TANK-CAGE METHOD OF REARING COREGONID (Coregonidae) FISH. II. EUTROPHIC LAKE. Department of Fisheries, Warmia and Masuria University in Olsztyn

Podobne dokumenty
Knovel Math: Jakość produktu

Has the heat wave frequency or intensity changed in Poland since 1950?


Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019

POLISH JOURNAL OF NATURAL SCIENCES. Abbrev.: Pol. J. Natur. Sc., Vol 23(4): , Y. 2008

Fizyka Procesów Klimatycznych Wykład 11 Aktualne zmiany klimatu: atmosfera, hydrosfera, kriosfera

SPITSBERGEN HORNSUND

SPITSBERGEN HORNSUND

SPITSBERGEN HORNSUND

Akademia Morska w Szczecinie. Wydział Mechaniczny


Patients price acceptance SELECTED FINDINGS

Helena Boguta, klasa 8W, rok szkolny 2018/2019

Charakterystyka kliniczna chorych na raka jelita grubego

QUANTITATIVE AND QUALITATIVE CHARACTERISTICS OF FINGERPRINT BIOMETRIC TEMPLATES

Agata i Rados aw Kowalscy

INSTYTUT GENETYKI I HODOWLI ZWIERZĄT POLSKIEJ AKADEMII NAUK W JASTRZĘBCU. mgr inż. Ewa Metera-Zarzycka

Network Services for Spatial Data in European Geo-Portals and their Compliance with ISO and OGC Standards

GROWTH OF VENDACE LENGTH IN TWO LAKES IN THE VICINITY OF OLSZTYN (MASURIAN LAKE DISTRICT)

Cracow University of Economics Poland. Overview. Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions

SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like

MaPlan Sp. z O.O. Click here if your download doesn"t start automatically

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów


Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

SPITSBERGEN HORNSUND

PRELIMINARY STUDIES OF INTENSIVE WELS CATFISH (SILURUS GLANIS L.) AND STURGEON (ACIPENSER SP.) POND CULTIVATION

Cracow University of Economics Poland

SPITSBERGEN HORNSUND

EDYTA KATARZYNA GŁAŻEWSKA METALOPROTEINAZY ORAZ ICH TKANKOWE INHIBITORY W OSOCZU OSÓB CHORYCH NA ŁUSZCZYCĘ LECZONYCH METODĄ FOTOTERAPII UVB.

Acta Sci. Pol., Piscaria 4(1-2) 2005, 59-70

Zarządzanie sieciami telekomunikacyjnymi

THE INFLUENCE OF SELECTED FACTORS ON THE YIELD OF Allium moly L. BULBS. Jerzy Hetman, Halina Laskowska, Wojciech Durlak

Ocena wpływu nasilenia objawów zespołu nadpobudliwości psychoruchowej na masę ciała i BMI u dzieci i młodzieży

Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)

OCENA MOśLIWOŚCI WYKORZYSTANIA HODOWLI ŚWIŃ RASY ZŁOTNICKIEJ

SPITSBERGEN HORNSUND

ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS.

HemoRec in Poland. Summary of bleeding episodes of haemophilia patients with inhibitor recorded in the years 2008 and /2010

Przewody do linii napowietrznych Przewody z drutów okrągłych skręconych współosiowo

Hard-Margin Support Vector Machines

EGARA Adam Małyszko FORS. POLAND - KRAKÓW r

Is there a relationship between age and side dominance of tubal ectopic pregnancies? A preliminary report

Wybrzeze Baltyku, mapa turystyczna 1: (Polish Edition)

Country fact sheet. Noise in Europe overview of policy-related data. Poland

European Crime Prevention Award (ECPA) Annex I - new version 2014

MASS INITIAL REARING OF BURBOT LOTA LOTA (L.) LARVAE UNDER CONTROLLED CONDITIONS

Unit of Social Gerontology, Institute of Labour and Social Studies ageing and its consequences for society

Tychy, plan miasta: Skala 1: (Polish Edition)

Latent Dirichlet Allocation Models and their Evaluation IT for Practice 2016

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

INITIAL REARING OF VIMBA LARVAE (VIMBA VIMBA L.) UNDER CONTROLLED CONDITIONS ON NATURAL FOOD AND COMMERCIAL FODDER

XT001_ INTRODUCTION TO EXIT INTERVIEW PYTANIE NIE JEST ZADAWANE W POLSCE W 2006 ROKU. WCIŚNIJ Ctrl+R BY PRZEJŚĆ DALEJ. 1.

