Elektrotechnika I stopień ogólnoakademicki. niestacjonarne. przedmiot kierunkowy. obieralny polski semestr VIII semestr letni. nie. Laborat. 16 g.

Podobne dokumenty
Elektrotechnika I stopień ogólnoakademicki. niestacjonarne. przedmiot kierunkowy. obieralny polski semestr VII semestr zimowy. nie

Elektrotechnika II stopień ogólnoakademicki. stacjonarne. przedmiot specjalnościowy. obowiązkowy polski semestr I semestr zimowy

Teoria sterowania Control theory. Elektrotechnika I stopień ogólnoakademicki. niestacjonarne. przedmiot kierunkowy

E-2EZA-01-S1. Elektrotechnika II stopień ogólnoakademicki. niestacjonarne. przedmiot kierunkowy. obowiązkowy polski semestr I semestr zimowy.

Elektrotechnika I stopień ogólnoakademicki. niestacjonarne. przedmiot kierunkowy. obieralny polski. semestr letni. nie

Elektrotechnika II stopień ogólnoakademicki. stacjonarne. przedmiot specjalnościowy. obowiązkowy polski semestr II semestr letni. tak. Laborat. 30 g.

E2_PA Podstawy automatyki Bases of automatic. Elektrotechnika II stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Podstawy automatyki Bases of automatics. Elektrotechnika I stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny)

Podstawy automatyki Bases of automatic

Elektrotechnika II stopień ogólnoakademicki. niestacjonarne. przedmiot specjalnościowy. obowiązkowy polski. semestr letni. tak

System Labview The Labview System. Elektrotechnika II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Z-ZIP-120z Badania Operacyjne Operations Research. Stacjonarne Wszystkie Katedra Matematyki dr Monika Skóra

E-E2A-2019-s2 Budowa i oprogramowanie komputerowych Nazwa modułu

Elektrotechnika I stopień Ogólno akademicki. Przedmiot kierunkowy. Obowiązkowy Polski VI semestr zimowy

Urządzenia i systemy automatyki. Elektrotechnika I stopień ogólno akademicki. niestacjonarne. przedmiot kierunkowy

Napędy elektryczne robotyki Electric Drives in Robotics

Elektrotechnika II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) kierunkowy (podstawowy / kierunkowy / inny HES)

E-E-1004-s4. Elektrotechnika I stopień ogólnoakademicki. stacjonarne

Miernictwo dynamiczne Dynamic Measurement. Elektrotechnika I stopnia (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Elektrotechnika II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) kierunkowy (podstawowy / kierunkowy / inny HES)

Technologia i organizacja robót. Inżynieria Środowiska I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Podstawy niezawodności Bases of reliability. Elektrotechnika II stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

kierunkowy (podstawowy / kierunkowy / inny HES) nieobowiązkowy (obowiązkowy / nieobowiązkowy) polski drugi semestr letni (semestr zimowy / letni)

Inżynieria Bezpieczeństwa I stopień (I stopień / II stopień) ogólnoakademicki (ogólnoakademicki / praktyczny)

kierunkowy (podstawowy / kierunkowy / inny HES) obowiązkowy (obowiązkowy / nieobowiązkowy) język polski VII semestr zimowy (semestr zimowy / letni)

Z-LOG-120I Badania Operacyjne Operations Research

Metody Sztucznej Inteligencji Methods of Artificial Intelligence. Elektrotechnika II stopień ogólno akademicki. niestacjonarne. przedmiot kierunkowy

E-2EZ s3 Projektowanie instalacji budynków Nazwa modułu. inteligentnych

E-E-A-1008-s5 Komputerowa Symulacja Układów Nazwa modułu. Dynamicznych. Elektrotechnika I stopień Ogólno akademicki. Przedmiot kierunkowy

Informatyka II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) kierunkowy (podstawowy / kierunkowy / inny HES)

Podstawy normalizacji INŻYNIERIA ŚRODOWISKA. I stopień. Ogólno akademicki. Humanistyczny Obowiązkowy Polski Semestr 2.

