Struktury danych. przez użytkownika, jak to ma miejsce w przypadku zwykłych zmiennych statycznych.

Wielkość: px
Rozpocząć pokaz od strony:

Download "Struktury danych. przez użytkownika, jak to ma miejsce w przypadku zwykłych zmiennych statycznych."

Transkrypt

1 Struktury danych 1. Dynamiczne struktury danych Zmienna dynamiczna jest to zmienna, która pojawia się(i znika) wtedy gdy jest potrzebna(lub nie jest) podczas wykonywania się programu. Zwykłe zmienne statyczne, istnieją przez cały czas wykonywania się programu. Odwołania do zmiennychdynamicznychodbywająsiępoprzezwskazy 1,anieprzeznazwydefiniowane przez użytkownika, jak to ma miejsce w przypadku zwykłych zmiennych statycznych. W skazy. Sytuację tę możemy graficznie przedstawić tak jak pokazano niżej. w z Wskaz w (pointer) pokazuje jakąś wielkość z, której wartość umieszczona jest w jakimś miejscu pamięci komputera(reprezentowanym na rysunku przez prostokąt). Jak zadeklarować zmienną dynamiczną? Można dokonać tego przez zgłoszenie, zdefiniowanie typu( patrz diagram poniżej). -->( type )-->[ Nazwa typu ]-->( = )-->( ^ )-->[ Typ bazowy ]-->( ; )--> Przykład. type intwskaz=\^{~}integer;\\ var iw: intwskaz; W ten sposób iw jest zmienną wskazującą wielkości typu integer. Wartość zmiennej wskazanej przez iw jest zadana przez iw^. iw 5 iw^=5. W przedstawionej sytuacji wartość zmiennej pokazywanej przez iw jest równa 5(to zawartość obszaru wskazywanego przez iw). Przykład. Innym przykładem jest zmienna wk typu wrek zdefiniowana następująco: type wrek=^kalendarz kalendarz=record miesiac: (Sty,Lut,Mar,Kwi,Maj,Cze,Lip,Sie,Wrz,Paz,Lis,Gru); dzien : Czasamiużywasięteżnazwywskaźnikicomożesięmylićzewskaźnikamitabliclubnazwy angielskiej pointers. 1

2 end; var wk: wrek; Zmienna wk jest wskazem do zmiennej o dwóch polach skalarnych: miesiac i dzien. wk Gru 28 Pola rekordu zawierającego fragment kalendarza są dostępne poprzez następujące wielkości wk^.miesiac wk^.dzien Istnieją dwie procedury Turbo Pascala, które tworzą lub usuwają(niszczą) zmienne dynamiczne. Są to new(p) oraz dispose(p) Wywołanie procedury new(p) powoduje nadanie wartości wskazowi p oraz utworzenie zmiennej wskazywanej przez p. Wywołanie podprogramu dispose(p) powoduje zwolnienie pamięci zarezerwowanej dla zmiennej wskazywanej przez p oraz"wyzerowanie"p: p=nil. Wielkość nil jest słowem zarezerwowanym języka Pascal i oznacza ńic". Zmienna o wartościnil nic nie pokazuje. Wskazy mogą pokazywać złożone struktury danychpascala. Mogą to być np. drzewa binarne (patrz dalej). A /\ / \ / \ / \ B E /\ /\ / \ / \ / \ / \ C D F G / /\ I J K / \ Drzewo binarne type wskaz=^wezel; wezel=record lewywskaz : wskaz; nazwa : char prawywskaz: wskaz; end; var p, root: wskaz; 2

3 Każdy węzeł zawiera trzy pola: dwa wskazania do innych węzłów, lewego i prawego (lewywskaz, prawywskaz) oraz "wartość", nazwa, którą jest pojedynczy znak. Chcę zwrócić uwagę, że nie deklarujemy zmiennych typu wezel lecz wskazy! do zmiennych tego typu. Są to wskazy p oraz root. Chcąc utworzyć drzewo o jednym węźle napiszemy new(root); { rezerwacja miejsca + nadanie wartości zmiennej root } root^.nazwa:= a ; { definicja pola nazwy węzła } root^.lewywskaz:=nil; { brak węzła z lewej strony } root^.prawywskaz:=nil; { brak węzła z prawej strony } Schematycznie ygląda to następująco: root nil a nil Jeśli chcemy by któryś ze wskazów pokazywał inny węzeł, tak jak np. tutaj root nil a * nil b nil to możemy to zapisać tak new(p); { rezerwacja miejsca + nadanie wartości zmiennej p } root^.prawywskaz:=p; { prawy wskaz pokazuje nowy węzeł } p^.nazwa:= b ; { definicja pola nazwy węzła } p^.lewywskaz:=nil; { brak węzła z lewej strony } p^.prawywskaz:=; { brak węzła z prawej strony } Jeśli teraz chcielibyśmy usunąć utworzony właśnie węzeł, zapiszemy: root^.prawywskaz:=nil; dispose(p) { usuwa zarezerwowaną wcześniej przestrzeń zajmowaną przez zmienną wskazywaną przez p } L isty jednostronne. Przykładem zastosowania rekordów i wskazów jest jednostronna lista połączona. Jest to struktura, której węzły zawierają dane i pokazują następne elementy listy. -nagłówek- dane dane... dane Włączanie nowych elementów do listy jednostronnej. Załóżmy, że mamy następującą listę Jeśli między dwa elementy, np. [10 ], [15 ] tej listy, chcemy wprowadzić element [12 ] wystarczy zarezerwować miejsce w pamięci na element 3

4 [12 ]. W elemencie [12 ] wstawić wartość wskazu do elementu [15 ] i następnie wstawić wartość wskazu do elementu [12 ] w elemencie [10 ]. Przykładem konkretnej realizacji może być terminarz spotkań, który zawiera godzinę, nazwisko osoby oraz wskażuje następne spotkanie. Wykonanie terminarza przy użyciu tablic nie byłoby tak proste jak to z użyciem list. Napiszemy program, który definiuje listę spotkań. Przykład. type wsk=^spotkania; spotkania=record dane=record osoba: array[1..20] of char; godzina: 0..23; minuta: end; nastepny: wsk { wskaz do następnego spotkania } end; var naglowek: wsk; Zadanie 1. Organizator spotkań 3 Napisz program, organizator spotkań, który pozwala założyć i modyfikować listę spotkań (wstawiać, usuwać). Elementami listy niech będą godzina, minuta, osoba (nazwisko) i miejsca spotkania (adres). M acierze kwadratowe. Duże macierze kwadratowe, np. macierz o wymiarach , czyli zawierająca elementów, stwarzają duży problem numeryczny. Jak zorganizować dane i program, który musi nimi operować? Jednym z możliwych rozwiązań jest następujące. Można wczytywać z pliku jeden wiersz macierzy i mieć szybki dostęp do 5000 elementów na raz. Co jednak zrobić gdy potrzebne są dwa lub więcej wierszy na raz? Tak jest np. w przypadku mnożenia macierzy. Zadanie 2. Złożoność 2 Napisz program, który czyta plik z tablicą liczb rzeczywistych o wymiarach Oceń stopień złożoności programu. Znajdż czas obliczania sumy elementów takiej tablicy. Zadanie 3. Wyznacznik 2 Policz wyznacznik tablicy złożonej z liczb losowych z przedziału <0,1> wygenerowanych przez funkcje rand()turbo Pascala. Literatura: Cormen Leiserson, Rievest,... Do dynamicznych struktur danych należą stosy, kolejki, drzewa itp. Jak zawsze, z każdym typem danych, związane są typowe dla danej struktury operacje. Operacje wykonywane na zbiorach dynamicznych, takie jak wstawianie elementów, usuwanie elementów oraz sprawdzanie przynależności elementu do zbioru można podzielić nazapytania i operacjemodyfikujace. Są to Search, Insert, Delete, Minimum, Maximum, Successor, Predecessor, itp. W kolejnych częściach omówimy różne struktury danych dynamicznych wraz z odpowiadającymi im operacjami. 4

