UTRATA POLA WZBUDZENIA TURBOGENERATORA
|
|
- Magda Grzybowska
- 7 lat temu
- Przeglądów:
Transkrypt
1 89 Adam Gozdowiak, Piotr Kisielewski Politechnika Wrocławska, Wrocław UTRATA POLA WZBUDZENIA TURBOGENERATORA TURBOGENERATOR OPERATION DURING LOSS OF FIELD Streszczenie: Artykuł przedstawia wyniki badań symulacyjnych utraty synchronizmu turbogeneratora z powodu zwarcia uzwojenia wzbudzenia podczas znamionowej pracy. W obliczeniach wykorzystano zweryfikowany pomiarowo model polowo-obwodowy turbogeneratora, który umożliwia zaobserwowanie zjawisk zachodzących w trudno dostępnym pomiarowo wirniku. Zbadano wpływ utraty synchronizmu na stabilność systemu elektroenergetycznego oraz wykazano najbardziej narażone na uszkodzenia węzły konstrukcyjne turbogeneratora. Abstract: This article shows the simulation results of the loss of turbogenerator synchronism due to loss of field during rated operation work. Verified field-circuit model of turbogenerator was used to perform the calculation results. This model allows observing the physical phenomena existing in the rotor. Presented analysis shows the impact turbogenerator synchronism loss on the power system stability and the construction components which are the most vulnerable to damage. Słowa kluczowe: turbogenerator, utrata synchronizmu, stabilność, metoda elementów skończonych Keywords: turbogenerator, loss of synchronism, stability, finite element method 1. Wstęp Utrata pola wzbudzenia turbogeneratora jest stanem awaryjnym, w czasie, którego trwania ulegają znacznej zmianie wielkości fizyczne zarówno maszyny, jak i systemu elektroenergetycznego. Stan ten powstaje na skutek zwarcia uzwojenia wzbudzenia, zaniku prądu wzbudzenia, zwarć w SEE i spowodowane nimi samoczynne ponowne załączenie (SPZ) linii, otwarcie uzwojenia wzbudzenia, awarii układu wzbudzenia oraz z powodu utraty zasilania układu wzbudzenia [2, 3]. Utrata pola wzbudzenia turbogeneratora stwarza poważne zagrożenie dla bezpieczeństwa turbogeneratora oraz systemu elektroenergetycznego, dlatego istotne jest właściwe ustawienie nastaw w urządzeniach zabezpieczających. O niezawodności zadziałania zabezpieczenia decyduje czas przebywania wektora impedancji wewnątrz charakterystyki rozruchowej. W praktyce przyjmuje się czas równy 2 5s. Po tym okresie turbogenerator jest odstawiany lub zmniejszana jest moc turbiny i maszyna zaczyna pracować asynchronicznie. Utrata pola wzbudzenia na skutek zwarcia uzwojenia wzbudzenia jest jedną z najczęściej występujących awarii [4, 5]. Autorzy w pracy [5] przytaczają statystyki, z których wynika, że 20% postojów wywołanych awarią wirnika powstaje na skutek utraty pola wzbudzenia spowodowaną zwarciem uzwojenia wirnika. Znane z literatury analizy omawianego stanu awaryjnego były przeprowadzane przy wykorzystaniu klasycznych modeli obwodowych. W pracy [4] zastępczy model obwodowy turbogeneratora posiadający obwód w osi podłużnej i poprzecznej, został rozbudowany o dodatkowe gałęzie i elementy pasywne odzwierciedlające prądy wirowe w przewodzących częściach wirnika, zgodnie z równaniami zaproponowanymi przez Canay'a [6]. Pomimo zastosowania rozszerzonego modelu obwodowego nie uzyskano zadawalających wyników. Na podstawie porównań zmierzonych wielkości fizycznych (mocy czynnej i biernej oraz napięcia i prądu stojan dostrzega się znaczące różnice i dlatego istnieje ryzyko wyciągnięcia błędnych wniosków. Praca [7] natomiast przedstawia porównanie wyników obliczeń utraty pola wzbudzenia przy wykorzystaniu sprzęgnięcia zweryfikowanego pomiarowo modelu polowego i obwodowego oraz uproszczonego modelu obwodowego bazującego na równaniach Parka. Porównań dokonano na podstawie przebiegów prędkości obrotowej i momentu elektromagnetycznego. Otrzymane wyniki znacząco różnią się od siebie. Wyniki uzyskane przy wykorzystaniu modelu obwodowego są znacząco zawyżone, co prowadzi do przeszacowania ryzyka, jakie niesie za sobą ten anormalny stan pracy. Modelowanie polowo-obwodowe turbogeneratora umożliwia uzyskanie informacji
2 90 o zjawiskach elektromagnetycznych zachodzących w trudno dostępnym pomiarowo częściach konstrukcyjnych wirnika stanowiących klatkę tłumiącą, która w znaczący sposób wpływa na stabilność pracy maszyny w SEE. 2. Model badanego turbogeneratora Badaną maszyną jest 2-biegunowy turbogenerator, którego dane znamionowe zawarto w tabeli 1. Tab. 1. Dane znamionowe badanej maszyny Symbol Wartość Jednostka S N 500 MVA U SN 21 kv I SN 13,75 ka cosϕ N 0,80 - I FN 4,5 ka n N 3000 obr/min M N 1,273 MNm Model obliczeniowy składa się z dwóch części, polowej oraz obwodowej. Model polowy (rysunek 1) odzwierciedla rzeczywisty rozkład uzwojeń rozłożonych w żłobkach stojana i wirnika oraz obwody tłumiące w postaci niemagnetycznych klinów wirnika i litej stali wirnika. W czasie obliczeń uwzględniono nieliniowość charakterystyk magnesowania rdzeni stojana i wirnika, zjawisko wypierania prądu w klinach wirnika oraz prądy wirowe indukowane w litej stali wirnika. Model polowy w czasie obliczeń był sprzęgnięty z modelem obwodowym posiadający elementy skupione, reprezentujące uzwojenia i obwody w części polowej oraz elementy pasywne stanowiące połączenia czołowe uzwojenia stojana, wirnika oraz klinów wirnika. 3. Wyniki obliczeń Zbadano symulacyjnie skutki zwarcia uzwojenia wirnika przy stałym znamionowym momencie pochodzącym od turbiny. Przed awarią turbogenerator pracował w znamionowych warunkach pracy. Zwarcie uzwojenia wzbudzenia nastąpiło w 16. sekundzie symulacji. Z obliczeń symulacyjnych wyznaczone zostały przebiegi prędkości obrotowej, momentu elektromagnetycznego, napięcia i prądu twornika, prądu wzbudzenia, prądów w klinach wirnika, mocy czynnej i biernej oraz wektora położenia impedancji widzianej z zacisków stojana. Podczas utraty pola wzbudzenia turbogenerator pracuje przy niedowzbudzeniu. W tym stanie wirnik gwałtownie przyspiesza, ponieważ moc mechaniczna pochodząca od turbiny jest zamieniana w energię kinetyczną. Jeżeli nie zostanie natychmiast ograniczony dopływ pary do turbiny, to maszyna ulegnie zniszczeniu, ponieważ nie jest zaprojektowana na wytrzymanie prędkości powyżej 1,2n N. Przebieg prędkości obrotowej przedstawiono na rysunku 2, natomiast momentu elektromagnetycznego na rysunku 3. Rys. 1. Model polowy turbogeneratora z zaznaczoną numeracją klinów wirnika Rys. 2. Przebieg prędkości obrotowej Utrata pola wzbudzenia osłabia sprzęgnięcie magnetyczne między stojanem a wirnikiem, które jest za słabe na to, aby całkowita moc pochodząca od turbiny była zamieniana na moc elektryczną w przypadku, gdy M=M N. W tym stanie turbogenerator pobiera moc bierną indukcyjną z SEE przekraczającą dwukrotną wartość znamionowej mocy biernej, jaką generuje w znamionowych warunkach pracy, co skutkuje obniżeniem napięcia na zaciskach maszyny.
