Systemy bezpieczne i FTC (Niezawodne Systemy Cyfrowe)
|
|
- Wiktor Sadowski
- 7 lat temu
- Przeglądów:
Transkrypt
1 Systemy bezpieczne i FTC (Niezawodne Systemy Cyfrowe) dr inż Krzysztof Berezowski 220/C3 tel krzysztofberezowski@pwrwrocpl 1
2 Wybrane kody dr inż Krzysztof Berezowski 220/C3 tel
3 Rodzaje błędów błędy symetryczne błędy jednokierunkowe błędy asymetryczne wiązki błędów błędy w bajtach (słowach n-bitowych) 3
4 Rodzaje błędów - przykłady 16-bitowy wektor binarny (4 bajty po 4 bity): X= Błąd pojedynczy: Błędy wielokrotne: 1) potrójny błąd symetryczny 2) 3) potrójny błąd jednokierunkowy 0 1 wiązka błędów o długości 5 4) błąd w 2 bajtach Rysunek 27: Przykłady różnych typów błędów 4
5 Mechanizmy powstawania błędów 1 1 sklejenie z 1 01 nieparzysta liczba inwerterów parzysta liczba inwerterów 01 Rysunek 28: Mechanizm powstawania błędów symetrycznych 5
6 Mechanizmy powstawania błędów pojedyncze sklejenie z 1 może wystąpić do 4 będów jednokierunkowych x 1 z 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 10 x 11 x 12 x 13 x 14 x 15 x 16 z 1 z 2 z 3 z 4 z 5 z 6 z 7 z Rysunek 29: Mechanizm powstawania błędów jednokierunkowych w układach PLA 6
7 Mechanizmy powstawania błędów 4 bits uszkodzenie zasilania ukadu scalonego pamięci RAM A 0 A 1 A 2 n -1 sowo adresowe bajt z będami Rysunek 211: Mechanizm powstawania błędów w bajtach wskutek pojedynczych uszkodzeń pamięci RAM 7
8 Mechanizmy powstawania błędów Ciąg poprawny Ciąg z błędami maksymalny czas trwania zakóceń = OSTATNI PIERWSZY bit błędny czas wiązka błędów o długości 7 Rysunek 210: Mechanizm powstawania wiązki błędów podczas transmisji bitowo-szeregowej 8
9 Podstawowe klasy kodów wykrywających błędy kody z kontrolą parzystości kod z podwajaniem (duplication) i kod z inwersyjnym powtórzeniem (dual rail) kody arytmetyczne AN i resztowe kody wykrywające błędy w słowach o stałej szerokości kody wykrywające błędy jednokierunkowe kody wykrywające błędy jednokierunkowe w słowach o stałej szerokości 9
10 Kod z kontrolą parzystości pojedynczy bit kontroli parzystości: parzysty: łączna ilość jedynek jest parzysta np > nieparzysty: łączna ilość jedynek jest nieparzysta np > wszystkie błędy o krotności nieparzystej prosty koder - i-we funkcja XOR kod systematyczny - bezkosztowe dekodowanie prosty układ kontrolny (i+1)-we funkcja XOR arytmetyczny, bit-sliced (szyny, bufory, etc) 10
11 Kod z kontrolą parzystości Parzysty lub nieparzysty GÓWNA ZALETA (A) Bit na sowo P minimum nadmiaru (B) Bit na bajt P P 1 (Parzysty) (Nieparzysty) wykrywa defekty zasilania: będy (000) i (111) (C) Bit na kilka ukadów Ukad 5 Ukad 4 Ukad 3 Ukad 2 Ukad P 4 P 3 P 2 P 1 wykrywa defekt jednego z ukadów scalonych (D) Bit na ukad Ukad 5 Ukad 4 Ukad 3 Ukad 2 Ukad P 4 P 3 P 2 P 1 atwa lokalizacja uszkodzonego ukadu scalonego (E) Kontrola parzystości z przeplataniem P 4 P 3 P 2 P 1 wykrywa zwarcia między sąsiednimi liniami Rysunek 35: Schematy realizacji kontroli parzystości 11
12 Kod z podwajaniem Różne klasy uszkodzeń wielokrotnych Wszystkie błędy o krotności nieparzystej Wiele błędów dwukierunkowych 100% nadmiaru (największy wśród kodów) prosty koder i dekoder układ testujący - 2i-we komparator w połączeniu z innym EDC może tworzyć ECC bez wiedzy o aplikacji (modułowo) naturalnie dostępny w niektórych tech logicznych 12
13 Kod z podwajaniem X=( x 3 x 2 x 1 x 0 ) Z=( z 3 z 2 z 1 z 0 ) Wysylane dane Odebrane dane X X x 0 4-bitowa szyna z 0 Z Z Nadajnik x 1 x 2 z 1 z 2 Odbiornik x 3 z 3 Rysunek 37: System przesyłania danych z inwersyjnym powtórzeniem 13
14 Kody arytmetyczne kody niezmiennicze względem operacji arytm Zamiast wagi Hamminga - waga arytmetyczna i-ty bit wektora ma wagę arytmetyczną 2 i Krotność błędu arytmetycznego minimalna liczba niezerowych bitów jego repr np podwójny błąd arytmetyczny: X X e = 15 =