5 1.1. Stosy, kolejki, listy, drzewa S tos S jest dynamiczną strukturą danych, w której element najpóźniej dodany do struktury usuwany jest jako pierwszy (Last in, First out; jest to tzw. struktura LiFo). Zwyczajowo, operacja Insert nosi nazwę Push, a operacja Delete nazywa siępop. Przykłady: stos talerzy w barach samoobsługowych, stos rozkazów i danych w pamięci komputera, itp. Stos o liczbie elementów nie większej niżnmożna zaimplementować w tablicy S[1..n]. Dodatkowa cecha (atrybut)top[s] określa aktualną długość stosu S. Elementem na dnie stosu jest S[1], a S[top[S]] jest ostatnim elementem stosu. Jeśli top[s] = 0 to stos jest pusty (Stack-Empty). Próba zdjęcia elementu ze stosu pustego nazywa sięniedomiarem., W przypadku gdy top[s] > n (przekroczona dopuszczalna długość stosu) mówimy, że stos jestprzepełniony. Poniżej przedstawione są algorytmy typowych operacji na stosach. Stack-Empty(S) 1 if top[s]=0 2 then return True 3 else return False Push(S,x) 1 top[s] <- top[s]+1 2 S[top[S]] <- x Pop(S) 1 if Stack-Empty(S) 2 then error,,niedomiar 3 else top[s] <- top[s]-1 4 return S[top[S]+1] Rysunek przedstawia działanie operacji Push i Pop na stosie S. (a) (b) (c) xxxxx xxxxxxxxxxxxxx S xxxxxxxxxxxxxxxxxxxxx S xxxxxxxxxxxxxx xxxxx S 4 xxxxx 3 xxxxx xxxxx xxxxx top[s]=5 top[s]=7 top[s]=6 Zadanie 4. Palindromy 2 Napisać program, który rozpoznaje palindromy, wykorzystując stos i operacje na stosie. K olejki reprezentują np. kolejki ludzi na poczcie, w banku lub sklepie, kolejka samochodów na skrzyżowaniu, itp. Operacja wstawiania do kolejki nazywana jestenqueue, a operacją usuwania elementu z kolejki jestdequeue. Kolejka posiada początek, head (głowę) oraz koniec tail (ogon). Element może być usunięty z kolejki jeśli tylko wtedy gdy znajduje się na jej początku. 5

6 Rysunek poniżej przedstawia implementację kolejki o maksymalnej liczbie elementów n 1 = 10 oraz działanie operacji Enqueue i Dequeue na tej kolejce. Tutaj przyjęto, że tablica reprezentująca kolejkę jest cykliczna, tzn. pozycja o numerze 1 jest następnikiem pozycji o numerze n. (a) (b) (c) xxxxxxxxxxxxxxxxxxxxx Q xxxxx Q Q xxxxx xxxxx xxxxx 8 12 xxxxx head[q]=3 tail[q]=7 tail[q]=3 head[q]=5 tail[q]=3 head[q]=5 Algorytmy dodawania elementów do kolejki i usuwania elementów z kolejki przedstawiamy poniżej. Enqueue(Q,x) /* wstaw element x do kolejki */ 1 Q[tail[Q]] <- x 2 if tail[q]=length[q] 3 then tail[q] <- 1 4 else tail[q] <- tail[q]+1 Dequeue(Q) /* Usun element z kolejki */ 1 x <- Q[head[Q]] 2 if head[q]=length[q] 3 then head[q] <- 1 4 else head[q] <- head[q]+1 5 return Zadanie 5. Kolejki 3 Kolejka dwustronna (dwukierunkowa) jest strukturą danych pozwalającą na wstawianie i usuwanie elementów na obu jej końcach. Napisz cztery procedury, służące do wstawiania i usuwania elementów z obu końców kolejki przechowywanej w tablicy. Zadanie 6. Kolejki i stosy 2 Pokaż, jak zaimplementować kolejkę, używając dwóch stosów. Oszacuj czas działania operacji na takiej kolejce. Zadanie 7. Stosy i kolejki 2 Pokaż, jak zaimplementować stos za pomocą dwóch kolejek. Oszacuj czas działania operacji na takim stosie. L ista z dowiązaniami jest strukturą danych, w której elementy są ułożone w liniowym porządku. Porządek wyznaczają indeksy, wskazy, związane z każdym elementem listy. Lista posiada początek (head) i koniec (tail). Elementy listy mają swoje poprzedniki (prev, odprevious) oraz następniki (next). Często mamy doczynienia z listami posortowanymi. Operacje związane z listami to: wyszukiwanie, wstawianie elementów i usuwanie elementów. Elementy listy składają sie z pól zawierających wskazy do elementów poprzedniego i następnego. Jeśli takich elementów nie ma to wskaz zawiera wartość Nil. Oprócz pól zawierających wskazy, elementy listy zawierają pola zwane kluczami (key). Pola te mogą być dowolnego typu. 6

7 Mogą to być np. różnego rodzaju rekordy itp. Przykład bardzo prostej listy pokazany jest na rysunku. head prev next tail Nil key (klucz) Nil List-Search(L,k) 1 x <- head[l] 2 while x <> Nil i key[x] <> k 3 do x <- next[x] 4 return List-Insert /* wstaw na poczatek listy L */ 1 next[x] <- head[l] 2 if head[l] <> Nil 3 then prev[head[l]] <- x 4 head[l] <- x 5 prev[x] <- Nil Algorytm ten pozwala wstawiać element x na początek listy. Następny algorytm usuwa element listy. W realizacji list za pomocą tablic wartość usuwanego elementu tablicy pozostaje niezmieniona. W ten sposób zaśmieca się pamięć (tablicę) reprezentującą listę. Podobnie dzieje się gdy korzystamy bezpośrednio z zasobów pamięci komputera używając wskazów. List-Delete(L,k) 1 if prev[x] <> Nil 2 then next[prev[x]] <- next[x] 3 else head[l] <- next[x] 4 if next[x] <> Nil 5 then prev[next[x]] <- prev[x] Jeśli udałoby się pominąć warunki brzegowe dotyczące głowy i ogona listy dwukierunkowej, wówczas treść procedury Delete byłaby prostsza. List-Delete(L, x) 1 next[prev[x]] <- next[x] 2 prev[next[x]] <- prev[x] Można to osiągnąć wprowadzając tzw. wartownika, który jest elementem NIL listy. Jeśli każdy wskażnik do Nil zamienimy wskaźnikiem do wartownika to lista staje się listą cykliczną. wartownik nil[l] Zadanie 8. Listy 2 Napisać procedurę List-Search i List-Insert dla przypadku listy cyklicznej (z wartownikiem). 7