3 91 Rys. 3. Przebieg momentu elektromagnetycznego Na rysunkach 4 i 5 przedstawiono odpowiednio przebieg napięcia i prądu stojana, natomiast na rysunkach 6 i 7 przebieg mocy czynnej i biernej. Rys. 4. Przebieg napięcia stojana Rys. 7. Przebieg mocy biernej Z wyniku spadku napięcia na zaciskach, prąd twornika wzrasta osiągając wartość powyżej 2I N, przy stałym momencie napędowym. Zmiana stosunku U S /I S powoduje zmianę położenia wektora impedancji widzianej z zacisków turbogeneratora, którego obliczona trajektoria została przedstawiona na rysunku 8. W 19,5s wektor przechodzi przez strefę I charakterystyki rozruchowej zabezpieczenia, czyli po 3,5s od chwili zwarcia uzwojenia wzbudzenia, natomiast w 21,5s wchodzi do strefy II i już z niej nie wychodzi. Na podstawie normy [8] strefa II jest wyposażona w zwłokę czasową równą 0,1s. Od czasu wykrycia awarii przez zabezpieczenie do chwili zadziałania głównego wyłącznika mija 450ms. A zatem długość trwania tej awarii od chwili zwarcia do wyłączenia to 5s, po którym moc turbiny zostanie zredukowana poprzez upust pary, bądź turbogenerator zostanie odstawiony. Rys. 5. Przebieg prądu stojana Rys. 8. Wektor położenia impedancji widzianej z zacisków twornika Rys. 6. Przebieg mocy czynnej
4 92 Podczas utraty pola wzbudzenia turbogenerator zachowuje się jak generator asynchroniczny, w którym występuje zjawisko indukowania się prądów w przewodzących częściach wirnika, które silnie nagrzewają elementy konstrukcyjne. Turbogeneratory nie są projektowane, aby wytrzymać termicznie tak wysokie temperatury, przekraczające zastosowaną do produkcji klasę izolacji. Brak ekranowania strumienia rozproszenia stojana przez strumień rozproszenia wirnika przyczynia się do wzrostu temperatury w skrajnych częściach konstrukcyjnych stojana. Przebieg prądu w zwartym uzwojeniu wzbudzenia jest przedstawiony na rysunku 9, natomiast rysunek 10 ukazuje przebieg prądu w wybranych klinach wirnika. Największa wartość prądu występuje w klinie o numerze 1, który znajduje się najbliżej dużego zęba wirnika. Turbogenerator nie jest zaprojektowany, aby pracować bez prądu wzbudzenia. W odróżnieniu od maszyny indukcyjnej, generator synchroniczny nie jest zdolny do długoterminowego wytrzymania indukujących się prądów w przewodzących częściach konstrukcyjnych wirnika, tj. odkuwka wirnika, kliny niemagnetyczne oraz kołpaki. Rys. 10. Przebieg indukowanego prądu w klinie nr 1; w wybranych klinach wirnika Linie stałego potencjału magnetycznego oraz rozkład indukcji magnetycznej przedstawiono na rysunkach 11 i 12. Podczas utraty pola wzbudzenia stojan ulega rozmagnesowywaniu, a w wirniku pojawiają się duże nasycenia, szczególnie w dużych zębach. Rys. 9. Przebieg prądu w uzwojeniu wirnika Rys. 11. Linie stałego potencjału magnetycznego: podczas pracy znamionowej; po 11 sekundach od zwarcia uzwojenia wzbudzenia
5 93 Rys. 12. Moduł indukcji magnetycznej: podczas pracy znamionowej; po 11 sekundach od zwarcia uzwojenia wzbudzenia Na podstawie rozkładu gęstości prądu (rys. 13) można wywnioskować, że nie ma ryzyka uszkodzenia uzwojenia wzbudzenia na skutek przepływu przez niego prądu większego od prądu znamionowego. Na dodatek gęstość prądu w zębach wirnika jest zbliżona do gęstości prądu w żłobkach wirnika, a zatem uzwojenie nie jest dodatkowo nagrzewane. Najbardziej narażonymi elementami konstrukcyjnymi są kliny wirnika oraz kołpaki. Ryzyko jest tym większe im mniejszy styk tych elementów. Utrata pola wzbudzenia dla M=MN powoduje, że kąt mocy osiąga wartość powyżej 90deg i turbogenerator wypada z synchronizmu. Przebieg kąta mocy jest widoczny na rysunku 14. W chwili, gdy osiąga on wartość 180deg, generowana moc czynna gwałtowanie maleje, a pozostałe wielkości fizyczne takie jak: moc bierna, prąd i napięcie stojana zaczynają oscylować. Rys. 13. Rozkład gęstości prądu w wirniku: podczas pracy znamionowej; po 11 sekundach od zwarcia uzwojenia wzbudzenia Rys. 14. Przebieg kąta mocy 4. Wnioski W pierwszej chwili zwarcia uzwojenia wzbudzenia turbogeneratora pracującego w znamionowych warunkach pracy obserwuje się tłumienie kołysań wirnika, lecz na skutek wzrastającego kąta mocy w czasie trwania zwarcia, maszyna wypada z synchronizmu z powodu słab-
