Algorytmy i Struktury Danych. Co dziś? Drzewo decyzyjne. Wykład IV Sortowania cd. Elementarne struktury danych
|
|
- Dominik Tomaszewski
- 7 lat temu
- Przeglądów:
Transkrypt
1 Algorytmy i Struktury Danych Wykład IV Sortowania cd. Elementarne struktury danych 1 Co dziś? Dolna granica sortowań Mediany i statystyki pozycyjne Warstwa implementacji Warstwa abstrakcji #tablice #listy #stos, kolejki 2 Drzewo decyzyjne A[1]:A[2] > A[2]:A[3] A[1]:A[3] 1,2,3 A[1]:A[3] 2,1,3 A[2]:A[3] 1,3,2 3,1,2 2,3,1 3,2,1 3 1
2 Minimum i maksimum min lub max -liniowe przeszukanie O(n) #n-1 porównań min i max linowe przeszukanie O(n) #2n-2 porównań #3(n/2) -porówań 4 Wybór i tego elementu Algorytm Hoare a # oczekiwany czas liniowy Algorytm magicznych piątek # pesymistyczny czas liniowy 1. podziel n elementów na zbiory 5 elementowe 2. wyznacz medianę z każdej piątki 3. wywołaj rekurencyjnie dla znalezienia mediany median 4. podziel tablicę względem znalezionej mediany 5. wywołaj rekurencyjnie dla mniejszych lub większych elementów 5 Warstwa implementacji Możliwości # tablica # wskaźniki (odsyłacze, pointery) # obiekty (referencje) Deklaracje # statyczne # dynamiczne Różnice # szybkość # rodzaje pamięci # moment alokacji 6 2
3 Tablica Tablica statyczna Tablica dynamiczna #realokacja Złożoność # O(1) <-> O(n) Indeks to liczby całkowite -> arytmetyka na pointerach + rzutowanie Ograniczenia #deklaracja #dostępna pamięć 7 int taba[10]; int * tabb = (int*)malloc( 10 * sizeof (int) ); int * tabc = new int[10]; tabb = (int*)realloc( tabb, 20 * sizeof (int) ); taba[0] = *(taba + 0); free( tabb ); delete []tabc; Wskaźniki Lista (łańcuch odsyłaczowy) # jednokierunkowa # dwukierunkowa # cykliczna # z wartownikami # drzewa Złożoność # listy O(1) <-> O(n) # drzewa O(1) <-> O(log(n)) <-> O(n) Ograniczenia # dostępna pamięć 9 3
4 Wskaźniki 10 Wskaźniki 11 Wskaźniki - wartownik 12 4
5 void foo( pele * head )... void foo( pele ** head )... void foo( pele *& head ) pele * foo( pele * head )... // tail, root void foo( pele * firstele )... while( ele )... while( ele->next )... if ( ele && ele->key ==??? while ( ele && ele->key ==??? if ( ele && ele->next... Drzewa 14 bool foo( pnode * node ) if ( node->key ==??? if ( node->left ) return foo( node->left ); if ( node->right ) return foo( node->right ); if ( node->left ) i = foo( node->left ); if ( node->right ) i += foo( node->right ); 5
6 Drzewo? 16 Drzewo? 17 Inne 18 6
7 Inne 19 Inne 20 Warstwa abstrakcji Abstrakcyjne struktury danych struktury # tablica lub wskaźniki #dodatkowe elementy indeks maksymalny, indeks bieżący głowa listy, ogon, element wyróżniony Interfejs struktury # metody, funkcje, operatory #zachowanie 21 7
8 Warstwa abstrakcji Rodzaje metod # zapytania # operacje modyfikujące Dane i klucz Rozpatrywanie złożoności dopiero przy implementacji jednaj struktury przy pomocy zaimplementowanego interfejsu innej struktury # kolejka priorytetowa -> kopiec -> tablica 22 Metody uniwersalne #search( key ), search( x ) #insert( x ) #delete( x ) #min() #max() #successor( x ) #predecessor( x ) 23 Tablica # set # get # size # bezpośredni dostęp do każdego elementu, określona długość(?) # tablica # lista jedno (dwu) kierunkowa 24 8
9 Lista jednokierunkowa # insert # search # delete # isempty # next # podstawowa cecha to brak ograniczenia na ilość elementów # tablica # lista jednokierunkowa 25 Lista next 2 * 1 4 key prev * 6 34 * * Stos (LIFO) # push # pop # isempty # element ostatnio położony jest pierwszy ściągany, kładziemy elementy na wierzchołek stosu i z niego ściągamy # tablica # lista jednokierunkowa 27 9
10 Kolejka (FIFO) # isempty # put(insert) # get(extract) # element ostatnio położony musi czekać na swoją kolej, pobieramy elementy z początku, a wstawiamy na koniec # tablica # lista jednokierunkowa, dwukierunkowa 28 Kolejka dwukierunkowa (talia) # isempty # putfirst, -last(insert, head-tail) # getfirs, -last(extract, head-tail) # wstawiamy na początek i na koniec, pobieramy elementy z początku lub z końca # tablica # lista jednokierunkowa, dwukierunkowa 29 Zbiór # add # delete # isin # union # wszystkie elementy są różne, każdy element występuje jedne raz # tablica # lista ASD
