Detektor CCD. aparaty cyfrowe kamery VIDEO spektroskopia mikrofotografia astrofizyka inne
|
|
- Sabina Chmiel
- 7 lat temu
- Przeglądów:
Transkrypt
1 Wykład VIII CCD 1
2 Detektor CCD Uran - pierwszy obiekt sfotografowany przy pomocy CCD w r (61 calowy teleskop w górach Santa Catalina w pobliżu Tucson - Arizona). Zdjęcie zrobione zostało przy 0.89mm. Ciemny obszar absorpcja przez chmury metanu w pobliżu bieguna południowego planety. Obecnie amator z kamerą CCD i 15 cm teleskopem może zebrać tyle samo światła, co w r astronom wyposażony w płytkę światłoczułą i 1 m teleskop. aparaty cyfrowe kamery VIDEO spektroskopia mikrofotografia astrofizyka inne 2
3 Camera obscura 3
4 CCD, Charge-coupled Device urządzenie na ładunku związanym Nobel 2009 Willard S. Boyle i George E. Smith - lab. Bella idea foton powierzchnia fotoczuła = piksel kondensator Fotony uwalniają elektrony z powierzchni fotoczułej. Kondensatory ładują się ładunkiem proporcjonalnym do ilości padającego światła 4
5 Zasada działania CCD 5 kroków 1. oświetlić CCD 3. zgromadzić nośniki 2. wygenerować nośniki E g pasmo przew. pasmo walenc. 4. przetransportować nośniki 5. wzmocnić 5
6 rosnąca energia Krok 1 i 2. Efekt fotoelektryczny 1. Generacja par elektron dziura dla h E g 2. Rozdzielenie ładunków polem elektrostatycznym pasmo przewodnictwa 1.12eV pasmo walencyjne dziura elektron Elektrony generowane termicznie są nierozróżnialne od tych generowanych światłem.stąd potrzeba chłodzenia CCD. 1.12eV odpowiada długości fali 1mm. Si jest przezroczysty dla fal dłuższych. 6
7 Krok 3. Zgromadzić nośniki MOS 7
8 Tranzystor polowy MOS Zubożenie Akumulacja Inwersja 8
9 2DEG w krzemowym MOSFET S: źródło, D: dren, V G : napięcie bramki (kontroluje koncentrację elektronów) 2DEG w warstwie inersyjnej 500 Å Prąd źródło - dren zaczyna płynąć dopiero gdy wytworzy się warstwa inwersyjna, tzn. gdy V GS > V T Struktura pasmowa 9
10 Tranzystor MOSFET I D V GS > V T zero gdy V GS < V T V DS Prąd źródło - dren zaczyna płynąć dopiero gdy wytworzy się warstwa inwersyjna, tzn. gdy V GS > V T 10
11 Krok 3. Zgromadzić nośniki MOS akumulacja bramka SiO 2 Si typu p akumulacja dziur n ~ exp( E E ) F C p ~ exp( E E ) V F 11
12 Krok 3. Zgromadzić nośniki MOS Zubożenie bramka SiO 2 Si typu p obszar ładunku przestrzennego n ~ exp( E E ) F C p ~ exp( E E ) V F 12
13 Krok 3. Zgromadzić nośniki MOS Inversja warstwa inwersyjna elektronów bramka SiO 2 Si typu p n ~ exp( E E ) F C p ~ exp( E E ) V F 13
14 Analog CCD pomiar intensywności opadów deszczu Padający deszcz (fotony) zbiera się we wiadrach (piksele) ustawionych na przenośnikach taśmowych (płaszczyzna ogniskowa teleskopu). - Przenośniki są nieruchome, padający deszcz (ekspozycja światła) napełnia wiadra. - Deszcz przestaje padać (migawka kamery zamyka się) i przenośniki taśmowe zostają uruchomione. - Wiadra transportują wodę do zbiornika (wzmacniacz) ustawionego w rogu pola ( róg CCD). 14
15 DESZCZ(fotony) WIADRA (piksele) WERTYKALNY przenośnik taśmowy (kolumny CCD) HORYZONTALNY przenośnik taśmowy (Rejestrator wyjściowy) ZBIORNIK (Wzmacniacz wyjściowy) 15
16 Deszcz ustał wiadra zawierają próbki deszczu. 16
17 Przenośniki taśmowe zostają uruchomione. Woda z wiader umieszczonych na wertykalnych przenośnikach jest przelewana do wiader znajdujących się na horyzontalnym przenośniku. 17
18 Wertykalne przenośniki zatrzymują się. Rozpoczyna się ruch horyzontalnego przenośnika. Woda przelewa się do zbiornika. 18
19 ` 19
20 20
21 21
22 22
23 23
24 24
25 25
26 Nowy zestaw pustych wiader jest ustawiany na horyzontalnym przenośniku i proces powtarza się. 26
27 27
28 28
29 29
30 30
31 31
32 32
33 33
34 34
35 35
36 36
37 37
38 38
39 39
40 40
41 41
42 42
43 Wszystkie wiadra zostały opróżnione. ( CCD zostało odczytane). 43
44 Piksel rejestrator wyjściowy (a) (b) Elektrody Elektrony do wzmacniacza Rozważmy CCD złożony z 9 pikseli, rejestratora wyjściowego i wzmacniacza. Każdy piksel jest podzielony na 3 obszary (elektrody wytwarzające odpowiednią studnię potencjału). Co trzecia elektroda jest na tym samym potencjale. (a) Podczas oświetlania centralna elektroda (żółte pola) jest na wyższym potencjale niż pozostałe (zielone pola) ładunek gromadzi się w studni potencjału. (b) Po ekspozycji świetlnej potencjał elektrod ulega zmianie i ładunki są przenoszone 44 z jednej elektrody na drugą.
