ABC drukowania 3D v1.2. opracowane przez
|
|
- Jarosław Orłowski
- 8 lat temu
- Przeglądów:
Transkrypt
1 ABC drukowania 3D v1.2 opracowane przez
2 SPIS TREŚCI 1. Wstęp 2. Co to jest drukarka 3D i jakie są jej rodzaje? a) FDM b) SLA c) SLS 3. Krótka historia domowych drukarek FDM 4. Ogólna budowa drukarki 3D w technologii FDM 5. Proces przygotowania drukarki GEEETECH i3 pro B do drukowania a) kalibracja b) przed samym drukowaniem 6. Proces drukowania a) projekt modelu b) cięcie c) drukowanie 7. Filamenty a) wstęp b) trochę o PLA i ABS c) podstawowe różnice pomiędzy PLA a ABS d) różnice występujące w użytkowaniu e) obróbka wydruków f) przechowywanie g) pozostałe rodzaje filamentów
3 8. Utrudnienia podczas drukowania a) wyraźne warstwy na powierzchni obiektu b) przewieszenia (overhangs) c) nitki d) szczegóły 9. Po wydrukowaniu a) ściąganie wydruku z podłoża b) usuwanie podpórek c) wygładzanie wydruku 10. Ręczne drukarki 3D SKETCHER a) ściąganie wydruku z podłoża b) usuwanie podpórek c) wygładzanie wydruku 11. Ciekawostki a) waza
4 Wstęp PROPOX to firma z wieloletnią tradycją. Stoją za nami lata doświadczeń i zadowoleni klienci zarówno z Polski jak i z zagranicy. Zapewniamy bezproblemową i kompleksową obsługę w jak najkrótszym czasie. Nasi specjaliści gotowi są w każdej chwili podzielić się swoim doświadczeniem, czy pomóc rozwiązać ewentualny problem. Jesteśmy pasjonatami i dlatego jesteśmy najlepsi! Systematycznie rozszerzamy naszą ofertę, by wypełniać motto naszej firmy - "Many Ideas One Solution". Pragniemy, by nasze produkty stanowiły kompletny zestaw narzędzi wykorzystywany zarówno przez profesjonalnych konstruktorów, jak i hobbystów, skracając czas i obniżając koszty projektowania nowych systemów. W poradniku zamieszczone i omówione zostaną podstawowe pojęcia i zasady, ułatwiające odnalezienie się w świecie druku 3D. Jak jest zbudowana drukarka 3D i jak działa? Jak wygląda proces drukowania? Jakie problemy można napotkać i jak sobie z nimi poradzić? Postaramy się odpowiedzieć na te pytania w dalszej części tekstu. Opracowany przez firmę Propox poradnik oparty jest na informacjach dostępnych w sieci Internet oraz na własnych doświadczeniach. Firma Propox Sp. z o.o.
5 1 Wstęp W poradniku zamieszczone i omówione zostaną podstawowe pojęcia i zasady, ułatwiające odnalezienie się w świecie druku 3D. Jak jest zbudowana drukarka 3D i jak działa? Jak wygląda proces drukowania? Jakie problemy można napotkać i jak sobie z nimi poradzić? Postaramy się odpowiedzieć na te pytania w dalszej części tekstu. Opracowany przez firmę Propox poradnik oparty jest na informacjach dostępnych w sieci Internet oraz na własnych doświadczeniach. 2 Co to jest drukarka 3D i jakie są jej rodzaje? Drukarka 3D to urządzenie odwzorowujące trójwymiarowy model w rzeczywistej przestrzeni. Możliwe jest to dzięki kształtowaniu warstwa po warstwie materiału (plastik/płyn/proszek), który stopniowo buduje zadany obiekt. Istnieje wiele praktycznych realizacji powyższej definicji. Najważniejsze z nich to technologie: a) FDM osadzanie topionego materiału Metoda ta polega na nakładaniu warstwa po warstwie materiału drukującego (filamentu) na podłożu za pomocą głowicy poruszającej się w przestrzeni trójwymiarowej. W zależności od modelu drukarki może się poruszać również podłoże. Materiał dostarczany jest w formie włókna o średnicy rzędu milimetrów nawiniętego na szpulkę. Jego koniec wpinany jest do głowicy drukującej, która podgrzewa materiał do temperatury topnienia i wyciska w odpowiednim punkcie podłoża. Po kontakcie z temperaturą otoczenia materiał schładza się i zestala. Metoda ta jest najmniej szczegółowa (mimo to efekt może być więcej, niż zadowalający),
6 natomiast rekompensuje tę wadę dobrymi właściwościami mechanicznymi, a przede wszystkim prostotą działania, co przekłada się na niską cenę drukarek. Ze względu na swoją popularność oraz fakt, że firma Propox zajmuje się dystrybucją drukarek opartych o tę technologię, dalsza część poradnika będzie się skupiała na metodzie FDM. b) SLA stereo litografia Jest to najstarsza metoda druku 3D. W zbiorniku z ciekłym plastikiem znajduje się platforma, która po utwardzeniu odpowiedniego kształtu wierzchniej warstwy plastiku przez laser, zanurza się dokładnie o grubość jednej warstwy. Ponownie nowopowstała cienka warstwa płynu jest utwardzana i proces powtarza się do uzyskania zadanego kształtu obiektu. W tej technologii otrzymujemy zwykle gładkie powierzchnie modelu. Po zakończeniu drukowania obiekt oczyszcza się w specjalnym roztworze, a następnie umieszcza w piecu ultrafioletowym.
7 c) SLS selektywne spiekanie laserowe Sposób działania tej metody jest bardzo podobny do technologii SLA. Główną różnicą jest wypełnienie zbiornika nie płynem, a proszkiem. Zastosowane mogą być proszki nylonowe, ceramiczne, szklane, a także metalowe. Przekroje kolejnych warstw są spiekane laserem o dużej mocy.
