Samoczynne ponowne załączenie (SPZ)



Podobne dokumenty
BADANIE AUTOMATYKI SAMOCZYNNEGO PONOWNEGO ZAŁĄCZANIA (SPZ)

Wisła, 16 października 2019 r.

ANALIZA PRZEBIEGU PRACY TURBOGENERATORA PO WYSTĄPIENIU SAMOCZYNNEGO PONOWNEGO ZAŁĄCZENIA LINII

Układy przekładników napięciowych

Nastawy zabezpieczenia impedancyjnego. 1. WSTĘP DANE WYJŚCIOWE DLA OBLICZEŃ NASTAW INFORMACJE PODSTAWOWE O LINII...

Układy przekładników prądowych

Badanie cyfrowego zabezpieczenia odległościowego MiCOM P437

DOKUMENTACJA TECHNICZNO ROZRUCHOWA AUTOMATU MPZ-2-SZR

Sterownik SZR-V2 system automatycznego załączania rezerwy w układzie siec-siec / siec-agregat

2. Zwarcia w układach elektroenergetycznych... 35

15. UKŁADY POŁĄCZEŃ PRZEKŁADNIKÓW PRĄDOWYCH I NAPIĘCIOWYCH

Sieci średnich napięć : automatyka zabezpieczeniowa i ochrona od porażeń / Witold Hoppel. Warszawa, Spis treści

Automatyka SPZ. ZCR 4E; ZCS 4E; ZZN 4E; ZZN 5; ZRL 4E Automatyka SPZ

Kryteria i algorytm decyzyjny ziemnozwarciowego zabezpieczenia zerowoprądowego kierunkowego linii WN i NN

Cyfrowe zabezpieczenie różnicowe transformatora typu RRTC

Laboratorium Urządzeń Elektrycznych

Badanie uproszczonego zabezpieczenia szyn przy wykorzystaniu zabezpieczeń typu: ZSN5L

URZĄDZEŃ ROZDZIELCZYCH i ELEMENTÓW STACJI ELEKTROENERGETYCZNYCH

Wersja DOKUMENTACJA TECHNICZNO-RUCHOWA AUTOMATU DO SAMOCZYNNEGO ZAŁĄCZANIA ZASILANIA TYPU PPBZ210SZR

Automatyka SZR. Korzyści dla klienta: [ Zabezpieczenia ] Seria Sepam. Sepam B83 ZASTOSOWANIE UKŁADY PRACY SZR

Układ samoczynnego załączania rezerwy

Symulacja komputerowa układów SZR

Automatyka SPZ. 1. ZASADA DZIAŁANIA SCHEMAT FUNKCJONALNY PARAMETRY SPZ WYKRESY CZASOWE DZIAŁANIA AUTOMATYKI SPZ...

Badanie układu samoczynnego załączania rezerwy

Poznanie budowy, sposobu włączania i zastosowania oraz sprawdzenie działania wyłącznika różnicowoprądowego i silnikowego.

SZCZEGÓŁOWE WYMAGANIA TECHNICZNE DLA JEDNOSTEK WYTWÓRCZYCH PRZYŁĄCZANYCH DO SIECI ROZDZIELCZEJ

SYMULATOR SPZ-SZR. Wojciech Kościelniak. wojciech(dot)koscielniak(at)nethium(dot)pl

Automatyka SPZ. Spis treści. 8. Automatyka SPZ Zabezpieczenia : UTXvZRP UTXvZ UTXvRP UTXvD UTXvS 1. ZASADA DZIAŁANIA...

BADANIE CHARAKTERYSTYK CZASOWO-PRĄDOWYCH WYŁĄCZNIKÓW SILNIKOWYCH

PROBLEMATYKA LIKWIDACJI ZWARĆ JEDNOFAZOWYCH NA LINIACH WYPROWADZENIA MOCY Z ELEKTROWNI SYSTEMOWYCH

Katalog sygnałów przesyłanych z obiektów elektroenergetycznych do systemu SCADA. Obowiązuje od 10 marca 2015 roku

Artykuł opublikowany w kwartalniku Automatyka Zabezpieczeniowa w 2002 r.

Zalety rozdzielnic SN typu MILE wyposażonych w wyłączniki o napędzie magnetycznym

Układ sterowania wyłącznikiem.