45 Krok 4. Przetransportować i wzmocnić nośniki (a) (b) Si:Be (kanały stopujące, definiujące kolumny obrazu) (a) Poprzez synchroniczną zmianę potencjału elektrod elektrony są przenoszone z piksela do piksela. Ładunki z prawej są prowadzone do wyjściowego rejestratora. (b) Horyzontalny transfer ładunków jest wyłączany. Pakiety ładunków z rejestratora wyjściowego są przenoszone wertykalnie, jeden za drugim do wzmacniacza wyjściowego i odczytywane jeden za drugim. Cykl rozpoczyna się ponownie po odczytaniu wszystkich ładunków ( czas odczytu dla dużego CCD ok. 1 min). 45
46 Zasada działania CCD p-si p-si Ruch ładunku jest związany 46
47 Animacja CCD_charge_transfer_animation.gif 47
48 Struktura CCD CCDs są wykonywane na kawałkach krzemu za pomocą techniki fotolitografii. 3 CCD Philipsa na 6 calowym kawałku Si. Don Groom LBNL 48
49 Detektor CCD wydajność kwantowa 49
50 Detektor CCD Mozaika 4 CCD (kwadrat 6cm x 6 cm), z których każda zawiera 2048 x 2048 pikseli. Razem ok.16 millionów pikseli (Kitt Peak National Observatory, Arizona). 50
51 Detekcja kolorów przy pomocy CCD maska Bayera Odpowiednie piksele CCD mierzą ilość światła czerwonego, zielonego i niebieskiego padającego na powierzchnię Zawsze są dwa zielone piksele, ponieważ oko jest bardziej czułe na ten kolor. 51
1 Detektor CCD. aparaty cyfrowe kamery VIDEO spektroskopia mikrofotografia astrofizyka inne
Wykład IX CCD 1 1 Detektor CCD. Uran - pierwszy obiekt sfotografowany przy pomocy CCD w r. 1975. (61 calowy teleskop w górach Santa Catalina w pobliżu Tucson - Arizona). Zdjęcie zrobione zostało przy 0.89mm.
Bardziej szczegółowoFotometria CCD 3. Kamera CCD. Kalibracja obrazów CCD
Fotometria CCD 3. Kamera CCD. Kalibracja obrazów CCD Andrzej Pigulski Instytut Astronomiczny Uniwersytetu Wrocławskiego Produkty HELAS-a, 2010 CCD CCD = Charge Coupled Device (urządzenie o sprzężeniu ładunkowym)
Bardziej szczegółowoRepeta z wykładu nr 10. Detekcja światła. Kondensator MOS. Plan na dzisiaj. fotopowielacz, część 2 MCP (detektor wielokanałowy) streak camera
Repeta z wykładu nr 10 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 fotopowielacz,
Bardziej szczegółowoWstęp do astrofizyki I
Wstęp do astrofizyki I Wykład 8 Tomasz Kwiatkowski 24 listopad 2010 r. Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 8 1/21 Plan wykładu Efekt fotoelektryczny wewnętrzny Matryca CCD Budowa piksela
Bardziej szczegółowoWstęp do astrofizyki I
Wstęp do astrofizyki I Wykład 8 Tomasz Kwiatkowski 24 listopad 2010 r. Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 8 1/24 Plan wykładu Efekt fotoelektryczny wewnętrzny Matryca CCD Budowa piksela
Bardziej szczegółowoWstęp do astrofizyki I
Wstęp do astrofizyki I Wykład 8 Tomasz Kwiatkowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Instytut Obserwatorium Astronomiczne Tomasz Kwiatkowski, OA UAM Wstęp do astrofizyki I, Wykład
Bardziej szczegółowoRepeta z wykładu nr 6. Detekcja światła. Plan na dzisiaj. Metal-półprzewodnik
Repeta z wykładu nr 6 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 - kontakt omowy
Bardziej szczegółowoWzrost pseudomorficzny. Optyka nanostruktur. Mody wzrostu. Ekscyton. Sebastian Maćkowski
Wzrost pseudomorficzny Optyka nanostruktur Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 naprężenie
Bardziej szczegółowoRekapitulacja. Detekcja światła. Rekapitulacja. Rekapitulacja
Rekapitulacja Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje: czwartek
Bardziej szczegółowoZJAWISKA FOTOELEKTRYCZNE
ZJAWISKA FOTOELEKTRYCZNE ZEWNĘTRZNE, WEWNETRZNE I ICH RÓŻNE ZASTOSOWANIA ZJAWISKO FOTOELEKTRYCZNE ZEWNĘTRZNE Światło padając na powierzchnię materiału wybija z niej elektron 1 ZJAWISKO FOTOELEKTRYCZNE
Bardziej szczegółowoMateriały używane w elektronice
Materiały używane w elektronice Typ Rezystywność [Wm] Izolatory (dielektryki) Over 10 5 półprzewodniki 10-5 10 5 przewodniki poniżej 10-5 nadprzewodniki (poniżej 20K) poniżej 10-15 Model pasm energetycznych
Bardziej szczegółowoPomiary jasności tła nocnego nieba z wykorzystaniem aparatu cyfrowego. Tomek Mrozek 1. Instytut Astronomiczny UWr 2. Zakład Fizyki Słońca CBK PAN
