase is constant in next time step of the crystallization process, and can be calculated using the mass balance equation: C L = C 0L N e e= f se C e e L, (5) where: L surface of the liquid phase in the cross-section of the ingot CC; area of the cross-section of ingot CC; f se solid phase fraction in the E element e; C e concentration of the solute elements in the E element; e area of the E element e; N e number of the E elements. Lack of the mass balance in the element is the results of the SR process. This is due to the movement of some part of the liquid metal to the upper regions. To correctly calculate the mass balance, integration of the concentration element at surface of the ingot CC cross-section has to be performed. The backward diffusion is solved base on the ick s principle: dc = div(d(t)grad(c)), (6) where: D(T) diffusion coefficient of the solute elements; C concentration of the solute elements in steel in wt%. In order to solve the equation (6) the variation problem formulation have to be used. This formulation have to fulfil the relationship (7): ( ) 2 C 2 D (t) + D (t) x ( C y ) 2 2C dc d. (7) Stress-strain state model is consider a solution of a 2-dimensional task with the linear distribution of deformation in direction of the ingot CC height (along the y axis). The solution is sought from the necessary condition of the minimum of the Lagrange variational functional: E εi 2d + f S K ( ε 0 β t) 2 d+ (8) + f L p f ( ε 0 β t) d + f S σ i u i d, where: f L fraction of the liquid phase, E the modulus of plasticity (corresponding to the Young s modulus in elasticity), β thermal expansion coefficient; ε i increment of the effective strain; t increment of the temperature; σ τ friction stress on contact between rolls and ingot CC; u τ increment of the displacement in sliding direction; K effective compression coefficient. If fraction of the liquid phase is one, the equation (8) can by describe in follow form: 2 E εi 2 d+ p f ( ε 0 β t)d. (9) or solid phase equation (8) is write as 2 E εi 2 d+ K ( ε 0 β t) 2 d+ σ t u t d. (0) The equation for liquid phase (9) is not including the incompressibility condition and if cross section of liquid area is change by soft reduction, the area of liquid phase is decrease according deformation distribution in ingot.

97 Chemical composition of material in weight percent TABLE C Mn Si P S Cr Ni Cu Al Nb Mo 0.7.43 0.06 0.07 0.04 0.02 0.02 0.04 0.04 0.05 0.006 0.002 3. Experimental procedure The macrosegregation was examined for the slab cast in one of the Polish steelworks. The strand dimension in this experiment was 220 580 mm. The caster is bent with a radius of 0.5 m. Mechanical soft reduction zone, MSR, is situated between 8.5 and 23.3 m from the top of mould. Total reduction in the reduction zone is.2 mm. The chemical composition of the continuous cast steel shown in Table. The casting speed was 20 mm/min. After solidification of slab the samples was cut to analyze the chemical compositions. Method of cut samples show on ig.. Chemical composition analysis was performed on the spectrograph. To determine the flow curve for the steel test was performed experimental tests on the machine Zwick Z250. obtained results and mark four cooling zone in continuous casting machine. In the first zone the slab is very fast cooling in mould. Temperature on surface decrease to 870 C and this induces the beginning of the solidification process. In the following stages (zone II) the temperature increases due smaller cooling intensity (water and air cooling). In third zone the slab is cooling on air. When surface of slab is contact with rolls the temperature is jumps what can be seen on ig. 2. Temperature in centre of slab is decrease very slow. After the solidification of slab the temperature is rapid decrease in centre. Solidification of slab is faster for the casting speed 7mm/s than 20mm/s. or casting speed 7mm/s the metallurgical length it was 8.5m and for casting speed 20mm/s it was 23.4m. Metallurgical length for industrial conditions it was 23.3m (for casting speed 20mm/s). ig.. Schematic illustration of sawing and analyzing of the test specimen Base on the develop mathematical models of CC process a series of computer simulation were performer for the above industrial conditions. Thermal properties (conductivity, heat capacity, liquidus and solidus temperature) of the investigated steel have been calculated in ThermoCalc application. The diffusion coefficient and equilibrium distribution coefficient in macrosegregation model is based on the literature [9]. Computer simulations were carried out for two casting speeds: 7 mm/s (without MSR) and 20 mm/s (with MSR). 4. Results and discussion The numerical models of continuous casting process given the opportunity solve change temperature on surface and centre of slab. On figure 2 show ig. 2. Change of temperature in slab during continuous casting process The decrease in the temperature in the mould induces beginning of the solidification process on the surface of the slab. It causes drop in the carbon concentration at the first stages of the continuous casting process. or each casting speed it was 0.069wt% (ig. 3). In the following stages the carbon concentration increases due to the backward diffusion phenomenon. The liquid fraction is lessening in next steps of CC process and it cause increase of carbon concentration in centre of slab. Maximum carbon concentration in center line of the slab was at the moment when last fraction of liquid phase is solidification. or casting speed 7mm/s maximum carbon concentration it was 0.6wt%, for casting