8 Zadanie 9. Sortowanie list 3 Napisać procedurę, która łączy dwie listy jednokierunkowe, posortowane w jedną listę posortowaną i jednokierunkową, bez używania wartowników. Następnie, zmodyfikować ją dodając wartownika o kluczu na koniec każdej z list. Porównać stopień komplikacji obu procedur. Zadanie 10. Odwracanie list 3 Napisać nierekurencyjną procedurę odwracającą kolejność elementów listy jednokierunkowej, działającą w czasie Θ(n). Dodatkowa pamięć (oprócz tej zajętej przez listę) powinna być stała (tj. niezależna od liczby elementów na liście). D rzewa binarne są w zasadzie połączonymi listami, w których każdy węzeł (ojciec) może zawierać wskazy do pary synów: lewego i prawego. Najwyższy węzeł nosi nazwę pnia (korzenia). Drzewa zawierające tylko węzeł główny noszą nazwą drzew o zerowej wysokości (czasami o jednostkowej). Każdy nowy poziom węzłów (znajdujących się na jednakowej wysokości) zwiększa wysokość drzewa o jeden. Drzewo całkowicie wypełnione posiada 2 wysokość drzewa węzłów. Drzewo poszukiwań binarnych (binary search tree, BST) jest drzewem o uporzadkowanych węzłach, przy czym, porządek węzłów zadany jest wg. jakiejś operacji binarnej lub boolowskiej. Najczęściej porządek jest następujący. Numer schodzącego węzła porównywany jest z numerem pnia i jeśli jest on mniejszy lub równy numerowi pnia to węzeł umieszczany jest z lewej jego strony. W przeciwnym wypadku węzeł umieszczany jest po prawej stronie pnia. Operacja powtarzana jest na każdym poziomie drzewa, aż do momentu gdy osiągnie się poziom ostatni gdzie umieszcza się ów węzeł. W ten sposób drzewo posiada strukturę logiczną. Istnieje kilka metod przechodzenia (przemiatania) drzewa binarnego. Są to metodapreorder, metodainorder oraz metodapostorder. Metodapreorder polega na wypisaniu klucza pnia drzewa w pierwszej kolejności, a następnie jego lewego poddrzewa. W następnym kroku przechodzi się do poddrzewa prawego. W każdym przypadku (lewego lub prawego poddrzewa) stosuje się również metodę preorder. W metodziepostorder wypisuje się klucz korzenia po wypisaniu wartości znajdujących się w poddrzewach: lewym i prawym. W metodzie przechodzenia drzewa zwanej inorder klucz korzenia wypisuje się pomiędzy kluczami z jego poddrzewa lewego i poddrzewa prawego nil 8

9 Zadanie 11. Skanowanie drzewa 3 Zaprojektuj algorytmy przechodzenia drzewa metodami inorder, postorder i preorder. Zadanie 12. Drzewa 2 Narysuj drzewa poszukiwań binarnych o wierzchołkach (węzłach) 1, 4, 5, 10, 16, 17, 21 o wysokościach 2, 3, 4, 5. P liki są strukturami danych które zawierają sekwencje elementów jednego typu. Dostęp do nich, w przeciwieństwie do tablic, jest sekwencyjny, tzn. element pliku jest dostępny gdy odpowiedni wskaz pokazuje ten element (patrz niżej). Przykład. Zadeklarujemy kilka typów plikowych. type PlikDanych: file of integer; PlikKolorow: file of (r, g, b); PlikZnakowy: file of char; Plik Tablic: file of array [1..10] of real; PlikPersonaliow: file of record Nazwisko: array [1..20] of char; RodzajZatrudnienia: (stałe, godzinowe, zlecone) end; { rekordu } var x: PlikDanych; y: PlikKolorow; z: PlikTablic; Spis: PlikPersonaliow; Podanie po zmiennej plikowej znaku ˆ pozwala wyłuskać wartość zmiennej z pliku (lub wstawić ją). Np. xôznacza liczbę całkowitą, yĵest jedną z wartości r, b lub g koloru. zĵest tablicą 10-o elementową. Pisząc zˆ[7] mamy dostęp do 7-go elementu tej tablicy. Pola rekordów z pliku Spis osiągalne są za pomocą konstrukcji: Spis^.Nazwisko[1]... Spis^.Nazwisko[20] Spis^.RodzajZatrudnienia Funkcje związane z plikami(file) Z typami danych deklarowanych z pomocą fileof wiążą się funkcje operujące na tych strukturach. Są to eof(plik) boolean, = true jeśli jest koniec struktury plik; reset(plik) ustawia wskaz do pierwszego elementu struktury plik; pozwala czytać plik; rewrite(plik) ustawia plik do zapisu; eof(plik)=true; get(plik) przesuwa wskaz do następnego elementu pliku i pobiera ten element;... put(plik) dopisuje do pliku odpowiadający element Plikitekstowe. W językupascal (w innych językach jest podobnie) istnieje specjalny typ predefiniowany, który zawiera znaki. Jest to typtext. Plik ten składa się z linii tekstu (line) oddzielonych znakiem nowej linii (W systemach Unix: new line; w systemach Dos, Win9x: new line +carriagereturn). Linie składają się ze znaków (char). 9

10 Z plikami tekstowymi związane są następujące operacje (zmienna plik jest typu text, zmienna znak jest typu char): eoln(plik) boolean; =true jeśli koniec linii read(plik, znak) czytanie znaku; readln(plik, znak) z:=plik^; while not eoln(plik) do get(plik); get(plik); write(plik, z) plikˆ:=z; put(plik); writeln(plik,z) z:=plik^; put(plik); plik^:="znl"; put(plik); Tutaj znl jest znakiem nowej linii. 10

Struktura danych. Sposób uporządkowania informacji w komputerze. Na strukturach danych operują algorytmy. Przykładowe struktury danych:

Struktura danych. Sposób uporządkowania informacji w komputerze. Na strukturach danych operują algorytmy. Przykładowe struktury danych: Struktura danych Sposób uporządkowania informacji w komputerze. Na strukturach danych operują algorytmy. Przykładowe struktury danych: rekord tablica lista stos kolejka drzewo i jego odmiany (np. drzewo

Bardziej szczegółowo

Struktura danych. Sposób uporządkowania informacji w komputerze. Na strukturach danych operują algorytmy. Przykładowe struktury danych:

Struktura danych. Sposób uporządkowania informacji w komputerze. Na strukturach danych operują algorytmy. Przykładowe struktury danych: Struktura danych Sposób uporządkowania informacji w komputerze. Na strukturach danych operują algorytmy. Przykładowe struktury danych: rekord tablica lista stos kolejka drzewo i jego odmiany (np. drzewo

Bardziej szczegółowo

Listy, kolejki, stosy

Listy, kolejki, stosy Listy, kolejki, stosy abc Lista O Struktura danych składa się z węzłów, gdzie mamy informacje (dane) i wskaźniki do następnych węzłów. Zajmuje tyle miejsca w pamięci ile mamy węzłów O Gdzie można wykorzystać:

Bardziej szczegółowo

Algorytmy i Struktury Danych.

Algorytmy i Struktury Danych. Algorytmy i Struktury Danych. Liniowe struktury danych - Lista uporzadkowana. Wartownicy. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 6 Bożena Woźna-Szcześniak (AJD)

Bardziej szczegółowo

Porządek symetryczny: right(x)

Porządek symetryczny: right(x) Porządek symetryczny: x lef t(x) right(x) Własność drzewa BST: W drzewach BST mamy porządek symetryczny. Dla każdego węzła x spełniony jest warunek: jeżeli węzeł y leży w lewym poddrzewie x, to key(y)

Bardziej szczegółowo

Podstawy programowania 2. Temat: Drzewa binarne. Przygotował: mgr inż. Tomasz Michno

Podstawy programowania 2. Temat: Drzewa binarne. Przygotował: mgr inż. Tomasz Michno Instrukcja laboratoryjna 5 Podstawy programowania 2 Temat: Drzewa binarne Przygotował: mgr inż. Tomasz Michno 1 Wstęp teoretyczny Drzewa są jedną z częściej wykorzystywanych struktur danych. Reprezentują

Bardziej szczegółowo

Struktury danych: stos, kolejka, lista, drzewo

Struktury danych: stos, kolejka, lista, drzewo Struktury danych: stos, kolejka, lista, drzewo Wykład: dane w strukturze, funkcje i rodzaje struktur, LIFO, last in first out, kolejka FIFO, first in first out, push, pop, size, empty, głowa, ogon, implementacja

Bardziej szczegółowo

Algorytmy i Struktury Danych.

Algorytmy i Struktury Danych. Algorytmy i Struktury Danych. Liniowe struktury danych - Lista Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 5 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych.