Urządzenia i systemy automatyki. Elektrotechnika I stopień ogólno akademicki. stacjonarne. przedmiot kierunkowy

Zagadnienia optymalizacji Problems of optimization

Budowa amunicji i zapalników Construction of ammunition and detonators

Inżynieria Bezpieczeństwa I stopień ogólnoakademicki stacjonarne. wspólny obowiązkowy polski czwarty. semestr letni. nie

Niezawodność w energetyce Reliability in the power industry

Miernictwo dynamiczne Dynamic Measurement. Elektrotechnika I stopnia (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

E-2IZ s3. Podstawy przedsiębiorczości. Informatyka II stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Elektronika i Telekomunikacja I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

ID1F1 FIZYKA. INFORMATYKA I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

KARTA MODUŁU / KARTA PRZEDMIOTU

Z-ZIP2-303z Zagadnienia optymalizacji Problems of optimization

Inżynieria Środowiska II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Praktyka zawodowa. Automatyka i Robotyka I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

KARTA MODUŁU / KARTA PRZEDMIOTU

Informatyka I stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny) podstawowy (podstawowy / kierunkowy / inny HES)

Z-ZIPN Fizyka II. Zarządzanie i Inżynieria Produkcji I stopień Ogólnoakademicki

E-IZ1-02-s1 FIZYKA. INFORMATYKA I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

ELEKTROTECHNIKA I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

E-2EZ s4 Przedmiot Humanistyczny (Zarządzanie Nazwa modułu. jakością)

Elektroenergetyka Electric Power Industry. Elektrotechnika I stopień ogólnoakademicki. niestacjonarne

Transport I stopień Ogólnoakademicki. Studia stacjonarne. Kierunkowy. Obowiązkowy Polski Semestr V. Semestr Zimowy

Ekonomia menedżerska Managerial Economics

przedmiot kierunkowy obowiązkowy polski semestr II semestr zimowy Elektrownie konwencjonalne nie

Automatyka i Robotyka II stopień ogólno akademicki studia niestacjonarne. wszystkie Katedra Automatyki i Robotyki Dr inż.

E-E2A-2021-s2. Podstawy przedsiębiorczości. Elektrotechnika II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Elektrotechnika II stopień ogólnoakademicki. niestacjonarne. przedmiot kierunkowy. obowiązkowy polski semestr III semestr zimowy.

Z-0099z. Fizyka II. Zarządzanie i Inżynieria Produkcji I stopień Ogólnoakademicki. Stacjonarne Wszystkie Katedra Fizyki Prof. Dr hab.

Sterowniki programowalne w systemach sterowania urządzeń płynowych Programmable logic controller in control fluid systems

E-1EZ1-03-s2. Elektrotechnika I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Elektrotechnika I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

EiT_S_I_TF_AEwT Teoria filtrów Theory of Filters

Informatyka I stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny) niestacjonarne (stacjonarne / niestacjonarne)

E2_HES Przedmiot Humanistyczny (Zarządzanie Nazwa modułu. jakością)

Z-LOGN Ekonometria Econometrics. Przedmiot wspólny dla kierunku Obowiązkowy polski Semestr IV

Inżynieria Jakości. Wzornictwo przemysłowe I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Praktyka zawodowa. Geodezja i Kartografia I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Inżynieria Jakości Quality Engineering. Zarządzanie i Inżynieria Produkcji II stopień Ogólnoakademicki

Elektrotechnika I stopień (I stopień / II stopień) Ogólno akademicki (ogólno akademicki / praktyczny) Kierunkowy (podstawowy / kierunkowy / inny HES)

Sieci gazowe Gas networks. Inżynieria Środowiska II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

specjalnościowy obowiązkowy polski semestr pierwszy

Inżynieria Środowiska I stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny)

E-2IZ1-03-s3. Informatyka I stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny)

Z-ZIP-103z Podstawy automatyzacji Basics of automation

Etyka inżynierska Engineering Ethics

Informatyka I stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny) podstawowy (podstawowy / kierunkowy / inny HES)

przedmiot specjalnościowy przedmiot obowiązkowy polski szósty

Z-0085z Algebra Liniowa Linear Algebra. Stacjonarne wszystkie Katedra Matematyki Dr Beata Maciejewska. Podstawowy Obowiązkowy Polski Semestr pierwszy

E-ID2G-09-s2, E-ID2S-17-s2. Zarządzanie Projektami

A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW

Elektrotechnika II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Elektroenergetyka Electric Power Industry. Elektrotechnika I stopień ogólnoakademicki. stacjonarne

dr inż. Jan Staszak kierunkowy (podstawowy / kierunkowy / inny HES) obowiązkowy (obowiązkowy / nieobowiązkowy) język polski I

Analiza i wizualizacja danych Data analysis and visualization

Automatyka i Robotyka I stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny)