Ćwiczenie 1 Badanie układów przekładników prądowych stosowanych w sieciach trójfazowych

WERSJA SKRÓCONA ZABEZPIECZENIA W INSTALACJACH ELEKTRYCZNYCH

12. DOBÓR ZABEZPIECZEŃ NADPRĄDOWYCH SILNIKÓW NISKIEGO NAPIĘCIA

6.2. Obliczenia zwarciowe: impedancja zwarciowa systemu elektroenergetycznego: " 3 1,1 15,75 3 8,5

Programowanie automatu typu: ZSN 5R.

Veolia Powerline Kaczyce Sp. z o.o.

Informacja dotycząca nastaw sygnalizatorów zwarć doziemnych i międzyfazowych serii SMZ stosowanych w sieciach kablowych SN.

ZAKRES BADAŃ I PRÓB EKSPLOATACYJNYCH URZĄDZEŃ SIECI ELEKTROENERGETYCZNEJ ORAZ

STUDIA I STOPNIA STACJONARNE ELEKTROTECHNIKA

OM 100s. Przekaźniki nadzorcze. Ogranicznik mocy 2.1.1

KARTA KATALOGOWA. Przekaźnik ziemnozwarciowy nadprądowo - czasowy ZEG-E EE

POLITECHNIKA SZCZECIŃSKA WYDZIAŁ ELEKTRYCZNY

Układ sterowania wyłącznikiem

NAJWIĘKSZY POLSKI PRODUCENT PRZEKAŹNIKÓW ELEKTROMAGNETYCZNYCH

UKŁAD AUTOMATYCZNEGO PRZEŁĄCZANIA ZASILANIA APZ-2T1S-W1

ĆWICZENIE 1 JEDNOFAZOWE OBWODY RLC. Informatyka w elektrotechnice ZADANIA DO WYKONANIA

PRZEKAŹNIK ZIEMNOZWARCIOWY NADPRĄDOWO-CZASOWY

KARTA KATALOGOWA. Cyfrowy Zespół Automatyki Zabezpieczeniowej linii WN ZEG-E

ĆWICZENIE NR 3 BADANIE PRZEKAŹNIKÓW JEDNOWEJŚCIOWYCH - NADPRĄDOWYCH I PODNAPIĘCIOWYCH

PROBLEMY ŁĄCZENIA KONDENSATORÓW ENERGETYCZNYCH

UKŁAD SAMOCZYNNEGO ZAŁĄCZANIA REZERWY ZASILANIA (SZR) z MODUŁEM AUTOMATYKI typu MA-0B DOKUMENTACJA TECHNICZNO-RUCHOWA

WYŁĄCZNIKI RÓŻNICOWOPRĄDOWE SPECJALNE LIMAT Z WBUDOWANYM ZABEZPIECZENIEM NADPRĄDOWYM FIRMY ETI POLAM

Układ sterowania wyłącznikiem

Napowietrzny rozłącznik w izolacji gazu SF kv

Rys. 1. Przekaźnik kontroli ciągłości obwodów wyłączających typu RCW-3 - schemat funkcjonalny wyprowadzeń.

Ćwiczenie 3 Badania zabezpieczeń silników elektrycznych

ELMAST F S F S F S F S F S F S F S F S F S F S

TRANSFORMATORY. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

RIT-430A KARTA KATALOGOWA PRZEKAŹNIK NADPRĄDOWO-CZASOWY

Sterowanie i kontrola dla wentylatora DV-RK1 z silnikiem trójfazowym o mocy do 5 kw z wielopłaszczyznową przepustnicą JZI z siłownikiem 24 V AC/DC

Automatyka zabezpieczeniowa w systemach elektroenergetycznych / Wilibald Winkler, Andrzej Wiszniewski. wyd. 2, dodr. 2. Warszawa, 2013.

MIKROPROCESOROWY REGULATOR POZIOMU MRP5 INSTRUKCJA OBSŁUGI

Rys. 1 Schemat funkcjonalny karty MMN-3

Przekaźnik napięciowo-czasowy

INSTYTUT ELEKTROENERGETYKI POLITECHNIKI ŁÓDZKIEJ BADANIE PRZETWORNIKÓW POMIAROWYCH

SZAFA ZASILAJĄCO-STERUJĄCA ZESTAWU DWUPOMPOWEGO DLA POMPOWNI ŚCIEKÓW P2 RUDZICZKA UL. SZKOLNA

Dokumentacja układu automatyki SZR PA1001-KM

ZABEZPIECZENIA URZĄDZEŃ ROZDZIELCZYCH ŚREDNIEGO NAPIĘCIA. Rafał PASUGA ZPBE Energopomiar-Elektryka

Rys. 1. Przekaźnik kontroli ciągłości obwodów wyłączających typu RCW-3 - schemat funkcjonalny wyprowadzeń.

