Algorytmy i Struktury Danych. Co dziś? Drzewo decyzyjne. Wykład IV Sortowania cd. Elementarne struktury danych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Algorytmy i Struktury Danych. Co dziś? Drzewo decyzyjne. Wykład IV Sortowania cd. Elementarne struktury danych"

Transkrypt

1 Algorytmy i Struktury Danych Wykład IV Sortowania cd. Elementarne struktury danych 1 Co dziś? Dolna granica sortowań Mediany i statystyki pozycyjne Warstwa implementacji Warstwa abstrakcji #tablice #listy #stos, kolejki 2 Drzewo decyzyjne A[1]:A[2] > A[2]:A[3] A[1]:A[3] 1,2,3 A[1]:A[3] 2,1,3 A[2]:A[3] 1,3,2 3,1,2 2,3,1 3,2,1 3 1

2 Minimum i maksimum min lub max -liniowe przeszukanie O(n) #n-1 porównań min i max linowe przeszukanie O(n) #2n-2 porównań #3(n/2) -porówań 4 Wybór i tego elementu Algorytm Hoare a # oczekiwany czas liniowy Algorytm magicznych piątek # pesymistyczny czas liniowy 1. podziel n elementów na zbiory 5 elementowe 2. wyznacz medianę z każdej piątki 3. wywołaj rekurencyjnie dla znalezienia mediany median 4. podziel tablicę względem znalezionej mediany 5. wywołaj rekurencyjnie dla mniejszych lub większych elementów 5 Warstwa implementacji Możliwości # tablica # wskaźniki (odsyłacze, pointery) # obiekty (referencje) Deklaracje # statyczne # dynamiczne Różnice # szybkość # rodzaje pamięci # moment alokacji 6 2

3 Tablica Tablica statyczna Tablica dynamiczna #realokacja Złożoność # O(1) <-> O(n) Indeks to liczby całkowite -> arytmetyka na pointerach + rzutowanie Ograniczenia #deklaracja #dostępna pamięć 7 int taba[10]; int * tabb = (int*)malloc( 10 * sizeof (int) ); int * tabc = new int[10]; tabb = (int*)realloc( tabb, 20 * sizeof (int) ); taba[0] = *(taba + 0); free( tabb ); delete []tabc; Wskaźniki Lista (łańcuch odsyłaczowy) # jednokierunkowa # dwukierunkowa # cykliczna # z wartownikami # drzewa Złożoność # listy O(1) <-> O(n) # drzewa O(1) <-> O(log(n)) <-> O(n) Ograniczenia # dostępna pamięć 9 3

4 Wskaźniki 10 Wskaźniki 11 Wskaźniki - wartownik 12 4

5 void foo( pele * head )... void foo( pele ** head )... void foo( pele *& head ) pele * foo( pele * head )... // tail, root void foo( pele * firstele )... while( ele )... while( ele->next )... if ( ele && ele->key ==??? while ( ele && ele->key ==??? if ( ele && ele->next... Drzewa 14 bool foo( pnode * node ) if ( node->key ==??? if ( node->left ) return foo( node->left ); if ( node->right ) return foo( node->right ); if ( node->left ) i = foo( node->left ); if ( node->right ) i += foo( node->right ); 5

6 Drzewo? 16 Drzewo? 17 Inne 18 6

7 Inne 19 Inne 20 Warstwa abstrakcji Abstrakcyjne struktury danych struktury # tablica lub wskaźniki #dodatkowe elementy indeks maksymalny, indeks bieżący głowa listy, ogon, element wyróżniony Interfejs struktury # metody, funkcje, operatory #zachowanie 21 7

8 Warstwa abstrakcji Rodzaje metod # zapytania # operacje modyfikujące Dane i klucz Rozpatrywanie złożoności dopiero przy implementacji jednaj struktury przy pomocy zaimplementowanego interfejsu innej struktury # kolejka priorytetowa -> kopiec -> tablica 22 Metody uniwersalne #search( key ), search( x ) #insert( x ) #delete( x ) #min() #max() #successor( x ) #predecessor( x ) 23 Tablica # set # get # size # bezpośredni dostęp do każdego elementu, określona długość(?) # tablica # lista jedno (dwu) kierunkowa 24 8

9 Lista jednokierunkowa # insert # search # delete # isempty # next # podstawowa cecha to brak ograniczenia na ilość elementów # tablica # lista jednokierunkowa 25 Lista next 2 * 1 4 key prev * 6 34 * * Stos (LIFO) # push # pop # isempty # element ostatnio położony jest pierwszy ściągany, kładziemy elementy na wierzchołek stosu i z niego ściągamy # tablica # lista jednokierunkowa 27 9

10 Kolejka (FIFO) # isempty # put(insert) # get(extract) # element ostatnio położony musi czekać na swoją kolej, pobieramy elementy z początku, a wstawiamy na koniec # tablica # lista jednokierunkowa, dwukierunkowa 28 Kolejka dwukierunkowa (talia) # isempty # putfirst, -last(insert, head-tail) # getfirs, -last(extract, head-tail) # wstawiamy na początek i na koniec, pobieramy elementy z początku lub z końca # tablica # lista jednokierunkowa, dwukierunkowa 29 Zbiór # add # delete # isin # union # wszystkie elementy są różne, każdy element występuje jedne raz # tablica # lista ASD

11 Zbiory rozłączne # makeset # union # findset # zbiór jest reprezentowany przez reprezentanta, reprezentantem jest korzeń, element zbioru wskazuje na swojego ojca # prosta implementacja odsyłaczowa # drzewa ukorzenione # drzewa ukorzenione + Heurystyki łączenie wg rangi kompresja ścieżki ASD MakeSet(X x) x.parent = x; x.rank = 0; Union(X x,x y) Link( FindSet(x), FindSet(y) ); Link(x,y) if (x.rank > y.rank) y.parent = x; else x.parent = y; if (x.rank == y.rank ) y.rank++; X FindSet( X x ) if ( x.parent!= x ) x.parent = FindSet(x.parent); return x.parent; Kolejka priorytetowa # put (insert) # get (extract) # isempty # element wstawiamy nie na koniec, ale w zależności od key # lista O(n) # tablica posortowana O(n) # kopiec O(log(n)) ASD