Materia³y i metody. Wstêp. Artyku³y naukowe Artyku³y naukowe Artyku³y naukowe Artyku³y naukowe. Maciej Mickiewicz

Few-fermion thermometry

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

Lek. Ewelina Anna Dziedzic. Wpływ niedoboru witaminy D3 na stopień zaawansowania miażdżycy tętnic wieńcowych.

Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

Ekonomiczne i społeczno-demograficzne czynniki zgonów osób w wieku produkcyjnym w Polsce w latach

Sargent Opens Sonairte Farmers' Market

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

Wykaz linii kolejowych, które są wyposażone w urządzenia systemu ETCS

Bartosz Kosmalski. Charakterystyka projektowanych jaj kurzych oraz ich technologiczne zastosowanie 1

The impact of the global gravity field models on the orbit determination of LAGEOS satellites

SPITSBERGEN HORNSUND

DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION

WENTYLATORY PROMIENIOWE SINGLE-INLET DRUM BĘBNOWE JEDNOSTRUMIENIOWE CENTRIFUGAL FAN

METODA OGÓLNEJ OCENY STANU ŚRODO- WISKA OBSZARÓW WIEJSKICH NA PODSTAWIE INFORMACJI Z BANKU DANYCH REGIONALNYCH GUS I OSZACOWAŃ PROGRAMU EMEP

Ocena potrzeb pacjentów z zaburzeniami psychicznymi

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2014/2015

Wykaz linii kolejowych, które są wyposażone w urzadzenia systemu ETCS

OpenPoland.net API Documentation

Wydział Fizyki, Astronomii i Informatyki Stosowanej Uniwersytet Mikołaja Kopernika w Toruniu



SPITSBERGEN HORNSUND

Jak zasada Pareto może pomóc Ci w nauce języków obcych?

OBWIESZCZENIE MINISTRA INFRASTRUKTURY. z dnia 18 kwietnia 2005 r.

Pomiary hydrometryczne w zlewni rzek

Equipment for ultrasound disintegration of sewage sludge disseminated within the Record Biomap project (Horizon 2020)

Streszczenie rozprawy doktorskiej

TEMPERATURE-INFLUENCED GROWTH AND SURVIVAL OF BURBOT LOTA LOTA (L.) LARVAE FED LIVE FOOD UNDER CONTROLLED CONDITIONS

ROZPRAWA DOKTORSKA. Mateusz Romanowski

SPITSBERGEN HORNSUND

SPITSBERGEN HORNSUND

Krytyczne czynniki sukcesu w zarządzaniu projektami

SPITSBERGEN HORNSUND

Employment. Number of employees employed on a contract of employment by gender in Company

Warsztaty Ocena wiarygodności badania z randomizacją

AGE AND GROWTH OF THE PERCH (Perca fluviatilis L.) IN THE SOLINA AND ROZNOW DAM RESERVOIRS

SPITSBERGEN HORNSUND

Uniwersytet Medyczny w Łodzi. Wydział Lekarski. Jarosław Woźniak. Rozprawa doktorska

Stargard Szczecinski i okolice (Polish Edition)

Test sprawdzający znajomość języka angielskiego

Rozprawa na stopień naukowy doktora nauk medycznych w zakresie medycyny

Financial results of Apator Capital Group in 1Q2014

Admission to the first and only in the swietokrzyskie province Bilingual High School and European high School for the school year 2019/2020

Cystatin C as potential marker of Acute Kidney Injury in patients after Abdominal Aortic Aneurysms Surgery preliminary study

Transkrypt:

Arch. Ryb. Pol. Archives of Polish Fisheries Vol. 7 Fasc. 1 103-112 1999 TANK-CAGE METHOD OF REARING COREGONID (Coregonidae) FISH. II. EUTROPHIC LAKE Jacek Koz³owski, Pawe³ Poczyczyñski, Dariusz Dostatni, Andrzej Mamcarz Department of Fisheries, Warmia and Masuria University in Olsztyn ABSTRACT. The aim of the studies was to determine the possibility of using a combined rearing system of tanks and illuminated cages for coregonid larvae in eutrophic lake. Studies were carried out in 1990. Tank rearing took place in Dgal Hatchery, cage rearing was performed in eutrophic Lake Leginskie. Increasing the egg incubation temperature, larvae hatching was accelerated about 3 weeks earlier. The larvae were reared on artificial feeds, at 16 ±1 C, for a period of 19 days. Then they were transferred to illuminated cages, in which they fed on the zooplankton only. The control group consisted of the larvae hatched in the usual period in cold hatcheries, and reared identically as the experimental fish. Cage rearing lasted for 63 days. Growth rate, mortality, LDS and fish biomass were determined throughout of the experiment. The larvae attained the weight of 41 mg at the end of tank rearing. Fry obtained at the end of the cage rearing weighed from 1732 to 2023 mg ( experimental fish) and from 475 to 648 mg (control fish). Stock mortalities amounted from 65 to 80 %. Experimental fish finished their larval development after 42 days, whereas a certain part of control group did not finished their larval development till the end of cage rearing. There were high values of fish biomass in cages in tank-and-cage rearing (from 2.39 to 3.24 kg/m 3 ). The results of the experiment have showed that tank-and-cage rearing of producing coregonid stocking material may be applicable in eutrophic lakes. Key words: COREGONID LARVAE, REARING, TANKS, CAGES INTRODUCTION According to Colby et al. (1972), changes in the aquatic ecosystems lead to a disappearance of economically valuable fish, in this of whitefish. Species characteristic of clean waters frequently give way to cyprinids (roach, bream, white bream, bleak), which often develop in excessive numbers, leading to the inhibition of their growth rate. This phenomenon is very unsatisfactory from the point of view of fisheries management, and according to Prejs et al. (1997) may result in deteriorating water quality. Sometimes the only method to maintain populations of lake whitefish is to release stocking material of possibly high body weight ( uczyñski 1987, Viljanen 1988, Mamcarz 1990). Production of heavy stocking material is possible, among others, also thanks to tank-cage rearing method (Champigneulle and Rojas-Beltran 1990, Mamcarz and Koz³owski 1991, Koz³owski et al. 1996). Effectiveness of this method of fry

104 J. KOZ OWSKI, P. POCZYCZYÑSKI et al. production depends, however, on trophic state of the lake used for cage fish rearing (Koz³owski 1993). MATERIAL AND METHODS Eyed whitefish eggs originated from the Fishery Enterprise in E³k (fish hatchery in Olecko). Hatching of the larvae was accelerated by about 3 weeks compared to typical fish hatcheries in Mazuria Lake District, this being achieved increasing the incubation temperature. Larvae were stocked into tanks on March 20, 1990. Two days later, when majority of the larvae have already resorbed yolk sacs, artificial feeding was initiated. This day (22 March) was taken as the beginning of tank rearing which lasted until April 9. Then the fish were transferred to lake cages, where they were reared until June 11. Tank rearing was carried out in the Hatchery Station Dga³ of the Inland Fisheries Institute in Olsztyn. Procedure at this stage of fish rearing was described in detail by Koz³owski et al. (1996). Fish in tanks were given artificial feeds (Poczyczyñski et al. 1990), while in lake cages they fed on the zooplankton. End of the cage rearing stage corresponded to larvae hatching in other hatcheries of the region. The control group consisted of the larvae which had hatched in the usual period and were stocked into lake cages with no pre-rearing. Cages were stocked at the same time with the experimental fish (group B) and the control ones (group W), each in two replications. All fish were counted at stocking as well as at the end of the experiment. Rearing of the newly hatched larvae (W) was performed in cages of 1.86 m 3. For group B, cages of 4.7 m 3 were used. These cages were also used for group W between the third and the sixth week of rearing (Mamcarz and Nowak 1987). Beginning from the seventh week, cages2x2x2.5mwere used, made of a net with mesh size 4 mm. Cages were illuminated with electric 60 W/24 V bulbs suspended 10 cm above the water surface. Number of dead fish was registered daily. Initial stock of the fish in cages was 17000 fish in the experimental group, and 16250 fish in the control. Initial mean body weight and length in the experimental and the control group: 40.8 and 5.0 mg, and 20.5 and 11.0 mm. Cage rearing was performed in Lake Legi skie (area 228.3 ha, epilimnion depth 9 m, maximal lake depth 37.2 m), which is classified as vendace type (Mamcarz 1982).