Bardziej szczegółowo

Dynamiczny przydział pamięci w języku C. Dynamiczne struktury danych. dr inż. Jarosław Forenc. Metoda 1 (wektor N M-elementowy)

Dynamiczny przydział pamięci w języku C. Dynamiczne struktury danych. dr inż. Jarosław Forenc. Metoda 1 (wektor N M-elementowy) Rok akademicki 2012/2013, Wykład nr 2 2/25 Plan wykładu nr 2 Informatyka 2 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr III, studia niestacjonarne I stopnia Rok akademicki 2012/2013

Bardziej szczegółowo

Algorytmy i złożoności. Wykład 3. Listy jednokierunkowe

Algorytmy i złożoności. Wykład 3. Listy jednokierunkowe Algorytmy i złożoności Wykład 3. Listy jednokierunkowe Wstęp. Lista jednokierunkowa jest strukturą pozwalającą na pamiętanie danych w postaci uporzadkowanej, a także na bardzo szybkie wstawianie i usuwanie

Bardziej szczegółowo

Dynamiczne struktury danych

Dynamiczne struktury danych Listy Zbiór dynamiczny Zbiór dynamiczny to zbiór wartości pochodzących z pewnego określonego uniwersum, którego zawartość zmienia się w trakcie działania programu. Elementy zbioru dynamicznego musimy co

Bardziej szczegółowo

Drzewa wyszukiwań binarnych (BST)

Drzewa wyszukiwań binarnych (BST) Drzewa wyszukiwań binarnych (BST) Krzysztof Grządziel 12 czerwca 2007 roku 1 Drzewa Binarne Drzewa wyszukiwań binarnych, w skrócie BST (od ang. binary search trees), to szczególny przypadek drzew binarnych.

Bardziej szczegółowo

Wysokość drzewa Głębokość węzła

Wysokość drzewa Głębokość węzła Drzewa Drzewa Drzewo (ang. tree) zbiór węzłów powiązanych wskaźnikami, spójny i bez cykli. Drzewo posiada wyróżniony węzeł początkowy nazywany korzeniem (ang. root). Drzewo ukorzenione jest strukturą hierarchiczną.

Bardziej szczegółowo

Wykład 3. Złożoność i realizowalność algorytmów Elementarne struktury danych: stosy, kolejki, listy

Wykład 3. Złożoność i realizowalność algorytmów Elementarne struktury danych: stosy, kolejki, listy Wykład 3 Złożoność i realizowalność algorytmów Elementarne struktury danych: stosy, kolejki, listy Dynamiczne struktury danych Lista jest to liniowo uporządkowany zbiór elementów, z których dowolny element

Bardziej szczegółowo

Wykład 6. Drzewa poszukiwań binarnych (BST)

Wykład 6. Drzewa poszukiwań binarnych (BST) Wykład 6 Drzewa poszukiwań binarnych (BST) 1 O czym będziemy mówić Definicja Operacje na drzewach BST: Search Minimum, Maximum Predecessor, Successor Insert, Delete Struktura losowo budowanych drzew BST

Bardziej szczegółowo

Algorytmy i struktury danych. wykład 5

Algorytmy i struktury danych. wykład 5 Plan wykładu: Wskaźniki. : listy, drzewa, kopce. Wskaźniki - wskaźniki Wskaźnik jest to liczba lub symbol który w ogólności wskazuje adres komórki pamięci. W językach wysokiego poziomu wskaźniki mogą również

Bardziej szczegółowo

Podstawy programowania 2. Przygotował: mgr inż. Tomasz Michno

Podstawy programowania 2. Przygotował: mgr inż. Tomasz Michno Instrukcja laboratoryjna 2 Podstawy programowania 2 Temat: Zmienne dynamiczne tablica wskaźników i stos dynamiczny Przygotował: mgr inż. Tomasz Michno 1 Wstęp teoretyczny 1.1 Tablice wskaźników Tablice

Bardziej szczegółowo

Dynamiczne struktury danych

Dynamiczne struktury danych Dynamiczne struktury danych 391 Dynamiczne struktury danych Przez dynamiczne struktury danych rozumiemy proste i złożone struktury danych, którym pamięć jest przydzielana i zwalniana na żądanie w trakcie

Bardziej szczegółowo

Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych. Algorytmy i struktury danych Laboratorium 7. 2 Drzewa poszukiwań binarnych

Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych. Algorytmy i struktury danych Laboratorium 7. 2 Drzewa poszukiwań binarnych Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Algorytmy i struktury danych Laboratorium Drzewa poszukiwań binarnych 1 Cel ćwiczenia Ćwiczenie ma na celu zapoznanie studentów

Bardziej szczegółowo

Podstawy Informatyki. Wykład 6. Struktury danych

Podstawy Informatyki. Wykład 6. Struktury danych Podstawy Informatyki Wykład 6 Struktury danych Stałe i zmienne Podstawowymi obiektami występującymi w programie są stałe i zmienne. Ich znaczenie jest takie samo jak w matematyce. Stałe i zmienne muszą

Bardziej szczegółowo

ZASADY PROGRAMOWANIA KOMPUTERÓW ZAP zima 2014/2015. Drzewa BST c.d., równoważenie drzew, kopce.

ZASADY PROGRAMOWANIA KOMPUTERÓW ZAP zima 2014/2015. Drzewa BST c.d., równoważenie drzew, kopce. POLITECHNIKA WARSZAWSKA Instytut Automatyki i Robotyki ZASADY PROGRAMOWANIA KOMPUTERÓW ZAP zima 204/205 Język programowania: Środowisko programistyczne: C/C++ Qt Wykład 2 : Drzewa BST c.d., równoważenie

Bardziej szczegółowo

Algorytmy i Struktury Danych. Co dziś? Drzewo decyzyjne. Wykład IV Sortowania cd. Elementarne struktury danych

Algorytmy i Struktury Danych. Co dziś? Drzewo decyzyjne. Wykład IV Sortowania cd. Elementarne struktury danych Algorytmy i Struktury Danych Wykład IV Sortowania cd. Elementarne struktury danych 1 Co dziś? Dolna granica sortowań Mediany i statystyki pozycyjne Warstwa implementacji Warstwa abstrakcji #tablice #listy

Bardziej szczegółowo

Wykład 2. Drzewa poszukiwań binarnych (BST)

Wykład 2. Drzewa poszukiwań binarnych (BST) Wykład 2 Drzewa poszukiwań binarnych (BST) 1 O czym będziemy mówić Definicja Operacje na drzewach BST: Search Minimum, Maximum Predecessor, Successor Insert, Delete Struktura losowo budowanych drzew BST

Bardziej szczegółowo

Wykład 6. Dynamiczne struktury danych

Wykład 6. Dynamiczne struktury danych Wykład 6 Dynamiczne struktury danych 1 Plan wykładu Ø Wprowadzenie Ø Popularne dynamiczne struktury danych (ADT) Ø stosy, kolejki, listy opis abstrakcyjny Ø Listy liniowe Ø Implementacja tablicowa stosu

Bardziej szczegółowo

Algorytmy i Struktury Danych.

Algorytmy i Struktury Danych. Algorytmy i Struktury Danych. Abstrakcyjne struktury danych dr hab. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 5 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury

Bardziej szczegółowo

dr inż. Paweł Myszkowski Wykład nr 11 ( )

dr inż. Paweł Myszkowski Wykład nr 11 ( ) dr inż. Paweł Myszkowski Politechnika Białostocka Wydział Elektryczny Elektronika i Telekomunikacja, semestr II, studia stacjonarne I stopnia Rok akademicki 2015/2016 Wykład nr 11 (11.05.2016) Plan prezentacji:

Bardziej szczegółowo

Wykład 2. Drzewa zbalansowane AVL i 2-3-4

Wykład 2. Drzewa zbalansowane AVL i 2-3-4 Wykład Drzewa zbalansowane AVL i -3-4 Drzewa AVL Wprowadzenie Drzewa AVL Definicja drzewa AVL Operacje wstawiania i usuwania Złożoność obliczeniowa Drzewa -3-4 Definicja drzewa -3-4 Operacje wstawiania

Bardziej szczegółowo

E S - uniwersum struktury stosu

E S - uniwersum struktury stosu Temat: Struktura stosu i kolejki Struktura danych to system relacyjny r I r i i I U,, gdzie U to uniwersum systemu, a i i - zbiór relacji (operacji na strukturze danych). Uniwersum systemu to zbiór typów

Bardziej szczegółowo

Wstęp do programowania

Wstęp do programowania Wstęp do programowania Stosy, kolejki, drzewa Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk(Wydział Fizyki) WP w. VII Jesień 2013 1 / 25 Listy Lista jest uporządkowanym zbiorem elementów. W Pythonie

Bardziej szczegółowo

Algorytmy i Struktury Danych.