6 94 nącego sprzęgnięcia magnetycznego między wirnikiem, a stojanem. Z rozkładu gęstości prądu można dostrzec duży udział litej stali wirnika w procesie tłumienia kołysań mocy. Pomijanie jej udziału w stanach dynamicznych może doprowadzić do błędnych wniosków oraz niedoszacowania początkowych wartości wielkości fizycznych definiujących zagrożenia, na które są poddawane elementy konstrukcyjne turbogeneratorów. 5. Literatura [1]. P. Kisielewski, L. Antal, "Research of the turbogenerator stability using field-circuit modeling", XIX International Conference on Electrical Machines, ICEM 2010, Rome, Italy, 6-8, pages 1-4, September [2]. J. Przybysz., Turbogeneratory, Warszawa, IEN, s , [3]. H. Yaghobi, H. Mortazavi, H. R. Mashhadi, Study on application of flux linkage of synchronous generator for loss of excitation detection, International Transactions on Electrical Energy Systems, pages: , [4]. K. Z. Guo, W. D. Zhu, F. W. Tan, R. L. Jin, G. Wang, Analysis of Large Turbogenerators's Asynchronous Operation during Loss of Field, Power System Technology, vol. 2, page , [5]. J. Hu, Liang Y., J. Chen, H. Huang, Simulation Analysis for Asynchronous Operation Capacity of Turbogenerator under Excitation-Loss, Strategic Technology, pages: , [6]. I. M. Canay, Causes of discrepancy on calculation of rotor quantities and exact equivalent diagram of the synchronous machine, IEEE Transactions on Power Apparatus and Systems, pages , [7]. W. Guorui, L. Haisen, Time step finite element analysis for synchronous generator's asynchronous operation during loss of field, Power and Energy Society General Meeting, pages 1-4, [8]. IEEE Standards, IEEE Guide for AC Generator Protection, C37.102, [9]. J. Machowski, J. R. Bialek, J. R. Bumby, Power system dynamics: stability and control, John Wiley & Sons, Chichester, Autorzy mgr inż. Adam Gozdowiak dr inż. Piotr Kisielewski Politechnika Wrocławska Katedra Maszyn, Napędów i Pomiarów Elektrycznych ul. Smoluchowskiego 19, Wrocław adam.gozdowiak@pwr.edu.pl piotr.kisielewski@pwr.edu.pl
ZJAWISKA ELEKTROMAGNETYCZNE ZACHODZĄCE W WIRNIKU TURBOGENERATORA PODCZAS PRACY ASYNCHRONICZNEJ
95 Adam Gozdowiak, Piotr Kisielewski Politechnika Wrocławska, Wrocław ZJAWISKA ELEKTROMAGNETYCZNE ZACHODZĄCE W WIRNIKU TURBOGENERATORA PODCZAS PRACY ASYNCHRONICZNEJ ELECTROMAGNETIC PHENOMENA EXISTING IN
ANALIZA PRACY ASYNCHRONICZNEJ TURBOGENERATORA
Maszyny Elektryczne - Zeszyty Problemowe Nr 1/2015 (105) 33 Adam Gozdowiak, Ludwik Antal Politechnika Wrocławska, Wrocław ANALIZA PRACY ASYNCHRONICZNEJ TURBOGENERATORA THE ANALYSIS OF THE TURBOGENERATOR
WPŁYW FORSOWANIA PRĄDU WZBUDZENIA NA PRZEBIEG ZJAWISKA UTRATY SYNCHRONIZMU TURBOGENERATORA
71 Adam Gozdowiak, Ludwik Antal Politechnika Wrocławska, Wrocław WPŁYW FORSOWANIA PRĄDU WZBUDZENIA NA PRZEBIEG ZJAWISKA UTRATY SYNCHRONIZMU TURBOGENERATORA IMPACT FORCING OF EXCITATION CURRUNT ON PROCESS
ANALIZA PRZEBIEGU PRACY TURBOGENERATORA PO WYSTĄPIENIU SAMOCZYNNEGO PONOWNEGO ZAŁĄCZENIA LINII
Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 70 Politechniki Wrocławskiej Nr 70 Studia i Materiały Nr 34 2014 Adam GOZDOWIAK*, Piotr KISIELEWSKI* turbogenerator, stabilność, system
ZJAWISKA W OBWODACH TŁUMIĄCYCH PODCZAS ZAKŁÓCEŃ PRACY TURBOGENERATORA
Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 66 Politechniki Wrocławskiej Nr 66 Studia i Materiały Nr 32 212 Piotr KISIELEWSKI*, Ludwik ANTAL* maszyny synchroniczne, turbogeneratory,
Polowo-obwodowa analiza utraty synchronizmu turbogeneratora podczas anormalnych stanów pracy
Adam GOZDOWIAK, Piotr KISIELEWSKI Politechnika Wrocławska, Katedra Maszyn, Napędów i Pomiarów Elektrycznych doi:10.15199/48.2017.11.16 Polowo-obwodowa analiza utraty synchronizmu turbogeneratora podczas
SKŁADOWA PRZECIWNA PRĄDU STOJANA TURBOGENERATORA
Maszyny Elektryczne - Zeszyty Problemowe Nr 2/2015 (106) 209 Adam Gozdowiak, Piotr Kisielewski Politechnika Wrocławska, Wrocław SKŁADOWA PRZECIWNA PRĄDU STOJANA TURBOGENERATORA NEGATIVE SEQUENCE OF THE
MODELOWANIE UKŁADU REGULACJI MOCY CZYNNEJ TURBOGENERATORA
Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 69 Politechniki Wrocławskiej Nr 69 Studia i Materiały Nr 33 2013 Adam GOZDOWIAK*, Piotr KISIELEWSKI* turbogenerator, modelowanie polowo-obwodowe,
BADANIE STABILNOŚCI TURBOGENERATORA PRZY ZMIANACH OBCIĄśENIA
Zeszyty Problemowe Maszyny Elektryczne Nr 86/2010 207 Piotr Kisielewski, Ludwik Antal Politechnika Wrocławska, Wrocław BADANIE STABILNOŚCI TURBOGENERATORA PRZY ZMIANACH OBCIĄśENIA RESEARCH OF TURBOGENERATOR
NIEPRAWIDŁOWA SYNCHRONIZACJA TURBOGENERATORA
Maszyny Elektryczne - Zeszyty Problemowe Nr 1/2016 (109) 19 Adam Gozdowiak, Piotr Kisielewski, Ludwik Antal Politechnika Wrocławska, Wrocław NIEPRAWIDŁOWA SYNCHRONIZACJA TURBOGENERATORA ABNORMAL TURBOGENERATOR
Nieprawidłowa synchronizacja turbogeneratora
Nieprawidłowa synchronizacja turbogeneratora Adam Gozdowiak, Piotr Kisielewski, Ludwik Antal 1. Wstęp Proces przyłączenia turbogeneratora do systemu elektroenergetycznego jest poprzedzony sprawdzeniem
WYZNACZANIE I WERYFIKACJA PARAMETRÓW TURBOGENERATORA Z SYMULACJI POLOWEJ I POLOWO-OBWODOWEJ
Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 70 Politechniki Wrocławskiej Nr 70 Studia i Materiały Nr 34 014 Adam GOZDOWIAK*, Piotr KISIELEWSKI* turbogenerator, parametry elektromagnetyczne,
ZASTOSOWANIE MODELOWANIA POLOWO-OBWODOWEGO DO ANALIZY STANÓW NIEUSTALONYCH TURBOGENERATORA
Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 63 Politechniki Wrocławskiej Nr 63 Studia i Materiały Nr 29 2009 maszyny synchroniczne, turbogeneratory, modelowanie polowo-obwodowe,
Polowo-obwodowa analiza podwójnego zwarcia doziemnego w uzwojeniu wzbudzenia turbogeneratora
Adam GOZDOWIAK, Piotr KISIELEWSKI, Ludwik ANTAL Politechnika Wrocławska, Katedra Maszyn, Napędów i Pomiarów Elektrycznych doi:10.15199/48.2017.02.14 Polowo-obwodowa analiza podwójnego zwarcia doziemnego
SILNIK SYNCHRONICZNY ŚREDNIEJ MOCY Z MAGNESAMI TRWAŁYMI ZASILANY Z FALOWNIKA
Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 65 Politechniki Wrocławskiej Nr 65 Studia i Materiały Nr 31 2011 Piotr KISIELEWSKI* silnik synchroniczny, magnesy trwałe silnik zasilany
Sposób analizy zjawisk i właściwości ruchowych maszyn synchronicznych zależą od dwóch czynników:
Temat: Analiza pracy i właściwości ruchowych maszyn synchronicznych Sposób analizy zjawisk i właściwości ruchowych maszyn synchronicznych zależą od dwóch czynników: budowy wirnika stanu nasycenia rdzenia
Ćwiczenie: "Silnik indukcyjny"
Ćwiczenie: "Silnik indukcyjny" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: Zasada
Opracował: mgr inż. Marcin Wieczorek
Opracował: mgr inż. Marcin Wieczorek Jeżeli moment napędowy M (elektromagnetyczny) silnika będzie większy od momentu obciążenia M obc o moment strat jałowych M 0 czyli: wirnik będzie wirował z prędkością
OBLICZENIOWE BADANIE ZJAWISK WYWOŁANYCH USZKODZENIEM KLATKI WIRNIKA
Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 64 Politechniki Wrocławskiej Nr 64 Studia i Materiały Nr 3 21 Maciej ANTAL*, Ludwik ANTAL* silnik indukcyjny klatkowy, obliczenia numeryczne,
MOMENT ORAZ SIŁY POCHODZENIA ELEKTROMAGNETYCZNEGO W DWUBIEGOWYM SILNIKU SYNCHRONICZNYM
Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 59 Politechniki Wrocławskiej Nr 59 Studia i Materiały Nr 26 2006 Janusz BIALIKF *F, Jan ZAWILAK * elektrotechnika, maszyny elektryczne,
POLOWO OBWODOWY MODEL DWUBIEGOWEGO SILNIKA SYNCHRONICZNEGO WERYFIKACJA POMIAROWA
Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 56 Politechniki Wrocławskiej Nr 56 Studia i Materiały Nr 24 2004 Janusz BIALIK *, Jan ZAWILAK * elektrotechnika, maszyny elektryczne,
POLOWO - OBWODOWY MODEL BEZSZCZOTKOWEJ WZBUDNICY GENERATORA SYNCHRONICZNEGO
Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 60 Politechniki Wrocławskiej Nr 60 Studia i Materiały Nr 27 2007 maszyny synchroniczne,wzbudnice, modelowanie polowo-obwodowe Piotr KISIELEWSKI
CHARAKTERYSTYKI EKSPLOATACYJNE SILNIKA INDUKCYJNEGO Z USZKODZONĄ KLATKĄ WIRNIKA
Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 6 Politechniki Wrocławskiej Nr 6 Studia i Materiały Nr 24 24 Maciej ANTAL *, Ludwik ANTAL *, Jan ZAWILAK * Silnik indukcyjny, klatkowy,
ZWARTE PRĘTY ROZRUCHOWE W SILNIKU SYNCHRONICZNYM Z MAGNESAMI TRWAŁYMI O ROZRUCHU BEZPOŚREDNIM
` Maszyny Elektryczne Zeszyty Problemowe Nr 3/2015 (107) 145 Maciej Gwoździewicz Wydział Elektryczny, Politechnika Wrocławska ZWARTE PRĘTY ROZRUCHOWE W SILNIKU SYNCHRONICZNYM Z MAGNESAMI TRWAŁYMI O ROZRUCHU
SYNCHRONIZACJA SILNIKÓW SYNCHRONICZNYCH. WYBÓR CHWILI ZAŁĄCZENIA PRĄDU WZBUDZENIA
Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 54 Politechniki Wrocławskiej Nr 54 Studia i Materiały Nr 23 2003 PAWEŁ ZALAS *, JAN ZAWILAK * elektrotechnika, maszyny elektryczne, silniki
ŁAGODNA SYNCHRONIZACJA SILNIKA SYNCHRONICZNEGO DUŻEJ MOCY Z PRĘDKOŚCI NADSYNCHRONICZNEJ
Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 64 Politechniki Wrocławskiej Nr 64 Studia i Materiały Nr 3 21 Paweł ZALAS*, Jan ZAWILAK* maszyny elektryczne, silniki synchroniczne,
Wykład 4. Strumień magnetyczny w maszynie synchroniczne magnes trwały, elektromagnes. Magneśnica wirnik z biegunami magnetycznymi. pn 60.
Serwonapędy w automatyce i robotyce Wykład 4 Piotr Sauer Katedra Sterowania i Inżynierii Systemów Silnik synchroniczny - wprowadzenie Maszyna synchroniczna maszyna prądu przemiennego, której wirnik w stanie
LABORATORIUM PRZETWORNIKÓW ELEKTROMECHANICZNYCH
-CEL- LABORATORIUM PRZETWORNIKÓW ELEKTROMECHANICZNYCH PODSTAWOWE CHARAKTERYSTYKI I PARAMETRY SILNIKA RELUKTANCYJNEGO Z KLATKĄ ROZRUCHOWĄ (REL) Zapoznanie się z konstrukcją silników reluktancyjnych. Wyznaczenie
W stojanie (zwanym twornikiem) jest umieszczone uzwojenie prądu przemiennego jednofazowego lub znacznie częściej trójfazowe (rys. 7.2).