Specjalnościowy Obowiązkowy Polski Semestr szósty

Wzornictwo przemysłowe I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny) Stacjonarne (stacjonarne / niestacjonarne)

KARTA MODUŁU / KARTA PRZEDMIOTU

Informatyka I stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny) kierunkowy (podstawowy / kierunkowy / inny HES)

dr inż. Jan Staszak kierunkowy (podstawowy / kierunkowy / inny HES) obowiązkowy (obowiązkowy / nieobowiązkowy) język polski II

Inżynieria Środowiska II stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny)

Zarządzanie Projektami Project Management

Maszyny Elektryczne I Electrical Machines I. Elektrotechnika I stopień ogólnoakademicki. niestacjonarne. kierunkowy obowiązkowy polski Semestr IV

E-E2P-2043-s3. Elektrotechnika II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Transkrypt:

KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Wybrane zagadnienia teorii sterowania Selection problems of control theory A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW Kierunek studiów Poziom kształcenia Profil studiów Forma i tryb prowadzenia studiów Specjalność Jednostka prowadząca moduł Koordynator modułu Elektrotechnika I stopień ogólnoakademicki niestacjonarne automatyka Katedra Systemów Sterowania i Zarządzania Dr hab. inż. Stefański Tadeusz Zatwierdził: B. OGÓLNA CHARAKTERYSTYKA PRZEDMIOTU Przynależność do grupy/bloku przedmiotów Status modułu Język prowadzenia zajęć Usytuowanie modułu w planie studiów - semestr Usytuowanie realizacji przedmiotu w roku akademickim Wymagania wstępne Egzamin przedmiot kierunkowy obieralny polski semestr VIII semestr letni Podstawy automatyki; Teoria sterowania; Teoria sterowania i systemów 1, 2 nie Liczba punktów ECTS 4 Forma prowadzenia zajęć w semestrze wykład ćwiczenia laboratorium projekt inne Wykład 16 g. Laborat. 16 g.

C. EFEKTY KSZTAŁCENIA I METODY SPRAWDZANIA EFEKTÓW KSZTAŁCENIA Cel modułu Celem modułu jest zapoznanie studenta z podstawami teoretycznymi projektowania układów z wymuszeniami stochastycznymi oraz metodami optymalizacji dynamicznej. Powinien także posiadać ogólną wiedzę z zakresu sterowania adaptacyjnego, metod sztucznej inteligencji w automatyce, a także mikroprocesorowych technik. Symbol efektu W_05 Efekty kształcenia Forma prowadzenia zajęć (w/ć/l/p/inne) Ma wiedzę teoretyczną z zakresu podstawowych metod analizy układów dynamicznych. Ma wiedzę z zakresu analizy i projektowania liniowych układów regulacji. Ma wiedzę z zakresu analizy i projektowania nieliniowych układów regulacji. Ma wiedzę z zakresu podstaw i zastosowań w praktyce metod optymalizacji statycznej Ma wiedzę z zakresu podstaw procesów stochastycznych oraz analizy układów dynamicznych z wymuszeniami stochastycznymi Ma podstawową wiedzę z zakresu programowania oraz zastosowań w układach sterowania sterowników PLC, mikroprocesorowych systemów uruchomieniowych, matryc FPGA, robotów przemysłowych. Potrafi analizować zjawiska zachodzące w nieliniowych, optymalnych i z wymuszeniami stochastycz- nymi układach regulacji, opisywać je zależnościami matematycznymi, wyznaczać przebiegi czasowe podstawowych wielkości tych układów, dokonać stosownych obliczeń wartości parametrów regulatorów. Potrafi zastosować odpowiednie metody analityczne i symulacyjne do rozwiązania problemu sterowania obiektami dynamicznymi, analizować wyniki i wyciągać odpowiednie wnioski Potrafi ocenić przydatność proponowanych metod analizy i projektowania do rozwiązywania typowych zadań z zakresu regulacji podstawowych wielkości procesu dynamicznego Potrafi dokonać identyfikacji problemu i sformułować założenia projektowe dla typowego zadania sterowania obiektem Ma świadomość wpływu rozwiązań przemysłowych na środowisko i rozumie pozatechniczne aspekty i skutki tych działań. Ma świadomość szybkiego postępu wiedzy z zakresu metod i technik regulacji i konieczności ciągłego dokształcanie się odniesienie do efektów kierunkowych K_W17 K_U09 K_U09 K_U13 K_U16 K_K02 K_K01 odniesienie do efektów obszarowych T1A_W03 T1A_U09 T1A_U08 T1A_U15 T1A_U14 T1A_K02 T1A_K01 Potrafi myśleć i działać twórczo K_K05 T1A_K06