Pomiary jasności tła nocnego nieba z wykorzystaniem aparatu cyfrowego. Tomek Mrozek 1. Instytut Astronomiczny UWr 2. Zakład Fizyki Słońca CBK PAN Jasność nieba Jasność nieba Jelcz-Laskowice 20 km od centrum
Bardziej szczegółowoKątowa rozdzielczość matrycy fotodetektorów
WYKŁAD 24 SMK ANALIZUJĄCE PRZETWORNIKI OBRAZU Na podstawie: K. Booth, S. Hill, Optoelektronika, WKŁ, Warszawa 2001 1. Zakres dynamiczny, rozdzielczość przestrzenna miara dokładności rozróżniania szczegółów
Bardziej szczegółowoIV. TRANZYSTOR POLOWY
1 IV. TRANZYSTOR POLOWY Cel ćwiczenia: Wyznaczenie charakterystyk statycznych tranzystora polowego złączowego. Zagadnienia: zasada działania tranzystora FET 1. Wprowadzenie Nazwa tranzystor pochodzi z
Bardziej szczegółowoTworzenie obrazu w aparatach cyfrowych
Tworzenie obrazu w aparatach cyfrowych Matryca światłoczuła Matryca CCD stosowana w aparacie Nikon D70. Wygląda "prawie" jak zwykły układ scalony. Wydajność kwantowa QE - ang. Quantum Eficiency (wydajność
Bardziej szczegółowoIA. Fotodioda. Cel ćwiczenia: Pomiar charakterystyk prądowo - napięciowych fotodiody.
1 A. Fotodioda Cel ćwiczenia: Pomiar charakterystyk prądowo - napięciowych fotodiody. Zagadnienia: Efekt fotowoltaiczny, złącze p-n Wprowadzenie Fotodioda jest urządzeniem półprzewodnikowym w którym zachodzi
Bardziej szczegółowoFotodetektory. Fotodetektor to przyrząd, który mierzy strumień fotonów bądź moc optyczną przetwarzając energię fotonów na inny użyteczny sygnał
FOTODETEKTORY Fotodetektory Fotodetektor to przyrząd, który mierzy strumień fotonów bądź moc optyczną przetwarzając energię fotonów na inny użyteczny sygnał - detektory termiczne, wykorzystują zmiany temperatury
Bardziej szczegółowoCzęść 3. Przegląd przyrządów półprzewodnikowych mocy. Łukasz Starzak, Przyrządy i układy mocy, studia niestacjonarne, lato 2018/19 51
Część 3 Przegląd przyrządów półprzewodnikowych mocy Łukasz Starzak, Przyrządy i układy mocy, studia niestacjonarne, lato 2018/19 51 Budowa przyrządów półprzewodnikowych Struktura składa się z warstw Warstwa
Bardziej szczegółowoRepeta z wykładu nr 8. Detekcja światła. Przypomnienie. Efekt fotoelektryczny
Repeta z wykładu nr 8 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 przegląd detektorów
Bardziej szczegółowoRys.2. Schemat działania fotoogniwa.
Ćwiczenie E16 BADANIE NATĘŻENIA PRĄDU FOTOELEKTRYCZNEGO W ZALEŻNOŚCI OD ODLEGŁOŚCI ŹRÓDŁA ŚWIATŁA Cel: Celem ćwiczenia jest zbadanie zależności natężenia prądu generowanego światłem w fotoogniwie od odległości
Bardziej szczegółowoWprowadzenie do techniki Cyfrowej i Mikroelektroniki
Wprowadzenie do techniki Cyfrowej i Mikroelektroniki Małgorzata Napieralska Katedra Mikroelektroniki i Technik Informatycznych tel. 26-55 mnapier@dmcs.p.lodz.pl Literatura W. Marciniak Przyrządy półprzewodnikowe
Bardziej szczegółowoi elementy z półprzewodników homogenicznych część II
Półprzewodniki i elementy z półprzewodników homogenicznych część II Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego
Bardziej szczegółowoZakres wykładu. Detekcja światła. Zakres wykładu. Zakres wykładu
Zakres wykładu Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje: czwartek
Bardziej szczegółowoFotodetektor. Odpowiedź detektora światłowodowego. Nachylenie (czułość) ~0.9 ma/mw. nachylenie = czułość (ma/mw) Prąd wyjściowy (ma)
Detektory Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze opracowanie chronione jest prawem autorskim. Wykorzystanie niekomercyjne dozwolone pod warunkiem podania źródła. Sergiusz Patela
Bardziej szczegółowoRepeta z wykładu nr 4. Detekcja światła. Dygresja. Plan na dzisiaj
Repeta z wykładu nr 4 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:
Bardziej szczegółowoBudowa i działanie elektronicznych detektorów obrazu
Budowa i działanie elektronicznych detektorów obrazu 1. Materiał nauczania Najważniejszym elementem aparatów cyfrowych jest elektroniczny detektor rejestrujący obraz optyczny i przekształcający sygnał
Bardziej szczegółowopółprzewodniki Plan na dzisiaj Optyka nanostruktur Struktura krystaliczna Dygresja Sebastian Maćkowski
Plan na dzisiaj Optyka nanostruktur Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 półprzewodniki
Bardziej szczegółowoTeoria pasmowa. Anna Pietnoczka