Algorytmy i Struktury Danych. Algorytmy i Struktury Danych. Podstawowe struktury danych dr hab. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 6 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych.

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA Rekurencja - zdolność podprogramu (procedury) do wywoływania samego (samej) siebie Wieże Hanoi dane wejściowe - trzy kołki i N krążków o różniących się średnicach wynik - sekwencja ruchów przenosząca krążki

Bardziej szczegółowo

Algorytmy i Struktury Danych.

Algorytmy i Struktury Danych. Algorytmy i Struktury Danych. Liniowe struktury danych. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 4 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych. Wykład

Bardziej szczegółowo

Temat: Liniowe uporzdkowane struktury danych: stos, kolejka. Specyfikacja, przykładowe implementacje i zastosowania. Struktura słownika.

Temat: Liniowe uporzdkowane struktury danych: stos, kolejka. Specyfikacja, przykładowe implementacje i zastosowania. Struktura słownika. Temat: Liniowe uporzdkowane struktury danych: stos, kolejka. Specyfikacja, przykładowe implementacje i zastosowania. Struktura słownika. 1. Pojcie struktury danych Nieformalnie Struktura danych (ang. data

Bardziej szczegółowo

Drzewa poszukiwań binarnych

Drzewa poszukiwań binarnych 1 Cel ćwiczenia Algorytmy i struktury danych Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet ielonogórski Drzewa poszukiwań binarnych Ćwiczenie

Bardziej szczegółowo

Podstawowe struktury danych

Podstawowe struktury danych Podstawowe struktury danych 1) Listy Lista to skończony ciąg elementów: q=[x 1, x 2,..., x n ]. Skrajne elementy x 1 i x n nazywamy końcami listy, a wielkość q = n długością (rozmiarem) listy. Szczególnym

Bardziej szczegółowo

prowadzący dr ADRIAN HORZYK /~horzyk e-mail: horzyk@agh tel.: 012-617 Konsultacje paw. D-13/325

prowadzący dr ADRIAN HORZYK /~horzyk e-mail: horzyk@agh tel.: 012-617 Konsultacje paw. D-13/325 PODSTAWY INFORMATYKI WYKŁAD 8. prowadzący dr ADRIAN HORZYK http://home home.agh.edu.pl/~ /~horzyk e-mail: horzyk@agh agh.edu.pl tel.: 012-617 617-4319 Konsultacje paw. D-13/325 DRZEWA Drzewa to rodzaj

Bardziej szczegółowo

Drzewa binarne. Drzewo binarne to dowolny obiekt powstały zgodnie z regułami: jest drzewem binarnym Jeśli T 0. jest drzewem binarnym Np.

Drzewa binarne. Drzewo binarne to dowolny obiekt powstały zgodnie z regułami: jest drzewem binarnym Jeśli T 0. jest drzewem binarnym Np. Drzewa binarne Drzewo binarne to dowolny obiekt powstały zgodnie z regułami: jest drzewem binarnym Jeśli T 0 i T 1 są drzewami binarnymi to T 0 T 1 jest drzewem binarnym Np. ( ) ( ( )) Wielkość drzewa

Bardziej szczegółowo

< K (2) = ( Adams, John ), P (2) = adres bloku 2 > < K (1) = ( Aaron, Ed ), P (1) = adres bloku 1 >

< K (2) = ( Adams, John ), P (2) = adres bloku 2 > < K (1) = ( Aaron, Ed ), P (1) = adres bloku 1 > Typy indeksów Indeks jest zakładany na atrybucie relacji atrybucie indeksowym (ang. indexing field). Indeks zawiera wartości atrybutu indeksowego wraz ze wskaźnikami do wszystkich bloków dyskowych zawierających

Bardziej szczegółowo

Algorytmy i Struktury Danych

Algorytmy i Struktury Danych Algorytmy i Struktury Danych Drzewa poszukiwań binarnych dr hab. Bożena Woźna-Szcześniak Jan Długosz University, Poland Wykład 8 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych Wykład 8 1 /

Bardziej szczegółowo

Algorytmy i struktury danych

Algorytmy i struktury danych Algorytmy i struktury danych Proste algorytmy sortowania Witold Marańda maranda@dmcs.p.lodz.pl 1 Pojęcie sortowania Sortowaniem nazywa się proces ustawiania zbioru obiektów w określonym porządku Sortowanie

Bardziej szczegółowo

Pascal typy danych. Typy pascalowe. Zmienna i typ. Podział typów danych:

Pascal typy danych. Typy pascalowe. Zmienna i typ. Podział typów danych: Zmienna i typ Pascal typy danych Zmienna to obiekt, który może przybierać różne wartości. Typ zmiennej to zakres wartości, które może przybierać zmienna. Deklarujemy je w nagłówku poprzedzając słowem kluczowym

Bardziej szczegółowo

Algorytmy i struktury danych. Drzewa: BST, kopce. Letnie Warsztaty Matematyczno-Informatyczne

Algorytmy i struktury danych. Drzewa: BST, kopce. Letnie Warsztaty Matematyczno-Informatyczne Algorytmy i struktury danych Drzewa: BST, kopce Letnie Warsztaty Matematyczno-Informatyczne Drzewa: BST, kopce Definicja drzewa Drzewo (ang. tree) to nieskierowany, acykliczny, spójny graf. Drzewo może

Bardziej szczegółowo

Algorytmy i. Wykład 5: Drzewa. Dr inż. Paweł Kasprowski

Algorytmy i. Wykład 5: Drzewa. Dr inż. Paweł Kasprowski Algorytmy i struktury danych Wykład 5: Drzewa Dr inż. Paweł Kasprowski pawel@kasprowski.pl Drzewa Struktury przechowywania danych podobne do list ale z innymi zasadami wskazywania następników Szczególny

Bardziej szczegółowo

Algorytmy i Struktury Danych

Algorytmy i Struktury Danych Algorytmy i Struktury Danych Kopce Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 11 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych Wykład 11 1 / 69 Plan wykładu

Bardziej szczegółowo

Drzewa poszukiwań binarnych

Drzewa poszukiwań binarnych 1 Drzewa poszukiwań binarnych Kacper Pawłowski Streszczenie W tej pracy przedstawię zagadnienia związane z drzewami poszukiwań binarnych. Przytoczę poszczególne operacje na tej strukturze danych oraz ich

Bardziej szczegółowo

Metody getter https://www.python-course.eu/python3_object_oriented_programming.php 0_class http://interactivepython.org/runestone/static/pythonds/index.html https://www.cs.auckland.ac.nz/compsci105s1c/lectures/

Bardziej szczegółowo

INFORMATYKA. Podstawy programowania w języku C. (Wykład) Copyright (C) 2005 by Sergiusz Sienkowski IME Zielona Góra

INFORMATYKA. Podstawy programowania w języku C. (Wykład) Copyright (C) 2005 by Sergiusz Sienkowski IME Zielona Góra INFORMATYKA Podstawy programowania w języku C (Wykład) Copyright (C) 2005 by Sergiusz Sienkowski IME Zielona Góra INFORMATYKA Temat: Struktury dynamiczne Wykład 7 Struktury dynamiczne lista jednokierunkowa,

Bardziej szczegółowo

Sortowanie. Kolejki priorytetowe i algorytm Heapsort Dynamiczny problem sortowania:

Sortowanie. Kolejki priorytetowe i algorytm Heapsort Dynamiczny problem sortowania: Sortowanie Kolejki priorytetowe i algorytm Heapsort Dynamiczny problem sortowania: podać strukturę danych dla elementów dynamicznego skończonego multi-zbioru S, względem którego są wykonywane następujące