TANK-CAGE METHOD OF REARING COREGONID FISH. II. EUTROPHIC LAKE 105 Water temperature was measured daily at the depth of 0.1, 1.5 and 3.0 m. The mean value for these three measurements was treated as the average temperature of the epilimnion. To determine the growth rate, fish samples were collected every week. They consisted of 50 fish. The collected larvae were preserved in 4 % formalin solution, then measured (up to 0.1 mm) and weighed (up to 1 mg). Stage of larval development was also determined according to a 14-degree scale LDS ( uczyñski et al. 1988). The dependence between weight and length of the fish was determined according to the equation: W=aL b, where: W - mean individual weight (mg), L - mean individual length (l.t. mm), a and b - regression coefficients. The calculated functions were transformed to the logarithmic form: logw=alogl-b F Snedecor s statistics were used to verify the hypothesis on parallelity of the obtained regression lines and equality of the free coefficients of the equations, assuming the level of significance at 0.05. SGR (standard growth rates) were calculated for particular stages of fish rearing using the equation: SGR 100 where: lnw t lnw 2 1 W 1 - mean individual weight (mg) at the beginning of the analysed period, W 2 - mean individual weight (mg) at the end of the analysed period, t - period duration (days). Fish biomass in the cages was determined per 1 m 3 of water. Total fish weight was calculated multiplying the mean individual weight by the number of alive fish. RESULTS Mean weights and lengths of the fish during cage rearing are presented in Figs. 1 and 2. After 63 the mean weight of experimental fish was 2023.9 and 1732.5 mg in particular cages, and of the control fish: 648.0 and 475.0 mg. Average

106 J. KOZ OWSKI, P. POCZYCZYÑSKI et al. 2500 2000 body weight [mg] 1500 1000 500 0 1 7 14 21 28 35 42 49 56 63 Fig. 1. Increments of individual mean body weight of the larvae during cage rearing 70 body length [mm] 60 50 40 30 20 10 0 1 7 14 21 28 35 42 49 56 63 Fig. 2. Increments of individual mean body length (l.t.) of the larvae during cage rearing

TANK-CAGE METHOD OF REARING COREGONID FISH. II. EUTROPHIC LAKE 107 16 14 12 10 LDS 8 6 4 2 0 1 7 14 21 28 35 42 49 56 63 Fig. 3. Increase of the mean LDS of the larvae during cage rearing 80 60 mortality [%] 40 20 0 1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 63 Fig. 4. Mortality of the larvae and fry during cage rearing

108 J. KOZ OWSKI, P. POCZYCZYÑSKI et al. 4000 3500 3000 2500 biomass [g] 2000 1500 1000 500 0 1 7 14 21 28 35 42 49 56 63 Fig. 5. Increments of fish biomass during cage rearing body weight (mg) Fig. 6. Dependence between fish length and weight during cage rearing

TANK-CAGE METHOD OF REARING COREGONID FISH. II. EUTROPHIC LAKE 109 length of the first was 65.3 and 63.2 mm, and of the latter - 45.6 and 41.7 mm. SGR values in groups B and W amounted on the average to 6.20 and 5.95 %d -1, and 7.72 and 7.23 %d -1 respectively. Fish which had first been reared in the tanks completed their larval development reaching the fry stage (LDS=14) after 42 days, while part of the fish in group W did not attain this stage even after 63 (Fig. 3). The highest mortalities were observed during the first two weeks of rearing. Mortality in this period ranged from 90 to 500 fish.cage.d -1. Until 15th day of rearing, fish losses ranged from 8.3 to 27.0 % per cage, decreasing in the subsequent period. After 9 weeks of rearing fish survival ranged from 75.4 and 65.0 % (groups B) to 80.7 and 67.7% (groups W) (Fig. 4). In all variants of the experiment the fish gradually increased their weight. At the end of the experiment, fish biomass in particular cages amounted to: 3.24 and 2.39 kg m -3 (experimental groups), and 1.06 and 0.64 kg m -3 (groups W) (Fig. 5). The highest biomass increments of 3.09 and 2.25 kg.m -3 were observed in the cages stocked with the fish which had been first reared in tanks. Lower mass increments of 1.00 and 0.58 kg.m -3 were recorded in the control groups. Statistical analyses (test F - Snedecor s, p<0.05) of the weight-length relationship presented in form of regression lines revealed statistically significant differences in growth rates between groups B and W. More rapid growth was observed for the fish in groups W (Fig. 6). Average water temperature during cage rearing amounted to 13.9 o C, ranging from 7.6 (at the beginning) to 17.4 o C (at the end of the experiment). DISCUSSION Cage rearing of coregonids can be carried out in different types of water (Bryli ski et al. 1979, Mamcarz 1990), using the stocking material of different age and size (Champigneulle and Rojas-Beltran 1990, Koz³owski et al. 1996). Results of selected studies on rearing whitefish larvae in two lake types are presented in table 1. Stocking material in these experiments consisted of feeding larvae or larvae which had been first reared in recirculation systems and on artificial feeds. To estimate the obtained results, the following parameters were taken into account: mean individual fish weight, survival, fish biomass. The results presented in table 1 suggest considerable effect of lake trophy on individual growth rate of the fish. For example, in a eutrophic Lake Legi skie, water temperature during coregonid rearing (April-June) was lower