8 Wierzchnie warstwy proszku są natomiast rozprowadzane przez automatyczną rolkę. Wykonane modele charakteryzują się wysoką dokładnością, jednak mogą być porowate, co wymaga stosowania utwardzaczy. 3 Krótka historia domowych drukarek FDM
9 Idea produkowania obiektu warstwowo pojawiła się już w XIX wieku, natomiast za opracowanie pierwszej kompletnej technologii, która została opatentowana, uznaje się Charlesa Hulla, a mowa o stereolitografii, omówionej w poprzednim rozdziale. Metoda ta jednak zyskała większe powodzenie w przemyśle, a dzisiaj w warunkach domowych przyjęły się drukarki wykorzystujące technologię FDM, wynalezioną przez Scotta Crumpa. Drukarki te z pewnością zyskały swoją popularność dzięki rozpoczętemu przez dr Adriana Bowyera projektowi RepRap. Niezwykły pomysł prostych, tanich i samoreplikujących się (plastikowe części można wydrukować samodzielnie, reszta to ogólnodostępne części mechaniczne i elektroniczne) drukarek zebrał wokół siebie niemałą społeczność, która rozwija go dzięki idei open-source. Oznacza to, że projekty mechaniczne, elektroniczne i oprogramowanie jest ogólnodostępne i dozwolone, a nawet zalecane jest ich modyfikowanie. Jedną z najpopularniejszych modyfikacji stworzył Josef Průša, jedna z głównych postaci stojących za RepRapem, odpowiedzialny za modele kolejno: Prusa Mendel, Prusa Mendel i2, Prusa i3. Drukarki te wyróżniają się przede wszystkim prostotą i możliwością szybkiego ich złożenia. Nazywane są one na stronie internetowej RepRapa Fordem T (pierwszy produkowany na masową skalę samochód) wśród drukarek 3D. 4 Ogólna budowa drukarki w technologii FDM Na rynku występuje wiele modeli drukarek 3D o różnej budowie, jednak na ogół składają się z następujących elementów: - Stelaż, który utrzymuje stabilnie wszystkie pozostałe elementy drukarki - Podłoże (bed), często podgrzewane, na którym drukuje się model - Ekstruder (extruder/nozzle), czyli właściwego elementu drukującego, który ma za zadanie wyciskać odpowiednie ilości podgrzanego materiału w odpowiednim punkcie przestrzeni 3D - Prowadnice, które pozwalają na przemieszczanie ekstrudera oraz podłoża w wyznaczonej przestrzeni drukowania (najczęściej sześcian)
10 - Silniki krokowe, które mają za zadanie przemieszczać ekstruder oraz podłoże po prowadnicach, a także wyciskać materiał z ekstrudera - Panel sterujący z wyświetlaczem i gniazdem na kartę pamięci, na którym odczytać można bieżące informacje na temat drukowania (m.in. postęp, temperatury), ręcznie ustawić parametry drukarki, przeprowadzić kalibrację oraz drukować offline (bez komputera) z karty SD. - Płytka sterująca, serce drukarki 3D, która monitoruje i ustawia zadaną temperaturę drukowania, steruje silnikami krokowymi oraz umożliwia komunikację z panelem sterującym i komputerem PC. 5 Proces przygotowania drukarki PROPOX i3 pro B do drukowania a) kalibracja Przed drukowaniem należy skalibrować drukarkę zgodnie z informacjami zawartymi w instrukcji, którą znaleźć można na stronie w dziale Drukarki 3D. b) przed samym drukowaniem Na podgrzewane podłoże drukarki zwykle kładzie się szklaną szybkę, aby uzyskać idealnie gładką powierzchnię jako podstawę wydruku. Czasami drukowane obiekty odklejają się od takiego podłoża. Aby temu zapobiec, szło pokryć można taśmą kaptonową, niebieską taśmą malarską lub skorzystać z nieco mniej znanej metody - wyczyścić ją octem. Ostatnia metoda najmniej zaburza gładką powierzchnię szkła i jest zaskakująco skuteczna, dlatego szczególnie ją polecamy. Przede wszystkim jednak do drukarki należy dostarczyć materiał do drukowania. Końcówkę spiralnego filamentu zalecamy umiejętnie wyprostować w rękach. Następnie należy przycisnąć sprzęgło ekstrudera i przecisnąć filament przez otwór znajdujący się na jego wierzchu. Wyprostowanie filamentu pomoże przy kolejnym kroku, a konkretnie
11 poprowadzeniu końcówki filamentu przez kolejny otwór znajdujący się wewnątrz ekstrudera. Pozostała część filamentu powinna samoczynnie rozwijać się ze szpulki bez nadmiernego napięcia działającego na ekstruder. 6 Proces drukowania a) projekt modelu Pierwszą czynnością, jaką należy wykonać, aby rozpocząć proces drukowania, jest stworzenie modelu lub pozyskanie gotowego. Do wykonania projektu wykorzystać należy oprogramowanie wspierające projektowanie modeli trójwymiarowych, z których wiele można uzyskać za darmo. Do darmowych i polecanych aplikacji należą m.in. Blender, Google SketchUp oraz Tinkercad. Nauka wykonywania złożonych i estetycznych obiektów może być czasochłonna, lecz bez wątpienia satysfakcjonująca. W sieci można znaleźć wiele darmowych kursów, które tę czynność ułatwiają. Oprócz wykonania modelu aplikacje te umożliwiają zapisanie go w odpowiedniej formie. Największą popularnością wśród domowych drukarzy 3D cieszy się prosty format.stl, który reprezentuje jedynie geometrię obiektu (bez koloru, tekstury), co w związku z powszechnością drukarek z jednym tylko ekstruderem jest zupełnie wystarczające. W przypadku, gdy nie jesteśmy zainteresowani tworzeniem własnego projektu, nic nie stoi na przeszkodzie, by skorzystać z kreatywności innych osób. W wielu miejscach sieci znaleźć można społeczności drukarzy 3D, którzy dzielą się swoimi modelami. Ich mnogość sprawia, że niemal pewnym jest znalezienie tego, czego szukamy. Może to być misterna ozdoba lub też funkcjonalny organizer czy kołowrotek dla chomika. Takich miejsc w Internecie jest wiele, lecz jednymi z bardziej popularnych są Thingiverse, Pinshape i YouMagine. Konkretne projekty zaopatrzone są w plik.stl do pobrania, często porady autora dotyczące drukowania jego modelu oraz komentarze i zdjęcia obiektu po druku wstawiane przez innych użytkowników.
12 b) cięcie Po uzyskaniu pliku modelu 3D (najczęściej.stl) należy go pociąć, tzn. dostosować do drukarki 3D, która różni się od komputera tym, że zamiast wizualizacji modelu musi go zamienić w fizyczny obiekt. Aby tego dokonać, drukarka musi otrzymać dokładne współrzędne punktów, w których ma wyciskać filament, a do których obliczenia niezbędne są konkretne parametry ów filamentu i drukarki, m.in. średnica filamentu oraz średnica dyszy. Współrzędne te wraz z dodatkowymi wytycznymi sterującymi drukarką (np. jaką temperaturę ma utrzymywać) zamieszczane są w tzw. G-kodzie. Na szczęście nie trzeba takiego kodu pisać ręcznie, a z pomocą przychodzi nam rodzina programów nazywanych slicerami, które generują G-kod na podstawie pliku STL. Najbardziej popularnym jest program Slic3r, którego możliwości opiszemy poniżej. Firma Propox dołącza ( i nie czerpie z tego żadnej korzyści materialnej, a jedynie z wdzięcznością do autorów pomaga początkującym drukarzom wystartować) aplikację Slic3r zintegrowaną z programem Repetier-Host, który pozwala na sterowanie drukarką z poziomu komputera (online) oraz folder konfiguracyjny PROPOX dostosowujący wstępnie Slic3ra do dostarczonej drukarki. Dlaczego wstępnie? Ustawienia Slic3ra można podzielić na 3 grupy: parametry drukarki, filamentu i drukowania konkretnego modelu. Podczas, gdy parametry drukarki takie jak średnica dyszy i wymiary podłoża są stałe dla danej drukarki (chyba, że zdecydujemy się na wymianę ekstrudera), to te dotyczące filamentu należy dostosowywać przy każdej zmianie filamentu, a te dotyczące modelu przy każdym nowym wydruku. Nie jest to konieczne w przypadku bardzo prostych obiektów testowych, ale żeby drukarka poradziła sobie z trudniejszymi zadaniami, trzeba jej w tym pomóc. Wiąże się to z faktem, że drukarka to tylko maszyna wykonująca kod przygotowany przez Slic3ra i nie przewiduje zapobiegania takim sytuacjom jak na przykład wyciskanie filamentu w powietrzu bez podparcia. Skoro wyjaśniliśmy sobie znaczenie parametryzacji, przystąpmy do wyjaśnień. Po wczytaniu modelu do Repetier-Hosta, po prawej stronie aplikacji w zakładce Slicer naciskamy przycisk Configuration. W zakładce Printer Settings następujące opcje są szczególnie ważne: Size and coordinates -> Bed size wymiary podłoża potrzebne do podglądu wydruku.