Teoria pasmowa Anna Pietnoczka Opis struktury pasmowej we współrzędnych r, E Zmiana stanu elektronów przy zbliżeniu się atomów: (a) schemat energetyczny dla atomów sodu znajdujących się w odległościach
Bardziej szczegółowoInstrukcja nr 5. Wzmacniacz różnicowy Stabilizator napięcia Tranzystor MOSFET
Instrukcja nr 5 Wzmacniacz różnicowy Stabilizator napięcia Tranzystor MOSFET AGH Zespół Mikroelektroniki Układy Elektroniczne J. Ostrowski, P. Dorosz Lab 5.1 Wzmacniacz różnicowy Wzmacniacz różnicowy jest
Bardziej szczegółowoElementy przełącznikowe
Elementy przełącznikowe Dwie główne grupy: - niesterowane (diody p-n lub Schottky ego), - sterowane (tranzystory lub tyrystory) Idealnie: stan ON zwarcie, stan OFF rozwarcie, przełączanie bez opóźnienia
Bardziej szczegółowoĆwiczenie nr 7 Tranzystor polowy MOSFET
Wydział Elektroniki Mikrosystemów i Fotoniki Opracował zespół: Marek Panek, Waldemar Oleszkiewicz, Iwona Zborowska-Lindert, Bogdan Paszkiewicz, Małgorzata Kramkowska, Beata Ściana, Zdzisław Synowiec, Bogusław
Bardziej szczegółowoAleksandra Banaś Dagmara Zemła WPPT/OPTOMETRIA
Aleksandra Banaś Dagmara Zemła WPPT/OPTOMETRIA B V B C ZEWNĘTRZNE POLE ELEKTRYCZNE B C B V B D = 0 METAL IZOLATOR PRZENOSZENIE ŁADUNKÓW ELEKTRYCZNYCH B C B D B V B D PÓŁPRZEWODNIK PODSTAWOWE MECHANIZMY
Bardziej szczegółowoBudowa. Metoda wytwarzania
Budowa Tranzystor JFET (zwany też PNFET) zbudowany jest z płytki z jednego typu półprzewodnika (p lub n), która stanowi tzw. kanał. Na jego końcach znajdują się styki źródła (ang. source - S) i drenu (ang.
Bardziej szczegółowoBADANIE CHARAKTERYSTYK FOTOELEMENTU
Ćwiczenie E7 BADANIE CHARAKTERYSTYK FOTOELEMENTU Przyrzady: Przyrząd do badania zjawiska fotoelektrycznego, płytki absorbenta suwmiarka, fotoelementy (fotoopór, fotodioda, lub fototranzystor). Zjawisko
Bardziej szczegółowoPrawdopodobieństwo obsadzania każdego stanu jednoelektronowego określone jest przez rozkład Fermiego, tzn. prawdopodobieństwo, że stan o energii E n
1 CCD Aby zrozumieć zjawiska zachodzące w kamerze CCD, należy przypomnieć w jaki sposób jest tworzona studnia potencjału oraz jaki jest wpływ przyłożonego napięcia zewnętrznego na głębokość studni. Prawdopodobieństwo
Bardziej szczegółowoWykład VII Detektory I
Wykład VII Detektory I Rodzaje detektorów Parametry detektorów Sygnał na wyjściu detektora zależy od długości fali (l), powierzchni światłoczułej (A) i częstości modulacji (f), polaryzacji (niech opisuje
Bardziej szczegółowoRepeta z wykładu nr 5. Detekcja światła. Plan na dzisiaj. Złącze p-n. złącze p-n
Repeta z wykładu nr 5 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:
Bardziej szczegółowoEfekt Halla. Cel ćwiczenia. Wstęp. Celem ćwiczenia jest zbadanie efektu Halla. Siła Loretza
Efekt Halla Cel ćwiczenia Celem ćwiczenia jest zbadanie efektu Halla. Wstęp Siła Loretza Na ładunek elektryczny poruszający się w polu magnetycznym w kierunku prostopadłym do linii pola magnetycznego działa
Bardziej szczegółowoĆwiczenie E17 BADANIE CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH MODUŁU OGNIW FOTOWOLTAICZNYCH I SPRAWNOŚCI KONWERSJI ENERGII PADAJĄCEGO PROMIENIOWANIA
Ćwiczenie E17 BADANIE CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH MODUŁU OGNIW FOTOWOLTAICZNYCH I SPRAWNOŚCI KONWERSJI ENERGII PADAJĄCEGO PROMIENIOWANIA Cel: Celem ćwiczenia jest zbadanie charakterystyk prądowo
Bardziej szczegółowoELEMENTY UKŁADÓW ENERGOELEKTRONICZNYCH
Politechnika Warszawska Wydział Elektryczny ELEMENTY UKŁADÓW ENERGOELEKTRONICZNYCH Piotr Grzejszczak Mieczysław Nowak P W Instytut Sterowania i Elektroniki Przemysłowej 2015 Wiadomości ogólne Tranzystor
Bardziej szczegółowoUMO-2011/01/B/ST7/06234
Załącznik nr 7 do sprawozdania merytorycznego z realizacji projektu badawczego Szybka nieliniowość fotorefrakcyjna w światłowodach półprzewodnikowych do zastosowań w elementach optoelektroniki zintegrowanej
Bardziej szczegółowoSYMBOLE GRAFICZNE. Tyrystory. Struktura Charakterystyka Opis
SYMBOLE GRAFICZNE y Nazwa triasowy blokujący wstecznie SCR asymetryczny ASCR Symbol graficzny Struktura Charakterystyka Opis triasowy blokujący wstecznie SCR ma strukturę czterowarstwową pnpn lub npnp.