98 speed 20mm/s it was 0.505wt%. During soft reduction process liquid phase is squeezing in the direction opposite to the casting that causes decrease value of maximum carbon concentration in centre of slab ig. 3. ig. 3. Change of concentration carbon in slab during continuous casting process ig. 4. Distribution of carbon concentration in the cross-section of slab; a) c=7mm/s; b) c=20mm/s or lower casting speed slab solidification before MSR zone by which final concentration was higher in centre slab. or higher casting speed slab total reduction in MSR zone was.mm. It was decrease maximum carbon concentration in centre of slab. Numerical results of carbon segregation in slab compare with experiment results. On ig. 4 show numerical and experimental results of carbon concentration vs distance along the width of slab. In experiment maximum carbon concentrate for centre of slab was 0.38%, minimum 0.28%, average 0.33% (ig. 4b). On surface of slab maximum carbon concentrate was 0.33%, minimum 0.9% and average 0.27%. Numerical results are similar to experiment results for casting speed 20mm/s. Difference average carbon concentrate between experiment and numerical results was 0.00% in centre slab, for surface slab it was 0.005%. or casting speed 8mm/s carbon concentrate is higher than experiment in centre slab. The strain intensity in slab during continue casting is determined. The SR process influences the distribution of strain intensity (ig. 5). Maximum strain intensity concentrates in slab corners. The increase in the strain intensity at the surface is cause by the bending and straightening processes occurring during CC. The MSR process influences on distribution of strain intensity. It is decrease of strain intensity in corners of the slab and it can by cause formation of fracture. ig. 5. Carbon concentration along the width of slab; a) centre; b) surface of slab

99 Acknowledgements The authors acknowledge the Polish Ministry of Science and Higher Education (Grant No. N508 406537) for their support of this research. ig. 6. Distribution of strain intensity in the cross-section in continuous cast billet, after finish of solidification process; a) c=7mm/s; b) c=20mm/s 5. Conclusion In this work show that base on developed numerical model of CC process can by optimization parameters of continuous casting process and MSR process. MSR process essentially influences on decrease of segregation in slab. The agreement between experimental data of segregation in slab and EM calculation by elaborated model is reasonably good. The MSR process change the distribution of the strain intensity in slab. Maximum strain intensity concentrates in slab corners. MSR increase strain intensity and it can be cause formation of fracture. REERENCES [] K. I s o b e, Y. K u s a n o, S. N o g u c h i e a, Porc. Near-Net-Shape Casting in the Minimills, ancouver 79 (995). [2] W. B l e c k, W. W a n g, R. B u l t e, Steel Res. Int. 77, 485 (2006). [3] R. T h o m e, K. H a r s t e, ISIJ International 46, 839 (2006). [4] K. I s o b e, Y. K u s a n o, S. N o g u c h i, K. I s h i y a m a, A. Y a m a n a k a, T. H o r i e, M. U e h a r a, Proc. Near-Net-Shape Casting in the Minimills, eds. Brimacombe, J. K., Samarasekera, I.., ancouver: CIM, 79 (995). [5] A. M i l e n i n, T. R e c, Steel Res. Int. 2, 603 (2008). [6] A. M i l e n i n, T. R e c, Hutnik Wiadomości Hutnicze, No 0, 597 (2008). [7] T. R e c, A. M i l e n i n, Computer Methods in Materials Science, 9, 25 (2009). [8] A. M i l e n i n, Podstawy Metody Elementów Skończonych, Zagadnienia Termomechaniczne, Wyd. AGH 200. [9] Y. U e s h i m a, S. M i z o g u c h i, T. M a t - s u m i y a, H. K a j i o k a, Metall. Trans. B7, 845 (986). Received: 0 July 200.