12 void heap(int i) int l = 2 * i + 1; int r = 2 * i + 2; int maxi,t; if ( l < max && A[l] > A[i] ) // MAX maxi = l; else maxi = i; if ( r < max && A[r] > A[maxi] ) maxi = r; if ( maxi!= i ) t = A[i]; A[i] = A[maxi]; A[maxi] = t; heap( maxi ); void heap(int i) while(1) int l = 2 * i + 1; int r = 2 * i + 2; int maxi,t; if ( l < max && A[l] > A[i] ) maxi = l; else maxi = i; if ( r < max && A[r] > A[maxi] ) maxi = r; if ( maxi!= i ) t = A[i]; A[i] = A[maxi]; A[maxi] = t; i = maxi; else break; int put( int ele ) if ( max + 1 == MAX ) // == return error; //??? int i = max++; while( i > 0 && A[(i-1)/2] < ele ) A[i] = A[(i-1)/2]; i = (i-1)/2; A[i] = ele; 12

13 class Heap protected: data* A; int max; public: data get(); void put(data a); Heap(); ~Heap(); data Heap::get() if ( max == 0 ) // return error;??? throw errorheapemptyexception; data ret = A[0]; A[0] = A[--max]; heap( 0 ); return data; Jeszcze o kopcu Kopiec binarny Kopiec rzędu d #d-arny #zamiast 2 synów, każdy węzeł ma ich d Złożoność struktury #O( log(n)) == O( log d (n)) # szybkość vs łatwość implementacji ASD

14 Pytania? KONIEC 40 14

Dynamiczne struktury danych

Dynamiczne struktury danych Listy Zbiór dynamiczny Zbiór dynamiczny to zbiór wartości pochodzących z pewnego określonego uniwersum, którego zawartość zmienia się w trakcie działania programu. Elementy zbioru dynamicznego musimy co

Bardziej szczegółowo

Listy, kolejki, stosy

Listy, kolejki, stosy Listy, kolejki, stosy abc Lista O Struktura danych składa się z węzłów, gdzie mamy informacje (dane) i wskaźniki do następnych węzłów. Zajmuje tyle miejsca w pamięci ile mamy węzłów O Gdzie można wykorzystać:

Bardziej szczegółowo

Struktury danych: stos, kolejka, lista, drzewo

Struktury danych: stos, kolejka, lista, drzewo Struktury danych: stos, kolejka, lista, drzewo Wykład: dane w strukturze, funkcje i rodzaje struktur, LIFO, last in first out, kolejka FIFO, first in first out, push, pop, size, empty, głowa, ogon, implementacja

Bardziej szczegółowo

Kolejka priorytetowa. Często rozważa się kolejki priorytetowe, w których poszukuje się elementu minimalnego zamiast maksymalnego.

Kolejka priorytetowa. Często rozważa się kolejki priorytetowe, w których poszukuje się elementu minimalnego zamiast maksymalnego. Kolejki Kolejka priorytetowa Kolejka priorytetowa (ang. priority queue) to struktura danych pozwalająca efektywnie realizować następujące operacje na zbiorze dynamicznym, którego elementy pochodzą z określonego

Bardziej szczegółowo

Wysokość drzewa Głębokość węzła

Wysokość drzewa Głębokość węzła Drzewa Drzewa Drzewo (ang. tree) zbiór węzłów powiązanych wskaźnikami, spójny i bez cykli. Drzewo posiada wyróżniony węzeł początkowy nazywany korzeniem (ang. root). Drzewo ukorzenione jest strukturą hierarchiczną.

Bardziej szczegółowo

Metody getter https://www.python-course.eu/python3_object_oriented_programming.php 0_class http://interactivepython.org/runestone/static/pythonds/index.html https://www.cs.auckland.ac.nz/compsci105s1c/lectures/

Bardziej szczegółowo

ALGORYTMY I STRUKTURY DANYCH

ALGORYTMY I STRUKTURY DANYCH ALGORYTMY I STRUKTURY DANYCH Temat 4: Realizacje dynamicznych struktur danych. Wykładowca: dr inż. Zbigniew TARAPATA e-mail: Zbigniew.Tarapata@isi.wat.edu.pl http://www.tarapata.strefa.pl/p_algorytmy_i_struktury_danych/

Bardziej szczegółowo

Dynamiczne struktury danych

Dynamiczne struktury danych Dynamiczne struktury danych 391 Dynamiczne struktury danych Przez dynamiczne struktury danych rozumiemy proste i złożone struktury danych, którym pamięć jest przydzielana i zwalniana na żądanie w trakcie

Bardziej szczegółowo

Struktura danych. Sposób uporządkowania informacji w komputerze. Na strukturach danych operują algorytmy. Przykładowe struktury danych:

Struktura danych. Sposób uporządkowania informacji w komputerze. Na strukturach danych operują algorytmy. Przykładowe struktury danych: Struktura danych Sposób uporządkowania informacji w komputerze. Na strukturach danych operują algorytmy. Przykładowe struktury danych: rekord tablica lista stos kolejka drzewo i jego odmiany (np. drzewo

Bardziej szczegółowo

Algorytmy i Struktury Danych.

Algorytmy i Struktury Danych. Algorytmy i Struktury Danych. Liniowe struktury danych - Lista Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 5 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych.

Bardziej szczegółowo

Struktura danych. Sposób uporządkowania informacji w komputerze. Na strukturach danych operują algorytmy. Przykładowe struktury danych:

Struktura danych. Sposób uporządkowania informacji w komputerze. Na strukturach danych operują algorytmy. Przykładowe struktury danych: Struktura danych Sposób uporządkowania informacji w komputerze. Na strukturach danych operują algorytmy. Przykładowe struktury danych: rekord tablica lista stos kolejka drzewo i jego odmiany (np. drzewo

Bardziej szczegółowo

Algorytmy i Struktury Danych.

Algorytmy i Struktury Danych. Algorytmy i Struktury Danych. Podstawowe struktury danych, cd. Wykład na podstawie ksiażki Roberta Sedgewicka i Kevina Wayne: Algorithms. Furth Edition. Princeton University dr hab. Bożena Woźna-Szcześniak

Bardziej szczegółowo

Algorytmy i Struktury Danych

Algorytmy i Struktury Danych Algorytmy i Struktury Danych Kopce Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 11 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych Wykład 11 1 / 69 Plan wykładu

Bardziej szczegółowo

Struktury dynamiczne

Struktury dynamiczne Struktury dynamiczne lista jednokierunkowa lista dwukierunkowa lista cykliczna stos kolejka drzewo Ich wielkość i stopień złożoności zmieniają się w czasie. Struktury dynamiczne oparte są o struktury (struct).