Bardziej szczegółowoPromieniowanie cieplne ciał.
Wypromieniowanie fal elektromagnetycznych przez ciała Promieniowanie cieplne (termiczne) Luminescencja Chemiluminescencja Elektroluminescencja Katodoluminescencja Fotoluminescencja Emitowanie fal elektromagnetycznych
Bardziej szczegółowoSpektroskopia modulacyjna
Spektroskopia modulacyjna pozwala na otrzymanie energii przejść optycznych w strukturze z bardzo dużą dokładnością. Charakteryzuje się również wysoką czułością, co pozwala na obserwację słabych przejść,
Bardziej szczegółowoW książce tej przedstawiono:
Elektronika jest jednym z ważniejszych i zarazem najtrudniejszych przedmiotów wykładanych na studiach technicznych. Co istotne, dogłębne zrozumienie jej prawideł, jak również opanowanie pewnej wiedzy praktycznej,
Bardziej szczegółowoWybrane elementy optoelektroniczne. 1. Dioda elektroluminiscencyjna LED 2. Fotodetektory 3. Transoptory 4. Wskaźniki optyczne 5.
Wybrane elementy optoelektroniczne 1. Dioda elektroluminiscencyjna LED 2. Fotodetektory 3. Transoptory 4. Wskaźniki optyczne 5. Podsumowanie a) b) Light Emitting Diode Diody elektrolumiscencyjne Light
Bardziej szczegółowoĆwiczenie 4. Parametry statyczne tranzystorów polowych JFET i MOSFET
Ćwiczenie 4 Parametry statyczne tranzystorów polowych JFET i MOSFET Cel ćwiczenia Podstawowym celem ćwiczenia jest poznanie charakterystyk statycznych tranzystorów polowych złączowych oraz z izolowaną
Bardziej szczegółowoInformacje ogólne. 45 min. test na podstawie wykładu Zaliczenie ćwiczeń na podstawie prezentacji Punkty: test: 60 %, prezentacja: 40 %.
Informacje ogólne Wykład 28 h Ćwiczenia 14 Charakter seminaryjny zespołu dwuosobowe ~20 min. prezentacje Lista tematów na stronie Materiały do wykładu na stronie: http://urbaniak.fizyka.pw.edu.pl Zaliczenie:
Bardziej szczegółowoPrzewodność elektryczna półprzewodników
Przewodność elektryczna półprzewodników p koncentracja dziur n koncentracja elektronów Domieszkowanie półprzewodników donory i akceptory 1 Koncentracja nośników ładunku w półprzewodniku domieszkowanym
Bardziej szczegółowoWspółczesne metody badań instrumentalnych
Współczesne metody badań instrumentalnych Wykład III Techniki fotograficzne Fotografia w świetle widzialnym Techniki fotograficzne Techniki fotograficzne techniki rejestracji obrazów powstałych wskutek
Bardziej szczegółowoWydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDIA DZIENNE. Wpływ oświetlenia na półprzewodnik oraz na złącze p-n
Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDA DZENNE LABORATORUM PRZYRZĄDÓW PÓŁPRZEWODNKOWYCH Ćwiczenie nr 5 Wpływ oświetlenia na półprzewodnik oraz na złącze p-n. Zagadnienia
Bardziej szczegółowo6. TRANZYSTORY UNIPOLARNE
6. TRANZYSTORY UNIPOLARNE 6.1. WSTĘP Tranzystory unipolarne, inaczej polowe, są przyrządami półprzewodnikowymi, których działanie polega na sterowaniu za pomocą pola elektrycznego wielkością prądu przez
Bardziej szczegółowoWykład VIII. Detektory fotonowe
Wykład VIII Detektory fotonowe Półprzewodnik w polu elektrycznym dep F dx dv e ( x) ( e) dx dv ( x) dx ( x) const c V cx E p cex Detektory fotoprzewodzące ( t) q[ n( t) p( t) ] n p n p g op n ( t) qg op
Bardziej szczegółowoWydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDIA DZIENNE. Badanie tranzystorów unipolarnych typu JFET i MOSFET
Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej TIA ZIENNE LAORATORIM PRZYRZĄÓW PÓŁPRZEWONIKOWYCH Ćwiczenie nr 8 adanie tranzystorów unipolarnych typu JFET i MOFET I. Zagadnienia
Bardziej szczegółowoLASERY I ICH ZASTOSOWANIE
LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 13 Temat: Biostymulacja laserowa Istotą biostymulacji laserowej jest napromieniowanie punktów akupunkturowych ciągłym, monochromatycznym
Bardziej szczegółowoPomiary jasności nieba z użyciem aparatu cyfrowego. Tomek Mrozek 1. Instytut Astronomiczny UWr 2. Zakład Fizyki Słońca CBK PAN
Pomiary jasności nieba z użyciem aparatu cyfrowego Tomek Mrozek 1. Instytut Astronomiczny UWr 2. Zakład Fizyki Słońca CBK PAN Jasność nieba Jasność nieba Jelcz-Laskowice 20 km od centrum Wrocławia Pomiary
