MR DAMPER INVERSE MODELING DEPENDENT ON OPERATING CONDITIONS

Podobne dokumenty
DYNAMIC STIFFNESS COMPENSATION IN VIBRATION CONTROL SYSTEMS WITH MR DAMPERS

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

DM-ML, DM-FL. Auxiliary Equipment and Accessories. Damper Drives. Dimensions. Descritpion

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

XXIII Konferencja Naukowa POJAZDY SZYNOWE 2018

Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and

PROCEEDINGS OF THE INSTITUTE OF VEHICLES 2(106)/2016 (12 pt)

INSPECTION METHODS FOR QUALITY CONTROL OF FIBRE METAL LAMINATES IN AEROSPACE COMPONENTS

DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

Latent Dirichlet Allocation Models and their Evaluation IT for Practice 2016

Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2

Akademia Morska w Szczecinie. Wydział Mechaniczny

Streszczenie rozprawy doktorskiej

STEROWANIE STRUKTUR DYNAMICZNYCH Model fizyczny semiaktywnego zawieszenia z tłumikami magnetoreologicznymi

Knovel Math: Jakość produktu

Convolution semigroups with linear Jacobi parameters

Towards Stability Analysis of Data Transport Mechanisms: a Fluid Model and an Application

Medical electronics part 10 Physiological transducers

CHARAKTERYSTYKI TŁUMIKA MAGNETOREOLOGICZNEGO RD ZASILANEGO Z GENERATORA ELEKTROMAGNETYCZNEGO

PORÓWNANIE DYNAMICZNYCH ODPOWIEDZI SEMIAKTYWNYCH TŁUMIKÓW OPISANYCH MODELAMI BOUC-WENA I SPENCERA

ROZPRAWY NR 128. Stanis³aw Mroziñski

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction


PRACA DYPLOMOWA Magisterska

SIMULATION STUDIES OF VANE PUMP CHARACTERISTICS WITH A FUZZY CONTROLLER BADANIA SYMULACYJNE CHARAKTERYSTYK POMPY ŁOPATKOWEJ Z REGULATOREM FLC

Hard-Margin Support Vector Machines

Selection of controller parameters Strojenie regulatorów

Sargent Opens Sonairte Farmers' Market

The Lorenz System and Chaos in Nonlinear DEs

SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like

Zwyczajne równania różniczkowe (ZRR) Metody Runge go-ku/y

BADANIA I MODELOWANIE DRGAŃ UKŁADU WYPOSAŻONEGO W STEROWANY TŁUMIK MAGNETOREOLOGICZNY

DETECTION OF MATERIAL INTEGRATED CONDUCTORS FOR CONNECTIVE RIVETING OF FUNCTION-INTEGRATIVE TEXTILE-REINFORCED THERMOPLASTIC COMPOSITES

QUANTITATIVE AND QUALITATIVE CHARACTERISTICS OF FINGERPRINT BIOMETRIC TEMPLATES

Few-fermion thermometry


SG-MICRO... SPRĘŻYNY GAZOWE P.103

Network Services for Spatial Data in European Geo-Portals and their Compliance with ISO and OGC Standards

TECHNICZNEGO AMORTYZATORÓW NA STANOWISKU EUSAMA

MODELOWANIE I IDENTYFIKACJA PARAMETRÓW STEROWANYCH TŁUMIKÓW MAGNETOREOLOGICZNYCH

P R A C A D Y P L O M O W A

THEORETICAL STUDIES ON CHEMICAL SHIFTS OF 3,6 DIIODO 9 ETHYL 9H CARBAZOLE

Badania laboratoryjne modelu semiaktywnego zawieszenia z odzyskiem energii

Odpowietrznik / Vent Charakterystyka pracy / Performance characteristic: Wykres ciœnienia wyjœciowego p2 w funkcji ciœnienia steruj¹cego p4 Diagram -

Auditorium classes. Lectures

General Certificate of Education Ordinary Level ADDITIONAL MATHEMATICS 4037/12

Formularz recenzji magazynu. Journal of Corporate Responsibility and Leadership Review Form

POLITECHNIKA WARSZAWSKA. Wydział Zarządzania ROZPRAWA DOKTORSKA. mgr Marcin Chrząścik