15 Kod AN optymalny, niesystematyczny (koder/dekoder) układ kontrolny - generator reszty mod A Tabela 32: 3-bitowe liczby zakodowane kodem 3N N 3N Słowo binarne Słowo kodu 3N
16 Kod 3N p p p p p p 0 HA FA FA FA FA HA z 7 z 6 z 5 z 4 z 3 z 2 z 1 z 0 Rysunek 38: Koder dla kodu 3N p 5 p 4 p 3 p 2 p 1 p 0 FA FA FA x 5 x 4 x 3 x 2 x 1 x 0 Rysunek 39: Dekoder kodu 3N układ dzielenia przez 3 16
17 Sumy kontrolne do przesyłania bloków informacji wszystkie błędy niekumulujące się do sumy kontr pojedynczej i podwójnej ( precyzji ) (x c(b 1),,x c1,x c0 )= inwersyjna resztowa ( l 1 i=0 B i ) mod 2 b (x c(b 1),,x c1,x c0 )=2 b olna resztowa 17 ( l 1 i=0 B i ) mod 2 2b pojedynczą precyzją wykrywa wszystkie błędy, któr (x c(b 1),,x c1,x c0 )= ( l 1 i=0 (x c(2b 1),,x c1,x c0 )= B i ) mod (2 b 1) eregowy: -bitowy sumator z cyklicznym przeniesienie ( l 1 i=0 B i ) mod 2 2b ojnej precyzji wykrywa ww błędy nie wykrywa
18 Sumy kontrolne Slowo n Slowo 4 Slowo 3 Slowo 2 Slowo 1 Przeniesienie C Suma danych C Suma z przeniesieniem cyklicznym Suma kontrolna Rysunek 324: Formowanie sumy kontrolnej resztowej 18
19 Kody Hamminga Liniowy optymalny kod korekcyjny Korekta jednego, detekcja dwóch błędów bitowych Dodatkowy bit parzystości - rozróżnienie między wystąpieniem pojedynczego a podwójnego błędu Zasada działania: wykorzystanie parzystości do wyliczenia pozycji błędu długość bloku danych długość komunikatu wypełnienie: wypełnienie jest optymalne dla kodu Hamminga 19
20 Kody Hamminga Algorytm konstrukcji ponumeruj bity zaczynając od 1 pozycje, które są potęgą dwójki to bity parzystości pozostałe pozycje to bity komunikatu bit parzystości 1 jest liczony z wektorów w których bit pierwszy najmłodszy jest ustawiony bit parzystości 2 jest liczony z wektorów w których bit drugi najmłodszy jest ustawiony bit parzystości 4 jest liczony z wektorów w których bit trzeci najmłodszy jest ustawiony 20
21 Kody Hamminga Algorytm konstrukcji ponumeruj bity zaczynając od 1 pozycje, które są potęgą dwójki to bity parzystości pozostałe pozycje to bity komunikatu bit parzystości 1 jest liczony z wektorów w których bit pierwszy najmłodszy jest ustawiony bit parzystości 2 jest liczony z wektorów w których bit drugi najmłodszy jest ustawiony bit parzystości 4 jest liczony z wektorów w których bit trzeci najmłodszy jest ustawiony 21
22 Kody Hamminga Która parzystość (parzysta, nieparzysta) jest bez znaczenia (parzysta jest łatwiejsza rachunkowo) 22
23 Kody Hamminga Kodowanie - przykład X = X = 0_110_101 p 1 ( 0_110_101) = = 1 p 2 (1_0_110_101) = = 0 p 4 (100_110_101) = = 0 p 8 ( _101) = = 0 MSG =
24 Kody Hamminga Obliczanie syndromu - przykład MSG = p 1 ( ) = = 1 p 2 ( ) = = 0 p 4 ( ) = = 0 p 8 ( ) = = 0 MSG =
Detekcja i korekcja błędów w transmisji cyfrowej
Detekcja i korekcja błędów w transmisji cyfrowej Błędy w transmisji cyfrowej pojedyncze wielokrotne. całkowita niepewność względem miejsca zakłóconych bitów oraz czy w ogóle występują paczkowe (grupowe)
Bardziej szczegółowoDetekcja i korekcja błędów w transmisji cyfrowej
Detekcja i korekcja błędów w transmisji cyfrowej Błędy w transmisji cyfrowej pojedyncze wielokrotne. całkowita niepewność względem miejsca zakłóconych bitów oraz czy w ogóle występują paczkowe (grupowe)
Bardziej szczegółowoW11 Kody nadmiarowe, zastosowania w transmisji danych
W11 Kody nadmiarowe, zastosowania w transmisji danych Henryk Maciejewski Jacek Jarnicki Marek Woda www.zsk.iiar.pwr.edu.pl Plan wykładu 1. Kody nadmiarowe w systemach transmisji cyfrowej 2. Typy kodów,
Bardziej szczegółowoteoria informacji Kanały komunikacyjne, kody korygujące Mariusz Różycki 25 sierpnia 2015
teoria informacji Kanały komunikacyjne, kody korygujące Mariusz Różycki 25 sierpnia 2015 1 wczoraj Wprowadzenie matematyczne. Entropia i informacja. Kodowanie. Kod ASCII. Stopa kodu. Kody bezprefiksowe.