13 Size and coordinates -> Print center punkt środkowy wydruku. Zmieniamy, gdy chcemy punkt odniesienia drukowania obiektu w innym miejscu podłoża. Firmware -> G-code flavour wykorzystywane w drukarce oprogramowanie. Capabilities -> Extruders liczba ekstruderów. Size -> Nozzle diameter średnica dyszy. Jeżeli dyszę uzyskaliśmy z nieznanego źródła i nie mamy informacji o jej średnicy, dobrym sposobem na pomiar jest bardzo powolne (np. 1mm/s) wyciśnięcie z niej filamentu i zmierzenie jego średnicy. Retraction -> Length istnieje możliwość, że materiał pod wpływem swojej lepkości i grawitacji będzie samoistnie wypływał z ekstrudera podczas jego przemieszczania. W wyniku tego zjawiska na drukowanym obiekcie pojawiają się nitki filamentu rozwieszone w miejscach, gdzie jałowo (bez wyciskania filamentu) poruszał się ekstruder. Wymieniony parametr sprawia, że w takim przypadku filament będzie wciągany do ekstrudera na podaną odległość (zwykle 1-2 mm). Retraction -> Lift-Z odległość (wystarczy 0.1mm), na jaką ma się podnosić cały ekstruder podczas biegu jałowego, aby zabezpieczyć się przed zaczepianiem po drodze o wystające elementy obiektu. Taka sytuacja zwykle nie powinna mieć miejsca. Jest to dodatkowe zabezpieczenie, które spowalnia proces drukowania. Retraction -> Speed szybkość, z jaką ma być dokonywana retrakcja. Odpowiednią wartość użytkownik drukarki powinien znaleźć eksperymentalnie. Część społeczności drukarzy zgadza się, że szybkość ta powinna być dość duża (np. 100 mm/s). Aby umożliwić drukarce realizację tej opcji, należy na panelu sterującym w opcjach zwiększyć maksymalną szybkość osi E. W zakładce Filament Settings : Filament -> Diameter średnica filamentu. Istotny parameter, ze względu na to, że przekłada się na ilość materiału wyciskanego w ekstruderze. Zdarza się, że rzeczywista średnica różni się od podanej przez producenta, dlatego zaleca się zmierzyć filament w kilku miejscach i obliczyć średnią arytmetyczną.
14 Filament -> Extrusion multiplier pozwala na kontrolowanie ilości ekstrudowanego materiału porzez podanie mnożnika np to 105%. Przydatne przy eksperymentowaniu. Zaleca się pozostawić wartość domyślną 1. Temperature -> Extruder możliwość ustawienia temperatury ekstrudera. Odpowiednia wartość różni się w zależności od materiału, a informacje na ten temat powinien dostarczyć producent materiału. Przyjęło się, że dla materiału PLA temperatura powinna wynosić od 160 do 230 C, a dla ABS od 215 do 250 C. Jednak dokładną temperaturę determinuje nawet kolor materiału czy szybkość ekstrakcji (im szybciej, tym wyższa temperatura). Możliwe jest również ustawienie osobnej temperatury dla pierwszej warstwy obiektu. Przyjęło się, że powinna wynosić około 5 więcej, niż dla pozostałych warstw. Temperature -> Bed temperatura podłoża. Przyjęło się dla PLA około 60, a dla ABS 110. Gorący filament wyciskany na zimne podłoże ma tendencje do podwijania się i zakłócenia dalszego drukowania. Podgrzewane podłoże zapobiega temu zjawisku. W zakładce Print settings : Layer height -> Layer height wysokość jednej warstwy. Im mniejsza wysokość, tym większa rozdzielczość i dokładność, ale dłuższy czas drukowania. Vertical shells -> Perimeters zwykle zależy nam na tym, żeby boczne ściany, jeżeli zaprojektowane zostały jako szczelne i gładkie, również takie zostały wydrukowane. Nie zawsze jednak tak jest w przypadku cienkich ścianek. Warto ustalić minimalną wartość szczelnych obrysów na co najmniej 2. Horizontal shells -> Solid layers podobnie jak w przypadku ścianek, może wystąpić błąd w drukowaniu dolnej lub górnej warstwy, dlatego zaleca się drukować je podwójnie lub potrójnie. Infill -> Fill density aby nie zużywać materiału na wypełnianie niewidocznych przestrzeni, wypełnia się je tylko częściowo. Parametr ten określa w jakim stopniu ma być wypełniony obiekt, gdzie 0% to brak wypełnienia. Już wartość 40% daje bardzo dobrą wytrzymałość. Infill -> Fill pattern wzór wypełnienia. Najszybsze w druku są line, rectilinear, concentric i honeycomb, natomiast najbardziej wytrzymały z powyższych jest honeycomb (plaster miodu).
15 Support material -> Generate support material włączenie tej opcji aktywuje generowanie podpory pod elementy obiektu, które ustawione są pod trudnymi do drukowania kątami (tzw. przewieszenia). Support material -> Overhang threshold największy kąt przewieszenia, dla którego nie będzie generowana podpórka. Kąt ten mierzony jest od osi poziomej, a więc 0 oznacza oś poziomą, a 90 oś pionową. Przykład: chcemy wydrukować literę Y, a parametr Overhang threshold jest ustawiony na 10, niestety kąt ramion litery Y jest większy (około 60 ), a więc w rezultacie podpórka nie jest generowana. Options for support material and raft -> Pattern wzór podpórki. Podobnie jak wzory wypełnienia, różnią się one wytrzymałością i szybkością drukowania. Options for support material and raft -> Pattern spacing parametr określający, jak gęsta ma być podpórka. Speed for print moves -> Perimeters - ustawienie szybkości drukowania obwódek obiektu. Drukowanie ich nieco wolniej pozwoli uzyskać dokładniejsze zewnętrzne powierzchnie obiektu. Speed for print movies -> Infill wypełnienia są ukryte wewnątrz obiektu, dlatego można je drukować szybciej. Speed for non-print moves -> Travel szybkość przemieszczania się ekstrudera pomiędzy wyciskaniem filamentu. Parametr ten warto ustawić na najwyższą wartość, na jaką pozwala drukarka. Pozwoli to zapobiec mazaniu roztopionym filamentem po obiekcie. Brim -> Brim width tzw. rondo, dodatkowe obwódki do pierwszej warstwy. Zwiększają one spodnią powierzchnię obiektu, który w efekcie lepiej trzyma się podłoża. Gdy już dostosujemy do swoich celów wszystkie parametry, pozostaje nam rozpocząć proces cięcia naciskając przycisk Potnij programem Slic3r. Otrzymamy w wyniku plik o rozszerzeniu.gco, czyli wykonywalny przez drukarkę G-kod. O tym, co zrobić, aby drukarka faktycznie go wykorzystała, piszemy w następnym punkcie. Po więcej szczegółów zapraszamy do przejrzenia instrukcji Slic3ra, której tłumaczenie dostępne jest na stronie
16 c) drukowanie Otrzymany w procesie cięcia G-kod należy w jakiś sposób przesłać do drukarki. Można to zrobić wykorzystując (offline) kartę SD, o ile drukarka ma na nią odpowiednie gniazdo lub przesyłając (online) kod przez program nazywany hostem po podłączeniu drukarki do komputera. W pierwszym przypadku po wsunięciu karty do gniazda SD drukarki należy z poziomu panelu sterującego wybrać drukowanie z karty oraz odpowiedni plik.gco, który się na niej znajduje. W przypadku wykorzystania programu typu Host polecenia do drukarki przesyłane są na bieżąco z komputera, co przez możliwość występowania zakłóceń może prowadzić do bardzo krótkich przerw w drukowaniu, które wpływają negatywnie na jakość wydruku. Poza przesyłaniem całego pliku G-kodu można również ręcznie sterować dukarką (np. przesuwać podłoże o określoną odległość). 7 Filamenty a) Wstęp Najczęściej stosowanymi materiałami w druku FDM jest polilaktyd (polikwas mlekowy) nazywany PLA oraz akrylonitrylo-butadieno-styren nazywany przez wszystkich ABS. Występuje też wiele pomniejszych materiałów takich jak : SmartABS, PLA Soft, Nylon, Poliwęglan, BendLay, LayBrick, LayWood, HIPS, PVA, TPE. b) Trochę o PLA i ABS - PLA jest biodegradowalnym termoplastycznym poliestrem, wytwarzanym z surowców odnawialnych. Przy produkcji PLA najczęściej wykorzystywana jest kukurydza lub buraki cukrowe. Do wytworzenia 1 kg PLA potrzebne jest ok 2,5 kg ziarna kukurydzy (o wilgotności 15%). Dużą zaletą PLA jest to, że można regulować szybkość rozkładu, która może wynosić od kilku miesięcy do kilku lat, uwarunkowane jest to od rodzaju zadania który będzie wykonywał dany produkt. Przeźroczysty PLA jest bardzo podobny do termoplastycznych konwencjonalnych tworzyw, dzięki jego właściwościom, i techniki wytwarzania.