11 Zbiory rozłączne # makeset # union # findset # zbiór jest reprezentowany przez reprezentanta, reprezentantem jest korzeń, element zbioru wskazuje na swojego ojca # prosta implementacja odsyłaczowa # drzewa ukorzenione # drzewa ukorzenione + Heurystyki łączenie wg rangi kompresja ścieżki ASD MakeSet(X x) x.parent = x; x.rank = 0; Union(X x,x y) Link( FindSet(x), FindSet(y) ); Link(x,y) if (x.rank > y.rank) y.parent = x; else x.parent = y; if (x.rank == y.rank ) y.rank++; X FindSet( X x ) if ( x.parent!= x ) x.parent = FindSet(x.parent); return x.parent; Kolejka priorytetowa # put (insert) # get (extract) # isempty # element wstawiamy nie na koniec, ale w zależności od key # lista O(n) # tablica posortowana O(n) # kopiec O(log(n)) ASD
12 void heap(int i) int l = 2 * i + 1; int r = 2 * i + 2; int maxi,t; if ( l < max && A[l] > A[i] ) // MAX maxi = l; else maxi = i; if ( r < max && A[r] > A[maxi] ) maxi = r; if ( maxi!= i ) t = A[i]; A[i] = A[maxi]; A[maxi] = t; heap( maxi ); void heap(int i) while(1) int l = 2 * i + 1; int r = 2 * i + 2; int maxi,t; if ( l < max && A[l] > A[i] ) maxi = l; else maxi = i; if ( r < max && A[r] > A[maxi] ) maxi = r; if ( maxi!= i ) t = A[i]; A[i] = A[maxi]; A[maxi] = t; i = maxi; else break; int put( int ele ) if ( max + 1 == MAX ) // == return error; //??? int i = max++; while( i > 0 && A[(i-1)/2] < ele ) A[i] = A[(i-1)/2]; i = (i-1)/2; A[i] = ele; 12
13 class Heap protected: data* A; int max; public: data get(); void put(data a); Heap(); ~Heap(); data Heap::get() if ( max == 0 ) // return error;??? throw errorheapemptyexception; data ret = A[0]; A[0] = A[--max]; heap( 0 ); return data; Jeszcze o kopcu Kopiec binarny Kopiec rzędu d #d-arny #zamiast 2 synów, każdy węzeł ma ich d Złożoność struktury #O( log(n)) == O( log d (n)) # szybkość vs łatwość implementacji ASD
14 Pytania? KONIEC 40 14
Dynamiczne struktury danych
Listy Zbiór dynamiczny Zbiór dynamiczny to zbiór wartości pochodzących z pewnego określonego uniwersum, którego zawartość zmienia się w trakcie działania programu. Elementy zbioru dynamicznego musimy co
Bardziej szczegółowoListy, kolejki, stosy
Listy, kolejki, stosy abc Lista O Struktura danych składa się z węzłów, gdzie mamy informacje (dane) i wskaźniki do następnych węzłów. Zajmuje tyle miejsca w pamięci ile mamy węzłów O Gdzie można wykorzystać:
Bardziej szczegółowoStruktury danych: stos, kolejka, lista, drzewo
Struktury danych: stos, kolejka, lista, drzewo Wykład: dane w strukturze, funkcje i rodzaje struktur, LIFO, last in first out, kolejka FIFO, first in first out, push, pop, size, empty, głowa, ogon, implementacja
Bardziej szczegółowoKolejka priorytetowa. Często rozważa się kolejki priorytetowe, w których poszukuje się elementu minimalnego zamiast maksymalnego.
Kolejki Kolejka priorytetowa Kolejka priorytetowa (ang. priority queue) to struktura danych pozwalająca efektywnie realizować następujące operacje na zbiorze dynamicznym, którego elementy pochodzą z określonego
Bardziej szczegółowoWysokość drzewa Głębokość węzła
Drzewa Drzewa Drzewo (ang. tree) zbiór węzłów powiązanych wskaźnikami, spójny i bez cykli. Drzewo posiada wyróżniony węzeł początkowy nazywany korzeniem (ang. root). Drzewo ukorzenione jest strukturą hierarchiczną.
Bardziej szczegółowoMetody getter https://www.python-course.eu/python3_object_oriented_programming.php 0_class http://interactivepython.org/runestone/static/pythonds/index.html https://www.cs.auckland.ac.nz/compsci105s1c/lectures/
Bardziej szczegółowoALGORYTMY I STRUKTURY DANYCH
ALGORYTMY I STRUKTURY DANYCH Temat 4: Realizacje dynamicznych struktur danych. Wykładowca: dr inż. Zbigniew TARAPATA e-mail: Zbigniew.Tarapata@isi.wat.edu.pl http://www.tarapata.strefa.pl/p_algorytmy_i_struktury_danych/
Bardziej szczegółowoDynamiczne struktury danych
Dynamiczne struktury danych 391 Dynamiczne struktury danych Przez dynamiczne struktury danych rozumiemy proste i złożone struktury danych, którym pamięć jest przydzielana i zwalniana na żądanie w trakcie
Bardziej szczegółowoStruktura danych. Sposób uporządkowania informacji w komputerze. Na strukturach danych operują algorytmy. Przykładowe struktury danych:
Struktura danych Sposób uporządkowania informacji w komputerze. Na strukturach danych operują algorytmy. Przykładowe struktury danych: rekord tablica lista stos kolejka drzewo i jego odmiany (np. drzewo
Bardziej szczegółowoAlgorytmy i Struktury Danych.