Bardziej szczegółowo

Algorytmy i struktury danych. Drzewa: BST, kopce. Letnie Warsztaty Matematyczno-Informatyczne

Algorytmy i struktury danych. Drzewa: BST, kopce. Letnie Warsztaty Matematyczno-Informatyczne Algorytmy i struktury danych Drzewa: BST, kopce Letnie Warsztaty Matematyczno-Informatyczne Drzewa: BST, kopce Definicja drzewa Drzewo (ang. tree) to nieskierowany, acykliczny, spójny graf. Drzewo może

Bardziej szczegółowo

Wykład 3. Złożoność i realizowalność algorytmów Elementarne struktury danych: stosy, kolejki, listy

Wykład 3. Złożoność i realizowalność algorytmów Elementarne struktury danych: stosy, kolejki, listy Wykład 3 Złożoność i realizowalność algorytmów Elementarne struktury danych: stosy, kolejki, listy Dynamiczne struktury danych Lista jest to liniowo uporządkowany zbiór elementów, z których dowolny element

Bardziej szczegółowo

Stos LIFO Last In First Out

Stos LIFO Last In First Out Stos LIFO Last In First Out Operacje: push - dodanie elementu na stos pop - usunięcie elementu ze stosu empty - sprawdzenie, czy stos jest pusty size - zwrócenie liczby elementów na stosie value (peek)

Bardziej szczegółowo

Dynamiczny przydział pamięci w języku C. Dynamiczne struktury danych. dr inż. Jarosław Forenc. Metoda 1 (wektor N M-elementowy)

Dynamiczny przydział pamięci w języku C. Dynamiczne struktury danych. dr inż. Jarosław Forenc. Metoda 1 (wektor N M-elementowy) Rok akademicki 2012/2013, Wykład nr 2 2/25 Plan wykładu nr 2 Informatyka 2 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr III, studia niestacjonarne I stopnia Rok akademicki 2012/2013

Bardziej szczegółowo

Rekurencja. Dla rozwiązania danego problemu, algorytm wywołuje sam siebie przy rozwiązywaniu podobnych podproblemów. Przykład: silnia: n! = n(n-1)!

Rekurencja. Dla rozwiązania danego problemu, algorytm wywołuje sam siebie przy rozwiązywaniu podobnych podproblemów. Przykład: silnia: n! = n(n-1)! Rekurencja Dla rozwiązania danego problemu, algorytm wywołuje sam siebie przy rozwiązywaniu podobnych podproblemów. Przykład: silnia: n! = n(n-1)! Pseudokod: silnia(n): jeżeli n == 0 silnia = 1 w przeciwnym

Bardziej szczegółowo

Wstęp do programowania

Wstęp do programowania Wstęp do programowania Stosy, kolejki, drzewa Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk(Wydział Fizyki) WP w. VII Jesień 2013 1 / 25 Listy Lista jest uporządkowanym zbiorem elementów. W Pythonie

Bardziej szczegółowo

Porządek symetryczny: right(x)

Porządek symetryczny: right(x) Porządek symetryczny: x lef t(x) right(x) Własność drzewa BST: W drzewach BST mamy porządek symetryczny. Dla każdego węzła x spełniony jest warunek: jeżeli węzeł y leży w lewym poddrzewie x, to key(y)

Bardziej szczegółowo

Drzewa wyszukiwań binarnych (BST)

Drzewa wyszukiwań binarnych (BST) Drzewa wyszukiwań binarnych (BST) Krzysztof Grządziel 12 czerwca 2007 roku 1 Drzewa Binarne Drzewa wyszukiwań binarnych, w skrócie BST (od ang. binary search trees), to szczególny przypadek drzew binarnych.

Bardziej szczegółowo

Drzewo. Drzewo uporządkowane ma ponumerowanych (oznaczonych) następników. Drzewo uporządkowane składa się z węzłów, które zawierają następujące pola:

Drzewo. Drzewo uporządkowane ma ponumerowanych (oznaczonych) następników. Drzewo uporządkowane składa się z węzłów, które zawierają następujące pola: Drzewa Drzewa Drzewo (ang. tree) zbiór węzłów powiązanych wskaźnikami, spójny i bez cykli. Drzewo posiada wyróżniony węzeł początkowy nazywany korzeniem (ang. root). Drzewo ukorzenione jest strukturą hierarchiczną.

Bardziej szczegółowo

2. Klasy cz. 2 - Konstruktor kopiujący. Pola tworzone statycznie i dynamicznie - Funkcje zaprzyjaźnione - Składowe statyczne

2. Klasy cz. 2 - Konstruktor kopiujący. Pola tworzone statycznie i dynamicznie - Funkcje zaprzyjaźnione - Składowe statyczne Tematyka wykładów 1. Wprowadzenie. Klasy cz. 1 - Język C++. Programowanie obiektowe - Klasy i obiekty - Budowa i deklaracja klasy. Prawa dostępu - Pola i funkcje składowe - Konstruktor i destruktor - Tworzenie

Bardziej szczegółowo

prowadzący dr ADRIAN HORZYK /~horzyk e-mail: horzyk@agh tel.: 012-617 Konsultacje paw. D-13/325

prowadzący dr ADRIAN HORZYK /~horzyk e-mail: horzyk@agh tel.: 012-617 Konsultacje paw. D-13/325 PODSTAWY INFORMATYKI WYKŁAD 8. prowadzący dr ADRIAN HORZYK http://home home.agh.edu.pl/~ /~horzyk e-mail: horzyk@agh agh.edu.pl tel.: 012-617 617-4319 Konsultacje paw. D-13/325 DRZEWA Drzewa to rodzaj

Bardziej szczegółowo

Teoretyczne podstawy informatyki

Teoretyczne podstawy informatyki Teoretyczne podstawy informatyki Wykład 5b: Model danych oparty na listach http://kiwi.if.uj.edu.pl/~erichter/dydaktyka2010/tpi-2010 Prof. dr hab. Elżbieta Richter-Wąs 1 Słowem wstępu Listy należą do najbardziej

Bardziej szczegółowo

INFORMATYKA. Podstawy programowania w języku C. (Wykład) Copyright (C) 2005 by Sergiusz Sienkowski IME Zielona Góra