110 J. KOZ OWSKI, P. POCZYCZYÑSKI et al. and food resources poorer than in a polytrophic Lake Mutek (Mamcarz 1990, Lossow et al. 1991). This resulted in slower individual growth of fish in the eutrophic lake notwithstanding the same method of rearing. TABLE 1 Selected results of studies on cage and tank-cage rearing of peled (Mamcarz 1990, Mamcarz et al. 1990 a, b) and whitefish (other citations) in eutrophic Lake Legi skie and polytrophic Lake Mutek Duration of rearing (days) Mean initial individual weight (mg) Mean final individual weight (mg) SGR [%. d -1 ] Final biomass [kg/m 3 ] Mortality (%) Author Lake Legiñskie 63-79 * 7-10 126.6-435.3 5.64-9.42 0.50-1.30 82.9-94.3 Mamcarz 1990 54-67 * 4,1-4.2 110,1-675,3 0,22-1,28 68,2-96,3 Mamcarz i in.. 1990a 20 + 41 ** 32.2 355.0 6.16 1.05 36.4 Poczyczyñski i in. 1995 20 + 41 ** 19.1-27.9 232.2-380.0 6.23-6.87 1.06-1.69 16.9-31.9 Dostatni 1997 19 + 63 ** 40.8 1732.5-2023.9 5.95-6.20 2.39-3.24 24.6-35.0 Niniejsza praca 63 ** 5.0 475.0-648.0 7.23-7.72 0.64-1.06 19.3-32.3 j.w. Jezioro Mutek 73 * 4.2 1813.0-5470.0 0.56-0.92 91.2-94.4 Mamcarz i in. 1990b 56-78 * 7-10 632.3-1823.0 8.96-13.90 0.40-3.30 51.0-99.3 Mamcarz 1990 19 + 63 ** 23.9 4909.4-5500.0 8.45-8.63 0.76-1.72 79.8-92.0 Koz³owski i in. 1996 63 * 4.8 2223.4-2467.7 9.74-9.91 0.88-0.89 64.7-80.3 j.w. 19 + 22 ** 40.8 96.2-103.0 3.90-4.21 0.00 100.0 j.w. 22 * 5.0 25.1-25.7 7.33-7.44 0.00 100.0 j.w. * Cage rearing **Tank-cage rearing. The first value refers to tank rearing duration, the second to cage rearing duration Average body weight of whitefish reared using tank-cage method was in both lakes almost three times higher than of the control fish (Koz³owski et al. 1996, fig. 1). At the same time, average weight of fish reared in the eutrophic lake was similar to the values obtained during control fish rearing in the polytrophic lake (Koz³owski et al. 1996, Mamcarz 1990). The obtained values of average weight of fish reared using a traditional method did not deviate from the results obtained by Mamcarz et al. (1990a, 1990b) and Champigneulle and Rojas-Beltran (1990) who carried out their experiments in similar conditions (duration of rearing, temperatures, fish densities). These results reveal considerable differences in the growth rate of coregonids depending on environmental conditions. Factors such as water temperature, food resources, algae blooms (and concentration of algal toxins), levels of detritus or parasite in-