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

Discretization of continuous signals (M 19) Dyskretyzacja sygnałów ciągłych

Tadeusz SZKODNY. POLITECHNIKA ŚLĄSKA ZESZYTY NAUKOWE Nr 1647 MODELOWANIE I SYMULACJA RUCHU MANIPULATORÓW ROBOTÓW PRZEMYSŁOWYCH

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 8: Structured PredicCon 2

Zarządzanie sieciami telekomunikacyjnymi

Inverse problems - Introduction - Probabilistic approach

Forested areas in Cracow ( ) evaluation of changes based on satellite images 1 / 31 O

BLACKLIGHT SPOT 400W F

Urbanek J., Jabłoński A., Barszcz T ssswedfsdfurbanek J., Jabłoński A., Barszcz T., Wykonanie pomiarów

MULTI CRITERIA EVALUATION OF WIRELESS LOCAL AREA NETWORK DESIGNS

SYNTEZA SCENARIUSZY EKSPLOATACJI I STEROWANIA

Instrukcja obsługi User s manual

Cracow University of Economics Poland. Overview. Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions

Domy inaczej pomyślane A different type of housing CEZARY SANKOWSKI

WYZNACZENIE CHARAKTERYSTYKI TŁUMIENIA KOLUMNY HYDROPNEUMATYCZNEJ CITROENA C5 DETERMINING OF DAMPING CHARACTERISTIC OF CITROEN C5 HYDROPNEUMATIC STRUT

SILNIK RELUKTANCYJNY PRZEŁĄCZALNY PRZEZNACZONY DO NAPĘDU MAŁEGO MOBILNEGO POJAZDU ELEKTRYCZNEGO

Linear Classification and Logistic Regression. Pascal Fua IC-CVLab

PROCEEDINGS OF THE INSTITUTE OF VEHICLES 2(106)/2016 (12 pt)


Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

photo graphic Jan Witkowski Project for exhibition compositions typography colors : : janwi@janwi.com

SYMULACJA I PROJEKT UKŁADU KONDYCJONOWANIA SYGNAŁU GENERATORA ELEKTROMAGNETYCZNEGO DO ZASILANIA TŁUMIKA MAGNETOREOLOGICZNEGO

ROZPRAWA DOKTORSKA. Model obliczeniowy ogrzewań mikroprzewodowych

Updated Action Plan received from the competent authority on 4 May 2017

OPTYMALIZACJA PUBLICZNEGO TRANSPORTU ZBIOROWEGO W GMINIE ŚRODA WIELKOPOLSKA

DOI: / /32/37

MODELOWANIE DYSKRETNYCH UKŁADÓW MECHATRONICZNYCH ZE WZGLĘDU NA FUNKCJĘ TŁUMIENIA

Institutional Determinants of IncomeLevel Convergence in the European. Union: Are Institutions Responsible for Divergence Tendencies of Some

Installation of EuroCert software for qualified electronic signature

Typ VFR. Circular flow adjustment dampers for the adjustment of volume flow rates and pressures in supply air and extract air systems

The impact of the global gravity field models on the orbit determination of LAGEOS satellites

Przewody elektroenergetyczne z izolacją XLPE

Laboratorium 7 Układ pomiarowo-sterujący czasu rzeczywistego zbudowany w oparciu o komputer PC i środowisko MATLAB/Simulink

Label-Noise Robust Generative Adversarial Networks

The Overview of Civilian Applications of Airborne SAR Systems

BARIERA ANTYKONDENSACYJNA

IDENTYFIKACJA STEROWANEGO UKŁADU KONDYCJONOWANIA SYGNAŁU GENERATORA ELEKTROMAGNETYCZNEGO

Helena Boguta, klasa 8W, rok szkolny 2018/2019

deep learning for NLP (5 lectures)

Tychy, plan miasta: Skala 1: (Polish Edition)

Typ VFR. Circular flow adjustment dampers for the adjustment of volume flow rates and pressures in supply air and extract air systems

STEROWANIA RUCHEM KOLEJOWYM Z WYKORZYSTANIEM METOD SYMULACYJNYCH

TECHNICAL CATALOGUE WHITEHEART MALLEABLE CAST IRON FITTINGS EE


Krytyczne czynniki sukcesu w zarządzaniu projektami

Wpływ tłumienia wewnętrznego elementów kompozytowych na charakterystyki amplitudowo-częstotliwościowe modelu zawieszenia samochodu