17 Pod względem właściwości zbliżony jest najbardziej do polistyrenu, jednak po zmodyfikowaniu może posiadać właściwości podobne do polipropylenu i polietylenu. PLA ma doskonałe właściwości organoleptyczne, i jest bardzo dobry do kontaktu z żywnością. PLA łączy się z wieloma dodatkami w celu zwiększenia wydajności dla zadań specjalnych. Stosuje się mieszanie z polisacharydami: skrobią, która obniża cenę i skraca czas biologicznego rozkładu, celulozą w postaci włókien, zwiększającą sztywność i odporność na temperaturę. Kolejnym rodzajem są blendy z wypełniaczami nieorganicznymi takimi jak talk, szkło itd. Poprawa wytrzymałości na pękanie przy rozciąganiu, którą zobrazować można w takiej sytuacji jak np. odporność kubka na pękanie po jego ściśnięciu, wiąże się z dodatkiem kauczuków. - ABS są to tworzywa sztuczne wytwarzane w procesie polimeryzacji butadienu oraz kopolimeryzacji akrylonitrylu ze styrenem wraz z jednoczesnym szczepieniem powstałego kopolimeru na polibutadienie. Główne właściwościami ABS jest: gęstość w okolicach 1,05 g/cm3; duża twardość oraz odporność na rożnego rodzaju zarysowania; dobre właściwości izolacyjne; zadowalająca odporność na działanie olejów, rozcieńczonych kwasów i tłuszczów. Do minusów należy brak odporności na działanie światła, promieniowania UV oraz na działanie kwasów. Jest jednym z niewielu tworzyw sztucznych, które można w późniejszym etapie pokrywać warstwami metalicznymi podczas obróbki galwanicznej. W związku w wysoką temperaturą podczas tworzenia C i temperaturą samej formy C, czas suszenia wynosi ok 3,4 godziny. Materiał ABS może występować w różnych kolorach. Przed zakupem lepiej najpierw sprawdzić jak się drukuje takim materiałem (np. poprosić o próbki, lub skorzystać z wiedzy innych użytkowników drukarek 3D) a potem ewentualnie dokonać zakupu. Skład mieszanki ABS-u to 15 do 35% akrylonitrylu, 5 do 30% butadienu, 40 do 60% styrenu. Akrylonitryl odpowiedzialny jest za udarność ABS-u. Butadien daje sprężystość, elastyczność. Styren daje połysk, jednolitość (ma wpływ na porowatość). Drukując różnymi próbkami ABS-u zauważalne są różnice w jakości i wyglądzie wydruków (w niektórych przypadkach bardzo znacząco). Jedne z nich są bardziej elastyczne, inne mają powierzchnię błyszczącą, jeszcze inne matową. c) Podstawowe różnice pomiędzy ABS a PLA Jeśli chodzi o fakturę filamentów, to ABS jest bardziej matowy podczas gdy PLA ma zdecydowanie gładszą, błyszczącą powierzchnię. Te różnice są szczególnie widoczne po wydrukowaniu modelu z danego materiału. Ponadto, kolory w ABS są mniej intensywne w przeciwieństwie do PLA, gdzie można uzyskać fantastyczne nasycenie barw.
18 d) Różnice występujące w użytkowaniu ABS wymaga wyższej temperatury topnienia, która oscyluje w granicach 230ºC 270ºC (za standardową przyjmuje się 240ºC). Ponadto z uwagi na dużą kurczliwość w trakcie procesu druku 3D, wymaga podgrzewanego stołu roboczego, wskazana jest również zamknięta i podgrzewana komora robocza (choć w bez tych dwóch ostatnich warunków, wydruki w dalszym ciągu mogą wyjść poprawnie wszystko zależy od ich rozmiaru i geometrii). W trakcie druku 3D ABS wydziela się zapach typowy dla topionego plastiku, co ma też związek z wydzielaniem się szkodliwych oparów. Choć opary same w sobie nie są trujące dłuższa ekspozycja na opary może mieć wpływ na zdrowie użytkownika, w postaci zwiększenia ryzyka zachorowania na choroby układu oddechowego. Dlatego w przypadku ABS zdecydowanie zaleca się pracę w dedykowanych, wentylowanych pomieszczeniach. PLA drukuje się w niższej od ABS temperaturze, na poziomie 190ºC 220ºC (za standardową przyjmuje się 200ºC). Praktycznie nie kurczy się w trakcie wydruku, chociaż zdarzają się przypadki, że materiał potrafi podwinąć się na krawędziach (ma to związek zarówno z samym materiałem od danego producenta, warunkami w pomieszczeniu, w którym pracuje drukarka 3D [przeciąg lub duża różnica w temperaturze], jak i specyficzną geometrią modelu). Zapach jaki jest wydzielany w trakcie procesu druku 3D jest bardziej przyjemny. Mimo, że PLA jest produkowane na bazie mączki kukurydzianej, nie oznacza to bynajmniej, że filament nie emituje szkodliwych cząsteczek po prostu jest ich dużo mniej niż w przypadku ABS. W dalszym ciągu wskazane jest drukowanie w dedykowanym pomieszczeniu, które jest wentylowane. Generalnie PLA jest dużo łatwiejsze w druku 3D od ABS, w dużej mierze z uwagi na problemy związane z kurczliwością tego drugiego. PLA nie wymaga ponadto grzanego stołu roboczego. Jeżeli dysponujemy grzanym stołem, można go rozgrzać do temperatury ok. 70ºC i wyłączyć grzanie po wydrukowaniu pierwszej warstwy (temperatura i tak będzie sukcesywnie spadać przez min. kilka dalszych minut). W przypadku ABS stół musi być rozgrzany do 100ºC. e) Obróbka wydruków Mimo większych problemów w procesie drukowania 3D, ABS jest zdecydowanie lepszym materiałem do dalszej obróbki. Ma przede wszystkim dużo większą elastyczność od PLA (chociaż nie jest wcale elastyczny!) przy wygięciu pojawia się na nim charakterystyczny biały ślad (mikropęknięcia na powierzchni materiału), podczas gdy PLA po prostu pęka. ABS świetnie się szlifuje i można w nim bez problemów wiercić otwory. W przypadku PLA jest to bardzo utrudnione. Jeśli chodzi o usuwanie podpór, tu również ABS jest bardziej przyjaznym materiałem, gdy odchodzą one łatwiej i lepiej maskuje się ewentualne ślady łączenia modelu z podporami. W przypadku PLA jeżeli geometria danego modelu wymaga wygenerowanie dużej ilości podpór, które na dodatek będą rozmieszczone w trudno dostępnych miejscach, czasem lepiej po prostu zrezygnować z wydruku, niż tracić później czas na bezowocne próby ich usuwania.