TANK-CAGE METHOD OF REARING COREGONID FISH. II. EUTROPHIC LAKE 111 vasions affect not only the fish growth, but also their survival (W³asow 1993). Fish survival is decisively higher in eutrophic than in polytrophic lake; fish mortalities in the latter may reach even 100 %. In the described experiments there was no relationship between larvae size and their survival irrespective of the lake type (Tab. 1). Fish biomass (especially using the tank-cage method) obtained in Lake Legi skie is comparable to the best results described in the literature (Radziej et al. 1978, Mamcarz 1990). Duration of larval development correlates strictly with the temperature and growth rate ( uczyñski 1988). There is a clear dependence between lake fertility (polytrophy, mesotrophy) and duration of larval development (Mamcarz 1990, Koz³owski 1993). End of metamorphosis in the case of fish reared in a traditional way and using the tank-cage technique took place in the plytrophic lake between day 37 and 63 of rearing (Koz³owski et al. 1996), while in the eutrophic lake and the tank-cage system the larval period ended before 63rd day of rearing. The results of tank-cage rearing obtained in Lake Legi skie suggest a possibility of rapid and complete adaptation of coregonid fish to conditions of constantly illuminated cages. This method of producing stocking material of whitefish can be well used in eutrophic lakes. REFERENCES Bryliñski E., Radziej J., Uryn B. 1979 - Podchów wylêgu i narybku siei (Coregonus lavaretus L.) w oœwietlonych sadzach jeziorowych. Rocz. Nauk Rol. H 99: 55-77. Champigneulle A., Rojas-Beltran R. 1990 - First attempts to optimize the mass rearing of whitefish (Coregonus lavaretus L.) larvae from Leman and Bourget Lakes (France) in tanks and cages - Aquat. Living Resour. 3: 217-228. Colby P. J., Spangler G. R., Hurley D. A., Combie A. M. 1972 - Effects of eutrophication on salmonid communities in oligotrophic lakes - J. Fish. Res. Bd. Can. 29 (6): 975-983. Koz³owski J. 1993 - Basenowo - sadzowa metoda podchowu ryb siejowatych - Praca doktorska. Biblioteka AR-T Olsztyn MS: 49 pp. Koz³owski J., Poczyczyñski P., Dostatni D., Mamcarz A. 1996 - Tank-cage method of rearing coregonid (coregonidae) fish. I Politrophic lake - Acta Acad. Agricult. Tech. Olst. Protectio Aquarum et Piscatoria. 22:15-28. Lossow K., Gawroñska H., Kukliñska B., Martyniak A., Niewolak S., Rybak M., Widuto J. 1991 - The effect of artificial aeration on the physicochemical conditions and biological associations of the Mutek Lake - Pol. Arch. Hydrobiol. 38: 35-65. Luczynski M. 1987 - Uwarunkowania termiczne wczesnego rozwoju osobniczego Coregoninae - Acta A- cad. Agricult. Tech. Olst. Protectio Aquarum et Piscatoria. 14: 1-58. Luczynski M., Falkowski S., Kopecki T. 1988 - Larval development in four coregonid species (Coregonus albula, C. lavaretus, C. Muksun and C. Peled) - Finnish Fish. Res. 9: 61-69. Mamcarz A. 1982 - Zmiennoœæ cech biometrycznych pelugi (Coregonus peled Gmelin. 1788) podczas jej chowu w sadzach jeziorowych - Praca doktorska Biblioteka ART Olsztyn MS. 224 pp. Mamcarz A., 1990 - Uwarunkowania wzrostu larw pelugi (Coregonus peled Gmel) w czasie podchowu sadzowego - Acta Acad. Agricult. Techn. Olst., Protectio Aquarum et Piscatoria.17 :1-57. Mamcarz A., Koz³owski J. 1991 - A combined rearing system of tanks and illuminated cages for coregonid larvae - Larvi 91 - Fish & Crustacean Larviculture Symposium. Lavens P., Sorgeloos P., Jaspers E., Ollevier F. eds. Europ. Aquacult. Soc., Spec. Publ. 15: 284-286.