POLITYKA PRYWATNOŚCI / PRIVACY POLICY

Realizacja systemów wbudowanych (embeded systems) w strukturach PSoC (Programmable System on Chip)

RESONANCE OF TORSIONAL VIBRATION OF SHAFTS COUPLED BY MECHANISMS

ABOUT NEW EASTERN EUROPE BESTmQUARTERLYmJOURNAL

Warsztaty Ocena wiarygodności badania z randomizacją

Transkrypt:

MECHANICS AND CONTROL Vol. 3 No. 3 http://dx.doi.org/.7494/mech.3.3..8 M W * MR DAMPER INVERSE MODELING DEPENDENT ON OPERATING CONDITIONS SUMMARY For semi-active control of vehicle suspension magnetoreological (MR) dampers are usually used. Construction of such dampers suggests that their properties should be dependent on fl uid temperature, current of the coil and the relative velocity of the rod, which all change during operation. Then, an inverse model used to work out the current based on the required damping force may not be adequate, and performance of the overall semi-active control system can be signifi cantly degraded. MR damper reaches its operating temperature in a short period of time, and thus it should be modelled, and the obtained inverse model should refl ect such state. However, it has been observed that the hysteric behaviour of the MR damper signifi cantly differs depending on the current. The paper presents results of such analysis and recommends using a set of simple models appropriate for different ranges of this parameter. During control the models should be switched to guarantee the best operating conditions. Experiments for this research have been performed using MTS system. Keywords: MR damper, inverse model, gain scheduling MODELOWANIE TŁUMIKA MR Z UWZGLĘDNIENIEM WARUNKÓW PRACY W półaktywnym sterowaniu zawieszeniem pojazdu mogą być wykorzystane tłumiki magnetoreologiczne (MR). Z właściwości konstrukcji tłumika wynika, że na jego pracę może wpływać względna prędkość tłoczyska, natężenie prądu na cewce tłumika oraz temperatura cieczy MR. Każde z tych parametrów może ulegać zmianie w trakcie działania tłumika. Tłumik MR osiąga stałą temperaturę pracy w krótkim okresie czasu i dla takiej temperatury powinien być modelowany. Jednak zaobserwowano, że dla różnych wartości natężenia prądu na cewce tłumika charakterystyka tłumika zmienia się. W pracy przedstawiono wyniki opracowania kilku prostych modeli odwrotnych dla różnych zakresów natężenia prądu. W trakcie sterowania występuje przełączanie między poszczególnymi modelami odwrotnymi w zależności od warunków pracy. Dane eksperymentalne zebrano wykorzystując do badań tłumika maszynę wytrzymałościową. Słowa kluczowe: tłumik magnetoreologiczny, modelowanie odwrotne, harmonogramowanie wzmocnienia. INTRODUCTION For semi-active control of vehicle suspension magnetorheological (MR) dampers are usually used (Wang et al., Kamalakkannan et al., Krauze, Wolnica et al. 3, Kurczyk et al. 3). Construction of such dampers suggests that their properties should depend on the current of the coil, the relative velocity of the rod and temperature of the fluid, which all change during operation. Then, an inverse model used to work out the current based on the required damping force may not be adequate, and performance of the overall semi-active control system can be significantly degraded. MR damper reaches its operating temperature in a short period of time, and thus it should be modelled, and the obtained inverse model should reflect such state. However, it has been observed that the hysteric behaviour of the MR damper significantly differs depending on the current. The paper presents results of such analysis and recommends using a set of simple models appropriate for different ranges of this parameter (Fialho et al. ). During control the models should be switched to guarantee the best operating conditions. Experiments for this research have been performed using a material testing system (MTS).. MR DAMPER MODELLING AND INVERSE MODELLING In this paper, in order to capture the damper behaviour, a cascade of nonlinear hypertangent models is used (Bouc 967, Guo et al. 6, Sapiński 9). Construction of an MR damper is shown in figure. Fig.. The construction of MR damper: rod, coil power cables, 3 coil, 4 ring, 5 annular gap, 6 piston, 7 MR fluid, 8 cylinder, 9 membrane, accumulator In experiments the MR damper produced by LORD company (RD-84-) was used. Its properties are shown in the table. * Division of Mechatronic Systems, Institute of Mining Technology KOMAG, Gliwice, Poland; mwolnica@komag.eu 8