19 Dotyczy to przede wszystkim obiektów ciętych na darmowych slicerach w rodzaju Cury, Slic3ra lub KISSlicera, które nie zawsze radzą sobie z wygenerowaniem dobrych (czytaj: łatwych do usunięcia) podpór. f) Przechowywanie Bardzo istotna w druku 3D jest stała średnica filamentu. W przypadku, gdy średnica waha się nawet niewiele, wyciskana jest mniejsza lub większa ilość filamentu, co oczywiście wpływa na jakość wydruku. FIlament może nieznacznie zmieniać swoje wymiary w zależności od warunków przechowywania. Najbardziej popularne materiały, takie jak PLA i ABS, a szczególnie nylon, należy przechowywać w suchych miejscach, aby nie chłonęły wilgoci. Inną kwestią wartą zauważenia jest fakt, że na filamencie znajdującym się bezpośrednio w powietrzu gromadzi się kurz, który następnie gromadzi się w ekstruderze, dlatego dobrą praktyką jest trzymanie szpulek z filamentem w szczelnych woreczkach lub każdorazowe czyszczenie filamentu przed drukiem. g) Pozostałe rodzaje filamentów - SmartABS to udoskonalona pod kilkoma względami, nowsza wersja ABS. Zmniejszono w niej skłonność materiału do kurczenia się wskutek zmian temperatur. Oprócz tego, warstwy filamentu bardzo dobrze łączą się ze sobą, a samo tworzywo, jako jeden z materiałów do druku 3D, jest bardziej uniwersalne można używać go w większości drukarek FDM. Jest idealny do większych wydruków. Zalecana temperatura podczas tworzenia ze SmartABS to 250 C. - PLA Soft to przekształcona i udoskonalona przez niemiecką firmę Orbi- Tech, wersja filamentu PLA. Od pierwowzoru różni ją znacznie większa elastyczność tworzywo ma właściwości zbliżone do twardych gum. Do druku 3D nie potrzeba podgrzewanego stołu. Zalecana temperatura podczas pracy waha się między 210 a 220 C. Wielką zaleta PLA jako materiału do druku 3D jest brak skłonności do kurczenia w procesie drukowania. - Nylon to materiał poliamidowy do drukowania w 3D, który spośród innych filamentów, wyróżnia się dużą wytrzymałością, trwałością i rozciągliwością. Jest powszechnie wykorzystywany do wytwarzania tkanin, dzianin, lin, żyłek, a także panewek łożysk, kół zębatych i innych produktów. Użycie nylonu w druku 3D umożliwia uzyskanie bardzo dobrych efektów i bardziej zadowalającej jakości niż podczas drukowania z filamentów PLA czy ABS. Nylon jest bowiem wytrzymalszy, zarówno pod względem mechanicznym, jak i chemicznym. Niewielką wadę produktu stanowi właściwość wydzielania toksycznych zapachów. Zaleca się druk w temperaturze od 240 do 250 C, koniecznie w wentylowanym pomieszczeniu. Nylon nie będzie nadawał się dla osób z małym doświadczeniem w druku 3D. Produkt dla obytych, którzy poradzą sobie z problemem przyczepiania się warstw produktu. Zalecana prędkość druku to 40mm/s (max 70 mm/s).
20 - Poliwęglan to tworzywo o właściwościach porównywalnych do aluminium. Podobnie jak inne materiały do druku 3D, jest to tworzywo bardzo trwałe, twarde i przezroczyste. Często bywa stosowane w roli droższego zamiennika filamentu ABS. Do druku potrzeba utrzymania wysokich temperatur ( C), które to mogą być niemożliwe do uzyskania w niektórych drukarkach 3D. - BendLay to bezbarwny (przez włókna materiału przechodzi aż 91% światła), trwały i plastyczny filament, stosowany w medycynie oraz do wytwarzania opakowań spożywczych. Świetny do drukowania naczyń czy butelek. Jako materiał do druku 3D, cechuje się dużą giętkością (zdolność do zginania się o 175% bez powstawania przebarwień lub odcisków). Zaleca się druk w temperaturze wahającej się od 215 do 240 C. Warto również wspomnieć o dużej przyczepności pomiędzy warstwami filamentu oraz stabilności termicznej podobnej do materiału PLA. BendLay przykleja się do materiałów PLA i ABS. - LayBrick to materiał do druku 3D będący mieszanką poliestru, kredy i naturalnych związków mineralnych. Posiada właściwości podobne do kamienia (twardy i kruchy, gładka bądź kamienna faktura). Dzięki swoim cechom, nadaje się zarówno do szlifowania, jak i malowania. LayBrick będzie doskonałym materiałem do drukowania makiet czy modeli architektonicznych. Do wytwarzania wydruków z tego filamentu nie potrzeba podgrzewanego stołu. W zależności od pożądanego efektu, można drukować w temperaturze około 165 C (efekt: gładka faktura) lub 210 C (faktura zbliżona do kamienia lub piaskowca). Aby nie uszkodzić kruchego obiektu, przed odczepieniem go od blatu należy odczekać od dwóch do czterech godzin, aż materiał ulegnie całkowitemu stwardnieniu. - LayWood to materiał przeznaczony do druku 3D, który posiada właściwości drewna (faktura, zapach), jednak jest bardziej giętki. Szczególnie nadaje się do drukowania makiet budynków, drewnianych dekoracji lub elementów do mebli. Podobnie jak drewno, materiał można poddawać cięciu i wierceniu. Co ciekawe, tworzywo zmienia kolor pod wpływem temperatury drukowania (zalecana to od 180 do 240 C). Wyższa pozwoli uzyskać ciemniejsze odcienie, niższa jaśniejsze. Do druku z filamentu LayWood nie potrzeba podgrzewanego stołu. Materiał nie sprawia kłopotów w trakcie wychodzenia przez dyszę (nie podwija się), ale może się zdarzyć, że zostanie ona zapchana (przekrój dyszy powinien mieć min. 0,4 mm). Po wydrukowaniu, na modelu mogą pozostać małe kawałki drewna. - HIPS (High Impact Polystyrene) to filament podporowy do drukowania w ABS. Ma właściwości bardzo zbliżone do tego materiału. Po zakończeniu procesu drukowania, model należy potraktować roztworem d-limonene, dzięki któremu materiał HIPS ulegnie rozpuszczeniu, natomiast filament
21 ABS zostanie nietknięty. Taki proces może trwać od 8 godzin do doby, zależnie od rozmiaru i kształtu wydruku. Zastosowanie materiału HIPS w druku 3D daje bardzo szerokie możliwości chociażby uzyskania efektu wiszących elementów. Materiał powszechnie używany do wywarzania plastikowych sztućców oraz opakowań spożywczych. - PVA to tworzywo podporowe, przeznaczone przede wszystkim do drukowania wymyślnych modeli w PLA. Filament rozpuszcza się w wodzie. Dzięki niemu możliwe jest wytworzenie takich elementów, jak chociażby łożyska kulkowe czy klatki mechanizmów przekładni za pomocą drukarek 3D. - TPE to materiał przynależący do rodziny elastomerów termoplastycznych, zwanych także kauczukami termoplastycznymi. Jak sama nazwa wskazuje, jest to filament niezwykle plastyczny, sprężysty i miękki (twardość wg skali Shore a: A~90). TPE, w porównaniu do innych materiałów do druku 3D, cechuje się dużą odpornością na różne związki chemiczne w tym kwasy utleniające, oleje, smary, roztwory zasad i węglowodory alifatyczne. Zalecana temperatura drukowania to 210 C. 8 Utrudnienia podczas drukowania a) Wyraźne warstwy na powierzchni obiektu