UKŁAD ROZRUCHU TYPU ETR 1200 DO SILNIKA PIERŚCIENIOWEGO O MOCY 1200 KW. Opis techniczny

1. ZASTOSOWANIE 2. CHARAKETRYSTYKA

PRZEKA NIK ZIEMNOZWARCIOWY NADPR DOWO-CZASOWY KARTA KATALOGOWA

str. 1 Temat: Wyłączniki różnicowo-prądowe.

Rezystancja izolacji przeliczona na 1 km linii większa od MΩ

Automatyka SZR Numer referencyjny APZ-2T2S1G-W6

Uwagi do działania stopni różnicowo - prądowych linii zabezpieczeń ZCR 4E oraz ZZN 4E/RP.

dr inż. Krzysztof Stawicki

Programowanie zabezpieczenia typu: ZTR 5.

Automatyka SZR Numer referencyjny APZ-2T1S-W4

Standard techniczny nr 2/DTS/ sygnały przesyłane z obiektów elektroenergetycznych do systemu SCADA. w TAURON Dystrybucja S.A.

ELMAST MASTER 3001 MASTER 4001 ELEKTRONICZNE CYFROWE ZABEZPIECZENIA BIAŁYSTOK SILNIKÓW TRÓJFAZOWYCH NISKIEGO NAPIĘCIA. PKWiU

Zabezpieczenie pod i nadnapięciowe

System zarządzania jakością procesu produkcji spełnia wymagania ISO 9001:2008

Zestaw bezprzewodowych przekładników prądowych przeznaczonych do montażu na przewodach napowietrznych linii SN i WN typu Z7D/R7D

AWZ516 v.2.1. PC1 Moduł przekaźnika czasowego.

ELMAST MASTER 3000 PTC MASTER 4000 PTC ELEKTRONICZNE CYFROWE ZABEZPIECZENIA BIAŁYSTOK SILNIKÓW TRÓJFAZOWYCH NISKIEGO NAPIĘCIA. PKWiU

NJB1-Y Przekaźnik napięcia jednofazowego Instrukcja obsługi

Środki ochrony przeciwporażeniowej część 2. Instrukcja do ćwiczenia. Katedra Elektryfikacji i Automatyzacji Górnictwa. Ćwiczenia laboratoryjne

Przekaźniki termiczne

PRZEKAŹNIKI CZASOWE W PRZEKAŹNIKI CZASOWE I KONTROLI SERIA 5 PRZEKAŹNIKI MODUŁOWE SERIA 6 PRZEKAŹNIKI PRZEMYSŁOWE. strona 440

Lekcja 56. Ochrona przeciwporażeniowa w urządzeniach elektrycznych na napięcie powyżej 1 kv

CZUJNIK POGODOWY WIATROWY CZUJNIK POGODOWY WIATROWO-SŁONECZNY KOMUNIKACJA POPRZEZ RADIO. WindTec WindTec Lux MODELE INSTRUKCJA

Instrukcja użytkowania

Wybrane zagadnienia pracy rozproszonych źródeł energii w SEE (J. Paska)

PL B1. Układ zabezpieczenia od zwarć doziemnych wysokooporowych w sieciach średniego napięcia. POLITECHNIKA WROCŁAWSKA, Wrocław, PL

ELMAST F S F S F S F S F S ZESTAWY STERUJĄCO-ZABEZPIECZAJĄCE BIAŁYSTOK

Transkrypt:

Samoczynne ponowne załączenie (SPZ) Wykonał: Radosław Cwaliński, III EzIT Sprawdził: Dr inŝ. Tomasz Samotyjak Elbląg 2007