MECHANICS AND CONTROL Vol. 3 No. 3 Table Properties of the RD-84- MR damper Parameter Value Stroke [mm] 55 Extended length [mm] 8 Tensile strength [N] 8896 Max. damper forces [N] ~5 Operating temperature [ºC] 7 Input current [A] Input voltage [V] Resistance [Ω] Continuous: Intermittent: DC Ambient temp.: 5 Max. operating temperature: 7 Experimental data were collected using material testing system MTS 858 Table Top System. During experiments the current was changed from [A] to [A] with the step of. [A]. The frequency and amplitude of the excitation were constant and set to [Hz] and 5 [mm], respectively. The force of the MR damper can be obtained as follows: Ft = Fctgh( α(( x + () + c(( x ) + p( x z)) where F c and c are dependent on the current i by first-degree polynomials. Terms ( x ) and ( x z) are the relative displacement and the relative velocity of the rod, respectively. Parameters α, p, p are constant, and they express properties of MR damper hysteric behaviours. To ensure that the model is invertible, first-degree polynomials can be used for F c and c. Parameters do not have any physical meaning: Fc = f i + f c = f i + f 3 4. () Then, the inverse MR damper model takes the form: Ft ftgh( α(( x i = f4(( x ) + p( x z)) ftgh( α(( x + + f (( x ) + p ( x z)). (3) 3 3. INFLUENCE OF OPERATING CONDITIONS A cascade of simple inverse models (see fig. ) is proposed in this paper to be used instead of complicated models used in the literature. F t... n- n Decision block Fig.. A cascade of inverse MR damper models, further referred to as inverse models In the cascade, each inverse model is tuned for a narrow range of the current. Parameter F c has the greatest influence on the final value of F t. Its dependence on the coils current is shown in figure 3. Parameter c depends on the current too, but its influence on the final value is small. Its dependence on the coils current is shown in figure 4. The range of change is split to minimize the difference between experimental data values and model values. The MR model is tuned for the current i in the range. [A], the MR model is tuned for the current in the range..5 [A], etc. i 6 4 Linear interpolant F_c F c [N] 8 6 4 MR MR MR 3 MR 4 MR 5...3.4.5.6.7.8.9 i [A] Fig. 3. The F c parameter dependence on current i 83

M. W MR DAMPER INVERSE MODELING DEPENDENT ON OPERATING CONDITIONS 8 75 7 c [Ns/m] 65 6 55 5 45 - - - - MR - MR 4 - MR 5 - MR - MR 3-4,,4,6,8 i [A] Fig. 4. The c parameter dependence on current i An inference is proposed to decide, which model should be used for the actual input current i. To reflect operating conditions well, the modelling should be performed for data acquired after the MR damper reaches its operating temperature. Two complex inverse models, developed for the whole range of operating conditions are presented below for comparison. First inverse model, M, is described using (), where parameters F c and c are second-degree polynomials dependent on the current. Parameters do not have any physical meaning: Fc = fi + fi + f3 = 57i + 3356i + 9 (4) c = f4i + f5i + f6 = 95 i + 9i + 45 M is can be described as follows: f x z p x z f x z p x z i = ( ( (( ) + ( ))) + ( ) + ( ) tgh β 5 ) + Δ, (5) ( ftgh ( β( ( x ) + p( x z) )) + f4( x ) + p ( x z) ) where: Δ= { ftgh ( β( ( x z ) + p ( x z) )) + f5 ( x ) + p ( x z) } 4{ ftgh ( β( ( x ) + p( x z) )) + f4( x ) + p( x z) } { f tgh β x ) + p x z f x z p x z F} 3 ( (( ( ))) + 6( ) + ( ) The second inverse model, M, is described using (), where parameters F c and c depend on the square root and linear polynomial (Plaza 8), respectively. Parameters do not have any physical meaning: Fc = f i + f = 586 i + 79. (6) c = f i + f = 7i + 54 3 4 M takes the form: f x z p x z i = 3 ( ) + ( ) + Δ, (7) f ( (( x z) + p ( x z) )) tgh β where: ( ) + ( ) Δ= f3 x z p x z 4 ftgh ( β( ( x ) + p ( x z) )) { f tgh β x p x z f x z p x z F t ( (( ) + ( ))) + ( ) + ( ) 4. EXPERIMENTS 4 } Simulation experiments have been carried out to verify performance of the control system operating with the cascade of simple models, and results have been compared to those obtained with sophisticated models M and M. Performance indices have been defined as follows (Sapiński et al. 3): T ( e m) e = i i dt T dx e = ( ie im) dt dt (8) T ( e m) e = i i 3 dx dt dt, where i e and i m denote experimental values of the MR damper current, and the simulation value of MR damper model current, respectively. Criteria e, e, e 3 define the difference between i e and i m as functions of time, displacement and velocity, respectively. Obtained results confirm advantages of using a cascade of simple inverse models. Validation scheme is shown in figure 5. For validation, the current is changed from [A] to [A] with the step of. [A]. The frequency and amplitude of excitation are constant and set to [Hz] and 5 [mm], respectively. Performance indices are used to compare two inverse models developed for the whole range of operating conditions and the proposed cascade model. Numerical values are shown in figure 6 and collected in table. 84