Treści kształcenia: 1. Treści kształcenia w zakresie wykładu Nr wykładu Treści kształcenia 1 Pojęcia podstawowe. 2 Podstawy teoretyczne procesów stochastycznych. Projektowanie układów regulacji z wymuszeniami stochastycznymi. Odniesienie do efektów kształcenia dla modułu 3 Sformułowanie problemu optymalizacji dynamicznej. Metody rachunku wariacyjnego. 4 Zasada maksimum Pontriagina. Programowanie dynamiczne Bellmana. 5 Podstawy sterowania adaptacyjnego. Teoria sieci neuronowych i ich zastosowanie w automatyce. Algorytmy genetyczne i ich zastosowania. 6 Sterowniki PLC w automatyce. Matryce FPGA budowa, zastosowanie 7 Systemy mikroprocesorowe w automatyce, system dspace 8 Zastosowania i programowanie robotów na przykładzie robota KAWASAKI 2. Treści kształcenia w zakresie zadań laboratoryjnych Nr zajęć lab. Treści kształcenia 1. Wprowadzenie. 2. Układ z wymuszeniami stochastycznymi 3. Sterowanie optymalne Odniesienie do efektów kształcenia dla modułu

4. Sterowanie adaptacyjne 5. Układ regulacji zastosowanie mikrokontrolera 6. Układ sterowania zastosowanie sterownika PLC 7. Układ regulacji zastosowanie systemu dspace i matrycy FPGA 8. Zaliczenie Metody sprawdzania efektów kształcenia Symbol efektu W_05 Metody sprawdzania efektów kształcenia (sposób sprawdzenia, w tym dla umiejętności odwołanie do konkretnych zadań projektowych, laboratoryjnych, itp.) Test 1 zaliczenie laboratorium Test 2 zaliczenie wykładu

D. NAKŁAD PRACY STUDENTA Rodzaj aktywności Bilans punktów ECTS obciążenie studenta 1 Udział w wykładach 16 g. 2 Udział w ćwiczeniach 3 Udział w laboratoriach 16 g. 4 Udział w konsultacjach (2-3 razy w semestrze) 3 g. 5 Udział w zajęciach projektowych 6 Konsultacje projektowe 7 Udział w egzaminie 8 9 Liczba godzin realizowanych przy bezpośrednim udziale nauczyciela akademickiego 10 Liczba punktów ECTS, którą student uzyskuje na zajęciach wymagających bezpośredniego udziału nauczyciela akademickiego (1 punkt ECTS=25-30 godzin obciążenia studenta) 35 (suma) 11 Samodzielne studiowanie tematyki wykładów 15 g. 12 Samodzielne przygotowanie się do ćwiczeń 13 Samodzielne przygotowanie się do kolokwiów 14 Samodzielne przygotowanie się do laboratoriów 15 g. 15 Wykonanie sprawozdań 15 g. 15 Przygotowanie do kolokwium końcowego z laboratorium 17 Wykonanie projektu lub dokumentacji 18 Przygotowanie do egzaminu 20 g. 19 20 Liczba godzin samodzielnej pracy studenta 65 (suma) 21 Liczba punktów ECTS, którą student uzyskuje w ramach samodzielnej pracy (1 punkt ECTS=25-30 godzin obciążenia studenta) 22 Sumaryczne obciążenie pracą studenta 100 g. 23 Punkty ECTS za moduł 4 1 punkt ECTS=25-30 godzin obciążenia studenta 24 Nakład pracy związany z zajęciami o charakterze praktycznym Suma godzin związanych z zajęciami praktycznymi 25 Liczba punktów ECTS, którą student uzyskuje w ramach zajęć o charakterze praktycznym 1 punkt ECTS=25-30 godzin obciążenia studenta E. LITERATURA Wykaz literatury Witryna WWW modułu/przedmiotu 1,4 1,4 1,84 1. Stefański T.: Teoria sterowania, t. II. Skrypt PŚk nr 365. Kielce 2002. 2. Stefański T.: Teoria sterowania, t. I, układy liniowe. Skrypt PŚk nr 367. Kielce 2002. 3. Kaczorek T.: Teoria układów regulacji automatycznej. Warszawa, WNT 1977. 4. Takahashi Y., Rabins M., Auslander D.: Sterowanie i systemy dynamiczne. Warszawa, WNT 1976.