1. Wiadomości podstawowe. Z doświadczeń eksploatacyjnych sieci i systemów elektroenergetycznych wynika, Ŝe większość zwarć wielkoprądowych w napowietrznych i napowietrzno-kablowych liniach elektroenergetycznych ma charakter przejściowy, a źródłem ich powstawania są najczęściej wyładowania atmosferyczne. Fakt ten został wykorzystany do realizacji automatyki samoczynnego ponownego załączania (SPZ), której zadaniem jest ponowne załączenie linii po wyłączeniu jej przez automatykę zabezpieczeniową tej linii. Ponowne, automatyczne załączenie linii następuje po krótkiej przerwie beznapięciowej w linii, potrzebnej na dejonizację przestrzeni połukowej, tzn. przestrzeni, w której podczas zwarcia pośredniego pali się łuk elektryczny (np. między przewodami dwóch faz lub między przewodem fazowym a uziemionym słupem linii). Minimalne czasy dejonizacji przestrzeni połukowej w liniach o napięciu 15 400 kv wynoszą 1,1 s do 0,5 s, przy czym dłuŝsze czasy odpowiadają liniom o napięciu 400 kv. Istnieją róŝne klasyfikacje automatyki SPZ dokonywane ze względu na następujące czynniki: - czas trwania przerwy bezprądowej: rozróŝnia się szybki (0,4 1,2 s) i powolny (2s 3 min.), - liczbę torów prądowych, w których wyłącznik jest zamykany i otwierany ( jedno- lub trójfazowe), - liczbę wykonywanych połączeń (jedno- lub wielokrotny). Jednofazowe (JSPZ) stosuje się oczywiście tylko wówczas, gdy wyłącznik składa się z trzech odrębnych jednobiegunowych kolumn wyposaŝonych w indywidualne napędy. Ten rodzaj wyłączników jest wykorzystywany w liniach o napięciach od 220 kv wzwyŝ. W liniach krajowych o napięciu poniŝej 220 kv są stosowane wyłączniki trójfazowe SPZ (TSPZ). Jednokrotny SPZ oznacza realizację następującego cyklu łączeń: wyłączenie przerwa bezprądowa załączenie (W-Z). JeŜeli zwarcie w linii jest zwarciem przejściowym, to po ponownym załączeniu linia spełnia swoje zadanie tak, jak przed wystąpieniem zwarcia. Mówi się wtedy o udanym cyklu SPZ. JeŜeli zwarcie ma charakter trwały, wtedy cykl łączeń jest następujący: wyłączenie przerwa bezprądowa załączenie wyłączenie (definitywne) (W-Z-W). Takie działanie określa się mianem nieudanego cyklu SPZ. Wielokrotny SPZ najczęściej dwukrotny jest stosowany w sieciach SN. W przypadku np. dwukrotnego SPZ cykl łączeń jest następujący: - dla udanego cyklu: wyłączenie - przerwa pierwsza (0,4 1,5 s) załączenie wyłączenie przerwa druga (od kilku sekund do 3 minut) załączenie, czyli W-Z-W-Z, - dla nieudanego cyklu : W-Z-W-Z-W.

Rys. 3 Przebieg prądu podczas cyklu SPZ w linii, w której powstało zwarcie [2]: a) zwarcie przemijające, udane SPZ, b) zwarcie półtrwałe lub trwałe, SPZ jednokrotne nieudane, c) zwarcie półtrwałe, SPZ dwukrotne udane, d) zwarcie trwałe, SPZ dwukrotne nieudane. e) k- chwila powstania zwarcia, w chwila otwarcia wyłącznika, z chwila zamknięcia wyłącznika, t,, p t p1 t p2 - czasy pauz bezprądowych wyłącznika. W liniach, w których ponowne załączenie jest uwarunkowane zachowaniem synchronizmu, automatyka SPZ musi być wyposaŝona w kontrolę synchronizmu (dotyczy to przede wszystkim powolnego SPZ). Dla szybkich układów SPZ wystarczy kontrola obecności lub braku napięcia na linii elektroenergetycznej. W celu uniknięcia niepotrzebnego załączenia linii na zwarcie moŝna te kontrolę przeprowadzić na jednym krańcu linii. O skuteczności działania automatyki SPZ decyduje wiele czynników, m.in. szybkość działania zabezpieczenia wykrywającego wielkoprądowe zwarcia oraz czas otwarcia wyłącznika. Czas zadziałania zabezpieczeń linii elektroenergetycznych zawiera się w granicach od kilkunastu milisekund (linie NN) do kilku sekund (linie SN). Wyjaśnienia wymaga pojęcie czasu otwarcia wyłącznika. Czas otwarcia wyłącznika (czas własny przy otwieraniu plus czas łukowy) zaleŝą od jego konstrukcji, sposobu gaszenia łuku oraz stosowanego napędu. Orientacyjne wartości tego czasu wynoszą: - wyłączniki małoolejowe: 60 150 ms, - wyłączniki pneumatyczne: 30 90 ms, - wyłączniki gazowe z sześciofluorkiem siarki ( 6 SF ): 30 90 ms, - wyłączniki próŝniowe: 30 70 ms.