Algorytmy i Struktury Danych. Liniowe struktury danych - Lista Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 5 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych.
Bardziej szczegółowoStruktura danych. Sposób uporządkowania informacji w komputerze. Na strukturach danych operują algorytmy. Przykładowe struktury danych:
Struktura danych Sposób uporządkowania informacji w komputerze. Na strukturach danych operują algorytmy. Przykładowe struktury danych: rekord tablica lista stos kolejka drzewo i jego odmiany (np. drzewo
Bardziej szczegółowoAlgorytmy i Struktury Danych.
Algorytmy i Struktury Danych. Podstawowe struktury danych, cd. Wykład na podstawie ksiażki Roberta Sedgewicka i Kevina Wayne: Algorithms. Furth Edition. Princeton University dr hab. Bożena Woźna-Szcześniak
Bardziej szczegółowoAlgorytmy i Struktury Danych
Algorytmy i Struktury Danych Kopce Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 11 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych Wykład 11 1 / 69 Plan wykładu
Bardziej szczegółowoStruktury dynamiczne
Struktury dynamiczne lista jednokierunkowa lista dwukierunkowa lista cykliczna stos kolejka drzewo Ich wielkość i stopień złożoności zmieniają się w czasie. Struktury dynamiczne oparte są o struktury (struct).
Bardziej szczegółowoAlgorytmy i struktury danych. Drzewa: BST, kopce. Letnie Warsztaty Matematyczno-Informatyczne
Algorytmy i struktury danych Drzewa: BST, kopce Letnie Warsztaty Matematyczno-Informatyczne Drzewa: BST, kopce Definicja drzewa Drzewo (ang. tree) to nieskierowany, acykliczny, spójny graf. Drzewo może
Bardziej szczegółowoWykład 3. Złożoność i realizowalność algorytmów Elementarne struktury danych: stosy, kolejki, listy
Wykład 3 Złożoność i realizowalność algorytmów Elementarne struktury danych: stosy, kolejki, listy Dynamiczne struktury danych Lista jest to liniowo uporządkowany zbiór elementów, z których dowolny element
Bardziej szczegółowoStos LIFO Last In First Out
Stos LIFO Last In First Out Operacje: push - dodanie elementu na stos pop - usunięcie elementu ze stosu empty - sprawdzenie, czy stos jest pusty size - zwrócenie liczby elementów na stosie value (peek)
Bardziej szczegółowoDynamiczny przydział pamięci w języku C. Dynamiczne struktury danych. dr inż. Jarosław Forenc. Metoda 1 (wektor N M-elementowy)
Rok akademicki 2012/2013, Wykład nr 2 2/25 Plan wykładu nr 2 Informatyka 2 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr III, studia niestacjonarne I stopnia Rok akademicki 2012/2013
Bardziej szczegółowoRekurencja. Dla rozwiązania danego problemu, algorytm wywołuje sam siebie przy rozwiązywaniu podobnych podproblemów. Przykład: silnia: n! = n(n-1)!
Rekurencja Dla rozwiązania danego problemu, algorytm wywołuje sam siebie przy rozwiązywaniu podobnych podproblemów. Przykład: silnia: n! = n(n-1)! Pseudokod: silnia(n): jeżeli n == 0 silnia = 1 w przeciwnym
Bardziej szczegółowoWstęp do programowania
Wstęp do programowania Stosy, kolejki, drzewa Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk(Wydział Fizyki) WP w. VII Jesień 2013 1 / 25 Listy Lista jest uporządkowanym zbiorem elementów. W Pythonie
Bardziej szczegółowoPorządek symetryczny: right(x)
Porządek symetryczny: x lef t(x) right(x) Własność drzewa BST: W drzewach BST mamy porządek symetryczny. Dla każdego węzła x spełniony jest warunek: jeżeli węzeł y leży w lewym poddrzewie x, to key(y)
Bardziej szczegółowoDrzewa wyszukiwań binarnych (BST)
Drzewa wyszukiwań binarnych (BST) Krzysztof Grządziel 12 czerwca 2007 roku 1 Drzewa Binarne Drzewa wyszukiwań binarnych, w skrócie BST (od ang. binary search trees), to szczególny przypadek drzew binarnych.
Bardziej szczegółowoDrzewo. Drzewo uporządkowane ma ponumerowanych (oznaczonych) następników. Drzewo uporządkowane składa się z węzłów, które zawierają następujące pola:
Drzewa Drzewa Drzewo (ang. tree) zbiór węzłów powiązanych wskaźnikami, spójny i bez cykli. Drzewo posiada wyróżniony węzeł początkowy nazywany korzeniem (ang. root). Drzewo ukorzenione jest strukturą hierarchiczną.