22 Aby zmniejszyć wyraźnie warstwy obiektu (wyglądające jak schodki) można zmniejszyć wysokość pojedynczej warstwy (Layer height), wprowadzić dokładną średnicę filamentu (Filament -> Diameter) i zmniejszyć ilość wyciskanego filamentu (Filament -> Extrusion multiplier) w programie Slic3r. Wyraźne rezultaty może zapewnić zmiana dyszy na mniejszą. b) przewieszenia (overhangs) Drukowanie każdego modelu zaczyna się od spodniej warstwy, która nakładana jest na podłoże. Każda kolejna warstwa przykleja się do poprzedniej. Jednak w przypadku, gdy obiekt posiada elementy ustawione pod małym kątem względem osi poziomej filament może nie mieć podparcia i zapaść się. W takim przypadku należy skorzystać z możliwości generowania podpórek, którą oferuje program Slic3r. Parametry odpowiedzialne za podpórki (support) opisane są w punkcie 6b [odnośnik], a także w instrukcji Slic3ra dostępnej na stronie propox.com. Największy kąt nachyleń, dla których mają być generowane podpórki należy wyznaczyć eksperymentalnie, jednak zwykle jest to 45. Szczególnym przypadkiem przewieszenia jest most, który ma podparcie z obu stron. c) nitki (smugi) W czasie, gdy ekstruder przemieszcza się pomiędzy dwoma punktami, w których wyciska filament, roztopiony filament pod wpływem grawitacji może wypływać z dyszy, tworząc plastikowe smugi, które wyglądają jak
23 nitki. Aby temu zapobiec należy ustawić odpowiednio retrakcję, czyli proces przesuwania filamentu w głąb ekstrudera o określoną odległość i z określoną szybkością. Parametry te opisane są w punkcie 6b oraz w instrukcji Slic3ra dostępnej na stronie propox.com/druk. d) szczegóły Aby zwiększyć dokładność drukowania, zewnętrzne warstwy (perimeters) zaleca się drukować wolniej, niż resztę obiektu (np. 30%). 9 Po wydrukowaniu a) ściąganie wydruku z podłoża Często wydrukowany model przywiera do podłoża tak mocno, że nie sposób go oderwać bez ryzyka uszkodzenia. Należy poczekać do ostygnięcia podłoża, a następnie pomóc może podważenie go nożykiem lub innym cienkim narzędziem. Jeżeli podłożem jest szklana płytka, problem rozwiązać może ściągnięcie jej z drukarki i opłukanie wraz z obiektem w zimnej wodzie. b) usuwanie podpórek W większości przypadków podpórkę można usunąć mechanicznie korzystając z cienkiego narzędzia. Solidne części wydruku zaleca się podważać płaskim śrubokrętem, natomiast szczegółowe fragmenty oczyszczać nożykiem. Aby wyjąć materiał podpórki ze środka obiektu można użyć szczypiec. Niektóre modele drukarek wyposażone są w wiele ekstruderów. W takim przypadku podpórki można drukować innym materiałem, niż sam obiekt. Oznacza to, że do ich usuwania wykorzystać można metody chemiczne. c) wygładzanie wydruku Najczęściej na wydrukach widoczne są wyraźnie warstwy spowodowane niewystarczającą rozdzielczością drukowania. Jeżeli w zniwelowaniu problemu nie pomogły porady z punktu 8a [odnośnik] i jakość wydruku jest niezadowalająca, należy wykorzystać pewne metody jego wygładzania. W domowych warunkach można wykorzystać następujące:
24 - dla PLA powierzchnię wydruku można rozgrzać np. lutownicą na gorące powietrze lub wypolerować drobnym papierem ściernym - wydruk z ABS można umieścić w pojemniku z acetonem tak, aby nie stykał się z nim, a więc obiekt można zawiesić lub umieścić na warstwie izolacyjnej (np. folia aluminiowa). Opary acetonu są wystarczające, aby wygładzić powierzchnię modelu. Przed przystąpieniem do tego procesu warto zapoznać się ze szczegółowymi poradnikami na ten temat znajdującymi się w Internecie. NALEŻY ZACHOWAĆ SZCZEGÓLNĄ OSTROŻNOŚĆ, GDYŻ ACETON JEST ŁATWOPALNY, A JEGO OPARY SZKODLIWE. Poza powyższymi metodami wykorzystywane jest również piaskowanie, lecz wymaga ono specjalistycznych urządzeń. 10 Ręczne drukarki 3D SKETCHER a) Co to jest PLA? PLA to polilaktyd, czyli biodegradowalny polimer wykonany na bazie mączki kukurydzianej. Jest to tworzywo często stosowane w przemyśle druku 3D. Charakteryzuje się dużą twardością i wytrzymałością. Jest bezpieczny dla zdrowia. W przemyśle stosuje się go głównie do celów biomedycznych. Jest świetnym materiałem dla wszystkich zaczynających przygodę z naszym urządzeniem. b) Co to jest ABS? ABS jest tworzywem sztucznym o licznych zastosowaniach. To jeden z najczęściej wykorzystywanych materiałów w produkcji elementów samochodów, sprzętu samochodowego oraz części artykułów RTV i AGD. Jest wytrzymały i łatwy w obróbce. Cechują go również dobre właściwości mechaniczne wytrzymałość na rozciąganie i odporność na zarysowania, a nawet działanie olejów, tłuszczów i niektórych rozcieńczonych kwasów.
25 Do ręcznych drukarek 3D SKETCHER zalecam stosowanie filamentu PLA. Jest on bezpieczny dla zdrowia. Jego obróbka zachodzi przy niższych temperaturach niż innych filamentów. Filament ABS polecamy jedynie dla zaawansowanych użytkowników. c) Czym różnią się od siebie urządzenia SKETCHER? Te informacje uzyskasz z opisu każdego urządzenia: SKETCHER V2 SKETCHER V4 SKETCHER V Ciekawostki a) Waza Jeżeli znaleźliśmy ciekawy, ale wypełniony model i chcemy z niego zrobić coś w stylu wazy, w ustawieniach Slicera możemy usunąć wypełnienie, a także wierzchnią warstwę. b) Przydatne linki - Projekty 3D
26 -Programy Fora
27
SIGNAL S WIĘKSZE POLE DO POPISU
SIGNAL S WIĘKSZE POLE DO POPISU ATMAT. TWORZYMY ŚWIAT, W KTÓRYM OGRANICZENIEM JEST TYLKO KREATYWNOŚĆ Seria drukarek ATMAT Signal S to połączenie prostej, stabilnej konstrukcji z dużą wydajnością i precyzją
Drukarka HBOT 3D F300 TO CREATE
Drukarka HBOT 3D F300 TO CREATE PROSTOTA Nasi konstruktorzy zadbali o to, żeby obsługa HBOT 3D F300 była tak prosta, jak używanie klasycznej drukarki. Wystarczy, że wybierzesz jakość druku, rodzaj materiału
3DGence DOUBLE prezentacja produktowa.
prezentacja produktowa www.3dgence.com 3DGence DOUBLE Dwugłowicowa drukarka 3D zaprojektowana z myślą o tworzeniu wydruków wysokiej jakości i dużej szczegółowości. Przeznaczona do zastosowań profesjonalnych.
SIGNAL PRO. Nieustanne poszerzanie perspektyw
SIGNAL PRO Nieustanne poszerzanie perspektyw Zmień swój punkt widzenia! Otwórz się na nowe możliwości Dostrzegając zmiany zachodzące na rynku drukarek 3D oraz coraz to większe wymagania użytkowników związane
Profesjonalizm w kompaktowym rozmiarze
Profesjonalizm w kompaktowym rozmiarze Przemyślane rozwiązania, profesjonalne efekty Jeśli zastanawiasz się nad zakupem kompaktowej, a zarazem profesjonalnej drukarki 3D, Zortrax Inventure będzie najlepszą
Propox I3. Instrukcja instalacji i konfiguracji drukarki 3D v1.2
Propox I3 Instrukcja instalacji i konfiguracji drukarki 3D v1.2 1. Instalacja programu Repetier host 2. Konfiguracja programu Slic3r 3. Kalibracja stołu 4. Kalibracja osi Z 5. Parametry wpływające na wielkość
Drukarki 3D. Rapid prototyping - czyli szybkie wytwarzanie prototypów.
