LUBELSKA PRÓBA PRZED MATUR MATEMATYKA - poziom rozszerzony LO

Podobne dokumenty
LUBELSKA PRÓBA PRZED MATURĄ MATEMATYKA - poziom rozszerzony klasa I

LUBELSKA PRÓBA PRZED MATURĄ MATEMATYKA - poziom rozszerzony klasa II

LUBELSKA PRÓBA PRZED MATURĄ MATEMATYKA - poziom rozszerzony

LUBELSKA PRÓBA PRZED MATUR 2016

LUBELSKA PRÓBA PRZED MATUR MATEMATYKA - poziom rozszerzony LO

LUBELSKA PRÓBA PRZED MATURĄ poziom rozszerzony MATEMATYKA 14 MARCA Instrukcja dla zdającego Czas pracy: 180 minut

LUBELSKA PRÓBA PRZED MATURĄ MATEMATYKA - poziom rozszerzony LO

LUBELSKA PRÓBA PRZED MATUR MATEMATYKA - poziom rozszerzony klasa I

Instrukcja dla zdaj cego Czas pracy: 180 minut

Próbny egzamin maturalny z matematyki Poziom rozszerzony. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA

LUBELSKA PRÓBA PRZED MATURĄ MATEMATYKA - poziom rozszerzony LO

LUBELSKA PRÓBA PRZED MATURĄ 2016 poziom podstawowy. M A T E M A T Y K A klasa 2-(pp) MAJ 2016

UZUPEŁNIA ZDAJĄCY PODKARPACKI SPRAWDZIAN PRZEDMATURALNY Z MATEMATYKI POZIOM ROZSZERZONY

LUBELSKA PRÓBA PRZED MATURĄ 2017 klasa 2 (pp)

LUBELSKA PRÓBA PRZED MATURĄ 2016 poziom podstawowy. M A T E M A T Y K A klasa 2-(pp) MAJ 2016

PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ

UZUPEŁNIA ZDAJĄCY miejsce na naklejkę

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2012 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

PRÓBNY EGZAMIN MATURALNY MATEMATYKA. MaturoBranie

Nazwisko i imię... PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MMA 2019 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę

Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA

EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

LUBELSKA PRÓBA PRZED MATURĄ 2015 poziom rozszerzony 1

LUBELSKA PRÓBA PRZED MATURĄ klasa 2 poziom podstawowy

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2012 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2012 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

Próbny egzamin maturalny z matematyki Poziom podstawowy. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA

PRÓBNY EGZAMIN MATURALNY MATEMATYKA. MaturoBranie

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY 9 MAJA Godzina rozpoczęcia: 9:00. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MMA 2018 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

UZUPEŁNIA ZDAJĄCY miejsce na naklejkę

EGZAMIN MATURALNY Z MATEMATYKI

NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MMA 2019 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY CZERWIEC Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2013 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY CZERWIEC Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

UZUPEŁNIA ZDAJĄCY miejsce na naklejkę

LUBELSKA PRÓBA PRZED MATURĄ klasa 2 poziom podstawowy

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY CZERWIEC Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY 3 CZERWCA Godzina rozpoczęcia: 14:00. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50

Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA

LUBELSKA PRÓBA PRZED MATURĄ klasa 2 poziom podstawowy

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2013 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI 2 CZERWCA 2015 POZIOM ROZSZERZONY. Godzina rozpoczęcia: 14:00. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50

Próbny egzamin maturalny z matematyki Poziom podstawowy. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA

Próbny egzamin maturalny z matematyki Poziom rozszerzony

PODKARPACKI SPRAWDZIAN PRZEDMATURALNY Z MATEMATYKI DLA KLAS DRUGICH POZIOM PODSTAWOWY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ

NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MMA 2019 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę UZUPEŁNIA ZESPÓŁ NADZORUJĄCY

LUBELSKA PRÓBA PRZED MATURĄ 2019

Nazwisko i imię.. PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY SIERPIEŃ Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI 5 MAJA 2016 POZIOM PODSTAWOWY. Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI LISTOPAD 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

LUBELSKA PRÓBA PRZED MATURĄ 2017 poziom podstawowy M A T E M A T Y K A 28 LUTEGO Instrukcja dla zdającego Czas pracy: 170 minut

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

Próbny egzamin maturalny z matematyki Poziom rozszerzony

LUBELSKA PRÓBA PRZED MATURĄ 2015 poziom podstawowy. Instrukcja dla zdającego Czas pracy: 170 minut

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2014 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

Instrukcja dla zdającego Czas pracy: 170 minut

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

LUBELSKA PRÓBA PRZED MATUR 2016

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI 8 MAJA 2015 POZIOM ROZSZERZONY. Godzina rozpoczęcia: 9:00. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50

LUBELSKA PRÓBA PRZED MATURĄ 2018 poziom podstawowy M A T E M A T Y K A 14 MARCA Instrukcja dla zdającego Czas pracy: 170 minut

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI 8 MAJA 2015 POZIOM ROZSZERZONY. Godzina rozpoczęcia: 9:00. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY 9 MAJA Godzina rozpoczęcia: 9:00. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 25 SIERPNIA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI. dla osób niesłyszących CZERWIEC 2013 POZIOM PODSTAWOWY. Czas pracy: do 200 minut. Liczba punktów do uzyskania: 50