112 J. KOZ OWSKI, P. POCZYCZYÑSKI et al. Mamcarz A., Koz³owski J., W³asow T. 1990a - Wstêpne badania nad podchowem larw pelugi (Coregonus peled Gmel.) w sadzach oœwietlonych z dodatkowym karmieniem pasz¹ sztuczn¹ I. Jezioro podlegaj¹ce przyspieszonej eutrofizacji - Zesz. Nauk. AR Wroc. 200: 93-111. Mamcarz A., Koz³owski J., W³asow T. 1990b - Wstêpne badania nad podchowem larw pelugi (Coregonus peled Gmel.) w sadzach oœwietlonych z dodatkowym karmieniem pasz¹ sztuczn¹ II. Jezioro politroficzne - Zesz. Nauk. AR Wroc. 200: 113-134. Mamcarz A., Nowak M. 1987 - New version of an illuminated cage for coregonid rearing - Aquaculture 65: 183-188. Poczyczyñski P., Dabrowski K., Kucharska K., Mamcarz A., Koz³owski J. 1990 - Laboratory rearing of whitefish (Coregonus lavaretus) - comparative studies of Polish and foreign experimental starter diets - Pol. Arch. Hydrobiol. 37: 397-411. Prejs A., Pijanowska J., Koperski P., Martyniak A., Boroñ S., Hliwa P. 1997 - Food web manipulation in a small eutrophic lake Wirbel (Poland): long-term changes in fish biomass and basic measures of water quality. A case study - Hydrobiologia Radziej J., Korycki A. Pyka J. 1978 - Podchów wylêgu i narybku pelugi w oœwietlonych sadzach jeziorowych. Gosp. rybna 5: 3-5. Viljanen M. 1988 - Relation between egg and larval abudance, spawning stock and recruitment in vendae (Coregonus albula L.) - Finnish Fish. Res. 9: 271-289. W³asow, T. 1993 - Rozwój grasicy larw Coregonidae z uwzglêdnieniem wp³ywu czynników patogennych i œrodowiskowych. Acta Acad. Agricult. Techn. Olst., Protectio Aquarum et Piscatoria, STRESZCZENIE BASENOWO-SADZOWA METODA PODCHOWU LARW RYB SIEJOWATYCH. II. JEZIORO EUTROFICZNE Celem badañ by³o okreœlenie mo liwoœci zastosowania kombinowanej basenowo - sadzowej metody podchowu larw ryb siejowatych w jeziorze eutroficznym. Badania przeprowadzono 1990 roku. Podchów basenowy przeprowadzono w Oœrodku Zarybieniowym Dga³, sadzowy w eutroficznym jeziorze Legiñskim. Podwy szaj¹c temperaturê wody w czasie inkubacji ikry, przyspieszano wykluwanie siê larw o oko³o 3 tygodnie. Wylêg podchowywano na paszy sztucznej w temp. 16 1 o C przez 19 dni. Nastêpnie podchów by³ kontynuowany w sadzach toniowych, gdzie ryby od ywia³y siê zooplanktonem. Grupê kontroln¹ stanowi³y larwy wyklute w normalnym terminie. Podchów sadzowy trwa³ 63 dni. W okresie badañ rejestrowano tempo wzrostu, œmiertelnoœæ, LDS i biomasê ryb. Na koniec podchowu basenowego ryby mia³y œredni¹ masê 41 mg. Narybek po podchowie sadzowym osi¹gn¹³ w grupie doœwiadczalnej œredni¹ masê jednostkow¹ od 1732 do 2023 mg a w kontrolnej od 475 do 648 mg. Prze ywalnoœæ ryb waha³a siê od 65 do 80%. Ryby z grupy doœwiadczalnej zakoñczy³y rozwój larwalny po 42 dniach, natomiast czêœæ ryb z grupy kontrolnej nie zakoñczy³a rozwoju do 63 dnia podchowu. Uzyskano wysokie wartoœci biomasy ryb w sadzach w podchowie basenowo - sadzowym (2,39-3,24 kg m -3 ). Wyniki badañ wskazuj¹ e, basenowo-sadzowa metoda podchowu materia³u zarybieniowego larw ryb siejowatych mo e byæ z powodzeniem stosowana w jeziorach eutroficznych. ADRES AUTORÓW: Dr Jacek Koz³owski Dr Pawe³ Poczyczyñski Dr Dariusz Dostatni Katedra Biologii i Hodowli Ryb Uniwersytet Warmiñsko-Mazurski w Olsztynie 10-957 Olsztyn, ul. Oczpowskiego 5 Prof. dr hab. Andrzej Mamcarz Katedra Rybactwa Jeziorowego i Rzecznego Uniwersytet Warmiñsko-Mazurski w Olsztynie 10-957 Olsztyn, ul. Oczpowskiego 5