Bardziej szczegółowoZygmunt Kubiak Instytut Informatyki Politechnika Poznańska
Instytut Informatyki Politechnika Poznańska Proces transmisji może w prowadzać błędy do przesyłanych wiadomości błędy pojedyncze lub grupowe Detekcja: Wymaga uznania, że niektóre wiadomości są nieważne
Bardziej szczegółowoTranzystor JFET i MOSFET zas. działania
Tranzystor JFET i MOSFET zas. działania brak kanału v GS =v t (cutoff ) kanał otwarty brak kanału kanał otwarty kanał zamknięty w.2, p. kanał zamknięty Co było na ostatnim wykładzie? Układy cyfrowe Najczęściej
Bardziej szczegółowoKodowanie i kompresja Tomasz Jurdziński Studia Wieczorowe Wykład Kody liniowe - kodowanie w oparciu o macierz parzystości
Kodowanie i kompresja Tomasz Jurdziński Studia Wieczorowe Wykład 13 1 Kody liniowe - kodowanie w oparciu o macierz parzystości Przykład Różne macierze parzystości dla kodu powtórzeniowego. Co wiemy z algebry
Bardziej szczegółowoSieci Komputerowe Mechanizmy kontroli błędów w sieciach
Sieci Komputerowe Mechanizmy kontroli błędów w sieciach dr Zbigniew Lipiński Instytut Matematyki i Informatyki ul. Oleska 48 50-204 Opole zlipinski@math.uni.opole.pl Zagadnienia Zasady kontroli błędów
Bardziej szczegółowoTeoria informacji i kodowania Ćwiczenia Sem. zimowy 2016/2017
Algebra liniowa Zadanie 1 Czy jeśli wektory x, y i z, należące do binarnej przestrzeni wektorowej nad ciałem Galois GF (2), są liniowo niezależne, to można to samo orzec o następujących trzech wektorach:
Bardziej szczegółowoLaboratorium ochrony danych
Laboratorium ochrony danych Ćwiczenie nr 3 Temat ćwiczenia: Kod BCH Cel dydaktyczny: Zapoznanie się z metodami detekcji i korekcji błędów transmisyjnych za pomocą binarnych kodów cyklicznych, na przykładzie
Bardziej szczegółowoxx + x = 1, to y = Jeśli x = 0, to y = 0 Przykładowy układ Funkcja przykładowego układu Metody poszukiwania testów Porównanie tabel prawdy
Testowanie układów kombinacyjnych Przykładowy układ Wykrywanie błędów: 1. Sklejenie z 0 2. Sklejenie z 1 Testem danego uszkodzenia nazywa się takie wzbudzenie funkcji (wektor wejściowy), które daje błędną
Bardziej szczegółowo0 + 0 = 0, = 1, = 1, = 0.
5 Kody liniowe Jak już wiemy, w celu przesłania zakodowanego tekstu dzielimy go na bloki i do każdego z bloków dodajemy tak zwane bity sprawdzające. Bity te są w ścisłej zależności z bitami informacyjnymi,
Bardziej szczegółowoćwiczenie 202 Temat: Układy kombinacyjne 1. Cel ćwiczenia
Opracował: dr inż. Jarosław Mierzwa KTER INFORMTKI TEHNIZNEJ Ćwiczenia laboratoryjne z Logiki Układów yfrowych ćwiczenie 202 Temat: Układy kombinacyjne 1. el ćwiczenia Ćwiczenie ma na celu praktyczne zapoznanie
Bardziej szczegółowoINSTYTUT CYBERNETYKI TECHNICZNEJ POLITECHNIKI WROCŁAWSKIEJ ZAKŁAD SZTUCZNEJ INTELIGENCJI I AUTOMATÓW
INSTYTUT YERNETYKI TEHNIZNEJ POLITEHNIKI WROŁWSKIEJ ZKŁD SZTUZNEJ INTELIGENJI I UTOMTÓW Ćwiczenia laboratoryjne z Logiki Układów yfrowych ćwiczenie 22 temat: UKŁDY KOMINYJNE. EL ĆWIZENI Ćwiczenie ma na
Bardziej szczegółowoModulacja i Kodowanie. Labolatorium. Kodowanie Kanałowe Kody Hamminga
Modulacja i Kodowanie Labolatorium Kodowanie Kanałowe Kody Hamminga Kody Hamminga należą do grupy kodów korekcyjnych, ich celem jest detekcja I ewentualnie poprawianie błędów. Nazwa tego kody pochodzi
Bardziej szczegółowoKodowanie i kompresja Streszczenie Studia dzienne Wykład 6
Kodowanie i kompresja Streszczenie Studia dzienne Wykład 6 1 Kody cykliczne: dekodowanie Definicja 1 (Syndrom) Niech K będzie kodem cyklicznym z wielomianem generuja- cym g(x). Resztę z dzielenia słowa
Bardziej szczegółowo4. UKŁADY FUNKCJONALNE TECHNIKI CYFROWEJ
4. UKŁADY FUNKCJONALNE TECHNIKI CYFROWEJ 4.1. UKŁADY KONWERSJI KODÓW 4.1.1. Kody Kod - sposób reprezentacji sygnału cyfrowego za pomocą grupy sygnałów binarnych: Sygnał cyfrowy wektor bitowy Gdzie np.
Bardziej szczegółowoPolska-Brazylia 5:0, czyli o poprawianiu błędów w przekazywanych informacjach
Polska-Brazylia 5:0, czyli o poprawianiu błędów w przekazywanych informacjach Witold Tomaszewski Instytut Matematyki Politechniki Śląskiej e-mail: Witold.Tomaszewski@polsl.pl Witold Tomaszewski (Instytut
Bardziej szczegółowoWprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne
Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne 1. Bit Pozycja rejestru lub komórki pamięci służąca do przedstawiania (pamiętania) cyfry w systemie (liczbowym)
Bardziej szczegółowoMatematyka dyskretna
Matematyka dyskretna Wykład 7: Kody korygujące błędy Gniewomir Sarbicki Błędy transmisji i kodowanie nadmiarowe Zakładamy, że przy pewnym małym prawdopodobieństwie ɛ przy transmisji bit zmienia wartość.