INFORMATYKA. Podstawy programowania w języku C. (Wykład) Copyright (C) 2005 by Sergiusz Sienkowski IME Zielona Góra INFORMATYKA Podstawy programowania w języku C (Wykład) Copyright (C) 2005 by Sergiusz Sienkowski IME Zielona Góra INFORMATYKA Temat: Struktury dynamiczne Wykład 7 Struktury dynamiczne lista jednokierunkowa,

Bardziej szczegółowo

dr inż. Paweł Myszkowski Wykład nr 11 ( )

dr inż. Paweł Myszkowski Wykład nr 11 ( ) dr inż. Paweł Myszkowski Politechnika Białostocka Wydział Elektryczny Elektronika i Telekomunikacja, semestr II, studia stacjonarne I stopnia Rok akademicki 2015/2016 Wykład nr 11 (11.05.2016) Plan prezentacji:

Bardziej szczegółowo

Struktury Danych i Złożoność Obliczeniowa

Struktury Danych i Złożoność Obliczeniowa Struktury Danych i Złożoność Obliczeniowa Zajęcia 1 Podstawowe struktury danych Tablica Najprostsza metoda przechowywania serii danych, zalety: prostota, wady: musimy wiedzieć, ile elementów chcemy przechowywać

Bardziej szczegółowo

dodatkowe operacje dla kopca binarnego: typu min oraz typu max:

dodatkowe operacje dla kopca binarnego: typu min oraz typu max: ASD - ćwiczenia IX Kopce binarne własność porządku kopca gdzie dla każdej trójki wierzchołków kopca (X, Y, Z) porządek etykiet elem jest następujący X.elem Y.elem oraz Z.elem Y.elem w przypadku kopca typu

Bardziej szczegółowo

Kurs programowania. Wykład 9. Wojciech Macyna

Kurs programowania. Wykład 9. Wojciech Macyna Wykład 9 Java Collections Framework (w C++ Standard Template Library) Kolekcja (kontener) Obiekt grupujacy/przechowuj acy jakieś elementy (obiekty lub wartości). Przykładami kolekcji sa zbiór, lista czy

Bardziej szczegółowo

Wykład 5 Wybrane zagadnienia programowania w C++ (c.d.)

Wykład 5 Wybrane zagadnienia programowania w C++ (c.d.) Wykład 5 Wybrane zagadnienia programowania w C++ (c.d.) Kontenery - - wektor vector - - lista list - - kolejka queue - - stos stack Kontener asocjacyjny map 2016-01-08 Bazy danych-1 W5 1 Kontenery W programowaniu

Bardziej szczegółowo

Algorytmy i struktury danych. wykład 5

Algorytmy i struktury danych. wykład 5 Plan wykładu: Wskaźniki. : listy, drzewa, kopce. Wskaźniki - wskaźniki Wskaźnik jest to liczba lub symbol który w ogólności wskazuje adres komórki pamięci. W językach wysokiego poziomu wskaźniki mogą również

Bardziej szczegółowo

Algorytmy i. Wykład 3: Stosy, kolejki i listy. Dr inż. Paweł Kasprowski. FIFO First In First Out (kolejka) LIFO Last In First Out (stos)

Algorytmy i. Wykład 3: Stosy, kolejki i listy. Dr inż. Paweł Kasprowski. FIFO First In First Out (kolejka) LIFO Last In First Out (stos) Algorytmy i struktury danych Wykład 3: Stosy, kolejki i listy Dr inż. Paweł Kasprowski pawel@kasprowski.pl Kolejki FIFO First In First Out (kolejka) LIFO Last In First Out (stos) Stos (stack) Dostęp jedynie

Bardziej szczegółowo

Kurs programowania. Wykład 9. Wojciech Macyna. 28 kwiecień 2016

Kurs programowania. Wykład 9. Wojciech Macyna. 28 kwiecień 2016 Wykład 9 28 kwiecień 2016 Java Collections Framework (w C++ Standard Template Library) Kolekcja (kontener) Obiekt grupujacy/przechowuj acy jakieś elementy (obiekty lub wartości). Przykładami kolekcji sa

Bardziej szczegółowo

Wstęp do Programowania potok funkcyjny

Wstęp do Programowania potok funkcyjny Wstęp do Programowania potok funkcyjny Marcin Kubica 2010/2011 Outline Zasada dziel i rządź i analiza złożoności 1 Zasada dziel i rządź i analiza złożoności Definition : Zbiór wartości: nieograniczonej

Bardziej szczegółowo

Algorytm selekcji Hoare a. Łukasz Miemus

Algorytm selekcji Hoare a. Łukasz Miemus Algorytm selekcji Hoare a Łukasz Miemus 1 lutego 2006 Rozdział 1 O algorytmie 1.1 Problem Mamy tablicę A[N] różnych elementów i zmienną int K, takie że 1 K N. Oczekiwane rozwiązanie to określenie K-tego

Bardziej szczegółowo

ZASADY PROGRAMOWANIA KOMPUTERÓW ZAP zima 2014/2015. Drzewa BST c.d., równoważenie drzew, kopce.

ZASADY PROGRAMOWANIA KOMPUTERÓW ZAP zima 2014/2015. Drzewa BST c.d., równoważenie drzew, kopce. POLITECHNIKA WARSZAWSKA Instytut Automatyki i Robotyki ZASADY PROGRAMOWANIA KOMPUTERÓW ZAP zima 204/205 Język programowania: Środowisko programistyczne: C/C++ Qt Wykład 2 : Drzewa BST c.d., równoważenie

Bardziej szczegółowo

Dynamiczny przydział pamięci (język C) Dynamiczne struktury danych. Sortowanie. Klasyfikacja algorytmów sortowania. Algorytmy sortowania

Dynamiczny przydział pamięci (język C) Dynamiczne struktury danych. Sortowanie. Klasyfikacja algorytmów sortowania. Algorytmy sortowania Rok akademicki 2010/2011, Wykład nr 4 2/50 Plan wykładu nr 4 Informatyka 2 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr III, studia niestacjonarne I stopnia Rok akademicki 2010/2011

Bardziej szczegółowo

Sortowanie. Kolejki priorytetowe i algorytm Heapsort Dynamiczny problem sortowania:

Sortowanie. Kolejki priorytetowe i algorytm Heapsort Dynamiczny problem sortowania: Sortowanie Kolejki priorytetowe i algorytm Heapsort Dynamiczny problem sortowania: podać strukturę danych dla elementów dynamicznego skończonego multi-zbioru S, względem którego są wykonywane następujące

Bardziej szczegółowo

Algorytmy i Struktury Danych. Anna Paszyńska

Algorytmy i Struktury Danych. Anna Paszyńska Algorytmy i Struktury Danych Anna Paszyńska Tablica dynamiczna szablon Array Zbiory Zbiory template class Container {public: virtual ~Container() { }; virtual int Count() const = 0;

Bardziej szczegółowo

Algorytmy i Struktury Danych.