Temat: Rodzaje maszyn synchronicznych. 1. Co to jest maszyna synchroniczna. Maszyną synchroniczną nazywamy się maszyną prądu przemiennego, której wirnik w stanie ustalonym obraca się z taką samą prędkością,
2.3. Praca samotna. Rys Uproszczony schemat zastępczy turbogeneratora
E Rys. 2.11. Uproszczony schemat zastępczy turbogeneratora 2.3. Praca samotna Maszyny synchroniczne może pracować jako pojedynczy generator zasilający grupę odbiorników o wypadkowej impedancji Z. Uproszczony
Modelowanie samowzbudnych prądnic indukcyjnych
Modelowanie samowzbudnych prądnic indukcyjnych Roman Miksiewicz 1. Wstęp Jako indukcyjne generatory wiatrowe stosowane są zarówno maszyny klatkowe, jak i pierścieniowe. Szczególnie dla elektrowni wiatrowych
CHARAKTERYSTYKI EKSPLOATACYJNE SILNIKA INDUKCYJNEGO DUŻEJ MOCY Z USZKODZONĄ KLATKĄ WIRNIKA
Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 6 Politechniki Wrocławskiej Nr 6 Studia i Materiały Nr 27 27 Silnik indukcyjny, klatkowy, symulacja polowo-obwodowa, uszkodzenia klatki
Maszyny synchroniczne - budowa
Maszyny synchroniczne - budowa Maszyny synchroniczne używane są przede wszystkim do zamiany energii ruchu obrotowego na energię elektryczną. Pracują zatem jako generatory. W elektrowniach cieplnych używa
MODELOWANIE SAMOWZBUDNYCH PRĄDNIC INDUKCYJNYCH
Zeszyty Problemowe Maszyny Elektryczne Nr 1/2013 (98) 121 Roman Miksiewicz Politechnika Śląska, Gliwice MODELOWANIE SAMOWZBUDNYCH PRĄDNIC INDUKCYJNYCH MODELLING OF SELF-EXCITED INDUCTION GENERATORS Streszczenie:
Temat: ŹRÓDŁA ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO
Temat: ŹRÓDŁA ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO 1 Źródła energii elektrycznej prądu przemiennego: 1. prądnice synchroniczne 2. prądnice asynchroniczne Surowce energetyczne: węgiel kamienny i brunatny
DRGANIA ORAZ SIŁY POCHODZENIA ELEKTROMAGNETYCZNEGO W DWUBIEGOWYCH SILNIKACH SYNCHRONICZNYCH DUŻEJ MOCY
Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 63 Politechniki Wrocławskiej Nr 63 Studia i Materiały Nr 29 29 Janusz BIALIK*, Jan ZAWILAK** dwubiegowe silniki synchroniczne, analiza
SILNIK RELUKTANCYJNY PRZEŁĄCZALNY PRZEZNACZONY DO NAPĘDU MAŁEGO MOBILNEGO POJAZDU ELEKTRYCZNEGO
Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 66 Politechniki Wrocławskiej Nr 66 Studia i Materiały Nr 32 2012 Piotr BOGUSZ*, Mariusz KORKOSZ*, Jan PROKOP* silnik reluktancyjny przełączalny,
SILNIK BEZSZCZOTKOWY O WIRNIKU KUBKOWYM
Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 69 Politechniki Wrocławskiej Nr 69 Studia i Materiały Nr 33 2013 Marek CIURYS*, Ignacy DUDZIKOWSKI* maszyny elektryczne, magnesy trwałe,
ROZRUCH SILNIKÓW SYNCHRONICZNYCH DUŻEJ MOCY PRZY CZĘŚCIOWYM ZASILANIU UZWOJENIA STOJANA
Zeszyty Problemowe Maszyny Elektryczne Nr /9 Tomasz Zawilak Politechnika Wrocławska, Wrocław ROZRUCH SILNIKÓW SYNCHRONICZNYCH DUŻEJ MOCY PRZY CZĘŚCIOWYM ZASILANIU UZWOJENIA STOJANA PART WINDING STARTING
Maszyna indukcyjna jest prądnicą, jeżeli prędkość wirnika jest większa od prędkości synchronicznej, czyli n > n 1 (s < 0).
Temat: Wielkości charakteryzujące pracę silnika indukcyjnego. 1. Praca silnikowa. Maszyna indukcyjna jest silnikiem przy prędkościach 0 < n < n 1, co odpowiada zakresowi poślizgów 1 > s > 0. Moc pobierana
NOWA SERIA WYSOKOSPRAWNYCH DWUBIEGUNOWYCH GENERATORÓW SYNCHRONICZNYCH WZBUDZANYCH MAGNESAMI TRWAŁYMI
Zeszyty problemowe Maszyny Elektryczne Nr 100/2013 cz. II 65 Paweł Pistelok, Tomasz Kądziołka BOBRME KOMEL, Katowice NOWA SERIA WYSOKOSPRAWNYCH DWUBIEGUNOWYCH GENERATORÓW SYNCHRONICZNYCH WZBUDZANYCH MAGNESAMI
SILNIK ELEKTRYCZNY O WZBUDZENIU HYBRYDOWYM
ELEKTRYKA 2014 Zeszyt 2-3 (230-231) Rok LX Romuald GRZENIK Politechnika Śląska w Gliwicach SILNIK ELEKTRYCZNY O WZBUDZENIU HYBRYDOWYM Streszczenie. W artykule przedstawiono koncepcję bezszczotkowego silnika
Ćwiczenie: "Silnik prądu stałego"
Ćwiczenie: "Silnik prądu stałego" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: Zasada
Badanie prądnicy synchronicznej
POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH LABORATORIUM ELEKTRYCZNE Badanie prądnicy synchronicznej (E 18) Opracował: Dr inż. Włodzimierz OGULEWICZ
Badanie silnika indukcyjnego jednofazowego i transformatora
Zakład Napędów Wieloźródłowych Instytut Maszyn Roboczych Ciężkich PW Laboratorium Elektrotechniki i Elektroniki Ćwiczenie M3 - protokół Badanie silnika indukcyjnego jednofazowego i transformatora Data
Zakład Zastosowań Elektroniki i Elektrotechniki
Zakład Zastosowań Elektroniki i Elektrotechniki Laboratorium ytwarzania energii elektrycznej Temat ćwiczenia: Badanie prądnicy synchronicznej 4.2. BN LBOTOYJNE 4.2.1. Próba biegu jałowego prądnicy synchronicznej
Wykład 2 Silniki indukcyjne asynchroniczne
Wykład 2 Silniki indukcyjne asynchroniczne Katedra Sterowania i InŜynierii Systemów 1 Budowa silnika inukcyjnego Katedra Sterowania i InŜynierii Systemów 2 Budowa silnika inukcyjnego Tabliczka znamionowa
POLITECHNIKA GDAŃSKA LABORATORIUM MASZYNY ELEKTRYCZNE
POLITECHNIKA GDAŃSKA WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI KATEDRA ENERGOELEKTRONIKI I MASZYN ELEKTRYCZNYCH LABORATORIUM MASZYNY ELEKTRYCZNE ĆWICZENIE (PS) MASZYNY SYNCHRONICZNE BADANIE CHARAKTERYSTYK PRĄDNICY/GENERATORA
ZASTOSOWANIE SKOSU STOJANA W JEDNOFAZOWYM SILNIKU SYNCHRONICZNYM Z MAGNESAMI TRWAŁYMI
Maszyny Elektryczne - Zeszyty Problemowe Nr 3/2016 (111) 29 Maciej Gwoździewicz, Mariusz Mikołajczak Politechnika Wrocławska, Wrocław ZASTOSOWANIE SKOSU STOJANA W JEDNOFAZOWYM SILNIKU SYNCHRONICZNYM Z
TECHNOLOGIA MONTAŻU MAGNESÓW TRWAŁYCH W WIRNIKU SILNIKA SYNCHRONICZNEGO DUŻEJ MOCY
Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 64 Politechniki Wrocławskiej Nr 64 Studia i Materiały Nr 30 2010 Piotr KISIELEWSKI* silniki synchroniczne, magnesy trwałe, technologia
Silniki indukcyjne. Ze względu na budowę wirnika maszyny indukcyjne dzieli się na: -Maszyny indukcyjne pierścieniowe. -Maszyny indukcyjne klatkowe.