Bardziej szczegółowo2. Klasy cz. 2 - Konstruktor kopiujący. Pola tworzone statycznie i dynamicznie - Funkcje zaprzyjaźnione - Składowe statyczne
Tematyka wykładów 1. Wprowadzenie. Klasy cz. 1 - Język C++. Programowanie obiektowe - Klasy i obiekty - Budowa i deklaracja klasy. Prawa dostępu - Pola i funkcje składowe - Konstruktor i destruktor - Tworzenie
Bardziej szczegółowoprowadzący dr ADRIAN HORZYK /~horzyk e-mail: horzyk@agh tel.: 012-617 Konsultacje paw. D-13/325
PODSTAWY INFORMATYKI WYKŁAD 8. prowadzący dr ADRIAN HORZYK http://home home.agh.edu.pl/~ /~horzyk e-mail: horzyk@agh agh.edu.pl tel.: 012-617 617-4319 Konsultacje paw. D-13/325 DRZEWA Drzewa to rodzaj
Bardziej szczegółowoTeoretyczne podstawy informatyki
Teoretyczne podstawy informatyki Wykład 5b: Model danych oparty na listach http://kiwi.if.uj.edu.pl/~erichter/dydaktyka2010/tpi-2010 Prof. dr hab. Elżbieta Richter-Wąs 1 Słowem wstępu Listy należą do najbardziej
Bardziej szczegółowoINFORMATYKA. Podstawy programowania w języku C. (Wykład) Copyright (C) 2005 by Sergiusz Sienkowski IME Zielona Góra
INFORMATYKA Podstawy programowania w języku C (Wykład) Copyright (C) 2005 by Sergiusz Sienkowski IME Zielona Góra INFORMATYKA Temat: Struktury dynamiczne Wykład 7 Struktury dynamiczne lista jednokierunkowa,
Bardziej szczegółowodr inż. Paweł Myszkowski Wykład nr 11 ( )
dr inż. Paweł Myszkowski Politechnika Białostocka Wydział Elektryczny Elektronika i Telekomunikacja, semestr II, studia stacjonarne I stopnia Rok akademicki 2015/2016 Wykład nr 11 (11.05.2016) Plan prezentacji:
Bardziej szczegółowoStruktury Danych i Złożoność Obliczeniowa
Struktury Danych i Złożoność Obliczeniowa Zajęcia 1 Podstawowe struktury danych Tablica Najprostsza metoda przechowywania serii danych, zalety: prostota, wady: musimy wiedzieć, ile elementów chcemy przechowywać
Bardziej szczegółowododatkowe operacje dla kopca binarnego: typu min oraz typu max:
ASD - ćwiczenia IX Kopce binarne własność porządku kopca gdzie dla każdej trójki wierzchołków kopca (X, Y, Z) porządek etykiet elem jest następujący X.elem Y.elem oraz Z.elem Y.elem w przypadku kopca typu
Bardziej szczegółowoKurs programowania. Wykład 9. Wojciech Macyna
Wykład 9 Java Collections Framework (w C++ Standard Template Library) Kolekcja (kontener) Obiekt grupujacy/przechowuj acy jakieś elementy (obiekty lub wartości). Przykładami kolekcji sa zbiór, lista czy
Bardziej szczegółowoWykład 5 Wybrane zagadnienia programowania w C++ (c.d.)
Wykład 5 Wybrane zagadnienia programowania w C++ (c.d.) Kontenery - - wektor vector - - lista list - - kolejka queue - - stos stack Kontener asocjacyjny map 2016-01-08 Bazy danych-1 W5 1 Kontenery W programowaniu
Bardziej szczegółowoAlgorytmy i struktury danych. wykład 5
Plan wykładu: Wskaźniki. : listy, drzewa, kopce. Wskaźniki - wskaźniki Wskaźnik jest to liczba lub symbol który w ogólności wskazuje adres komórki pamięci. W językach wysokiego poziomu wskaźniki mogą również
Bardziej szczegółowoAlgorytmy i. Wykład 3: Stosy, kolejki i listy. Dr inż. Paweł Kasprowski. FIFO First In First Out (kolejka) LIFO Last In First Out (stos)
Algorytmy i struktury danych Wykład 3: Stosy, kolejki i listy Dr inż. Paweł Kasprowski pawel@kasprowski.pl Kolejki FIFO First In First Out (kolejka) LIFO Last In First Out (stos) Stos (stack) Dostęp jedynie
Bardziej szczegółowoKurs programowania. Wykład 9. Wojciech Macyna. 28 kwiecień 2016
Wykład 9 28 kwiecień 2016 Java Collections Framework (w C++ Standard Template Library) Kolekcja (kontener) Obiekt grupujacy/przechowuj acy jakieś elementy (obiekty lub wartości). Przykładami kolekcji sa
Bardziej szczegółowoWstęp do Programowania potok funkcyjny
Wstęp do Programowania potok funkcyjny Marcin Kubica 2010/2011 Outline Zasada dziel i rządź i analiza złożoności 1 Zasada dziel i rządź i analiza złożoności Definition : Zbiór wartości: nieograniczonej
Bardziej szczegółowoAlgorytm selekcji Hoare a. Łukasz Miemus
Algorytm selekcji Hoare a Łukasz Miemus 1 lutego 2006 Rozdział 1 O algorytmie 1.1 Problem Mamy tablicę A[N] różnych elementów i zmienną int K, takie że 1 K N. Oczekiwane rozwiązanie to określenie K-tego
Bardziej szczegółowoZASADY PROGRAMOWANIA KOMPUTERÓW ZAP zima 2014/2015. Drzewa BST c.d., równoważenie drzew, kopce.