Algorytmy i Struktury Danych. Algorytmy i Struktury Danych. Liniowe struktury danych. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 4 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych. Wykład

Bardziej szczegółowo

Algorytmy i złożoności. Wykład 3. Listy jednokierunkowe

Algorytmy i złożoności. Wykład 3. Listy jednokierunkowe Algorytmy i złożoności Wykład 3. Listy jednokierunkowe Wstęp. Lista jednokierunkowa jest strukturą pozwalającą na pamiętanie danych w postaci uporzadkowanej, a także na bardzo szybkie wstawianie i usuwanie

Bardziej szczegółowo

Drzewa poszukiwań binarnych

Drzewa poszukiwań binarnych 1 Drzewa poszukiwań binarnych Kacper Pawłowski Streszczenie W tej pracy przedstawię zagadnienia związane z drzewami poszukiwań binarnych. Przytoczę poszczególne operacje na tej strukturze danych oraz ich

Bardziej szczegółowo

Algorytmy i Struktury Danych

Algorytmy i Struktury Danych Algorytmy i Struktury Danych Drzewa poszukiwań binarnych dr hab. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 12 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych

Bardziej szczegółowo

Algorytmy i Struktury Danych

Algorytmy i Struktury Danych Algorytmy i Struktury Danych Drzewa poszukiwań binarnych dr hab. Bożena Woźna-Szcześniak Jan Długosz University, Poland Wykład 8 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych Wykład 8 1 /

Bardziej szczegółowo

wstęp do informatyki i programowania część testowa (25 pyt. / 60 min.)

wstęp do informatyki i programowania część testowa (25 pyt. / 60 min.) egzamin podstawowy 7 lutego 2017 r. wstęp do informatyki i programowania część testowa (25 pyt. / 60 min.) Instytut Informatyki Uniwersytetu Wrocławskiego Paweł Rzechonek imię, nazwisko i nr indeksu:..............................................................

Bardziej szczegółowo

Algorytmy i Struktury Danych.

Algorytmy i Struktury Danych. Algorytmy i Struktury Danych. Liniowe struktury danych - Lista uporzadkowana. Wartownicy. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 6 Bożena Woźna-Szcześniak (AJD)

Bardziej szczegółowo

Teoretyczne podstawy informatyki

Teoretyczne podstawy informatyki Teoretyczne podstawy informatyki Wykład 6b: Model danych oparty na drzewach http://hibiscus.if.uj.edu.pl/~erichter/dydaktyka2010/tpi-2010 Prof. dr hab. Elżbieta Richter-Wąs 1 Model danych oparty na drzewach

Bardziej szczegółowo

Zadanie 1 Przygotuj algorytm programu - sortowanie przez wstawianie.

Zadanie 1 Przygotuj algorytm programu - sortowanie przez wstawianie. Sortowanie Dane wejściowe: ciąg n-liczb (kluczy) (a 1, a 2, a 3,..., a n 1, a n ) Dane wyjściowe: permutacja ciągu wejściowego (a 1, a 2, a 3,..., a n 1, a n) taka, że a 1 a 2 a 3... a n 1 a n. Będziemy

Bardziej szczegółowo

Algorytmy i Struktury Danych. (c) Marcin Sydow. Sortowanie Selection Sort Insertion Sort Merge Sort. Sortowanie 1. Listy dowiązaniowe.

Algorytmy i Struktury Danych. (c) Marcin Sydow. Sortowanie Selection Sort Insertion Sort Merge Sort. Sortowanie 1. Listy dowiązaniowe. 1 Tematy wykładu: problem sortowania sortowanie przez wybór (SelectionSort) sortowanie przez wstawianie (InsertionSort) sortowanie przez złaczanie (MergeSort) struktura danych list dowiązaniowych Input:

Bardziej szczegółowo

Teoretyczne podstawy informatyki

Teoretyczne podstawy informatyki Teoretyczne podstawy informatyki Wykład 6a Model danych oparty na drzewach 1 Model danych oparty na drzewach Istnieje wiele sytuacji w których przetwarzane informacje mają strukturę hierarchiczną lub zagnieżdżoną,

Bardziej szczegółowo

Wykład 6. Drzewa poszukiwań binarnych (BST)

Wykład 6. Drzewa poszukiwań binarnych (BST) Wykład 6 Drzewa poszukiwań binarnych (BST) 1 O czym będziemy mówić Definicja Operacje na drzewach BST: Search Minimum, Maximum Predecessor, Successor Insert, Delete Struktura losowo budowanych drzew BST

Bardziej szczegółowo

Algorytmy i Struktury Danych.

Algorytmy i Struktury Danych. Algorytmy i Struktury Danych. Podstawowe struktury danych dr hab. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 6 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych.

Bardziej szczegółowo

Podstawowe struktury danych

Podstawowe struktury danych Podstawowe struktury danych 1) Listy Lista to skończony ciąg elementów: q=[x 1, x 2,..., x n ]. Skrajne elementy x 1 i x n nazywamy końcami listy, a wielkość q = n długością (rozmiarem) listy. Szczególnym

Bardziej szczegółowo

Podstawy informatyki 2. Podstawy informatyki 2. Wykład nr 2 ( ) Plan wykładu nr 2. Politechnika Białostocka. - Wydział Elektryczny

Podstawy informatyki 2. Podstawy informatyki 2. Wykład nr 2 ( ) Plan wykładu nr 2. Politechnika Białostocka. - Wydział Elektryczny Wykład nr 2 2/6 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia stacjonarne Rok akademicki 2006/2007 Plan wykładu nr 2 Argumenty funkcji main Dynamiczne struktury danych

Bardziej szczegółowo

Podstawy informatyki 2

Podstawy informatyki 2 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia stacjonarne Rok akademicki 2006/2007 Wykład nr 2 (07.03.2007) Wykład nr 2 2/46 Plan wykładu nr 2 Argumenty funkcji main