Silniki indukcyjne Ze względu na budowę wirnika maszyny indukcyjne dzieli się na: -Maszyny indukcyjne pierścieniowe. -Maszyny indukcyjne klatkowe. Silniki pierścieniowe to takie silniki indukcyjne, w których
Laboratorium Elektromechaniczne Systemy Napędowe BADANIE AUTONOMICZNEGO GENERATORA INDUKCYJNEGO
Laboratorium Elektromechaniczne Systemy Napędowe Ćwiczenie BADANIE AUTONOMICZNEGO GENERATORA INDUKCYJNEGO Instrukcja Opracował: Dr hab. inż. Krzysztof Pieńkowski, prof. PWr Wrocław, listopad 2014 r. Ćwiczenie
WPŁYW UKŁADU STEROWANIA PRĄDEM WZBUDZENIA NA PROCES SYNCHRONIZACJI SILNIKA SYNCHRONICZNEGO
Zeszyty Problemowe Maszyny Elektryczne Nr 75/26 83 Paweł Zalas, Jan Zawilak Politechnika Wrocławska, Wrocław WPŁYW UKŁADU STEROWANIA PRĄDEM WZBUDZENIA NA PROCES SYNCHRONIZACJI SILNIKA SYNCHRONICZNEGO INFLUENCE
PORÓWNANIE SILNIKA INDUKCYJNEGO Z SILNIKIEM SYNCHRONICZNYM Z MAGNESAMI TRWAŁYMI I ROZRUCHEM BEZPOŚREDNIM
Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 58 Politechniki Wrocławskiej Nr 58 Studia i Materiały Nr 25 25 Silnik synchroniczny,rozruch bezpośredni, magnesy trwałe modelowanie polowo-obwodowe
DWUKIERUNKOWY JEDNOFAZOWY SILNIK SYNCHRONICZNY Z MAGNESAMI TRWAŁYMI
Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 69 Politechniki Wrocławskiej Nr 69 Studia i Materiały Nr 33 2013 Maciej GWOŹDZIEWICZ*, Jan ZAWILAK* jednofazowy silnik indukcyjny, jednofazowy
WPŁYW USZKODZENIA TRANZYSTORA IGBT PRZEKSZTAŁTNIKA CZĘSTOTLIWOŚCI NA PRACĘ NAPĘDU INDUKCYJNEGO
Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 69 Politechniki Wrocławskiej Nr 69 Studia i Materiały Nr 33 2013 Kamil KLIMKOWSKI*, Mateusz DYBKOWSKI* DTC-SVM, DFOC, silnik indukcyjny,
Oddziaływanie wirnika
Oddziaływanie wirnika W każdej maszynie prądu stałego, pracującej jako prądnica lub silnik, może wystąpić taki szczególny stan pracy, że prąd wirnika jest równy zeru. Jedynym przepływem jest wówczas przepływ
BADANIE WYŁĄCZNIKA RÓŻNICOWOPRĄDOWEGO
PRACE NAUKOWE Akademii im. Jana Długosza w Częstochowie SERIA: Edukacja Techniczna i Informatyczna 2010 z. V M. Drabik, A. Roman Akademia im. Jana Długosza w Częstochowie BADANIE WYŁĄCZNIKA RÓŻNICOWOPRĄDOWEGO
WPŁYW KLINÓW MAGNETYCZNYCH NA WŁAŚCIWOŚCI ROZRUCHOWE SILNIKA INDUKCYJNEGO
Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 63 Politechniki Wrocławskiej Nr 63 Studia i Materiały Nr 29 29 Tomasz ZAWILAK* silnik indukcyjny, kliny magnetyczne, rozruch bezpośredni,
WPŁYW PARAMETRÓW UKŁADU NAPĘDOWEGO NA SKUTECZNOŚĆ SYNCHRONIZACJI SILNIKA DWUBIEGOWEGO
Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 6 Politechniki Wrocławskiej Nr 6 Studia i Materiały Nr 27 27 maszyny elektryczne, silniki synchroniczne dwubiegowe, synchronizacja, obliczenia
ZESPOŁY PRĄDOTWÓRCZE W UKŁADACH AWARYJNEGO ZASILANIA OBIEKTÓW BUDOWLANYCH
ZESPOŁY PRĄDOTWÓRCZE W UKŁADACH AWARYJNEGO ZASILANIA OBIEKTÓW BUDOWLANYCH SERIA: ZESZYTY DLA ELEKTRYKÓW NR 3 Julian Wiatr ZESPOŁY PRĄDOTWÓRCZE W UKŁADACH AWARYJNEGO ZASILANIA OBIEKTÓW BUDOWLANYCH OCHRONA
Detekcja asymetrii szczeliny powietrznej w generatorze ze wzbudzeniem od magnesów trwałych, bazująca na analizie częstotliwościowej prądu
Detekcja asymetrii szczeliny powietrznej w generatorze ze wzbudzeniem od magnesów trwałych, bazująca na analizie częstotliwościowej Marcin Barański 1. Wstęp szczeliny powietrznej w maszynie elektrycznej
Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 5. Analiza pracy oraz zasada działania silników asynchronicznych
ĆWCZENE 5 Analiza pracy oraz zasada działania silników asynchronicznych 1. CEL ĆWCZENA Celem ćwiczenia jest zapoznanie się z podstawowymi układami elektrycznego sterowania silnikiem trójfazowym asynchronicznym
Silniki synchroniczne
Silniki synchroniczne Silniki synchroniczne są maszynami synchronicznymi i są wykonywane jako maszyny z biegunami jawnymi, czyli występują w nich tylko moment synchroniczny, a także moment reluktancyjny.