POLITECHNIKA WARSZAWSKA Instytut Automatyki i Robotyki ZASADY PROGRAMOWANIA KOMPUTERÓW ZAP zima 204/205 Język programowania: Środowisko programistyczne: C/C++ Qt Wykład 2 : Drzewa BST c.d., równoważenie
Bardziej szczegółowoDynamiczny przydział pamięci (język C) Dynamiczne struktury danych. Sortowanie. Klasyfikacja algorytmów sortowania. Algorytmy sortowania
Rok akademicki 2010/2011, Wykład nr 4 2/50 Plan wykładu nr 4 Informatyka 2 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr III, studia niestacjonarne I stopnia Rok akademicki 2010/2011
Bardziej szczegółowoSortowanie. Kolejki priorytetowe i algorytm Heapsort Dynamiczny problem sortowania:
Sortowanie Kolejki priorytetowe i algorytm Heapsort Dynamiczny problem sortowania: podać strukturę danych dla elementów dynamicznego skończonego multi-zbioru S, względem którego są wykonywane następujące
Bardziej szczegółowoAlgorytmy i Struktury Danych. Anna Paszyńska
Algorytmy i Struktury Danych Anna Paszyńska Tablica dynamiczna szablon Array Zbiory Zbiory template class Container {public: virtual ~Container() { }; virtual int Count() const = 0;
Bardziej szczegółowoAlgorytmy i Struktury Danych.
Algorytmy i Struktury Danych. Liniowe struktury danych. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 4 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych. Wykład
Bardziej szczegółowoAlgorytmy i złożoności. Wykład 3. Listy jednokierunkowe
Algorytmy i złożoności Wykład 3. Listy jednokierunkowe Wstęp. Lista jednokierunkowa jest strukturą pozwalającą na pamiętanie danych w postaci uporzadkowanej, a także na bardzo szybkie wstawianie i usuwanie
Bardziej szczegółowoDrzewa poszukiwań binarnych
1 Drzewa poszukiwań binarnych Kacper Pawłowski Streszczenie W tej pracy przedstawię zagadnienia związane z drzewami poszukiwań binarnych. Przytoczę poszczególne operacje na tej strukturze danych oraz ich
Bardziej szczegółowoAlgorytmy i Struktury Danych
Algorytmy i Struktury Danych Drzewa poszukiwań binarnych dr hab. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 12 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych
Bardziej szczegółowoAlgorytmy i Struktury Danych
Algorytmy i Struktury Danych Drzewa poszukiwań binarnych dr hab. Bożena Woźna-Szcześniak Jan Długosz University, Poland Wykład 8 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych Wykład 8 1 /
Bardziej szczegółowowstęp do informatyki i programowania część testowa (25 pyt. / 60 min.)
egzamin podstawowy 7 lutego 2017 r. wstęp do informatyki i programowania część testowa (25 pyt. / 60 min.) Instytut Informatyki Uniwersytetu Wrocławskiego Paweł Rzechonek imię, nazwisko i nr indeksu:..............................................................
Bardziej szczegółowoAlgorytmy i Struktury Danych.
Algorytmy i Struktury Danych. Liniowe struktury danych - Lista uporzadkowana. Wartownicy. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 6 Bożena Woźna-Szcześniak (AJD)
Bardziej szczegółowoTeoretyczne podstawy informatyki
Teoretyczne podstawy informatyki Wykład 6b: Model danych oparty na drzewach http://hibiscus.if.uj.edu.pl/~erichter/dydaktyka2010/tpi-2010 Prof. dr hab. Elżbieta Richter-Wąs 1 Model danych oparty na drzewach
Bardziej szczegółowoZadanie 1 Przygotuj algorytm programu - sortowanie przez wstawianie.
Sortowanie Dane wejściowe: ciąg n-liczb (kluczy) (a 1, a 2, a 3,..., a n 1, a n ) Dane wyjściowe: permutacja ciągu wejściowego (a 1, a 2, a 3,..., a n 1, a n) taka, że a 1 a 2 a 3... a n 1 a n. Będziemy
Bardziej szczegółowoAlgorytmy i Struktury Danych. (c) Marcin Sydow. Sortowanie Selection Sort Insertion Sort Merge Sort. Sortowanie 1. Listy dowiązaniowe.
1 Tematy wykładu: problem sortowania sortowanie przez wybór (SelectionSort) sortowanie przez wstawianie (InsertionSort) sortowanie przez złaczanie (MergeSort) struktura danych list dowiązaniowych Input:
Bardziej szczegółowoTeoretyczne podstawy informatyki
Teoretyczne podstawy informatyki Wykład 6a Model danych oparty na drzewach 1 Model danych oparty na drzewach Istnieje wiele sytuacji w których przetwarzane informacje mają strukturę hierarchiczną lub zagnieżdżoną,
Bardziej szczegółowoWykład 6. Drzewa poszukiwań binarnych (BST)
Wykład 6 Drzewa poszukiwań binarnych (BST) 1 O czym będziemy mówić Definicja Operacje na drzewach BST: Search Minimum, Maximum Predecessor, Successor Insert, Delete Struktura losowo budowanych drzew BST
Bardziej szczegółowoAlgorytmy i Struktury Danych.
Algorytmy i Struktury Danych. Podstawowe struktury danych dr hab. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 6 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych.