Bardziej szczegółowo

Laboratorium z przedmiotu Programowanie obiektowe - zestaw 04

Laboratorium z przedmiotu Programowanie obiektowe - zestaw 04 Laboratorium z przedmiotu Programowanie obiektowe - zestaw 04 Cel zajęć. Celem zajęć jest zapoznanie się ze sposobem działania popularnych kolekcji. Wprowadzenie teoretyczne. Rozważana w ramach niniejszych

Bardziej szczegółowo

KOPCE KOLEJKI PRIORYTETOWE - PRZYPOMNIENIE KOPCE WYSOKOŚĆ KOPCA KOPCE I KOLEJKI PRIORYTETOWE PROJEKTOWANIE ALGORYTMÓW I METODY SZTUCZNEJ INTELIGENCJI

KOPCE KOLEJKI PRIORYTETOWE - PRZYPOMNIENIE KOPCE WYSOKOŚĆ KOPCA KOPCE I KOLEJKI PRIORYTETOWE PROJEKTOWANIE ALGORYTMÓW I METODY SZTUCZNEJ INTELIGENCJI PROJEKTOWANIE ALGORYTMÓW I METODY SZTUCZNEJ INTELIGENCJI KOPCE, ALGORYTMY SORTOWANIA KOPCE Wykład dr inż. Łukasz Jeleń Na podstawie wykładów dr. T. Fevensa KOLEJKI PRIORYTETOWE - PRZYPOMNIENIE Możemy wykorzystać

Bardziej szczegółowo

Java Collections Framework

Java Collections Framework Java Collections Framework Co to jest Java Collections Framework JCF Zunifikowana architektura do reprezentacji i manipulacji kolekcjami danych. Składa się z: Interfejsów Definuje abstrakcyjne typy możliwych

Bardziej szczegółowo

Algorytmy i Struktury Danych.

Algorytmy i Struktury Danych. Algorytmy i Struktury Danych. Abstrakcyjne struktury danych dr hab. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 5 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury

Bardziej szczegółowo

Wstęp do Programowania potok funkcyjny

Wstęp do Programowania potok funkcyjny Wstęp do Programowania potok funkcyjny Marcin Kubica 2010/2011 Outline Imperatywne wskaźnikowe struktury danych 1 Imperatywne wskaźnikowe struktury danych Dwustronne kolejki + sklejanie + odwracanie. module

Bardziej szczegółowo

Podstawowe algorytmy i ich implementacje w C. Wykład 9

Podstawowe algorytmy i ich implementacje w C. Wykład 9 Wstęp do programowania 1 Podstawowe algorytmy i ich implementacje w C Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 9 Element minimalny i maksymalny zbioru Element minimalny

Bardziej szczegółowo

Wykład 8. Drzewo rozpinające (minimum spanning tree)

Wykład 8. Drzewo rozpinające (minimum spanning tree) Wykład 8 Drzewo rozpinające (minimum spanning tree) 1 Minimalne drzewo rozpinające - przegląd Definicja problemu Własności minimalnych drzew rozpinających Algorytm Kruskala Algorytm Prima Literatura Cormen,

Bardziej szczegółowo

Wykład 4. Klasa List Kolejki Stosy Słowniki

Wykład 4. Klasa List Kolejki Stosy Słowniki Wykład 4 Klasa List Kolejki Stosy Słowniki Klasa List Poważną niedogodnością tablic jako kolekcji danych jest fakt, że muszą one mieć stały rozmiar. Programista musi wiedzieć z góry ile miejsca powinien

Bardziej szczegółowo

Programowanie obiektowe i C++ dla matematyków

Programowanie obiektowe i C++ dla matematyków Programowanie obiektowe i C++ dla matematyków Bartosz Szreder szreder (at) mimuw... X 0 Typy złożone Oczywiście w C++ możemy definiować własne typy złożone (struktury i klasy), tak jak w Pascalu poprzez

Bardziej szczegółowo

Rekurencyjne struktury danych

Rekurencyjne struktury danych Andrzej Jastrz bski Akademia ETI Dynamiczny przydziaª pami ci Pami, która jest przydzielana na pocz tku dziaªania procesu to: pami programu czyli instrukcje programu pami statyczna zwi zana ze zmiennymi

Bardziej szczegółowo

Wykład 2. Drzewa poszukiwań binarnych (BST)

Wykład 2. Drzewa poszukiwań binarnych (BST) Wykład 2 Drzewa poszukiwań binarnych (BST) 1 O czym będziemy mówić Definicja Operacje na drzewach BST: Search Minimum, Maximum Predecessor, Successor Insert, Delete Struktura losowo budowanych drzew BST

Bardziej szczegółowo

Struktury Danych i Złożoność Obliczeniowa

Struktury Danych i Złożoność Obliczeniowa Struktury Danych i Złożoność Obliczeniowa Zajęcia 3 Struktury drzewiaste drzewo binarne szczególny przypadek drzewa, które jest szczególnym przypadkiem grafu skierowanego, stopień każdego wierzchołka jest

Bardziej szczegółowo

Algorytmy i Struktury Danych.

Algorytmy i Struktury Danych. Algorytmy i Struktury Danych. Drzewa poszukiwań binarnych. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 10 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych.

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA Rekurencja - zdolność podprogramu (procedury) do wywoływania samego (samej) siebie Wieże Hanoi dane wejściowe - trzy kołki i N krążków o różniących się średnicach wynik - sekwencja ruchów przenosząca krążki

Bardziej szczegółowo

Literatura. 1) Pojęcia: złożoność czasowa, rząd funkcji. Aby wyznaczyć pesymistyczną złożoność czasową algorytmu należy:

Literatura. 1) Pojęcia: złożoność czasowa, rząd funkcji. Aby wyznaczyć pesymistyczną złożoność czasową algorytmu należy: Temat: Powtórzenie wiadomości z PODSTAW INFORMATYKI I: Pojęcia: złożoność czasowa algorytmu, rząd funkcji kosztu. Algorytmy. Metody programistyczne. Struktury danych. Literatura. A. V. Aho, J.E. Hopcroft,

Bardziej szczegółowo

Lista, Stos, Kolejka, Tablica Asocjacyjna

Lista, Stos, Kolejka, Tablica Asocjacyjna Lista, Stos, Kolejka, Tablica Asocjacyjna Listy Lista zbiór elementów tego samego typu może dynamicznie zmieniać rozmiar, pozwala na dostęp do poszczególnych elementów Typowo dwie implementacje: tablicowa,

Bardziej szczegółowo

Algorytmy i Struktury Danych.