MECHANICS AND CONTROL Vol. 3 No. 3 Fig. 5. Validation scheme of the inverse MR damper model.4. M M a) e.8.6.4....3.4.5.6.7.8.9.5. b).5 M M e..5...3.4.5.6.7.8.9.35 c).3.5 M M e3..5..5...3.4.5.6.7.8.9 Fig. 6. Time plots of performance indices: a) the difference between i e and i m as functions of time, b) the difference between i e and i m as functions of displacement, c) the difference between i e and i m as functions of velocity 85

M. W MR DAMPER INVERSE MODELING DEPENDENT ON OPERATING CONDITIONS Table Performance indices for all inverse models calculated during validation Model e e e 3 M.66.8.59 M.485.36.968.9.75.94 Sometimes MR damper does not reach desired force values, because of its dissipative properties. Similar phenomenon occurs for inverse MR damper models. 5. CONCLUSIONS In the paper, three inverse MR damper models have been compared. Models M and M are those developed for the whole range of operating conditions. In turn, model is proposed in this paper as a cascade of simple sub-models, each for a different range of the coils current. Three performance indices have been used to validate the proposed approach. It has been shown that it is possible to use a cascade of simple models instead of a complex inverse model. The performance of the cascade model is better than that of complex models. The difference between experimental data and the cascade model data are relatively small for the whole range of operating conditions. The usage of a cascade of simple sub-models guarantees the ability to implement in practice. In case of more complex models its usage can cause additional phase shifting during system operation. The work reported in this paper has been partially fi nanced by the National Science Centre, decision no. DEC-/ /B/ST7/67. The author would like to thank Mr. T. Machoczek for his help in performing experiments on the material testing system. References Bouc R. 967, Forced vibration of mechanical systems with hysteresis. Proceedings of the Fourth Conference on Nonlinear Oscillations, Prague. Fialho I.J., Balas G.J., Design of nonlinear controllers for active vehicle suspensions using parameter-varying control synthesis. Veh. Syst. Dyn., vol. 33(5), pp. 35 37. Guo S., Yang S., Pan C. 6, Dynamic modelling of magnetorheological damper behaviours. Journal of Intelligent Material Systems and Structures, vol. 7, no., pp. 3 4. Kamalakkannan K., Elayaperumal A., Managlaramam S., Simulation Aspects of a Full-Car ATV Model Semi Active Suspension. Engineering, vol. 4, pp. 384 389, DOI.436/eng..475. Kurczyk S., Pawełczyk M. 3, Fizzy control for semi-active vehicle suspension. Active Noise and Vibration Control Methods, Krakow Rytro. Krauze P., Skyhook Control of Front and Rear Magnetorheological Vehicle Suspension. XIII International PhD Workshop, OWD, pp. 38 385. Plaza K. 8, Modelling and Control for Semi-Active Vibration Damping. PhD dissertation, Silesian University of Technology. Sapiński B., Filuś J. 3, Analysis of parametric models of MR linear damper. Journal of Theoretical and Applied Mechanics, vol. 4, pp. 5 4. Sapiński B. 9, Real-Time Control of Magnetorheological Dampers in Mechanical Systems. AGH Press, Krakow. Wang D.H., Liao W.H., Magnetorheological Fluid Dampers: A Review of Parametric Modelling. Smart Materials and Structures, vol., pp. 34, DOI.88/964-76///3 Wolnica M., Pawełczyk M. 3, LQR semi-active suspension control for an all-terrain vehicle. Active Noise and Vibration Control Methods, Kraków Rytro, pp. 8 9. 86