BADANIA SYMULACYJNE PROCESU SYNCHRONIZACJI SILNIKÓW INDUKCYJNYCH PIERŚCIENIOWYCH
Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 65 Politechniki Wrocławskiej Nr 65 Studia i Materiały Nr 31 2011 Stanisław AZAREWICZ, Adam ZALAS, Paweł ZALAS* maszyny elektryczne, silniki
SAMOCZYNNA SYNCHRONIZACJA SILNIKÓW LSPMSM
Maszyny Elektryczne - Zeszyty Problemowe Nr 3/2018 (119) 139 Paweł Zalas, Jan Zawilak Politechnika Wrocławska, Wrocław SAMOCZYNNA SYNCHRONIZACJA SILNIKÓW LSPMSM AUTOMATIC SYNCHRONIZATION OF MOTORS TYPE
DWUBIEGOWY SILNIK SYNCHRONICZNY SYNCHRONIZOWANY NAPIĘCIEM ZMIENNYM
Prace Naukowe Instytutu aszyn, Napędów i Pomiarów Elektrycznych Nr 63 Politechniki Wrocławskiej Nr 63 Studia i ateriały Nr 29 2009 maszyny elektryczne, silniki synchroniczne, synchronizacja, obliczenia
Silniki prądu stałego. Wiadomości ogólne
Silniki prądu stałego. Wiadomości ogólne Silniki prądu stałego charakteryzują się dobrymi właściwościami ruchowymi przy czym szczególnie korzystne są: duży zakres regulacji prędkości obrotowej i duży moment
MAGNETOELEKTRYCZNY SILNIK MAŁEJ MOCY Z KOMPAKTOWYM WIRNIKIEM HYBRYDOWYM I Z ROZRUCHEM SYNCHRONICZNYM
Zeszyty Problemowe Maszyny Elektryczne Nr /1 (1) 1 Ludwik Antal, Paweł Zalas Instytut Maszyn, Napędów i Pomiarów Elektrycznych, Politechnika Wrocławska, Wrocław MAGNETOELEKTRYCZNY SILNIK MAŁEJ MOCY Z KOMPAKTOWYM
W3 Identyfikacja parametrów maszyny synchronicznej. Program ćwiczenia:
W3 Identyfikacja parametrów maszyny synchronicznej Program ćwiczenia: I. Część pomiarowa 1. Rejestracja przebiegów prądów i napięć generatora synchronicznego przy jego trójfazowym, symetrycznym zwarciu
MASZYNA SYNCHRONICZNA
MASZYNA SYNCHRONICZNA Wytwarzanie prądów przemiennych d l w a Prądnica prądu przemiennego jej najprostszym modelem jest zwój wirujący w równomiernym polu magnetycznym ze stałą prędkością kątową w. Wytwarzanie
Rys. 1. Krzywe mocy i momentu: a) w obcowzbudnym silniku prądu stałego, b) w odwzbudzanym silniku synchronicznym z magnesem trwałym
Tytuł projektu : Nowatorskie rozwiązanie napędu pojazdu elektrycznego z dwustrefowym silnikiem BLDC Umowa Nr NR01 0059 10 /2011 Czas realizacji : 2011-2013 Idea napędu z silnikami BLDC z przełączalną liczbą
WPŁYW OSADZENIA MAGNESU NA PARAMETRY SILNIKA MAGNETOELEKTRYCZNEGO O ROZRUCHU BEZPOŚREDNIM
Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 65 Politechniki Wrocławskiej Nr 65 Studia i Materiały Nr 31 2011 Tomasz ZAWILAK* silnik synchroniczny, magnesy trwałe, rozruch bezpośredni
transformatora jednofazowego.
Badanie transformatora jednofazowego. Celem ćwiczenia jest zapoznanie się z budową, zasadami działania oraz podstawowymi właściwościami transformatora jednofazowego pracującego w stanie jałowym, zwarcia
Przetworniki Elektromaszynowe st. n.st. sem. V (zima) 2016/2017
Kolokwium poprawkowe Wariant A Przetworniki Elektromaszynowe st. n.st. sem. V (zima 016/017 Transormatory Transormator trójazowy ma następujące dane znamionowe: 60 kva 50 Hz HV / LV 15 750 ± x,5% / 400
1. W zależności od sposobu połączenia uzwojenia wzbudzającego rozróżniamy silniki:
Temat: Silniki prądu stałego i ich właściwości ruchowe. 1. W zależności od sposobu połączenia uzwojenia wzbudzającego rozróżniamy silniki: a) samowzbudne bocznikowe; szeregowe; szeregowo-bocznikowe b)
WYKORZYSTANIE EFEKTU WYPIERANIA PRĄDU W ROZRUCHU BEZPOŚREDNIM MASZYN WZBUDZANYCH MAGNESAMI TRWAŁYMI
Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 66 Politechniki Wrocławskiej Nr 66 Studia i Materiały Nr 32 2012 Tomasz ZAWILAK* silnik synchroniczny, magnesy trwałe, rozruch bezpośredni
Ćwiczenie: "Prądnica prądu przemiennego"
Ćwiczenie: "Prądnica prądu przemiennego" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia:
ZWARCIE POMIAROWE JAKO METODA WYKRYWANIA USZKODZEŃ KLATKI WIRNIKA SILNIKA INDUKCYJNEGO
Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 54 Politechniki Wrocławskiej Nr 54 Studia i Materiały Nr 23 23 Maciej ANTAL * Silnik indukcyjny, diagnostyka, uszkodzenia klatki wirnika
SILNIK INDUKCYJNY KLATKOWY
SILNIK INDUKCYJNY KLATKOWY 1. Budowa i zasada działania silników indukcyjnych Zasadniczymi częściami składowymi silnika indukcyjnego są nieruchomy stojan i obracający się wirnik. Wewnętrzną stronę stojana
Przegląd koncepcji maszyn wzbudzanych hybrydowo do zastosowania w napędzie samochodów
IX Konferencja Naukowo-Techniczna i-mitel 2016 Piotr PAPLICKI 1, Ryszard PAŁKA 1, Marcin WARDACH 1 Zachodniopomorski Uniwersytet Technologiczny w Szczecinie, Wydział Elektryczny, Katedra Elektroenergetyki
Energooszczędne silniki elektryczne prądu przemiennego
prof. dr hab. inż. JAN ZAWILAK Instytut Maszyn, Napędów i Pomiarów Elektrycznych Politechnika Wrocławska Energooszczędne silniki elektryczne prądu przemiennego W artykule przedstawiono wyniki badań dotyczących
JEDNOFAZOWY SILNIK SYNCHRONICZNY Z MAGNESAMI TRWAŁYMI. KONSTRUKCJA I PARAMETRY
Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 65 Politechniki Wrocławskiej Nr 65 Studia i Materiały Nr 31 2011 Maciej GWOŹDZIEWICZ* Jan ZAWILAK* jednofazowy silnik indukcyjny, jednofazowy
ROZRUCH SILNIKÓW SYNCHRONICZNYCH Z MAGNESAMI TRWAŁYMI
Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr Politechniki Wrocławskiej Nr Studia i Materiały Nr Ludwik ANTAL*, Maciej ANTAL* silniki synchroniczne z magnesami trwałymi, rozruch bezpośredni,
Silnik indukcyjny - historia
Silnik indukcyjny - historia Galileo Ferraris (1847-1897) - w roku 1885 przedstawił konstrukcję silnika indukcyjnego. Nicola Tesla (1856-1943) - podobną konstrukcję silnika przedstawił w roku 1886. Oba
ANALIZA STRUKTUR MAGNETOELEKTRYCZNYCH SILNIKÓW SYNCHRONICZNYCH O ROZRUCHU CZĘSTOTLIWOŚCIOWYM. OBLICZENIA
Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 66 Politechniki rocławskiej Nr 66 Studia i Materiały Nr 32 212 Cezary JĘDRYCZKA*, iesław ŁYSKAIŃSKI*, Jacek MIKOŁAJEICZ*, Rafał OJCIECHOSKI*
ANALIZA PORÓWNAWCZA WYBRANYCH MODELI SILNIKÓW TARCZOWYCH Z MAGNESAMI TRWAŁYMI
239 Tomasz Wolnik BOBRME KOMEL, Katowice ANALIZA PORÓWNAWCZA WYBRANYCH MODELI SILNIKÓW TARCZOWYCH Z MAGNESAMI TRWAŁYMI ANALYSIS AND COMPARISON OF SELECTED MODELS OF AXIAL FLUX PERMANENT MAGNET MOTORS Streszczenie:
WYSOKOSPRAWNY JEDNOFAZOWY SILNIK LSPMSM O LICZBIE BIEGUNÓW 2p = 4 BADANIA EKSPERYMENTALNE
Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 70 Politechniki Wrocławskiej Nr 70 Studia i Materiały Nr 34 2014 Agata PIESIEWICZ, Maciej GWOŹDZIEWICZ*, Paweł ZALAS* jednofazowy silnik
Silniki prądu przemiennego
Silniki prądu przemiennego Podział maszyn prądu przemiennego Asynchroniczne indukcyjne komutatorowe jedno- i wielofazowe synchroniczne ze wzbudzeniem reluktancyjne histerezowe Silniki indukcyjne uzwojenie
WERYFIKACJA POMIAROWA MODELU POLOWO- OBWODOWEGO HYDROGENERATORA ZAINSTALOWANEGO W ELEKTROWNI SZCZYTOWO-POMPOWEJ W ŻYDOWIE
Zeszyty Problemowe Maszyny Elektryczne Nr 4/214 (14) 137 Sebastian Berhausen, Andrzej Boboń, Roman Miksiewicz Politechnika Śląska, Gliwice WERYFIKACJA POMIAROWA MODELU POLOWO- OBWODOWEGO HYDROGENERATORA
Maszyny Elektryczne i Transformatory st. n. st. sem. III (zima) 2018/2019
Kolokwium poprawkowe Wariant A Maszyny Elektryczne i Transormatory st. n. st. sem. III (zima) 018/019 Transormator Transormator trójazowy ma następujące dane znamionowe: S 00 kva 50 Hz HV / LV 15,75 ±x,5%
DRGANIA WŁASNE KONSTRUKCJI DWUBIEGOWEGO SILNIKA SYNCHRONICZNEGO
Zeszyty Problemowe Maszyny Elektryczne Nr 80/2008 193 Janusz Bialik, Jan Zawilak Politechnika Wrocławska, Wrocław DRGANIA WŁASNE KONSTRUKCJI DWUBIEGOWEGO SILNIKA SYNCHRONICZNEGO FREE VIBRATION ANALYSIS
Studia i Materiały Nr
Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 49 Politechniki Wrocławskiej Nr 49 Studia i Materiały Nr 21 2000 Roman KROK* turbogeneratory, modele cieplne, obliczenia pól temperatury,
Parametry elektryczne i czasowe układów napędowych wentylatorów głównego przewietrzania kopalń z silnikami asynchronicznymi
dr inż. ANDRZEJ DZIKOWSKI Instytut Technik Innowacyjnych EMAG Parametry elektryczne i czasowe układów napędowych wentylatorów głównego przewietrzania kopalń z silnikami asynchronicznymi zasilanymi z przekształtników
Temat: Analiza pracy transformatora: stan jałowy, obciążenia i zwarcia.
Temat: Analiza pracy transformatora: stan jałowy, obciążenia i zwarcia. Transformator może się znajdować w jednym z trzech charakterystycznych stanów pracy: a) stanie jałowym b) stanie obciążenia c) stanie
BADANIA SYMULACYJNE SILNIKA ASYNCHRONICZNEGO SYNCHRONIZOWANEGO MOMENTEM RELUKTANCYJNYM
Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 63 Politechniki Wrocławskiej Nr 63 Studia i Materiały Nr 29 2009 Damian KRAWCZYK* silnik asynchroniczny, moment reluktancyjny, symulacja
ZJAWISKA CIEPLNE W MODELU MASZYNY SYNCHRONICZNEJ Z MAGNESAMI TRWAŁYMI
63 Paweł Dybowski, Tomasz Lerch, Waldemar Milej AGH Akademia Górniczo-Hutnicza, Kraków ZJAWISKA CIEPLNE W MODELU MASZYNY SYNCHRONICZNEJ Z MAGNESAMI TRWAŁYMI THERMAL PHENOMENA IN THE MODEL OF PERMANENT
AWARYJNE STANY PRACY SILNIKÓW INDUKCYJNYCH PIERŚCIENIOWYCH
Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 69 Politechniki Wrocławskiej Nr 69 Studia i Materiały Nr 33 2013 Stanisław AZAREWICZ, Adam ZALAS, Paweł ZALAS* maszyny elektryczne, silniki
BADANIE JEDNOFAZOWEGO SILNIKA ASYNCHRONICZNEGO Strona 1/5
BADANIE JEDNOFAZOWEGO SILNIKA ASYNCHRONICZNEGO Strona 1/5 BADANIE JEDNOFAZOWEGO SILNIKA ASYNCHRONICZNEGO 1. Wiadomości wstępne Silniki asynchroniczne jednofazowe są szeroko stosowane wszędzie tam, gdzie
ZASTOSOWANIE MONOLITYCZNYCH NADPRZEWODNIKÓW WYSOKOTEMPERATUROWYCH W MASZYNACH ELEKTRYCZNYCH
Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 62 Politechniki Wrocławskiej Nr 62 Studia i Materiały Nr 28 2008 monolityczne nadprzewodniki wysokotemperaturowe magnesy nadprzewodzące