Bardziej szczegółowoPodstawowe struktury danych
Podstawowe struktury danych 1) Listy Lista to skończony ciąg elementów: q=[x 1, x 2,..., x n ]. Skrajne elementy x 1 i x n nazywamy końcami listy, a wielkość q = n długością (rozmiarem) listy. Szczególnym
Bardziej szczegółowoPodstawy informatyki 2. Podstawy informatyki 2. Wykład nr 2 ( ) Plan wykładu nr 2. Politechnika Białostocka. - Wydział Elektryczny
Wykład nr 2 2/6 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia stacjonarne Rok akademicki 2006/2007 Plan wykładu nr 2 Argumenty funkcji main Dynamiczne struktury danych
Bardziej szczegółowoPodstawy informatyki 2
Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia stacjonarne Rok akademicki 2006/2007 Wykład nr 2 (07.03.2007) Wykład nr 2 2/46 Plan wykładu nr 2 Argumenty funkcji main
Bardziej szczegółowoLaboratorium z przedmiotu Programowanie obiektowe - zestaw 04
Laboratorium z przedmiotu Programowanie obiektowe - zestaw 04 Cel zajęć. Celem zajęć jest zapoznanie się ze sposobem działania popularnych kolekcji. Wprowadzenie teoretyczne. Rozważana w ramach niniejszych
Bardziej szczegółowoKOPCE KOLEJKI PRIORYTETOWE - PRZYPOMNIENIE KOPCE WYSOKOŚĆ KOPCA KOPCE I KOLEJKI PRIORYTETOWE PROJEKTOWANIE ALGORYTMÓW I METODY SZTUCZNEJ INTELIGENCJI
PROJEKTOWANIE ALGORYTMÓW I METODY SZTUCZNEJ INTELIGENCJI KOPCE, ALGORYTMY SORTOWANIA KOPCE Wykład dr inż. Łukasz Jeleń Na podstawie wykładów dr. T. Fevensa KOLEJKI PRIORYTETOWE - PRZYPOMNIENIE Możemy wykorzystać
Bardziej szczegółowoJava Collections Framework
Java Collections Framework Co to jest Java Collections Framework JCF Zunifikowana architektura do reprezentacji i manipulacji kolekcjami danych. Składa się z: Interfejsów Definuje abstrakcyjne typy możliwych
Bardziej szczegółowoAlgorytmy i Struktury Danych.
Algorytmy i Struktury Danych. Abstrakcyjne struktury danych dr hab. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 5 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury
Bardziej szczegółowoWstęp do Programowania potok funkcyjny
Wstęp do Programowania potok funkcyjny Marcin Kubica 2010/2011 Outline Imperatywne wskaźnikowe struktury danych 1 Imperatywne wskaźnikowe struktury danych Dwustronne kolejki + sklejanie + odwracanie. module
Bardziej szczegółowoPodstawowe algorytmy i ich implementacje w C. Wykład 9
Wstęp do programowania 1 Podstawowe algorytmy i ich implementacje w C Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 9 Element minimalny i maksymalny zbioru Element minimalny
Bardziej szczegółowoWykład 8. Drzewo rozpinające (minimum spanning tree)
Wykład 8 Drzewo rozpinające (minimum spanning tree) 1 Minimalne drzewo rozpinające - przegląd Definicja problemu Własności minimalnych drzew rozpinających Algorytm Kruskala Algorytm Prima Literatura Cormen,
Bardziej szczegółowoWykład 4. Klasa List Kolejki Stosy Słowniki
Wykład 4 Klasa List Kolejki Stosy Słowniki Klasa List Poważną niedogodnością tablic jako kolekcji danych jest fakt, że muszą one mieć stały rozmiar. Programista musi wiedzieć z góry ile miejsca powinien
Bardziej szczegółowoProgramowanie obiektowe i C++ dla matematyków
Programowanie obiektowe i C++ dla matematyków Bartosz Szreder szreder (at) mimuw... X 0 Typy złożone Oczywiście w C++ możemy definiować własne typy złożone (struktury i klasy), tak jak w Pascalu poprzez
Bardziej szczegółowoRekurencyjne struktury danych
Andrzej Jastrz bski Akademia ETI Dynamiczny przydziaª pami ci Pami, która jest przydzielana na pocz tku dziaªania procesu to: pami programu czyli instrukcje programu pami statyczna zwi zana ze zmiennymi
Bardziej szczegółowoWykład 2. Drzewa poszukiwań binarnych (BST)
Wykład 2 Drzewa poszukiwań binarnych (BST) 1 O czym będziemy mówić Definicja Operacje na drzewach BST: Search Minimum, Maximum Predecessor, Successor Insert, Delete Struktura losowo budowanych drzew BST
Bardziej szczegółowoStruktury Danych i Złożoność Obliczeniowa
Struktury Danych i Złożoność Obliczeniowa Zajęcia 3 Struktury drzewiaste drzewo binarne szczególny przypadek drzewa, które jest szczególnym przypadkiem grafu skierowanego, stopień każdego wierzchołka jest
Bardziej szczegółowoAlgorytmy i Struktury Danych.
Algorytmy i Struktury Danych. Drzewa poszukiwań binarnych. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 10 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych.