Czasy własne wyłączników przy zamykaniu wynoszą odpowiednio: 100 200 ms (małoolejowe), 50 100 ms (pneumatyczne i z SF 6 ), 40 80 ms ( próŝniowe). NajwaŜniejsze korzyści wypływające ze stosowania automatyki SPZ są następujące: - zwiększa pewność i ciągłość zasilania odbiorców, - zmniejszone prawdopodobieństwo wypadnięcia z synchronizmu współpracujących ze sobą elektrowni, - ograniczenie moŝliwości przekształcenia się zwarć przemijających w zwarcia trwałe, powodujące uszkodzenie mechaniczne elementów linii. 2. Automatyka SPZ w sieci z bezpośrednio uziemionym punktem neutralnym Rozwiązanie automatyki SPZ zaleŝy w istotny sposób od waŝności linii elektroenergetycznej, dla której ta automatyka jest przeznaczona, oraz od właściwości wyłączników. W sieciach z bezpośrednio uziemionym punktem neutralnym, co w warunkach krajowego systemu elektroenergetycznego dotyczy linii o napięciu 110 kv i wyŝszym, stosuje się automatykę SPZ o działaniu szybkim, jednokrotnym. W krajowych sieciach 110 kv podstawowym rozwiązaniem jest SPZ trójfazowe, natomiast w liniach przesyłowych 220 kv i 400 kv stosuje się układy jedno- i trójfazowego SPZ z moŝliwością wyboru według wariantów: - SPZ jedno- i trójfazowe, - SPZ tylko jednofazowe, - SPZ tylko trójfazowe. Regułą jest rozwiązanie polegające na wyposaŝeniu automatyki SPZ linii 220 kv i 400 kv w układ kontroli napięcia na jednym końcu danej linii (zwykle od strony elektrowni). Kontrolowana jest obecność napięcia we wszystkich trzech fazach za pomocą przekaźników napięciowych, przy czym napięcie rozruchowe dobiera się o wartości nie mniejszej niŝ 70% napięcia znamionowego. Czasami jest kontrolowany kąt między wektorami napięć po obydwu stronach wyłącznika. Układ automatyki jednofazowego SPZ są wyposaŝone w blokadę w razie obniŝenia się ciśnienia spręŝonego powietrza lub niezazbrojenia się napędu wyłącznika. Nastawienia członów automatyki SPZ są najczęściej następujące: - czas przerwy bezprądowej SPZ jednofazowego: 1,2 s (220kV) i 1,8 s (400kV), - czas przerwy bezprądowej SPZ trójfazowego: od 0,5 s (110 kv) do 1,0 s (400 kv), - ograniczenie czasowe automatyki SPZ: 6s, - kąt między wektorami napięć (kontrola synchronizmu): 40. Jak wcześniej opisano, podstawowym zabezpieczeniem od zwarć wielkoprądowych w sieciach z bezpośrednio uziemionym punktem neutralnym jest zabezpieczenie odległościowe. Sposób współpracy tych zabezpieczeń z automatyką SPZ zaleŝy od tego, czy zabezpieczenia są połączone ze sobą za pomocą łączy telekomunikacyjnych, czy teŝ nie.