Drukarki 3D Rapid prototyping - czyli szybkie wytwarzanie prototypów. Drukarki 3D Na całym świecie stosuje się dzisiaj oprogramowanie CAD za pomocą którego, projektanci tworzą dokładne wizualizacje swoich
Broszura informacyjna wraz z cenami. Drukarka 3D ATMAT Signal
Broszura informacyjna wraz z cenami Drukarka 3D ATMAT Signal DRUKARKA 3D ATMAT SIGNAL ATMAT SIGNAL to profesjonalna i niezawodna drukarka 3D. Urządzenie wyróżnia największe pole robocze wśród dostępnych
power of engineering MATERIAŁY DLA HBOT 3D
power of engineering MATERIAŁY DLA HBOT 3D PL MATERIAŁY DLA HBOT 3D F300 Wysokiej jakości materiały są jednym z najważniejszych czynników wpływających na końcowy efekt Twoich wydruków. Zastosowane razem
Badania twardości elementów modelowych wytworzonych przyrostową techniką FDM z elastomerów termoplastycznych
Badania twardości elementów modelowych wytworzonych przyrostową techniką FDM z elastomerów termoplastycznych Autor: mgr inż. Janusz Kluczyński Paprotnia/ Teresin 17-21.10.2016r. 1 Definicja wytwarzania
Zigma inżynieria przemysłowa ul. Lewkoniowa 2 60-175 Poznań
Oferujemy usługi wydruku modeli 3D przy użyciu niezawodnych drukarek amerykańskiej firmy 3D Systems!!! Drukowane modele są w pełni zgodne z przesłanym projektem 3D. Drukujemy modele o skomplikowanych kształtach
SIGNAL PRO NIEUSTANNE POSZERZANIE PERSPEKTYW
SIGNAL PRO NIEUSTANNE POSZERZANIE PERSPEKTYW ATMAT. TWORZYMY ŚWIAT, W KTÓRYM OGRANICZENIEM JEST TYLKO KREATYWNOŚĆ Model ATMAT Signal Pro to drukarka stworzona w odpowiedzi na oczekiwania naszych Klientów
Niezawodność i precyzja
Niezawodność i precyzja Drukarka 3D doceniona przez tysiące użytkowników Niezawodna, solidna, a przy tym niezwykle precyzyjna drukarka Zortrax M200 podbiła serca tysięcy użytkowników. Przystępna cena w
Długopis 3D drugiej generacji 3D PEN 2 nd gen. Instrukcja obsługi 1/6
1/6 Spis treści: Czym jest drukowanie 3D?...3 Materiały do druku...3 Opis długopisu...3 Ostrzeżenia...4 Instrukcja użytkowania...4 Wymiana filamentu...5 Dostrajanie temperatury...5 Rozwiązywanie problemów...6
Będąc rzetelnym sprzedawcą, oferujemy najwyższą jakość produktów, atrakcyjne ceny, szybką wysyłkę i dogodne warunki ewentualnych zwrotów towarów.
ABS Filament Drut dla Drukarek 3D Katalog Produktów 5 kwietnia 2014 1. Wprowadzenie ABS jest najwyższej jakości polskim materiałem dla drukarek 3D pracujących w technologii FDM lub FFF. Nasza oferta skierowana
Będąc rzetelnym sprzedawcą, oferujemy najwyższą jakość produktów, atrakcyjne ceny, szybką wysyłkę i dogodne warunki ewentualnych zwrotów towarów.
XF-ABS Filament XF-PLA Filament Drut dla Drukarek 3D Katalog Produktów 5 kwietnia 2014 1. Wprowadzenie Bazując na własnym doświadczeniu (jesteśmy użytkownikami drukarek 3D) oraz doświadczeniu wielu innych
DRUKARKA 3D HBOT 3D F300
DRUKARKA 3D HBOT 3D F300 HBOT 3D F300 Specyfikacja techniczna Drukarka 3D zaprojektowana do zastosowań przemysłowych Technologia Komora robocza FDM / FFF zamknięta z wymuszoną wentylacją Niezawodność,
GALAXY NIEZAWODNA PRECYZJA TWORZENIA
GALAXY NIEZAWODNA PRECYZJA TWORZENIA ATMAT. TWORZYMY ŚWIAT, W KTÓRYM OGRANICZENIEM JEST TYLKO KREATYWNOŚĆ Model ATMAT Galaxy jest drukarką stworzoną z myślą o Użytkownikach, którzy chcą osiągać wysoką
niezawodność i PRECYZJA.
niezawodność i PRECYZJA. NIEZAWODNA. Drukarka 3D Zortrax M200 w krótkim czasie zdobyła serca tysięcy użytkowników. Nie ma się czemu dziwić - jej niezawodność, wydajność, precyzja oraz cena sprawiły, że
Propox I3 Pro B. Instrukcja konfiguracji drukarki 3D
Propox I3 Pro B Instrukcja konfiguracji drukarki 3D 1 Instalacja programu Repetier host. Program Repetier host jest programem który pozwala nam na przetworzenie gotowego projektu elementu 3D na kod zrozumiały
PROFESJONALIZM. kompaktowym rozmiarze
PROFESJONALIZM. w kompaktowym rozmiarze INTELIGENTNA. Poznaj Zortrax Inventure, drukarkę 3D dla profesjonalistów, którzy poszukują najwyższej jakości wydruków. Dzięki Zortrax Inventure będziesz mieć stały
Drukarka 3D Zortrax M200
Informacje o produkcie Utworzono 01-07-2016 Drukarka 3D Zortrax M200 Nr katalogowy : 3D Zortrax M200 Dostępność : Dostępny Stan magazynowy : poniżej średniego Średnia ocena : brak recenzji Cena : 6.900,00
niezawodność i PRECYZJA.
niezawodność i PRECYZJA. do Twoich USŁUG. Nasze drukarki 3D, oprogramowanie i materiały działają w zintegrowanym ekosystemie. Dlaczego? Odpowiedź jest niezwykle prosta - dla Twojej wygody. Wybór drukarki
Źródło : http://www.stratasys.com/3d-printers/design-series/precision/~/media/image%20gallery/rigid_opaque_blue_motor.jpg Czym jest druk 3D?
Podstawy druku 3D Źródło : http://www.stratasys.com/3d-printers/design-series/precision/~/media/image%20gallery/rigid_opaque_blue_motor.jpg Czym jest druk 3D? Druk 3D lub też druk przestrzenny to jedna
Podstawowe zasady doboru i projektowania obudów Wykład 15
Podstawowe zasady doboru i projektowania obudów Wykład 15 Zadania pełnione przez obudowę Zapewnienie ochrony urządzenia przed uszkodzeniami mechanicznymi Ochrona użytkownika Zabezpieczenie przed zakłóceniami
Poliamid (Ertalon, Tarnamid)
Poliamid (Ertalon, Tarnamid) POLIAMID WYTŁACZANY PA6-E Pół krystaliczny, niemodyfikowany polimer, który jest bardzo termoplastyczny to poliamid wytłaczany PA6-E (poliamid ekstrudowany PA6). Bardzo łatwo
Jak zaplanować funkcjonalną kuchnię?
Jak zaplanować funkcjonalną kuchnię? Planując wystrój kuchni warto zadbać o to, aby łączył on możliwie jak największą funkcjonalność z ciekawym i pomysłowym wyglądem. Te dwie cechy absolutnie nie muszą
UCZEŃ, DRUKARKA 3D I PASJA...