Bardziej szczegółowoWYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA
Rekurencja - zdolność podprogramu (procedury) do wywoływania samego (samej) siebie Wieże Hanoi dane wejściowe - trzy kołki i N krążków o różniących się średnicach wynik - sekwencja ruchów przenosząca krążki
Bardziej szczegółowoLiteratura. 1) Pojęcia: złożoność czasowa, rząd funkcji. Aby wyznaczyć pesymistyczną złożoność czasową algorytmu należy:
Temat: Powtórzenie wiadomości z PODSTAW INFORMATYKI I: Pojęcia: złożoność czasowa algorytmu, rząd funkcji kosztu. Algorytmy. Metody programistyczne. Struktury danych. Literatura. A. V. Aho, J.E. Hopcroft,
Bardziej szczegółowoLista, Stos, Kolejka, Tablica Asocjacyjna
Lista, Stos, Kolejka, Tablica Asocjacyjna Listy Lista zbiór elementów tego samego typu może dynamicznie zmieniać rozmiar, pozwala na dostęp do poszczególnych elementów Typowo dwie implementacje: tablicowa,
Bardziej szczegółowoAlgorytmy i Struktury Danych.
Algorytmy i Struktury Danych. Organizacja wykładu. Problem Sortowania. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 1 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury
Bardziej szczegółowoDrzewa binarne. Drzewo binarne to dowolny obiekt powstały zgodnie z regułami: jest drzewem binarnym Jeśli T 0. jest drzewem binarnym Np.
Drzewa binarne Drzewo binarne to dowolny obiekt powstały zgodnie z regułami: jest drzewem binarnym Jeśli T 0 i T 1 są drzewami binarnymi to T 0 T 1 jest drzewem binarnym Np. ( ) ( ( )) Wielkość drzewa
Bardziej szczegółowoPodstawy Programowania. Listy i stosy
Podstawy Programowania Wykład IX Listy i stosy Robert Muszyński Katedra Cybernetyki i Robotyki, PWr Zagadnienia: listy: tworzenie, wyszukiwanie, przeglądanie, usuwanie, problemy, listy z głową, z wartownikiem,
Bardziej szczegółowoWykład X. Programowanie. dr inż. Janusz Słupik. Gliwice, Wydział Matematyki Stosowanej Politechniki Śląskiej. c Copyright 2016 Janusz Słupik
Wykład X Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2016 c Copyright 2016 Janusz Słupik Drzewa binarne Drzewa binarne Drzewo binarne - to drzewo (graf spójny bez cykli) z korzeniem (wyróżnionym
Bardziej szczegółowoProgramowanie i struktury danych
Programowanie i struktury danych 1 / 19 Dynamiczne struktury danych Dynamiczną strukturą danych nazywamy taka strukturę danych, której rozmiar, a więc liczba przechowywanych w niej danych, może się dowolnie
Bardziej szczegółowoWykład 6. Dynamiczne struktury danych
Wykład 6 Dynamiczne struktury danych 1 Plan wykładu Ø Wprowadzenie Ø Popularne dynamiczne struktury danych (ADT) Ø stosy, kolejki, listy opis abstrakcyjny Ø Listy liniowe Ø Implementacja tablicowa stosu
Bardziej szczegółowoKolejka Priorytetowa. Algorytmy i Struktury Danych. (c) Marcin Sydow. Kolejka priorytetowa. implementacja. Kopiec Binarny. Tablicowa.
Priorytetowa Zawartość wykładu Definicja kolejki priorytetowej proste implementacje (nieefektywne) kopiec binarny (najprostsza efektywna ) operacje kolejki priorytetowej na kopcu binarnym trik: jako zwykłej
Bardziej szczegółowoAlgorytmy i. Wykład 5: Drzewa. Dr inż. Paweł Kasprowski
Algorytmy i struktury danych Wykład 5: Drzewa Dr inż. Paweł Kasprowski pawel@kasprowski.pl Drzewa Struktury przechowywania danych podobne do list ale z innymi zasadami wskazywania następników Szczególny
Bardziej szczegółowoProgramowanie obiektowe
Laboratorium z przedmiotu Programowanie obiektowe - zestaw 04 Cel zajęć. Celem zajęć jest zapoznanie się ze sposobem działania popularnych. Wprowadzenie teoretyczne. Rozważana w ramach niniejszych zajęć
Bardziej szczegółowoProgramowanie i struktury danych 1 / 44
Programowanie i struktury danych 1 / 44 Lista dwukierunkowa Lista dwukierunkowa to liniowa struktura danych skªadaj ca si z ci gu elementów, z których ka»dy pami ta swojego nast pnika i poprzednika. Operacje
Bardziej szczegółowoAlgorytmy i struktury danych Struktury danych IS/IO, WIMiIP
Algorytmy i struktury danych Struktury danych IS/IO, WIMiIP Danuta Szeliga AGH Kraków Spis treści I 1 Wstęp Pojęcia podstawowe Abstrakcyjne typ danych Statyczna/dynamiczna struktura danych 2 Statyczne
Bardziej szczegółowoint tab_a [ 2 ] [ 3 ];
// PROGRAM 4_1 - Przyklady dynamicznego tworzenia // i usuwania tablicy dwuwymiarowej int [2][3] #include void main(void) //------------------------------ Przyklad A -------------------------------------------
Bardziej szczegółowoRealizacja ekstensji klasy. Paulina Strzelecka, Tomasz Roszkowski
Realizacja ekstensji klasy Paulina Strzelecka, Tomasz Roszkowski Przechowywanie obiektów (odwolañ do obiektów) w Javie typ wbudowany - tablica zbiór klas kontenerowych Paulina Strzelecka, Tomasz Roszkowski
Bardziej szczegółowoStruktury danych. przez użytkownika, jak to ma miejsce w przypadku zwykłych zmiennych statycznych.