Bardziej szczegółowoLABORATORIUM INŻYNIERII MATERIAŁOWEJ
Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 20-618 Lublin, ul. Nadbystrzycka 38A www.kueitwn.pollub.pl LABORATORIUM INŻYNIERII MATERIAŁOWEJ Podstawy
Bardziej szczegółowoXL OLIMPIADA FIZYCZNA ETAP I Zadanie doświadczalne
XL OLIMPIADA FIZYCZNA ETAP I Zadanie doświadczalne ZADANIE D2 Nazwa zadania: Światełko na tafli wody Mając do dyspozycji fotodiodę, źródło prądu stałego (4,5V bateryjkę), przewody, mikroamperomierz oraz
Bardziej szczegółowoDiody i tranzystory. - prostownicze, stabilizacyjne (Zenera), fotodiody, elektroluminescencyjne, pojemnościowe (warikapy)
Diody i tranzystory - prostownicze, stabilizacyjne (Zenera), fotodiody, elektroluminescencyjne, pojemnościowe (warikapy) bipolarne (NPN i PNP) i polowe (PNFET i MOSFET), Fototranzystory i IGBT (Insulated
Bardziej szczegółowoRadioodbiornik i odbiornik telewizyjny RADIOODBIORNIK
Radioodbiornik i odbiornik telewizyjny RADIOODBIORNIK ODKRYWCA FAL RADIOWYCH Fale radiowe zostały doświadczalnie odkryte przez HEINRICHA HERTZA. Zalicza się do nich: fale radiowe krótkie, średnie i długie,
Bardziej szczegółowoUkłady nieliniowe - przypomnienie
Układy nieliniowe - przypomnienie Generacja-rekombinacja E γ Na bazie półprzewodników γ E (Si)= 1.14 ev g w.8, p.1 Domieszkowanie n (As): Większościowe elektrony pasmo przewodnictwa swobodne elektrony
Bardziej szczegółowoStanowisko do badania zjawiska tłumienia światła w ośrodkach materialnych
Stanowisko do badania zjawiska tłumienia światła w ośrodkach materialnych Na rys. 3.1 przedstawiono widok wykorzystywanego w ćwiczeniu stanowiska pomiarowego do badania zjawiska tłumienia światła w ośrodkach
Bardziej szczegółowoLABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH
Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDIA DZIENNE Ćwiczenie nr 8 Wpływ oświetlenia na półprzewodnik oraz na złącze p-n I. Zagadnienia do samodzielnego przygotowania
Bardziej szczegółowoPrzerwa energetyczna w germanie
Ćwiczenie 1 Przerwa energetyczna w germanie Cel ćwiczenia Wyznaczenie szerokości przerwy energetycznej przez pomiar zależności oporu monokryształu germanu od temperatury. Wprowadzenie Eksperymentalne badania
Bardziej szczegółowoRepeta z wykładu nr 3. Detekcja światła. Struktura krystaliczna. Plan na dzisiaj
Repeta z wykładu nr 3 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:
Bardziej szczegółowoCiała stałe. Literatura: Halliday, Resnick, Walker, t. 5, rozdz. 42 Orear, t. 2, rozdz. 28 Young, Friedman, rozdz
Ciała stałe Podstawowe własności ciał stałych Struktura ciał stałych Przewodnictwo elektryczne teoria Drudego Poziomy energetyczne w krysztale: struktura pasmowa Metale: poziom Fermiego, potencjał kontaktowy
Bardziej szczegółowo1100-1BO15, rok akademicki 2016/17
1100-1BO15, rok akademicki 2016/17 y z y z y f y f y y y y z f z f zz ff Analizując rysunek można napisać zależność n sin u r s r s n sinu. Aby s było niezależne od kąta u musi być zachowany warunek sin
Bardziej szczegółowoZałącznik nr 8. do sprawozdania merytorycznego z realizacji projektu badawczego
Załącznik nr 8 do sprawozdania merytorycznego z realizacji projektu badawczego Szybka nieliniowość fotorefrakcyjna w światłowodach półprzewodnikowych do zastosowań w elementach optoelektroniki zintegrowanej
Bardziej szczegółowoII. Badanie charakterystyki spektralnej źródła termicznego promieniowania elektromagnetycznego
1 II. Badanie charakterystyki spektralnej źródła termicznego promieniowania elektromagnetycznego Cel ćwiczenia: Wyznaczenie charakterystyki spektralnej termicznego źródła promieniowania (lampa halogenowa)
Bardziej szczegółowo1 Źródła i detektory. I. Badanie charakterystyki spektralnej nietermicznych źródeł promieniowania elektromagnetycznego
1 I. Badanie charakterystyki spektralnej nietermicznych źródeł promieniowania elektromagnetycznego Cel ćwiczenia: Wyznaczenie charakterystyki spektralnej nietermicznego źródła promieniowania (dioda LD
Bardziej szczegółowoJ14. Pomiar zasięgu, rozrzutu zasięgu i zdolności hamującej cząstek alfa w powietrzu PRZYGOTOWANIE