Bardziej szczegółowo1.1. Pozycyjne systemy liczbowe
1.1. Pozycyjne systemy liczbowe Systemami liczenia nazywa się sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach. Dla dowolnego
Bardziej szczegółowoKombinacyjne bloki funkcjonalne
Sławomir Kulesza Technika cyfrowa Kombinacyjne bloki funkcjonalne Wykład dla studentów III roku Informatyki Wersja., 5//2 Bloki cyfrowe Blok funkcjonalny to układ cyfrowy utworzony z pewnej liczby elementów
Bardziej szczegółowoĆwiczenie 27 Temat: Układy komparatorów oraz układy sumujące i odejmujące i układy sumatorów połówkowych i pełnych. Cel ćwiczenia
Ćwiczenie 27 Temat: Układy komparatorów oraz układy sumujące i odejmujące i układy sumatorów połówkowych i pełnych. Cel ćwiczenia Poznanie zasad budowy działania komparatorów cyfrowych. Konstruowanie komparatorów
Bardziej szczegółowoBramki logiczne Podstawowe składniki wszystkich układów logicznych
Układy logiczne Bramki logiczne A B A B AND NAND A B A B OR NOR A NOT A B A B XOR NXOR A NOT A B AND NAND A B OR NOR A B XOR NXOR Podstawowe składniki wszystkich układów logicznych 2 Podstawowe tożsamości
Bardziej szczegółowoPodstawy Informatyki. Inżynieria Ciepła, I rok. Wykład 5 Liczby w komputerze
Podstawy Informatyki Inżynieria Ciepła, I rok Wykład 5 Liczby w komputerze Jednostki informacji Bit (ang. bit) (Shannon, 948) Najmniejsza ilość informacji potrzebna do określenia, który z dwóch równie
Bardziej szczegółowoUkłady kombinacyjne. cz.2
Układy kombinacyjne cz.2 Układy kombinacyjne 2/26 Kombinacyjne bloki funkcjonalne Kombinacyjne bloki funkcjonalne - dekodery 3/26 Dekodery Są to układy zamieniające wybrany kod binarny (najczęściej NB)
Bardziej szczegółowoPODSTAWY TEORII UKŁADÓW CYFROWYCH
PODSTAWY TEORII UKŁADÓW CYFROWYCH UKŁADY KODUJĄCE Kodery Kodery Kodery służą do przedstawienia informacji z tylko jednego aktywnego wejścia na postać binarną. Ponieważ istnieje fizyczna możliwość jednoczesnej
Bardziej szczegółowoPodstawy Informatyki: Kody. Korekcja błędów.
Podstawy Informatyki: Kody. Korekcja błędów. Adam Kolany Instytut Techniczny adamkolany@pm.katowice.pl Adam Kolany (PWSZ Nowy Sącz, IT) Podstawy Informatyki: Kody. Korekcja błędów. 11 stycznia 2012 1 /
Bardziej szczegółowoTeoria informacji i kodowania
Teoria informacji i kodowania Politechnika Gdańska Wydział Elektroniki, Telekomunikacji i Informatyki Katedra Systemów i Sieci Radiokomunikacyjnych dr inż. Małgorzata Gajewska e-mail: malgorzata.gajewska@eti.pg.gda.pl
Bardziej szczegółowomgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 4, strona 1. GOLOMBA I RICE'A
mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 4, strona 1. KOMPRESJA ALGORYTMEM ARYTMETYCZNYM, GOLOMBA I RICE'A Idea algorytmu arytmetycznego Przykład kodowania arytmetycznego Renormalizacja
Bardziej szczegółowoSieci komputerowe. Wykład 11: Kodowanie i szyfrowanie. Marcin Bieńkowski. Instytut Informatyki Uniwersytet Wrocławski
Sieci komputerowe Wykład 11: Kodowanie i szyfrowanie Marcin Bieńkowski Instytut Informatyki Uniwersytet Wrocławski Sieci komputerowe (II UWr) Wykład 11 1 / 32 Kodowanie Sieci komputerowe (II UWr) Wykład
Bardziej szczegółowo2010-04-12. Magistrala LIN
Magistrala LIN Protokoły sieciowe stosowane w pojazdach 2010-04-12 Dlaczego LIN? 2010-04-12 Magistrala LIN(Local Interconnect Network) została stworzona w celu zastąpienia magistrali CAN w przypadku, gdy
Bardziej szczegółowo1 WPROWADZENIE 1. Agata Pilitowska. parzysta. 3. Znaleźć odległość kodu kontroli parzystości nad ciałem GF (q).