Bardziej szczegółowo

Programowanie strukturalne. Opis ogólny programu w Turbo Pascalu

Programowanie strukturalne. Opis ogólny programu w Turbo Pascalu Programowanie strukturalne Opis ogólny programu w Turbo Pascalu STRUKTURA PROGRAMU W TURBO PASCALU Program nazwa; } nagłówek programu uses nazwy modułów; } blok deklaracji modułów const } blok deklaracji

Bardziej szczegółowo

Lista 5 Typy dynamiczne kolejka

Lista 5 Typy dynamiczne kolejka Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Metody i języki programowania 1 Wprowadzenie Lista 5 Typy dynamiczne kolejka Kolejka jest jedną z podstawowych struktur umożliwiających

Bardziej szczegółowo

ALGORYTMY I STRUKTURY DANYCH

ALGORYTMY I STRUKTURY DANYCH ALGORYTMY I STRUKTURY DANYCH Temat 4: Realizacje dynamicznych struktur danych. Wykładowca: dr inż. Zbigniew TARAPATA e-mail: Zbigniew.Tarapata@isi.wat.edu.pl http://www.tarapata.strefa.pl/p_algorytmy_i_struktury_danych/

Bardziej szczegółowo

Wstęp do programowania. Drzewa podstawowe techniki. Piotr Chrząstowski-Wachtel

Wstęp do programowania. Drzewa podstawowe techniki. Piotr Chrząstowski-Wachtel Wstęp do programowania Drzewa podstawowe techniki Piotr Chrząstowski-Wachtel Drzewa wyszukiwań Drzewa często służą do przechowywania informacji. Jeśli uda sie nam stworzyć drzewo o niewielkiej wysokości

Bardziej szczegółowo

Drzewo. Drzewo uporządkowane ma ponumerowanych (oznaczonych) następników. Drzewo uporządkowane składa się z węzłów, które zawierają następujące pola:

Drzewo. Drzewo uporządkowane ma ponumerowanych (oznaczonych) następników. Drzewo uporządkowane składa się z węzłów, które zawierają następujące pola: Drzewa Drzewa Drzewo (ang. tree) zbiór węzłów powiązanych wskaźnikami, spójny i bez cykli. Drzewo posiada wyróżniony węzeł początkowy nazywany korzeniem (ang. root). Drzewo ukorzenione jest strukturą hierarchiczną.

Bardziej szczegółowo

Podstawy Informatyki. Metody dostępu do danych

Podstawy Informatyki. Metody dostępu do danych Podstawy Informatyki c.d. alina.momot@polsl.pl http://zti.polsl.pl/amomot/pi Plan wykładu 1 Bazy danych Struktury danych Średni czas odszukania rekordu Drzewa binarne w pamięci dyskowej 2 Sformułowanie

Bardziej szczegółowo

Drzewa BST i AVL. Drzewa poszukiwań binarnych (BST)

Drzewa BST i AVL. Drzewa poszukiwań binarnych (BST) Drzewa ST i VL Drzewa poszukiwań binarnych (ST) Drzewo ST to dynamiczna struktura danych (w formie drzewa binarnego), która ma tą właściwość, że dla każdego elementu wszystkie elementy w jego prawym poddrzewie

Bardziej szczegółowo

Wstęp do programowania. Listy. Piotr Chrząstowski-Wachtel

Wstęp do programowania. Listy. Piotr Chrząstowski-Wachtel Wstęp do programowania Listy Piotr Chrząstowski-Wachtel Do czego stosujemy listy? Listy stosuje się wszędzie tam, gdzie występuje duży rozrzut w możliwym rozmiarze danych, np. w reprezentacji grafów jeśli

Bardziej szczegółowo

Temat: Dynamiczne przydzielanie i zwalnianie pamięci. Struktura listy operacje wstawiania, wyszukiwania oraz usuwania danych.

Temat: Dynamiczne przydzielanie i zwalnianie pamięci. Struktura listy operacje wstawiania, wyszukiwania oraz usuwania danych. Temat: Dynamiczne przydzielanie i zwalnianie pamięci. Struktura listy operacje wstawiania, wyszukiwania oraz usuwania danych. 1. Rodzaje pamięci używanej w programach Pamięć komputera, dostępna dla programu,

Bardziej szczegółowo

Abstrakcyjne struktury danych - stos, lista, drzewo

Abstrakcyjne struktury danych - stos, lista, drzewo Sprawozdanie Podstawy Informatyki Laboratoria Abstrakcyjne struktury danych - stos, lista, drzewo Maciej Tarkowski maciek@akom.pl grupa VII 1/8 1. Stos Stos (ang. Stack) jest podstawową liniową strukturą

Bardziej szczegółowo

Algorytmy i Struktury Danych

Algorytmy i Struktury Danych Algorytmy i Struktury Danych Drzewa poszukiwań binarnych dr hab. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 12 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych

Bardziej szczegółowo

Egzaminy i inne zadania. Semestr II.

Egzaminy i inne zadania. Semestr II. Egzaminy i inne zadania. Semestr II. Poniższe zadania są wyborem zadań ze Wstępu do Informatyki z egzaminów jakie przeprowadziłem w ciągu ostatnich lat. Ponadto dołączyłem szereg zadań, które pojawiały

Bardziej szczegółowo

Zmienne i struktury dynamiczne

Zmienne i struktury dynamiczne Zmienne i struktury dynamiczne Zmienne dynamiczne są to zmienne, które tworzymy w trakcie działania programu za pomocą operatora new. Usuwa się je operatorem delete. Czas ich występowania w programie jest

Bardziej szczegółowo

Przypomnij sobie krótki wstęp do teorii grafów przedstawiony na początku semestru.

Przypomnij sobie krótki wstęp do teorii grafów przedstawiony na początku semestru. Spis treści 1 Drzewa 1.1 Drzewa binarne 1.1.1 Zadanie 1.1.2 Drzewo BST (Binary Search Tree) 1.1.2.1 Zadanie 1 1.1.2.2 Zadanie 2 1.1.2.3 Zadanie 3 1.1.2.4 Usuwanie węzła w drzewie BST 1.1.2.5 Zadanie 4

Bardziej szczegółowo

WYKŁAD 10. Zmienne o złożonej budowie Statyczne i dynamiczne struktury danych: lista, kolejka, stos, drzewo. Programy: c5_1.c, c5_2, c5_3, c5_4, c5_5

WYKŁAD 10. Zmienne o złożonej budowie Statyczne i dynamiczne struktury danych: lista, kolejka, stos, drzewo. Programy: c5_1.c, c5_2, c5_3, c5_4, c5_5 WYKŁAD 10 Zmienne o złożonej budowie Statyczne i dynamiczne struktury danych: lista, kolejka, stos, drzewo Programy: c5_1.c, c5_2, c5_3, c5_4, c5_5 Tomasz Zieliński ZMIENNE O ZŁOŻONEJ BUDOWIE (1) Zmienne

Bardziej szczegółowo

Kompletna dokumentacja kontenera C++ vector w - http://www.cplusplus.com/reference/stl/vector/

Kompletna dokumentacja kontenera C++ vector w - http://www.cplusplus.com/reference/stl/vector/ STL, czyli o co tyle hałasu W świecie programowania C++, hasło STL pojawia się nieustannie i zawsze jest o nim głośno... często początkujące osoby, które nie znają STL-a pytają się co to jest i czemu go

Bardziej szczegółowo

DIAGRAMY SYNTAKTYCZNE JĘZYKA TURBO PASCAL 6.0

DIAGRAMY SYNTAKTYCZNE JĘZYKA TURBO PASCAL 6.0 Uwaga: DIAGRAMY SYNTAKTYCZNE JĘZYKA TURBO PASCAL 6.0 1. Zostały pominięte diagramy: CYFRA, CYFRA SZESNASTKOWA, ZNAK i LITERA. Nie została uwzględniona możliwość posługiwania się komentarzami. 2. Brakuje

Bardziej szczegółowo

dodatkowe operacje dla kopca binarnego: typu min oraz typu max:

dodatkowe operacje dla kopca binarnego: typu min oraz typu max: ASD - ćwiczenia IX Kopce binarne własność porządku kopca gdzie dla każdej trójki wierzchołków kopca (X, Y, Z) porządek etykiet elem jest następujący X.elem Y.elem oraz Z.elem Y.elem w przypadku kopca typu

Bardziej szczegółowo

Wykład 5 Wybrane zagadnienia programowania w C++ (c.d.)