J14 Pomiar zasięgu, rozrzutu zasięgu i zdolności hamującej cząstek alfa w powietrzu PRZYGOTOWANIE 1. Oddziaływanie ciężkich cząstek naładowanych z materią [1, 2] a) straty energii na jonizację (wzór Bethego-Blocha,
Bardziej szczegółowoStałe : h=6, Js h= 4, eVs 1eV= J nie zależy
T_atom-All 1 Nazwisko i imię klasa Stałe : h=6,626 10 34 Js h= 4,14 10 15 evs 1eV=1.60217657 10-19 J Zaznacz zjawiska świadczące o falowej naturze światła a) zjawisko fotoelektryczne b) interferencja c)
Bardziej szczegółowoPL B1. Sposób badania przyczepności materiałów do podłoża i układ do badania przyczepności materiałów do podłoża
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 203822 (13) B1 (21) Numer zgłoszenia: 358564 (51) Int.Cl. G01N 19/04 (2006.01) G01N 29/00 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22)
Bardziej szczegółowoKlasyczny efekt Halla
Klasyczny efekt Halla Rysunek pochodzi z artykułu pt. W dwuwymiarowym świecie elektronów, autor: Tadeusz Figielski, Wiedza i Życie, nr 4, 1999 r. Pełny tekst artykułu dostępny na stronie http://archiwum.wiz.pl/1999/99044800.asp
Bardziej szczegółowoStanowisko do pomiaru fotoprzewodnictwa
Stanowisko do pomiaru fotoprzewodnictwa Kraków 2008 Układ pomiarowy. Pomiar czułości widmowej fotodetektorów polega na pomiarze fotoprądu w funkcji długości padającego na detektor promieniowania. Stanowisko
Bardziej szczegółowoLABORATORIUM ELEKTRONIKI ĆWICZENIE 4 POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH
LABORATORIUM ELEKTRONIKI ĆWICZENIE 4 Parametry statyczne tranzystorów polowych złączowych Cel ćwiczenia Podstawowym celem ćwiczenia jest poznanie statycznych charakterystyk tranzystorów polowych złączowych
Bardziej szczegółowoPodstawy Mikroelektroniki
Akademia Górniczo-Hutnicza w Krakowie Wydział IEiT Katedra Elektroniki Podstawy Mikroelektroniki Temat ćwiczenia: Nr ćwiczenia 4 Analiza sygnałów z krzemowego fotopowielacza (SiPM) 2018 r. Rev.1.2 1 Prąd,
Bardziej szczegółowoS. Baran - Podstawy fizyki materii skondensowanej Półprzewodniki. Półprzewodniki
Półprzewodniki Definicja i własności Półprzewodnik materiał, którego przewodnictwo rośnie z temperaturą (opór maleje) i w temperaturze pokojowej wykazuje wartości pośrednie między przewodnictwem metali,
Bardziej szczegółowoElementy optoelektroniczne. Przygotował: Witold Skowroński
Elementy optoelektroniczne Przygotował: Witold Skowroński Plan prezentacji Wstęp Diody świecące LED, Wyświetlacze LED Fotodiody Fotorezystory Fototranzystory Transoptory Dioda LED Dioda LED z elektrycznego
Bardziej szczegółowoWYZNACZANIE STAŁEJ PLANCKA Z POMIARU CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH DIOD ELEKTROLUMINESCENCYJNYCH. Irena Jankowska-Sumara, Magdalena Krupska
1 II PRACOWNIA FIZYCZNA: FIZYKA ATOMOWA Z POMIARU CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH DIOD ELEKTROLUMINESCENCYJNYCH Irena Jankowska-Sumara, Magdalena Krupska Cel ćwiczenia Celem ćwiczenia jest wyznaczenie
Bardziej szczegółowoZjawisko Halla Referujący: Tomasz Winiarski
Plan referatu Zjawisko Halla Referujący: Tomasz Winiarski 1. Podstawowe definicje ffl wektory: E, B, ffl nośniki ładunku: elektrony i dziury, ffl podział ciał stałych ze względu na własności elektryczne:
Bardziej szczegółowoEfekt fotoelektryczny
Ćwiczenie 82 Efekt fotoelektryczny Cel ćwiczenia Celem ćwiczenia jest obserwacja efektu fotoelektrycznego: wybijania elektronów z metalu przez światło o różnej częstości (barwie). Pomiar energii kinetycznej
Bardziej szczegółowoUrządzenia półprzewodnikowe
Urządzenia półprzewodnikowe Diody: - prostownicza - Zenera - pojemnościowa - Schottky'ego - tunelowa - elektroluminescencyjna - LED - fotodioda półprzewodnikowa Tranzystory - tranzystor bipolarny - tranzystor
Bardziej szczegółowoBudowa i zasada działania skanera
Budowa i zasada działania skanera Skaner Skaner urządzenie służące do przebiegowego odczytywania: obrazu, kodu paskowego lub magnetycznego, fal radiowych itp. do formy elektronicznej (najczęściej cyfrowej).
Bardziej szczegółowoŹródła i 1detektory IV. ZJAWISKO FOTOELEKTRYCZNE WEWNĘTRZNE W PÓŁPRZEWODNIKACH.