1 WPROWADZENIE 1 Kody korekcyjne - zadania Agata Pilitowska 1 Wprowadzenie 1 Pokazać, że dla dowolnych wektorów c, f Z n 2, d(c, f ) = n (c i f i ) 2, i=1 wt(c + f ) = wt(c) + wt(f ) 2wt(cf ), wt(c + f
Bardziej szczegółowoARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH
ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH reprezentacja danych ASK.RD.01 c Dr inż. Ignacy Pardyka UNIWERSYTET JANA KOCHANOWSKIEGO w Kielcach Rok akad. 2011/2012 c Dr inż. Ignacy Pardyka (Inf.UJK) ASK.RD.01 Rok
Bardziej szczegółowoTechnologie Informacyjne
System binarny Szkoła Główna Służby Pożarniczej Zakład Informatyki i Łączności October 7, 26 Pojęcie bitu 2 Systemy liczbowe 3 Potęgi dwójki 4 System szesnastkowy 5 Kodowanie informacji 6 Liczby ujemne
Bardziej szczegółowoKodowe zabezpieczenie przed błędami oraz kanał telekomunikacyjny i jego właściwości
Kodowe zabezpieczenie przed błędami oraz kanał telekomunikacyjny i jego właściwości Mikołaj Leszczuk 2010-12-27 Spis treści wykładu Kodowe zabezpieczenie przed błędami Definicje Odległość Hamminga Waga
Bardziej szczegółowoZastosowania arytmetyki modularnej. Zastosowania arytmetyki modularnej
Obliczenia w systemach resztowych [Song Y. Yan] Przykład: obliczanie z = x + y = 123684 + 413456 na komputerze przyjmującym słowa o długości 100 Obliczamy kongruencje: x 33 (mod 99), y 32 (mod 99), x 8
Bardziej szczegółowoKod znak-moduł. Wartość liczby wynosi. Reprezentacja liczb w kodzie ZM w 8-bitowym formacie:
Wykład 3 3-1 Reprezentacja liczb całkowitych ze znakiem Do przedstawienia liczb całkowitych ze znakiem stosowane są następujące kody: - ZM (znak-moduł) - U1 (uzupełnienie do 1) - U2 (uzupełnienie do 2)
Bardziej szczegółowoUkłady cyfrowe. Najczęściej układy cyfrowe służą do przetwarzania sygnałów o dwóch poziomach napięć:
Układy cyfrowe W układach cyfrowych sygnały napięciowe (lub prądowe) przyjmują tylko określoną liczbę poziomów, którym przyporządkowywane są wartości liczbowe. Najczęściej układy cyfrowe służą do przetwarzania
Bardziej szczegółowoPAMIĘĆ RAM. Rysunek 1. Blokowy schemat pamięci
PAMIĘĆ RAM Pamięć służy do przechowania bitów. Do pamięci musi istnieć możliwość wpisania i odczytania danych. Bity, które są przechowywane pamięci pogrupowane są na komórki, z których każda przechowuje
Bardziej szczegółowoKrótkie przypomnienie
Krótkie przypomnienie x i ={,} y i ={,} w., p. Bramki logiczne czas propagacji Odpowiedź na wyjściu bramki następuje po pewnym, charakterystycznym dla danego układu czasie od momentu zmiany sygnałów wejściowych.
Bardziej szczegółowoInterfejsy systemów pomiarowych
Interfejsy systemów pomiarowych Układ (topologia) systemu pomiarowe może być układem gwiazdy układem magistrali (szyny) układem pętli Ze względu na rodzaj transmisji interfejsy możemy podzielić na równoległe
Bardziej szczegółowoFunkcja Boolowska a kombinacyjny blok funkcjonalny
SWB - Kombinacyjne bloki funkcjonalne - wykład 3 asz 1 Funkcja Boolowska a kombinacyjny blok funkcjonalny Kombinacyjny blok funkcjonalny w technice cyfrowej jest układem kombinacyjnym złożonym znwejściach
Bardziej szczegółowoPracownia Komputerowa wyk ad IV
Pracownia Komputerowa wykad IV dr Magdalena Posiadaa-Zezula Magdalena.Posiadala@fuw.edu.pl http://www.fuw.edu.pl/~mposiada Magdalena.Posiadala@fuw.edu.pl 1 Reprezentacje liczb i znaków Liczby: Reprezentacja
Bardziej szczegółowoUkłady kombinacyjne 1
Układy kombinacyjne 1 Układy kombinacyjne są to układy cyfrowe, których stany wyjść są zawsze jednoznacznie określone przez stany wejść. Oznacza to, że doprowadzając na wejścia tych układów określoną kombinację
Bardziej szczegółowoTemat 7. Dekodery, enkodery
Temat 7. Dekodery, enkodery 1. Pojęcia: koder, dekoder, enkoder, konwerter kodu, transkoder, enkoder priorytetowy... Koderami (lub enkoderami) nazywamy układy realizujące proces zamiany informacji kodowanej
Bardziej szczegółowoPAMIĘCI. Część 1. Przygotował: Ryszard Kijanka
PAMIĘCI Część 1 Przygotował: Ryszard Kijanka WSTĘP Pamięci półprzewodnikowe są jednym z kluczowych elementów systemów cyfrowych. Służą do przechowywania informacji w postaci cyfrowej. Liczba informacji,
Bardziej szczegółowoUkłady arytmetyczne. Joanna Ledzińska III rok EiT AGH 2011
Układy arytmetyczne Joanna Ledzińska III rok EiT AGH 2011 Plan prezentacji Metody zapisu liczb ze znakiem Układy arytmetyczne: Układy dodające Półsumator Pełny sumator Półsubtraktor Pełny subtraktor Układy
Bardziej szczegółowoPodstawy Informatyki
Podstawy Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 5 Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 5 1 / 23 LICZBY RZECZYWISTE - Algorytm Hornera
Bardziej szczegółowoAutomatyka. Treść wykładów: Multiplekser. Układ kombinacyjny. Demultiplekser. Koder
Treść wykładów: utomatyka dr inż. Szymon Surma szymon.surma@polsl.pl http://zawt.polsl.pl/studia pok., tel. +48 6 46. Podstawy automatyki. Układy kombinacyjne,. Charakterystyka,. Multiplekser, demultiplekser,.
Bardziej szczegółowoSTRATEGIE TOLEROWANIA BŁĘDÓW W CZASIE PRACY SYSTEMU INFORMATYCZNEGO
W Y D A W N I C T W O P O L I T E C H N I K I Ś L Ą S K I E J W G L I W I C A C H ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2018 Seria: ORGANIZACJA I ZARZĄDZANIE z. 130 STRATEGIE TOLEROWANIA BŁĘDÓW W CZASIE
Bardziej szczegółowoTeoretyczne Podstawy Informatyki
Teoretyczne Podstawy Informatyki cel zajęć Celem kształcenia jest uzyskanie umiejętności i kompetencji w zakresie budowy schematów blokowych algor ytmów oraz ocenę ich złożoności obliczeniowej w celu optymizacji
Bardziej szczegółowoPodstawowe operacje arytmetyczne i logiczne dla liczb binarnych
1 Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1. Podstawowe operacje logiczne dla cyfr binarnych Jeśli cyfry 0 i 1 potraktujemy tak, jak wartości logiczne fałsz i prawda, to działanie
Bardziej szczegółowoteoria informacji Entropia, informacja, kodowanie Mariusz Różycki 24 sierpnia 2015
teoria informacji Entropia, informacja, kodowanie Mariusz Różycki 24 sierpnia 2015 1 zakres materiału zakres materiału 1. Czym jest teoria informacji? 2. Wprowadzenie matematyczne. 3. Entropia i informacja.