Zasada współpracy zabezpieczenia odległościowego bezłączowego z automatyką SPZ polega na zmianie zasięgu pierwszej strefy przekaźnika. Spotykane są dwa sposoby zmian: - ze skróceniem pierwszej strefy wydłuŝonej, - z wydłuŝeniem pierwszej strefy normalnej. Rys. 1 Zasada współpracy zabezpieczenia odległościowego w linii promieniowej z automatyka SPZ: a) układ pierwotny, b) zasada skracania zasięgu, c) zasada wydłuŝania zasięgu. [1] Na rysunku wyjaśniono zasadę funkcjonowania obydwu sposobów w linii promieniowej L AB. W wariancie pierwszym (rys 1a) pierwsza strefa zabezpieczenia odległościowego RZ1 jest nastawiona stale na wartość impedancji Z Iw = 1,15 Z AB ( w innych krajach od 1,15 do 1,3). Gdy zwarcie wystąpi w pobliŝu stacji B, zabezpieczenie wyłączy linię z czasem podstawowym t I, zamiast jak to powinno z czasem drugiej strefy t II. Podczas przerwy beznapięciowej następuje automatyczne skrócenie (linia przerywana) strefy do 85% długości linii AB. Gdyby się okazało, Ŝe zwarcie w punkcie F ma charakter trwały, to po ponownym załączeniu linii na zwarcie zabezpieczenie RZ1 wyłączy definitywnie linię po czasie t II. Po cyklu W-Z i odmierzeniu czasu blokady SPZ następuje samoczynny powrót do nastawienia przekaźnika na Z Iw = 1,15 Z AB. Warunkiem stosowania drugiego wariantu (rys1b) jest współpraca zabezpieczeń RZ1 i RZ2 za pomocą łączy. Przekaźnik RZ1 ma swoją pierwszą strefę nastawioną normalnie na 85% długości linii (linia ciągła). W chwili wystąpienia zwarcia w punkcie F zabezpieczenie RZ2 przesyła impuls do RZ1, który powoduje wydłuŝenie strefy do 115% długości linii AB. Podczas przerwy beznapięciowej SPZ następuje samoczynny powrót do podstawowej charakterystyki czasowo-impedancyjnej. W praktyce tylko zabezpieczenie podstawowe współpracujące z automatyką SPZ, nie zaś zabezpieczenie rezerwowe. Dotyczy to przede wszystkim linii 110 kv, w której zabezpieczenie odległościowe ma wyraźny charakter zabezpieczenia podstawowego, natomiast zabezpieczenie kierunkowe zeroprądowe jest zabezpieczeniem rezerwowym.

W liniach przesyłowych NN często stosuje się dwa równorzędne zabezpieczenia podstawowe, np. dwa odległościowe lub jedno odległościowe oraz trójsystemowe zabezpieczenie porównawczoprądowe bądź porównawczofazowe. W tym przypadku automatyka SPZ jest przystosowana do współpracy z obydwoma zabezpieczeniami. Ogólną zasadę tej współpracy z dwoma układami automatyki SPZ przedstawiono w sposób bardzo uproszczony na rys. 2 Rys 2. Zasad współpracy dwóch zabezpieczeń podstawowych z dwoma układami automatyki SPZ. [1] ZAB1, ZAB2 - zabezpieczenia; SPZ1, SPZ2 układy automatyki samoczynnego ponownego załączania ; OW- impuls otwarcia wyłącznika W; ZW impuls na zamknięcie wyłącznika S1, S2 - sygnały wymiany informacji między SPZ1 i SPZ2 S3 sygnał informujący o stanie połoŝenia wyłącznika W; S M - sygnały pomiarowe zabezpieczeń. Koordynacja współpracy jest zapewniona dzięki wymianie informacji pomiędzy SPZ1 i SPZ2 za pomocą sygnałów S1 i S2 oraz uzyskane informacji S3 o stanie połoŝenia wyłącznika. Koordynacja ta polega na następującej zasadzie: - gdy jeden z układów automatyki SPZ zainicjował cykl trójfazowego SPZ drugi układ SPZ zostanie natychmiast zablokowany, - jeśli jeden z układów przeprowadził udany cykl SPZ i został rozpoczęty okres blokowania, to równieŝ w drugim układzie następuje zablokowanie. Dzięki takiemu współdziałaniu unika się kolizji między poszczególnymi układami automatyki SPZ, która mogłaby doprowadzić do niepoŝądanego dwukrotnego działania tej automatyki.