Źródła i 1detektory IV. ZJAWISKO FOTOELEKTRYCZNE WEWNĘTRZNE W PÓŁPRZEWONIKACH. Cel ćwiczenia: Wyznaczenie podstawowych parametrów spektralnych fotoprzewodzącego detektora podczerwieni. Opis stanowiska:
Bardziej szczegółowoIII. TRANZYSTOR BIPOLARNY
1. TRANZYSTOR BPOLARNY el ćwiczenia: Wyznaczenie charakterystyk statycznych tranzystora bipolarnego Zagadnienia: zasada działania tranzystora bipolarnego. 1. Wprowadzenie Nazwa tranzystor pochodzi z języka
Bardziej szczegółowoFizyka 3.3. prof.dr hab. Ewa Popko p.231a
Fizyka 3.3 prof.dr hab. Ewa Popko www.if.pwr.wroc.pl/~popko ewa.popko@pwr.edu.pl p.231a Fizyka 3.3 Literatura 1.J.Hennel Podstawy elektroniki półprzewodnikowej WNT Warszawa 1995. 2.W.Marciniak Przyrządy
Bardziej szczegółowo(12) OPIS PATENTOWY (19) PL (11) (13) B1
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 170013 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 297079 (22) Data zgłoszenia: 17.12.1992 (51) IntCl6: H01L 29/792 (
Bardziej szczegółowoPółprzewodniki samoistne. Struktura krystaliczna
Półprzewodniki samoistne Struktura krystaliczna Si a5.43 A GaAs a5.63 A ajczęściej: struktura diamentu i blendy cynkowej (ZnS) 1 Wiązania chemiczne Wiązania kowalencyjne i kowalencyjno-jonowe 0K wszystkie
Bardziej szczegółowoEFEKT FOTOWOLTAICZNY OGNIWO SŁONECZNE
ĆWICZENIE 104 EFEKT FOTOWOLTAICZNY OGNIWO SŁONECZNE Cel ćwiczenia: Wyznaczenie charakterystyki prądowo napięciowej I(V) ogniwa słonecznego przed i po oświetleniu światłem widzialnym; prądu zwarcia, napięcia
Bardziej szczegółowoWykład 7. Złącza półprzewodnikowe - przyrządy półprzewodnikowe
Wykład 7 Złącza półprzewodnikowe - przyrządy półprzewodnikowe Złącze p-n Złącze p-n Tworzy się złącze p-n E Złącze po utworzeniu Pole elektryczne na styku dwóch półprzewodników powoduje, że prąd łatwo
Bardziej szczegółowoSzkoła z przyszłością. Zjawisko fotoelektryczne wewnętrzne
Szkoła z przyszłością szkolenie współfinansowane przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Narodowe Centrum Badań Jądrowych, ul. Andrzeja Sołtana 7, 05-400 Otwock-Świerk ĆWICZENIE
Bardziej szczegółowoZygmunt Kubiak Instytut Informatyki Politechnika Poznańska
Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska 1947 r. pierwszy tranzystor ostrzowy John Bradeen (z lewej), William Shockley (w środku) i Walter Brattain (z prawej) (Bell Labs) Zygmunt Kubiak
Bardziej szczegółowoWFiIS. Wstęp teoretyczny:
WFiIS PRACOWNIA FIZYCZNA I i II Imię i nazwisko: 1. 2. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA Cel ćwiczenia: Wyznaczenie
Bardziej szczegółowoEkscyton w morzu dziur
Ekscyton w morzu dziur P. Kossacki, P. Płochocka, W. Maślana, A. Golnik, C. Radzewicz and J.A. Gaj Institute of Experimental Physics, Warsaw University S. Tatarenko, J. Cibert Laboratoire de Spectrométrie
Bardziej szczegółowoInformacje wstępne. Witamy serdecznie wszystkich uczestników na pierwszym etapie konkursu.
Informacje wstępne Witamy serdecznie wszystkich uczestników na pierwszym etapie konkursu. Szanowny uczestniku, poniżej znajduje się zestaw pytań zamkniętych i otwartych. Pytania zamknięte są pytaniami
Bardziej szczegółowoTRANZYSTOR UNIPOLARNY MOS
L A B O R A T O R I U M ELEMENTY ELEKTRONICZNE TRANZYSTOR UNIPOLARNY MOS RE. 1.0 1. CEL ĆWICZENIA - zapoznanie się z działaniem tranzystora unipolarnego MOS, - wykreślenie charakterystyk napięciowo-prądowych
Bardziej szczegółowoZASTOSOWANIE MIKROSYSTEMÓW W MEDYCYNIE LABORATORIUM. Ćwiczenie nr 4 MIKROCYTOMETR DO BADANIA KOMÓREK BIOLOGICZNYCH
ZASTOSOWANIE MIKROSYSTEMÓW W MEDYCYNIE LABORATORIUM Ćwiczenie nr 4 MIKROCYTOMETR DO BADANIA KOMÓREK BIOLOGICZNYCH Cel ćwiczenia: Celem ćwiczenia jest zapoznanie się z budową i warunkami działania mikrocytometru
Bardziej szczegółowoWidmo promieniowania elektromagnetycznego Czułość oka człowieka
dealna charakterystyka prądowonapięciowa złącza p-n ev ( V ) = 0 exp 1 kbt Przebicie złącza przy polaryzacji zaporowej Przebicie Zenera tunelowanie elektronów przez wąską warstwę zaporową w złączu silnie
Bardziej szczegółowo