Bardziej szczegółowoArytmetyka stałopozycyjna
Wprowadzenie do inżynierii przetwarzania informacji. Ćwiczenie 3. Arytmetyka stałopozycyjna Cel dydaktyczny: Nabycie umiejętności wykonywania podstawowych operacji arytmetycznych na liczbach stałopozycyjnych.
Bardziej szczegółowoPracownia Komputerowa wykład IV
Pracownia Komputerowa wykład IV dr Magdalena Posiadała-Zezula http://www.fuw.edu.pl/~mposiada/pk16 1 Reprezentacje liczb i znaków! Liczby:! Reprezentacja naturalna nieujemne liczby całkowite naturalny
Bardziej szczegółowoZASADY PRZECHOWYWANIA DANYCH
ZASADY PRZECHOWYWANIA DANYCH Wymienić można następujące powody utraty lub szkodliwej modyfikacji danych: przypadkowe ich usunięcie (np. przez roztargnionego pracownika), uszkodzenie nośnika, awaria systemu
Bardziej szczegółowoKody splotowe (konwolucyjne)
Modulacja i Kodowanie Labolatorium Kodowanie kanałowe kody konwolucyjne Kody splotowe (konwolucyjne) Główną różnicą pomiędzy kodami blokowi a konwolucyjnymi (splotowymi) polega na konstrukcji ciągu kodowego.
Bardziej szczegółowoKrzysztof Leszczyński Adam Sosnowski Michał Winiarski. Projekt UCYF
Krzysztof Leszczyński Adam Sosnowski Michał Winiarski Projekt UCYF Temat: Dekodowanie kodów 2D. 1. Opis zagadnienia Kody dwuwymiarowe nazywane często kodami 2D stanowią uporządkowany zbiór jasnych i ciemnych
Bardziej szczegółowoArchitektura komputerów
Architektura komputerów Wykład 4 Jan Kazimirski 1 Reprezentacja danych 2 Plan wykładu Systemy liczbowe Zapis dwójkowy liczb całkowitych Działania arytmetyczne Liczby rzeczywiste Znaki i łańcuchy znaków
Bardziej szczegółowoZAKŁAD SYSTEMÓW ELEKTRONICZNYCH I TELEKOMUNIKACYJNYCH Laboratorium Podstaw Telekomunikacji WPŁYW SZUMÓW NA TRANSMISJĘ CYFROWĄ
Laboratorium Podstaw Telekomunikacji Ćw. 4 WPŁYW SZUMÓW NA TRANSMISJĘ CYFROWĄ 1. Zapoznać się z zestawem do demonstracji wpływu zakłóceń na transmisję sygnałów cyfrowych. 2. Przy użyciu oscyloskopu cyfrowego
Bardziej szczegółowoMetody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015
Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 1 Metody numeryczne Dział matematyki Metody rozwiązywania problemów matematycznych za pomocą operacji na liczbach. Otrzymywane
Bardziej szczegółowoNiezawodność i diagnostyka systemów cyfrowych projekt 2015
Niezawodność i diagnostyka systemów cyfrowych projekt 2015 Jacek Jarnicki jacek.jarnicki@pwr.edu.pl Zajęcia wprowadzające 1. Cel zajęć projektowych 2. Etapy realizacji projektu 3. Tematy zadań do rozwiązania
Bardziej szczegółowoWprowadzanie nadmiaru informacyjnego dla transmitowanych szeregowo danych w kompaktowych sterownikach PLC firmy Mitsubishi Electric
Wprowadzanie nadmiaru informacyjnego dla transmitowanych szeregowo danych w kompaktowych sterownikach PLC firmy Mitsubishi Electric Roman Mielcarek 1. Wprowadzenie W sterownikach PLC typu FX firmy Mitsubishi
Bardziej szczegółowoKod U2 Opracował: Andrzej Nowak
PODSTAWY TEORII UKŁADÓW CYFROWYCH Kod U2 Opracował: Andrzej Nowak Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz http://pl.wikipedia.org/ System zapisu liczb ze znakiem opisany w poprzednim
Bardziej szczegółowoArchitektura komputerów
Wykład jest przygotowany dla IV semestru kierunku Elektronika i Telekomunikacja. Studia I stopnia Dr inż. Małgorzata Langer Architektura komputerów Prezentacja multimedialna współfinansowana przez Unię
Bardziej szczegółowoWprowadzenie do informatyki i użytkowania komputerów. Kodowanie informacji System komputerowy
1 Wprowadzenie do informatyki i użytkowania komputerów Kodowanie informacji System komputerowy Kodowanie informacji 2 Co to jest? bit, bajt, kod ASCII. Jak działa system komputerowy? Co to jest? pamięć
Bardziej szczegółowoAlgorytm. a programowanie -
Algorytm a programowanie - Program komputerowy: Program komputerowy można rozumieć jako: kod źródłowy - program komputerowy zapisany w pewnym języku programowania, zestaw poszczególnych instrukcji, plik
Bardziej szczegółowoInterfejsy. w systemach pomiarowych. Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego
Interfejsy w systemach pomiarowych Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego Interfejsy w systemach pomiarowych Układ (topologia) systemu pomiarowe może być układem gwiazdy
Bardziej szczegółowoPodstawy Informatyki
Podstawy Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 3 Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 1 / 42 Reprezentacja liczb całkowitych
Bardziej szczegółowoWSTĘP DO ELEKTRONIKI
WSTĘP DO ELEKTRONIKI Część VII Układy cyfrowe Janusz Brzychczyk IF UJ Układy cyfrowe W układach cyfrowych sygnały napięciowe (lub prądowe) przyjmują tylko określoną liczbę poziomów, którym przyporządkowywane
Bardziej szczegółowo(12) OPIS PATENTOWY (19) PL (11) 182761
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 182761 (21) Numer zgłoszenia: 329110 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia: 28.03.1997 (86) Data i numer zgłoszenia
Bardziej szczegółowoPodstawy działania układów cyfrowych...2 Systemy liczbowe...2 Kodowanie informacji...3 Informacja cyfrowa...4 Bramki logiczne...