3. Okno główne. Rys. Okno główne automatyki SPZ w programie InTouch. Automatyka samoczynnego ponownego załączenia (SPZ) w moim wykonaniu dotyczy systemu przesyłowego między Polską a Republiką Czech za pomocą linii przesyłowych najwyŝszych napięć NN (400kV). Oba systemy pracują w celu zapewnienia zasilania odbiorcom komunalnym. Po stronie systemu polskiego jak i czeskiego znajduje się wyłącznik systemowy, kontrola obecności napięcia na linii przesyłowej oraz przekładnik prądowy jak i napięciowy. Te wszystkie urządzenia elektryczne mają na celu poprawną, bezproblemową pracę obu systemów. Na dole okna mamy moŝliwość przemieszczania miejsca zwarcia, jak występuje w systemie. JeŜeli w jednym z systemów występuje zwarcie, drugi system ma zapewnić prawidłową pracę urządzeń po stronie odbiorczej. Układ moŝe pracować w wariantach: pracy obu systemów, bądź jednego z nich. Wymaganiem jest jednak dostarczenie dostatecznej ilości potrzebnej energii elektrycznej. Za pomocą przycisków na dole panelu mamy moŝliwość przemieszczania się po innych oknach programu sterującego.

4. Okno Histrogram. W oknie Histrogram mamy moŝliwość zamodelowanego napięcia po stronie czeskiej jak i polskiej oraz jak wygląda przebieg u odbiorców. Napięcia są modelowane poprzez wykreślenie funkcji sinus o przebiegu: np. x=sin(j);. Zwiększając odpowiednio zmienną j przebieg oscyluje, jak funkcja sinus między wartościami 1 i 1. W czasie gdy występuje zwarcie przebieg ten wzrasta trzykrotnie, w celu rozróŝnienia przebiegu bez zakłóceniowego od zwarciowego. Ten ostatni jest wykreślany za pomocą przebiegu: np. x=3*sin(j);. Poprzez wprowadzenie odpowiednich warunków z skrypcie, wykres jest modelowany wedle Ŝyczenia i poprzez moŝliwość nastaw, czas jego trwania. W oknie Histrogram moŝemy zobaczyć przebieg o odpowiednich przebiegu.

Na rysunku widać przykładowy skrypt wykreślania napięcia dla polskiego systemu, w warunkach gdy nie występuje zwarcie oraz brak automatyki SPZ oraz automatyka. Warunkiem jest jednak załączenie wyłącznika systemowego oraz załączenie napięcia. 5. Okno Panel sterowań oraz Panel odbiorczy/automatyka. W oknie panelu sterowań mamy moŝliwość załączenie lub wyłączenie odpowiednio: wyłączników systemowych, zasilania, momentu zwarcia i momentu automatyki SPZ. Okno panelu jest podzielone na połowę, w jednej części sterujemy systemem polskim, w drugiej zaś czeskim. Poprzez nastawianie odpowiednio pierwszej jak i drugiej strefy SPZ, układ modeluje napięcie według istniejących warunków i wykreśla odpowiednie krzywe na ekranie programu. Poprzez załączenie lub wyłączenie napięcia na wykresach w oknie Histrogram zauwaŝymy pojawienie się napięcia lub jego zanik. Natomiast w oknie Panel odbiorczy/automatyka mamy moŝliwość załączania i wyłączania wyłącznika na linii odbiorczej oraz moŝliwość załączania i wyłączania momentu wystąpienia na tej linii zwarcia. W drugiej części tego okna sterujemy automatycznym wykonywaniem automatyki SPZ. Sterowanie to uwzględnia tylko nastawienia odpowiednich czasów działania odpowiednich członów tej automatyki, tzn. czas do wystąpienia zwarcia, czas pierwszej strefy PSZ, regulacja czasu nieudanej próby SPZ oraz regulacja czasu udanej próby SPZ.

6. Okno Alarmy. W oknie Alarmy, program wypisuje wszystkie waŝne komunikaty, takie jak m.in. załączanie lub wyłączenie napięcia, zwarcia na linii. Program wypisuje dzień, datę komunikatu oraz odnośni się do jakiego urządzenia dotyczył ten wpis.

7. Pomiary. W oknie pomiary mamy moŝliwość zobaczenia czy wyłącznik jest załączony i występuje na nim napięcie, czy przekładnik prądowy wskazuje popranie wartość prądu przepływającą przez jego uzwojenia, oraz kontrolę obecności napięcia na linii czy to przesyłowej czy to odbiorczej. Zielona lampka wskazuje obecność napięcia na linii natomiast czerwona jego brak. 8. Bibliografia. 1 Winkler W., Wisznieski A., Automatyka zabezpieczeniowa w systemach elektroenergetycznych, WNT, Warszawa 1999 2 śydanowicz J., Namiotkiewicz M. Automatyka zabezpieczeniowa w elektroenergetyce, WNT, Warszawa 1983