Wykład 5 Wybrane zagadnienia programowania w C++ (c.d.) Wykład 5 Wybrane zagadnienia programowania w C++ (c.d.) Kontenery - - wektor vector - - lista list - - kolejka queue - - stos stack Kontener asocjacyjny map 2016-01-08 Bazy danych-1 W5 1 Kontenery W programowaniu

Bardziej szczegółowo

Algorytmy i struktury danych. Wykład 6 Tablice rozproszone cz. 2

Algorytmy i struktury danych. Wykład 6 Tablice rozproszone cz. 2 Algorytmy i struktury danych Wykład 6 Tablice rozproszone cz. 2 Na poprzednim wykładzie Wiele problemów wymaga dynamicznych zbiorów danych, na których można wykonywać operacje: wstawiania (Insert) szukania

Bardziej szczegółowo

Podstawy programowania. Wykład PASCAL. Zmienne wskaźnikowe i dynamiczne. dr Artur Bartoszewski - Podstawy prograowania, sem.

Podstawy programowania. Wykład PASCAL. Zmienne wskaźnikowe i dynamiczne. dr Artur Bartoszewski - Podstawy prograowania, sem. Podstawy programowania Wykład PASCAL Zmienne wskaźnikowe i dynamiczne 1 dr Artur Bartoszewski - Podstawy prograowania, sem. 1- WYKŁAD Rodzaje zmiennych Zmienne dzielą się na statyczne i dynamiczne. Zmienna

Bardziej szczegółowo

Przykładowe B+ drzewo

Przykładowe B+ drzewo Przykładowe B+ drzewo 3 8 1 3 7 8 12 Jak obliczyć rząd indeksu p Dane: rozmiar klucza V, rozmiar wskaźnika do bloku P, rozmiar bloku B, liczba rekordów w indeksowanym pliku danych r i liczba bloków pliku

Bardziej szczegółowo

ZASADY PROGRAMOWANIA KOMPUTERÓW

ZASADY PROGRAMOWANIA KOMPUTERÓW POLITECHNIKA WARSZAWSKA Instytut Automatyki i i Robotyki ZASADY PROGRAMOWANIA KOMPUTERÓW Język Język programowania: C/C++ Środowisko programistyczne: C++Builder 6 Wykład 9.. Wskaźniki i i zmienne dynamiczne.

Bardziej szczegółowo

Analiza algorytmów zadania podstawowe

Analiza algorytmów zadania podstawowe Analiza algorytmów zadania podstawowe Zadanie 1 Zliczanie Zliczaj(n) 1 r 0 2 for i 1 to n 1 3 do for j i + 1 to n 4 do for k 1 to j 5 do r r + 1 6 return r 0 Jaka wartość zostanie zwrócona przez powyższą

Bardziej szczegółowo

Wyszukiwanie w BST Minimalny i maksymalny klucz. Wyszukiwanie w BST Minimalny klucz. Wyszukiwanie w BST - minimalny klucz Wersja rekurencyjna

Wyszukiwanie w BST Minimalny i maksymalny klucz. Wyszukiwanie w BST Minimalny klucz. Wyszukiwanie w BST - minimalny klucz Wersja rekurencyjna Podstawy Programowania 2 Drzewa bst - część druga Arkadiusz Chrobot Zakład Informatyki 12 maja 2016 1 / 8 Plan Wstęp Wyszukiwanie w BST Minimalny i maksymalny klucz Wskazany klucz Zmiany w funkcji main()

Bardziej szczegółowo

Struktury. Przykład W8_1

Struktury. Przykład W8_1 Struktury Struktury pozwalają na grupowanie zmiennych różnych typów pod wspólną nazwą. To istotnie ułatwia organizacje danych, które okazują się w jednym miejscu kodu programu. To jest bardzo ważne dla

Bardziej szczegółowo

Laboratorium z przedmiotu Programowanie obiektowe - zestaw 04

Laboratorium z przedmiotu Programowanie obiektowe - zestaw 04 Laboratorium z przedmiotu Programowanie obiektowe - zestaw 04 Cel zajęć. Celem zajęć jest zapoznanie się ze sposobem działania popularnych kolekcji. Wprowadzenie teoretyczne. Rozważana w ramach niniejszych

Bardziej szczegółowo

Algorytmy i. Wykład 3: Stosy, kolejki i listy. Dr inż. Paweł Kasprowski. FIFO First In First Out (kolejka) LIFO Last In First Out (stos)

Algorytmy i. Wykład 3: Stosy, kolejki i listy. Dr inż. Paweł Kasprowski. FIFO First In First Out (kolejka) LIFO Last In First Out (stos) Algorytmy i struktury danych Wykład 3: Stosy, kolejki i listy Dr inż. Paweł Kasprowski pawel@kasprowski.pl Kolejki FIFO First In First Out (kolejka) LIFO Last In First Out (stos) Stos (stack) Dostęp jedynie

Bardziej szczegółowo

Algorytmy sortujące i wyszukujące

Algorytmy sortujące i wyszukujące Algorytmy sortujące i wyszukujące Zadaniem algorytmów sortujących jest ułożenie elementów danego zbioru w ściśle określonej kolejności. Najczęściej wykorzystywany jest porządek numeryczny lub leksykograficzny.

Bardziej szczegółowo

1. Nagłówek funkcji: int funkcja(void); wskazuje na to, że ta funkcja. 2. Schemat blokowy przedstawia algorytm obliczania

1. Nagłówek funkcji: int funkcja(void); wskazuje na to, że ta funkcja. 2. Schemat blokowy przedstawia algorytm obliczania 1. Nagłówek funkcji: int funkcja(void); wskazuje na to, że ta funkcja nie ma parametru i zwraca wartość na zewnątrz. nie ma parametru i nie zwraca wartości na zewnątrz. ma parametr o nazwie void i zwraca

Bardziej szczegółowo

Algorytmy i Struktury Danych.

Algorytmy i Struktury Danych. Algorytmy i Struktury Danych. Drzewa poszukiwań binarnych. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 10 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych.

Bardziej szczegółowo

Teoretyczne podstawy informatyki

Teoretyczne podstawy informatyki Teoretyczne podstawy informatyki Wykład 5b: Model danych oparty na listach http://kiwi.if.uj.edu.pl/~erichter/dydaktyka2010/tpi-2010 Prof. dr hab. Elżbieta Richter-Wąs 1 Słowem wstępu Listy należą do najbardziej

Bardziej szczegółowo

Wstęp do programowania. Drzewa. Piotr Chrząstowski-Wachtel

Wstęp do programowania. Drzewa. Piotr Chrząstowski-Wachtel Wstęp do programowania Drzewa Piotr Chrząstowski-Wachtel Drzewa Drzewa definiują matematycy, jako spójne nieskierowane grafy bez cykli. Równoważne określenia: Spójne grafy o n wierzchołkach i n-1 krawędziach

Bardziej szczegółowo

Podstawy Programowania C++

Podstawy Programowania C++ Wykład 3 - podstawowe konstrukcje Instytut Automatyki i Robotyki Warszawa, 2014 Wstęp Plan wykładu Struktura programu, instrukcja przypisania, podstawowe typy danych, zapis i odczyt danych, wyrażenia:

Bardziej szczegółowo

Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski

Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski : idea Indeksowanie: Drzewo decyzyjne, przeszukiwania binarnego: F = {5, 7, 10, 12, 13, 15, 17, 30, 34, 35, 37, 40, 45, 50, 60} 30 12 40 7 15 35 50 Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski

Bardziej szczegółowo

. Podstawy Programowania 2. Drzewa bst - część pierwsza. Arkadiusz Chrobot. 22 maja 2016

. Podstawy Programowania 2. Drzewa bst - część pierwsza. Arkadiusz Chrobot. 22 maja 2016 .. Podstawy Programowania 2 Drzewa bst - część pierwsza Arkadiusz Chrobot Zakład Informatyki 22 maja 2016 1 / 55 Plan.1 Wstęp.2 Definicje.3 Implementacja Typ bazowy i wskaźnik na korzeń Dodawanie elementu

Bardziej szczegółowo

Zadanie 1 Przygotuj algorytm programu - sortowanie przez wstawianie.