Podstawy działania układów cyfrowych...2 Systemy liczbowe...2 Kodowanie informacji...3 Informacja cyfrowa...4 Bramki logiczne...4 Podział układów logicznych...6 Cyfrowe układy funkcjonalne...8 Rejestry...8
Bardziej szczegółowoTechnika cyfrowa Układy arytmetyczne
Sławomir Kulesza Technika cyfrowa Układy arytmetyczne Wykład dla studentów III roku Informatyki Wersja 1.0, 05/10/2010 Układy arytmetyczne UKŁADY ARYTMETYCZNE UKŁADY SUMUJĄCE i ODEJMUJĄCE UKŁADY MNOŻĄCE
Bardziej szczegółowoWstęp do programowania. Reprezentacje liczb. Liczby naturalne, całkowite i rzeczywiste w układzie binarnym
Wstęp do programowania Reprezentacje liczb Liczby naturalne, całkowite i rzeczywiste w układzie binarnym System dwójkowy W komputerach stosuje się dwójkowy system pozycyjny do reprezentowania zarówno liczb
Bardziej szczegółowoUTK ARCHITEKTURA PROCESORÓW 80386/ Budowa procesora Struktura wewnętrzna logiczna procesora 80386
Budowa procesora 80386 Struktura wewnętrzna logiczna procesora 80386 Pierwszy prawdziwy procesor 32-bitowy. Zawiera wewnętrzne 32-bitowe rejestry (omówione zostaną w modułach następnych), pozwalające przetwarzać
Bardziej szczegółowoTechniki multimedialne
Techniki multimedialne Digitalizacja podstawą rozwoju systemów multimedialnych. Digitalizacja czyli obróbka cyfrowa oznacza przetwarzanie wszystkich typów informacji - słów, dźwięków, ilustracji, wideo
Bardziej szczegółowoPodstawy Automatyki. Wykład 9 - Podstawy matematyczne automatyki procesów dyskretnych. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki
Wykład 9 - Podstawy matematyczne automatyki procesów dyskretnych Instytut Automatyki i Robotyki Warszawa, 2015 Kody liczb całkowitych nieujemnych Kody liczbowe dzielimy na analityczne nieanalityczne (symboliczne)
Bardziej szczegółowoArchitektura komputerów
Architektura komputerów Tydzień 9 Pamięć operacyjna Właściwości pamięci Położenie Pojemność Jednostka transferu Sposób dostępu Wydajność Rodzaj fizyczny Własności fizyczne Organizacja Położenie pamięci
Bardziej szczegółowoArchitektura komputerów Reprezentacja liczb. Kodowanie rozkazów.
Architektura komputerów Reprezentacja liczb. Kodowanie rozkazów. Prezentacja jest współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie pt. Innowacyjna dydaktyka
Bardziej szczegółowoorganizacja procesora 8086
Systemy komputerowe Procesor 8086 - tendencji w organizacji procesora organizacja procesora 8086 " # $ " % strali " & ' ' ' ( )" % *"towego + ", -" danych. Magistrala adresowa jest 20.bitowa, co pozwala
Bardziej szczegółowoPracownia elektryczna i elektroniczna. Elektronika cyfrowa. Ćwiczenie nr 5.
Pracownia elektryczna i elektroniczna. Elektronika cyfrowa. Ćwiczenie nr 5. Klasa III Opracuj projekt realizacji prac związanych z badaniem działania cyfrowych bloków arytmetycznych realizujących operacje
Bardziej szczegółowoUproszczony opis obsługi ruchu w węźle IP. Trasa routingu. Warunek:
Uproszczony opis obsługi ruchu w węźle IP Poniższa procedura jest dokonywana dla każdego pakietu IP pojawiającego się w węźle z osobna. W routingu IP nie wyróżniamy połączeń. Te pojawiają się warstwę wyżej
Bardziej szczegółowoAdresowanie obiektów. Adresowanie bitów. Adresowanie bajtów i słów. Adresowanie bajtów i słów. Adresowanie timerów i liczników. Adresowanie timerów
Adresowanie obiektów Bit - stan pojedynczego sygnału - wejście lub wyjście dyskretne, bit pamięci Bajt - 8 bitów - wartość od -128 do +127 Słowo - 16 bitów - wartość od -32768 do 32767 -wejście lub wyjście
Bardziej szczegółowoNaturalny kod binarny (NKB)
SWB - Arytmetyka binarna - wykład 6 asz 1 Naturalny kod binarny (NKB) pozycja 7 6 5 4 3 2 1 0 wartość 2 7 2 6 2 5 2 4 2 3 2 2 2 1 2 0 wartość 128 64 32 16 8 4 2 1 bity b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 System
Bardziej szczegółowoKomputer IBM PC niezależnie od modelu składa się z: Jednostki centralnej czyli właściwego komputera Monitora Klawiatury
1976 r. Apple PC Personal Computer 1981 r. pierwszy IBM PC Komputer jest wart tyle, ile wart jest człowiek, który go wykorzystuje... Hardware sprzęt Software oprogramowanie Komputer IBM PC niezależnie
Bardziej szczegółowoPrzykładowe pytania DSP 1
Przykładowe pytania SP Przykładowe pytania Systemy liczbowe. Przedstawić liczby; -, - w kodzie binarnym i hexadecymalnym uzupełnionym do dwóch (liczba 6 bitowa).. odać dwie liczby binarne w kodzie U +..