Struktury danych 1. Dynamiczne struktury danych Zmienna dynamiczna jest to zmienna, która pojawia się(i znika) wtedy gdy jest potrzebna(lub nie jest) podczas wykonywania się programu. Zwykłe zmienne statyczne,
Bardziej szczegółowoParadygmaty programowania. Paradygmaty programowania
Paradygmaty programowania Paradygmaty programowania Dr inż. Andrzej Grosser Cz estochowa, 2013 2 Spis treści 1. Zadanie 2 5 1.1. Wprowadzenie.................................. 5 1.2. Wskazówki do zadania..............................
Bardziej szczegółowoWykład 5. Sortowanie w czasie liniowologarytmicznym
Wykład 5 Sortowanie w czasie liniowologarytmicznym 1 Sortowanie - zadanie Definicja (dla liczb): wejście: ciąg n liczb A = (a 1, a 2,, a n ) wyjście: permutacja (a 1,, a n ) taka, że a 1 a n 2 Zestawienie
Bardziej szczegółowoTemat: Liniowe uporzdkowane struktury danych: stos, kolejka. Specyfikacja, przykładowe implementacje i zastosowania. Struktura słownika.
Temat: Liniowe uporzdkowane struktury danych: stos, kolejka. Specyfikacja, przykładowe implementacje i zastosowania. Struktura słownika. 1. Pojcie struktury danych Nieformalnie Struktura danych (ang. data
Bardziej szczegółowoLista liniowa dwukierunkowa
53 Lista liniowa dwukierunkowa Jest to lista złożona z elementów, z których każdy posiada, oprócz wskaźnika na element następny, również wskaźnik na element poprzedni. Zdefiniujmy element listy dwukierunkowej
Bardziej szczegółowoCo to jest sterta? Sterta (ang. heap) to obszar pamięci udostępniany przez system operacyjny wszystkim działającym programom (procesom).
Zarządzanie pamięcią Pamięć: stos i sterta Statyczny i dynamiczny przydział pamięci Funkcje ANSI C do zarządzania pamięcią Przykłady: Dynamiczna tablica jednowymiarowa Dynamiczna tablica dwuwymiarowa 154
Bardziej szczegółowoWyszukiwanie w BST Minimalny i maksymalny klucz. Wyszukiwanie w BST Minimalny klucz. Wyszukiwanie w BST - minimalny klucz Wersja rekurencyjna
Podstawy Programowania 2 Drzewa bst - część druga Arkadiusz Chrobot Zakład Informatyki 12 maja 2016 1 / 8 Plan Wstęp Wyszukiwanie w BST Minimalny i maksymalny klucz Wskazany klucz Zmiany w funkcji main()
Bardziej szczegółowoProgramowanie obiektowe
Programowanie obiektowe Sieci powiązań Paweł Daniluk Wydział Fizyki Jesień 2015 P. Daniluk (Wydział Fizyki) PO w. IX Jesień 2015 1 / 21 Sieci powiązań Można (bardzo zgrubnie) wyróżnić dwa rodzaje powiązań
Bardziej szczegółowoAlgorytmy i struktury danych Sortowanie IS/IO, WIMiIP
Algorytmy i struktury danych Sortowanie IS/IO, WIMiIP Danuta Szeliga AGH Kraków Spis treści I 1 Wstęp 2 Metody proste 3 Szybkie metody sortowania 4 Algorytmy hybrydowe Sortowanie hybrydowe Sortowanie introspektywne
Bardziej szczegółowoTemat: Dynamiczne przydzielanie i zwalnianie pamięci. Struktura listy operacje wstawiania, wyszukiwania oraz usuwania danych.
Temat: Dynamiczne przydzielanie i zwalnianie pamięci. Struktura listy operacje wstawiania, wyszukiwania oraz usuwania danych. 1. Rodzaje pamięci używanej w programach Pamięć komputera, dostępna dla programu,
Bardziej szczegółowoSortowanie przez scalanie
Sortowanie przez scalanie Wykład 2 12 marca 2019 (Wykład 2) Sortowanie przez scalanie 12 marca 2019 1 / 17 Outline 1 Metoda dziel i zwyciężaj 2 Scalanie Niezmiennik pętli - poprawność algorytmu 3 Sortowanie
Bardziej szczegółowoStruktury. Przykład W8_1
Struktury Struktury pozwalają na grupowanie zmiennych różnych typów pod wspólną nazwą. To istotnie ułatwia organizacje danych, które okazują się w jednym miejscu kodu programu. To jest bardzo ważne dla
Bardziej szczegółowoSTRUKTURY DANYCH I ZŁOŻONOŚĆ OBLICZENIOWA STRUKTURY DANYCH I ZŁOŻONOŚĆ OBLICZENIOWA. Część 3. Drzewa Przeszukiwanie drzew
STRUKTURY DANYCH I ZŁOŻONOŚĆ OBLICZENIOWA Część 3 Drzewa Przeszukiwanie drzew 1 / 24 DRZEWA (ang.: trees) Drzewo struktura danych o typie podstawowym T definiowana rekurencyjnie jako: - struktura pusta,
Bardziej szczegółowoSztuczna Inteligencja i Systemy Doradcze
Sztuczna Inteligencja i Systemy Doradcze Przeszukiwanie przestrzeni stanów algorytmy ślepe Przeszukiwanie przestrzeni stanów algorytmy ślepe 1 Strategie slepe Strategie ślepe korzystają z informacji dostępnej
Bardziej szczegółowo