Zadanie 1 Przygotuj algorytm programu - sortowanie przez wstawianie. Sortowanie Dane wejściowe: ciąg n-liczb (kluczy) (a 1, a 2, a 3,..., a n 1, a n ) Dane wyjściowe: permutacja ciągu wejściowego (a 1, a 2, a 3,..., a n 1, a n) taka, że a 1 a 2 a 3... a n 1 a n. Będziemy

Bardziej szczegółowo

PLIKI TEKSTOWE F C E 30 0D 0A 42 6F 72 6C 61 6E 64 1A T U R B O _ P A S C A L _ 7. 0

PLIKI TEKSTOWE F C E 30 0D 0A 42 6F 72 6C 61 6E 64 1A T U R B O _ P A S C A L _ 7. 0 PLIKI TEKSTOWE plik_liczb : file of integer; plik_znakow : file of char; plik_linii : text; deklaracja zmiennej plikowej Przykład sekwencji bajtów: 54 55 52 42 4F 20 50 41 53 43 41 4C 20 37 2E 30 0D 0A

Bardziej szczegółowo

Podstawy programowania skrót z wykładów:

Podstawy programowania skrót z wykładów: Podstawy programowania skrót z wykładów: // komentarz jednowierszowy. /* */ komentarz wielowierszowy. # include dyrektywa preprocesora, załączająca biblioteki (pliki nagłówkowe). using namespace

Bardziej szczegółowo

Drzewa czerwono-czarne.

Drzewa czerwono-czarne. Binboy at Sphere http://binboy.sphere.p l Drzewa czerwono-czarne. Autor: Jacek Zacharek Wstęp. Pojęcie drzewa czerwono-czarnego (red-black tree) zapoczątkował Rudolf Bayer w książce z 1972 r. pt. Symmetric

Bardziej szczegółowo

Stos LIFO Last In First Out

Stos LIFO Last In First Out Stos LIFO Last In First Out Operacje: push - dodanie elementu na stos pop - usunięcie elementu ze stosu empty - sprawdzenie, czy stos jest pusty size - zwrócenie liczby elementów na stosie value (peek)

Bardziej szczegółowo

. Podstawy Programowania 2. Drzewa bst - część druga. Arkadiusz Chrobot. 12 maja 2019

. Podstawy Programowania 2. Drzewa bst - część druga. Arkadiusz Chrobot. 12 maja 2019 .. Podstawy Programowania 2 Drzewa bst - część druga Arkadiusz Chrobot Zakład Informatyki 12 maja 2019 1 / 39 Plan.1 Wstęp.2 Wyszukiwanie w BST Minimalny i maksymalny klucz Wskazany klucz.3.4 Zmiany w

Bardziej szczegółowo

Plan wykładu. Klucz wyszukiwania. Pojęcie indeksu BAZY DANYCH. Pojęcie indeksu - rodzaje indeksów Metody implementacji indeksów.

Plan wykładu. Klucz wyszukiwania. Pojęcie indeksu BAZY DANYCH. Pojęcie indeksu - rodzaje indeksów Metody implementacji indeksów. Plan wykładu 2 BAZY DANYCH Wykład 4: Indeksy. Pojęcie indeksu - rodzaje indeksów Metody implementacji indeksów struktury statyczne struktury dynamiczne Małgorzata Krętowska Wydział Informatyki PB Pojęcie

Bardziej szczegółowo

WSTĘP DO INFORMATYKI. Struktury liniowe

WSTĘP DO INFORMATYKI. Struktury liniowe Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej WSTĘP DO INFORMATYKI Adrian Horzyk Struktury liniowe www.agh.edu.pl STRUKTURY LINIOWE SEKWENCJE Struktury

Bardziej szczegółowo

Ogólne wiadomości o grafach

Ogólne wiadomości o grafach Ogólne wiadomości o grafach Algorytmy i struktury danych Wykład 5. Rok akademicki: / Pojęcie grafu Graf zbiór wierzchołków połączonych za pomocą krawędzi. Podstawowe rodzaje grafów: grafy nieskierowane,

Bardziej szczegółowo

Grafem nazywamy strukturę G = (V, E): V zbiór węzłów lub wierzchołków, Grafy dzielimy na grafy skierowane i nieskierowane:

Grafem nazywamy strukturę G = (V, E): V zbiór węzłów lub wierzchołków, Grafy dzielimy na grafy skierowane i nieskierowane: Wykład 4 grafy Grafem nazywamy strukturę G = (V, E): V zbiór węzłów lub wierzchołków, E zbiór krawędzi, Grafy dzielimy na grafy skierowane i nieskierowane: Formalnie, w grafach skierowanych E jest podzbiorem

Bardziej szczegółowo

Zasady programowania Dokumentacja

Zasady programowania Dokumentacja Marcin Kędzierski gr. 14 Zasady programowania Dokumentacja Wstęp 1) Temat: Przeszukiwanie pliku za pomocą drzewa. 2) Założenia projektu: a) Program ma pobierać dane z pliku wskazanego przez użytkownika

Bardziej szczegółowo

Abstrakcyjne struktury danych w praktyce

Abstrakcyjne struktury danych w praktyce Abstrakcyjne struktury danych w praktyce Wykład 13 7.4 notacja polska A.Szepietowski Matematyka dyskretna rozdział.8 stos kompilacja rozłączna szablony funkcji Przypomnienie Drzewo binarne wyrażenia arytmetycznego

Bardziej szczegółowo

INFORMATYKA DANE.

INFORMATYKA DANE. INFORMATYKA DANE http://www.infoceram.agh.edu.pl DANE Dane to zbiory liczb, znaków, sygnałów, wykresów, tekstów, itp., które mogą być przetwarzane. Pojęcie danych jest relatywne i istnieje tylko razem

Bardziej szczegółowo

wykład Organizacja plików Opracował: dr inż. Janusz DUDCZYK

wykład Organizacja plików Opracował: dr inż. Janusz DUDCZYK wykład Organizacja plików Opracował: dr inż. Janusz DUDCZYK 1 2 3 Pamięć zewnętrzna Pamięć zewnętrzna organizacja plikowa. Pamięć operacyjna organizacja blokowa. 4 Bufory bazy danych. STRUKTURA PROSTA

Bardziej szczegółowo

PODSTAWY INFORMATYKI wykład 6.

PODSTAWY INFORMATYKI wykład 6. PODSTAWY INFORMATYKI wykład 6. Adrian Horzyk Web: http://home.agh.edu.pl/~horzyk/ E-mail: horzyk@agh.edu.pl Google: Adrian Horzyk Gabinet: paw. D13 p. 325 Akademia Górniczo-Hutnicza w Krakowie WEAIiE,

Bardziej szczegółowo

1 Wskaźniki i listy jednokierunkowe

1 Wskaźniki i listy jednokierunkowe 1 Wskaźniki i listy jednokierunkowe 1.1 Model pamięci komputera Pamięć komputera możemy wyobrażać sobie tak, jak na rysunku: Zawartość:... 01001011 01101010 11100101 00111001 00100010 01110011... adresy:

Bardziej szczegółowo