Bardziej szczegółowoSYSTEM E G S MODUŁ ML/A-1m wersja V32.1
SYSTEM E G S MODUŁ ML/A-1m wersja V32.1 INSTRUKCJA UŻYTKOWANIA Senel RK Warszawa 1/20 2/20 SPIS TREŚCI 1. PRZEZNACZENIE str. 4 2. DANE TECHNICZNE str. 4 3. BUDOWA I DZIAŁANIE str. 6 4. MONTAŻ I EKSPLOATACJA
Bardziej szczegółowoDYDAKTYKA ZAGADNIENIA CYFROWE ZAGADNIENIA CYFROWE
ZAGADNIENIA CYFROWE ZAGADNIENIA CYFROWE @KEMOR SPIS TREŚCI. SYSTEMY LICZBOWE...3.. SYSTEM DZIESIĘTNY...3.2. SYSTEM DWÓJKOWY...3.3. SYSTEM SZESNASTKOWY...4 2. PODSTAWOWE OPERACJE NA LICZBACH BINARNYCH...5
Bardziej szczegółowoKODOWANIE KANAŁOWE (NADMIAROWE) ERROR CONTROL CODING
KODOWANIE KANAŁOWE (NADMIAROWE) ERROR CONTROL CODING - W celu zabezpieczenia danych przed błędami do danych informacyjnych dołącza się według ściśle określonej reguły (definiującej dany kod) dodatkowe
Bardziej szczegółowoWstęp do Techniki Cyfrowej... Układy kombinacyjne
Wstęp do Techniki Cyfrowej... Układy kombinacyjne Przypomnienie Stan wejść układu kombinacyjnego jednoznacznie określa stan wyjść. Poszczególne wyjścia określane są przez funkcje boolowskie zmiennych wejściowych.
Bardziej szczegółowoTemat 4. Magia obracanych kart Detekcja i korekcja błędów
Temat 4 Magia obracanych kart Detekcja i korekcja błędów Streszczenie Kiedy dane z pamięci komputera są zapisywane na dysku albo przesyłane między komputerami, to przyjmujemy, że w tym czasie nie ulegają
Bardziej szczegółowoKodowanie informacji. Kody liczbowe
Wykład 2 2-1 Kodowanie informacji PoniewaŜ komputer jest urządzeniem zbudowanym z układów cyfrowych, informacja przetwarzana przez niego musi być reprezentowana przy pomocy dwóch stanów - wysokiego i niskiego,
Bardziej szczegółowo1. Operacje logiczne A B A OR B
1. Operacje logiczne OR Operacje logiczne są operacjami działającymi na poszczególnych bitach, dzięki czemu można je całkowicie opisać przedstawiając jak oddziałują ze sobą dwa bity. Takie operacje logiczne
Bardziej szczegółowoDane, informacja, programy. Kodowanie danych, kompresja stratna i bezstratna
Dane, informacja, programy Kodowanie danych, kompresja stratna i bezstratna DANE Uporządkowane, zorganizowane fakty. Główne grupy danych: tekstowe (znaki alfanumeryczne, znaki specjalne) graficzne (ilustracje,
Bardziej szczegółowoĆw. 1: Systemy zapisu liczb, minimalizacja funkcji logicznych, konwertery kodów, wyświetlacze.
Lista zadań do poszczególnych tematów ćwiczeń. MIERNICTWO ELEKTRYCZNE I ELEKTRONICZNE Studia stacjonarne I stopnia, rok II, 2010/2011 Prowadzący wykład: Prof. dr hab. inż. Edward Layer ćw. 15h Tematyka
Bardziej szczegółowoPodstawy techniki cyfrowej Mikroprocesory. Mgr inż. Bogdan Pietrzak ZSR CKP Świdwin
Podstawy techniki cyfrowej Mikroprocesory Mgr inż. Bogdan Pietrzak ZSR CKP Świdwin 1 Mikroprocesor to układ cyfrowy wykonany jako pojedynczy układ scalony o wielkim stopniu integracji zdolny do wykonywania
Bardziej szczegółowoKody blokowe Wykład 1, 3 III 2011
Kody blokowe Wykład 1, 3 III 2011 Literatura 1. R.M. Roth, Introduction to Coding Theory, 2006 2. W.C. Huffman, V. Pless, Fundamentals of Error-Correcting Codes, 2003 3. D.R. Hankerson et al., Coding Theory
Bardziej szczegółowoKody splotowe. Zastosowanie
Kody splotowe Zastosowanie Niekiedy potrzeba buforowania fragmentu wiadomości przed zakodowaniem, tak jak to ma miejsce w koderze blokowym, jest przeszkodą, gdyż dane do zakodowania napływają strumieniem.
Bardziej szczegółowoElementy struktur cyfrowych. Magistrale, układy iterowane w przestrzeni i w czasie, wprowadzanie i wyprowadzanie danych.
Elementy struktur cyfrowych Magistrale, układy iterowane w przestrzeni i w czasie, wprowadzanie i wyprowadzanie danych. Magistrale W układzie bank rejestrów do przechowywania danych. Wybór źródła danych
Bardziej szczegółowo