Algorytmy i Struktury Danych. Algorytmy i Struktury Danych. Organizacja wykładu. Problem Sortowania. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 1 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury

Bardziej szczegółowo

Drzewa binarne. Drzewo binarne to dowolny obiekt powstały zgodnie z regułami: jest drzewem binarnym Jeśli T 0. jest drzewem binarnym Np.

Drzewa binarne. Drzewo binarne to dowolny obiekt powstały zgodnie z regułami: jest drzewem binarnym Jeśli T 0. jest drzewem binarnym Np. Drzewa binarne Drzewo binarne to dowolny obiekt powstały zgodnie z regułami: jest drzewem binarnym Jeśli T 0 i T 1 są drzewami binarnymi to T 0 T 1 jest drzewem binarnym Np. ( ) ( ( )) Wielkość drzewa

Bardziej szczegółowo

Podstawy Programowania. Listy i stosy

Podstawy Programowania. Listy i stosy Podstawy Programowania Wykład IX Listy i stosy Robert Muszyński Katedra Cybernetyki i Robotyki, PWr Zagadnienia: listy: tworzenie, wyszukiwanie, przeglądanie, usuwanie, problemy, listy z głową, z wartownikiem,

Bardziej szczegółowo

Wykład X. Programowanie. dr inż. Janusz Słupik. Gliwice, Wydział Matematyki Stosowanej Politechniki Śląskiej. c Copyright 2016 Janusz Słupik

Wykład X. Programowanie. dr inż. Janusz Słupik. Gliwice, Wydział Matematyki Stosowanej Politechniki Śląskiej. c Copyright 2016 Janusz Słupik Wykład X Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2016 c Copyright 2016 Janusz Słupik Drzewa binarne Drzewa binarne Drzewo binarne - to drzewo (graf spójny bez cykli) z korzeniem (wyróżnionym

Bardziej szczegółowo

Programowanie i struktury danych

Programowanie i struktury danych Programowanie i struktury danych 1 / 19 Dynamiczne struktury danych Dynamiczną strukturą danych nazywamy taka strukturę danych, której rozmiar, a więc liczba przechowywanych w niej danych, może się dowolnie

Bardziej szczegółowo

Wykład 6. Dynamiczne struktury danych

Wykład 6. Dynamiczne struktury danych Wykład 6 Dynamiczne struktury danych 1 Plan wykładu Ø Wprowadzenie Ø Popularne dynamiczne struktury danych (ADT) Ø stosy, kolejki, listy opis abstrakcyjny Ø Listy liniowe Ø Implementacja tablicowa stosu

Bardziej szczegółowo

Kolejka Priorytetowa. Algorytmy i Struktury Danych. (c) Marcin Sydow. Kolejka priorytetowa. implementacja. Kopiec Binarny. Tablicowa.

Kolejka Priorytetowa. Algorytmy i Struktury Danych. (c) Marcin Sydow. Kolejka priorytetowa. implementacja. Kopiec Binarny. Tablicowa. Priorytetowa Zawartość wykładu Definicja kolejki priorytetowej proste implementacje (nieefektywne) kopiec binarny (najprostsza efektywna ) operacje kolejki priorytetowej na kopcu binarnym trik: jako zwykłej

Bardziej szczegółowo

Algorytmy i. Wykład 5: Drzewa. Dr inż. Paweł Kasprowski

Algorytmy i. Wykład 5: Drzewa. Dr inż. Paweł Kasprowski Algorytmy i struktury danych Wykład 5: Drzewa Dr inż. Paweł Kasprowski pawel@kasprowski.pl Drzewa Struktury przechowywania danych podobne do list ale z innymi zasadami wskazywania następników Szczególny

Bardziej szczegółowo

Programowanie obiektowe

Programowanie obiektowe Laboratorium z przedmiotu Programowanie obiektowe - zestaw 04 Cel zajęć. Celem zajęć jest zapoznanie się ze sposobem działania popularnych. Wprowadzenie teoretyczne. Rozważana w ramach niniejszych zajęć

Bardziej szczegółowo

Programowanie i struktury danych 1 / 44

Programowanie i struktury danych 1 / 44 Programowanie i struktury danych 1 / 44 Lista dwukierunkowa Lista dwukierunkowa to liniowa struktura danych skªadaj ca si z ci gu elementów, z których ka»dy pami ta swojego nast pnika i poprzednika. Operacje

Bardziej szczegółowo

Algorytmy i struktury danych Struktury danych IS/IO, WIMiIP

Algorytmy i struktury danych Struktury danych IS/IO, WIMiIP Algorytmy i struktury danych Struktury danych IS/IO, WIMiIP Danuta Szeliga AGH Kraków Spis treści I 1 Wstęp Pojęcia podstawowe Abstrakcyjne typ danych Statyczna/dynamiczna struktura danych 2 Statyczne

Bardziej szczegółowo

int tab_a [ 2 ] [ 3 ];

int tab_a [ 2 ] [ 3 ]; // PROGRAM 4_1 - Przyklady dynamicznego tworzenia // i usuwania tablicy dwuwymiarowej int [2][3] #include void main(void) //------------------------------ Przyklad A -------------------------------------------

Bardziej szczegółowo

Realizacja ekstensji klasy. Paulina Strzelecka, Tomasz Roszkowski

Realizacja ekstensji klasy. Paulina Strzelecka, Tomasz Roszkowski Realizacja ekstensji klasy Paulina Strzelecka, Tomasz Roszkowski Przechowywanie obiektów (odwolañ do obiektów) w Javie typ wbudowany - tablica zbiór klas kontenerowych Paulina Strzelecka, Tomasz Roszkowski

Bardziej szczegółowo

Struktury danych. przez użytkownika, jak to ma miejsce w przypadku zwykłych zmiennych statycznych.

Struktury danych. przez użytkownika, jak to ma miejsce w przypadku zwykłych zmiennych statycznych. Struktury danych 1. Dynamiczne struktury danych Zmienna dynamiczna jest to zmienna, która pojawia się(i znika) wtedy gdy jest potrzebna(lub nie jest) podczas wykonywania się programu. Zwykłe zmienne statyczne,

Bardziej szczegółowo

Paradygmaty programowania. Paradygmaty programowania

Paradygmaty programowania. Paradygmaty programowania Paradygmaty programowania Paradygmaty programowania Dr inż. Andrzej Grosser Cz estochowa, 2013 2 Spis treści 1. Zadanie 2 5 1.1. Wprowadzenie.................................. 5 1.2. Wskazówki do zadania..............................