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MMA 2018 UZUPEŁNIA ZDAJ CY. miejsce na naklejkę

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 5 MAJA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

Transkrypt:

1 MATEMATYKA - poziom rozszerzony LO MAJ 2017 KLASA 2 Instrukcja dla zdaj cego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 16 stron (zadania 1 16). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin. 2. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym. 3. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego może spowodować, że za to rozwiązanie nie otrzymasz pełnej liczby punktów. 4. Pisz czytelnie i używaj tylko długopisu lub pióra z czarnym tuszem lub atramentem. 5. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl. Pamiętaj, że zapisy w brudnopisie nie będą oceniane. 6. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora prostego. 7. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora. Czas pracy: 180 minut Życzymy powodzenia Liczba punktów do uzyskania: 50

2 W zadaniach o numerach od 1 do 5 wybierz i zaznacz na karcie odpowiedzi jedną poprawną odpowiedź Zadanie 1. (1p). 5 8 4 6 2 Suma wszystkich współczynników wielomianu W( x) 3x 2x 2x 4x 7 jest równa: A. 128 B. 216 C. 64 D. 32 Zadanie 2. (1p). Funkcja f określona jest wzorem: Zbiorem wartości funkcji f jest zbiór: A. 5 R B., Zadanie 3. (1p). x f ( x) 5 2 x 6 dla x 2 x 2 dla x 2 5 C. 5, ) D. R Najmniejszą liczbą w zbiorze rozwiązań nierówności 5x a 4 jest liczba 150. Liczba a jest równa: A. 600 B. 750 C. 754 D. 754 Zadanie 4. Czworokąty (1p). F 1 i F są podobne. Pole czworokąta F1 jest o 36% mniejsze od pola czworokąta F. Obwód czworokąta F jest większy od obwodu czworokąta F 1 o: A. 20% B. 25% C. 36% D. 18% Zadanie 5. (1p). 4 Liczba log log jest równa: 4 2 2 A. 2 B. 3 3 C. 0,5 D. - 2 2

3 BRUDNOPIS

4 W zadaniu 6 i 7 zakoduj we wskazanym miejscu wynik zgodnie z poleceniem. Zadanie 6. (2pkt) Między liczbami rzeczywistymi x i y zachodzi związek 3x 2y = 8. Wyznacz najmniejszą wartość 3 3 wyrażenia 27x 8y. Zakoduj otrzymaną liczbę, podając jej cyfrę setek, dziesiątek i jedności. setki dziesiątki jedności Zadanie 7. (2p). Wyznacz lim 2 2n 3 5n 1 3n 1 3. Zakoduj otrzymany wynik, podając trzy pierwsze cyfry po przecinku rozwinięcia dziesiętnego otrzymanej liczby. dziesiąte setne tysiączne

5 Rozwiązania zadań od 8 do 16. należy zapisać w wyznaczonych miejscach pod treścią zadania. Zadanie 8. Niech (3p). 8 log 3 p. Wykaż, że 3p 3 log 6 24. p 3

6 Zadanie 9. (4p). Wykaż, że proste przechodzące przez wierzchołek równoległoboku i środki boków, do których on nie należy, dzielą przekątną równoległoboku na trzy równe części.

7 Zadanie 10. (5p). 3 2 2n 4n 18n 36 Dany jest ciąg określony wzorem a n. 2 n n 6 Wykaż, że wszystkie wyrazy tego ciągu są liczbami całkowitymi. Sprawdź, czy jest to ciąg arytmetyczny.

8 Zadanie 11. (5p). Suma dwóch liczb, ich iloczyn i różnica ich kwadratów są równe. Wyznacz te liczby.

9 Zadanie 12. (6p). Okrąg o promieniu 4 jest wpisany w trójkąt. Punkt styczności podzielił jeden z boków na odcinki o długości 6 i 8. Oblicz długości boków tego trójkąta.

10 Zadanie 13. (3p). Wiadomo, że a, b, c R 0 oraz a + b +c = 0. Oblicz wartość sumy: 2 2 2 a b c. bc ac ab

11 Zadanie 14. (4p). Iloczyn trzech kolejnych liczb nieparzystych jest o 65 większy od różnicy kwadratów liczby największej i najmniejszej. Znajdź te liczby.

12 Zadanie 15. (6p). Dany jest okrąg o promieniu 11 oraz punkt P oddalony o 7 od środka okręgu. Przez punkt P poprowadzono cięciwę o długości 18. W jakim stosunku punkt P podzielił tę cięciwę na dwa odcinki?

13 Zadanie 16. (5p). 8 16 Rozwiąż nierówność: 2x 4.... x 3

14 BRUDNOPIS

15 WYPEŁNIA PISZĄCY Nr zadania A B C D 1. 2. 3. 4. 5. WYPEŁNIA SPRAWDZAJACY Nr zadania X 0 2 6. 7. Suma punktów zadania zamknięte Nr zadania X 0 1 2 3 4 5 6 8. 9. 10. 11. 12. 13. 14. 15. 16. Suma punktów zadania otwarte Suma punktów razem