Bardziej szczegółowo

Wykład 5. Sortowanie w czasie liniowologarytmicznym

Wykład 5. Sortowanie w czasie liniowologarytmicznym Wykład 5 Sortowanie w czasie liniowologarytmicznym 1 Sortowanie - zadanie Definicja (dla liczb): wejście: ciąg n liczb A = (a 1, a 2,, a n ) wyjście: permutacja (a 1,, a n ) taka, że a 1 a n 2 Zestawienie

Bardziej szczegółowo

Temat: Liniowe uporzdkowane struktury danych: stos, kolejka. Specyfikacja, przykładowe implementacje i zastosowania. Struktura słownika.

Temat: Liniowe uporzdkowane struktury danych: stos, kolejka. Specyfikacja, przykładowe implementacje i zastosowania. Struktura słownika. Temat: Liniowe uporzdkowane struktury danych: stos, kolejka. Specyfikacja, przykładowe implementacje i zastosowania. Struktura słownika. 1. Pojcie struktury danych Nieformalnie Struktura danych (ang. data

Bardziej szczegółowo

Lista liniowa dwukierunkowa

Lista liniowa dwukierunkowa 53 Lista liniowa dwukierunkowa Jest to lista złożona z elementów, z których każdy posiada, oprócz wskaźnika na element następny, również wskaźnik na element poprzedni. Zdefiniujmy element listy dwukierunkowej

Bardziej szczegółowo

Co to jest sterta? Sterta (ang. heap) to obszar pamięci udostępniany przez system operacyjny wszystkim działającym programom (procesom).

Co to jest sterta? Sterta (ang. heap) to obszar pamięci udostępniany przez system operacyjny wszystkim działającym programom (procesom). Zarządzanie pamięcią Pamięć: stos i sterta Statyczny i dynamiczny przydział pamięci Funkcje ANSI C do zarządzania pamięcią Przykłady: Dynamiczna tablica jednowymiarowa Dynamiczna tablica dwuwymiarowa 154

Bardziej szczegółowo

Wyszukiwanie w BST Minimalny i maksymalny klucz. Wyszukiwanie w BST Minimalny klucz. Wyszukiwanie w BST - minimalny klucz Wersja rekurencyjna

Wyszukiwanie w BST Minimalny i maksymalny klucz. Wyszukiwanie w BST Minimalny klucz. Wyszukiwanie w BST - minimalny klucz Wersja rekurencyjna Podstawy Programowania 2 Drzewa bst - część druga Arkadiusz Chrobot Zakład Informatyki 12 maja 2016 1 / 8 Plan Wstęp Wyszukiwanie w BST Minimalny i maksymalny klucz Wskazany klucz Zmiany w funkcji main()

Bardziej szczegółowo

Programowanie obiektowe

Programowanie obiektowe Programowanie obiektowe Sieci powiązań Paweł Daniluk Wydział Fizyki Jesień 2015 P. Daniluk (Wydział Fizyki) PO w. IX Jesień 2015 1 / 21 Sieci powiązań Można (bardzo zgrubnie) wyróżnić dwa rodzaje powiązań

Bardziej szczegółowo

Algorytmy i struktury danych Sortowanie IS/IO, WIMiIP

Algorytmy i struktury danych Sortowanie IS/IO, WIMiIP Algorytmy i struktury danych Sortowanie IS/IO, WIMiIP Danuta Szeliga AGH Kraków Spis treści I 1 Wstęp 2 Metody proste 3 Szybkie metody sortowania 4 Algorytmy hybrydowe Sortowanie hybrydowe Sortowanie introspektywne

Bardziej szczegółowo

Temat: Dynamiczne przydzielanie i zwalnianie pamięci. Struktura listy operacje wstawiania, wyszukiwania oraz usuwania danych.

Temat: Dynamiczne przydzielanie i zwalnianie pamięci. Struktura listy operacje wstawiania, wyszukiwania oraz usuwania danych. Temat: Dynamiczne przydzielanie i zwalnianie pamięci. Struktura listy operacje wstawiania, wyszukiwania oraz usuwania danych. 1. Rodzaje pamięci używanej w programach Pamięć komputera, dostępna dla programu,

Bardziej szczegółowo

Sortowanie przez scalanie

Sortowanie przez scalanie Sortowanie przez scalanie Wykład 2 12 marca 2019 (Wykład 2) Sortowanie przez scalanie 12 marca 2019 1 / 17 Outline 1 Metoda dziel i zwyciężaj 2 Scalanie Niezmiennik pętli - poprawność algorytmu 3 Sortowanie

Bardziej szczegółowo

Struktury. Przykład W8_1

Struktury. Przykład W8_1 Struktury Struktury pozwalają na grupowanie zmiennych różnych typów pod wspólną nazwą. To istotnie ułatwia organizacje danych, które okazują się w jednym miejscu kodu programu. To jest bardzo ważne dla

Bardziej szczegółowo

STRUKTURY DANYCH I ZŁOŻONOŚĆ OBLICZENIOWA STRUKTURY DANYCH I ZŁOŻONOŚĆ OBLICZENIOWA. Część 3. Drzewa Przeszukiwanie drzew

STRUKTURY DANYCH I ZŁOŻONOŚĆ OBLICZENIOWA STRUKTURY DANYCH I ZŁOŻONOŚĆ OBLICZENIOWA. Część 3. Drzewa Przeszukiwanie drzew STRUKTURY DANYCH I ZŁOŻONOŚĆ OBLICZENIOWA Część 3 Drzewa Przeszukiwanie drzew 1 / 24 DRZEWA (ang.: trees) Drzewo struktura danych o typie podstawowym T definiowana rekurencyjnie jako: - struktura pusta,

Bardziej szczegółowo

Sztuczna Inteligencja i Systemy Doradcze

Sztuczna Inteligencja i Systemy Doradcze Sztuczna Inteligencja i Systemy Doradcze Przeszukiwanie przestrzeni stanów algorytmy ślepe Przeszukiwanie przestrzeni stanów algorytmy ślepe 1 Strategie slepe Strategie ślepe korzystają z informacji dostępnej

Bardziej szczegółowo