Informatyka w Edukacji, XVI UMK Toruń, 2019 UCZEŃ, DRUKARKA 3D I PASJA... Zespół Szkół Mechanicznych nr 1 im. F. Siemiradzkiego ul. Św. Trójcy 37, 85-224 Bydgoszcz e-mail jasinska.an@wp.pl Abstract. Recently,
instrukcja obsługi drukarki 3D
instrukcja obsługi drukarki 3D 1. Otwórz karton w oznaczonej górnej części. 4. Usuń opaski zaciskowe unieruchamiające oś Y oraz X. 2. Wyciągnij górną i boczne płyty styropianowe. 5. Wyciągnij z dolnej
Technologie przetwórstwa i recyklingu TS. Druk trójwymiarowy.
Technologie przetwórstwa i recyklingu TS. Druk trójwymiarowy. 1. Wstęp Druk trójwymiarowy zaliczany jest do technik przyrostowych, w którym tworzenie obiektu następuje poprzez dodawanie materiału lub utwardzaniu
Wyłączny Przedstawiciel Handlowy ASD www.artsytemdeco.com RODADECK MICROCEMENT EKSKLUZYWNE GŁADKIE POWIERZCHNIE
RODADECK MICROCEMENT EKSKLUZYWNE GŁADKIE POWIERZCHNIE Techniki dekoracji powierzchni MIKROCEMENT RODADECK SF RODADECK SF jest to dwuskładnikowy produkt na bazie spoiw hydraulicznych, żywic syntetycznych,
Usługi Profesjonalnego druku 3D.
Usługi Profesjonalnego druku 3D www.technology-applied.com Oferta TECHNOLOGY APPLIED sp. z o. o. jest Spółką produkcyjną świadczącą kompleksowe usługi w zakresie wytwarzania addytywnego części i urządzeń.
DRUKARKA 3D ATMAT SIGNAL Najczęstsze problemy i ich rozwiązania
DRUKARKA 3D ATMAT SIGNAL Najczęstsze problemy i ich rozwiązania Błędne wskazania temperatur: Wskazywana temperatura: -21 C Wskazywana temperatura: 381 C Przyczyna: Błąd komunikacji Uszkodzony termistor
Instrukcja "Jak stosować preparat CerMark?"
Instrukcja "Jak stosować preparat CerMark?" Co to jest CerMark? Produkt, który umożliwia znakowanie metali w technologii laserowej CO 2. Znakowanie uzyskane w technologii CerMark charakteryzuje idealna
Podstawy Technik Wytwarzania. projektowanie. Projekt procesu na wycinarko-grawerkę laserową
Podstawy Technik Wytwarzania projektowanie Projekt procesu na wycinarko-grawerkę laserową opracowała: mgr inż. Anna Trych Warszawa, listopad 2014 1. Cel projektu Celem projektu jest zaprojektowanie elementu
POMYSŁY NABIERAJĄ KSZTAŁTU WEJDŹ DO ŚRODOWISKA PROFESJONALNEGO DRUKU 3D
POMYSŁY NABIERAJĄ KSZTAŁTU WEJDŹ DO ŚRODOWISKA PROFESJONALNEGO DRUKU 3D POZNAJ ZORTRAX M200 Zortrax M200 - drukarka 3D, która przenosi wirtualne projekty do trójwymiarowej rzeczywistości. Służy do prototypowania
Instrukcja użytkownika
SAUTER GmbH Schmiechastr. 147-151, D-72458 Albstadt Tel: +49 (0) 7431 938 666 irmi.russo@sauter.eu www.sauter.eu Instrukcja użytkownika Ultradźwiękowy grubościomierz Sauter TD 225-0.1 US Spis treści: 1.
UPROSZCZONA INSTRUKCJA OBSŁUGI EVOLIS ZENIUS
UPROSZCZONA INSTRUKCJA OBSŁUGI EVOLIS ZENIUS Uproszczona instrukcja obsługi Evolis Zenius Spis treści 1 WPROWADZENIE....3 1.1 Wypakowanie....3 1.2 Opis i funkcje drukarki....3 1.3 Instalacja....4 1.3.1
Drewno. Zalety: Wady:
Drewno Drewno to naturalny surowiec w pełni odnawialny. Dzięki racjonalnej gospodarce leśnej w Polsce zwiększają się nie tylko zasoby drewna, lecz także powierzchnia lasów. łatwość w obróbce, lekkość i
Drukarka 3D ZMorph 3D FULL SET + Skaner 3D ZMorph 3D Scanner
Drukarka 3D ZMorph 3D FULL SET + Skaner 3D ZMorph 3D Scanner Twój konsultant Arkadiusz Trzebiński tel. 503 030 555 at@aktin.pl NOWOŚĆ W OFERCIE 15000.00 zł 15000.00 zł z VAT Karina Gładecka 796 603 606
Wyjaśnienia treści specyfikacji istotnych warunków zamówienia
Warszawa, dn. 29.10.2018r. Wyjaśnienia treści specyfikacji istotnych warunków zamówienia dot.: postępowania o udzielenie zamówienia publicznego na dostawę aparatury naukowej dla zakładów naukowych ITME,
TECHNOLOGIA 3D - KLUCZ DO TWOJEGO SUKCESU
WWW..PL TECHNOLOGIA 3D - KLUCZ DO TWOJEGO SUKCESU O firmie Zainteresowanie drukiem 3D i pierwsze projekty drukarek wielkoformatowych w technologii FFF rozpoczęliśmy w 2009 roku. Pierwsze modele serii DDDBOT
stwórz coś WIELKIEGO.
stwórz coś WIELKIEGO. nieskończone możliwości. Wiemy, jak ważna jest niezależność w pracy. Im mniejszą część pracy powierzysz podwykonawcom, tym lepszy jest efekt końcowy. Od teraz możesz mieć pełną kontrolę
ABCDE ABCDE ABCDE. Jakość wydruku. Identyfikacja problemów z jakością druku. Nieregularności wydruku
Strona 1 z 8 Jakość wydruku Wiele problemów z jakością wydruku można rozwiązać, wymieniając zużyte materiały eksploatacyjne lub elementy zestawu konserwacyjnego. Sprawdź, czy na panelu operacyjnym drukarki
JEDEN MATERIAŁ NIEZLICZONE MOŻLIWOŚĆI Główne informacje o Acrylic One 3/20
JEDEN MATERIAŁ NIEZLICZONE MOŻLIWOŚĆI Główne informacje o Acrylic One 3/20 PODSTAWOWE DANE TECHNICZNE ACRYLIC ONE PROPORCJE MIESZANKI 2A:1B (2 części proszku, 1 część płynu) KOLOR biało-kremowy * 1 GĘSTOŚĆ
TECHNOLOGIA 3D - KLUCZ DO TWOJEGO SUKCESU
WWW..PL TECHNOLOGIA 3D - KLUCZ DO TWOJEGO SUKCESU O firmie Działalność rozpoczęliśmy w 2009 roku, a od 2013 roku specjalizujemy się w projektowaniu i produkcji drukarek 3D, które charakteryzują się precyzją
Z mechanicznego i elektronicznego punktu widzenia każda z połówek maszyny składa się z 10 osi o kontrolowanej prędkości i pozycji.
Polver spółka z ograniczoną odpowiedzialnością spółka komandytowa ul. Fredry 2, 30-605 Kraków tel. +48 (12) 260-14-10; +48 (12) 260-33-00 fax.+48 (12) 260-14-11 e-mail - polver@polver.pl www.polver.pl
Pasek menu. Ustawienia drukowania
Polecenie Ustawienia drukowania... z menu Plik pozwala określić urządzenie drukujące poprzez jego wybór z pola kombi. Urządzenie można skonfigurować poprzez przycisk właściwości. Otwiera się wówczas okno
czyli Arkuszy / Układów na podstawie modelu
Przygotowanie dokumentacji technicznej czyli Arkuszy / Układów na podstawie modelu Przygotowanie dokumentacji technicznej w AutoCAD 1 Wydruk rysunku z AutoCAD można przygotować na dwa sposoby 1. na zakładce
Karta Techniczna PROTECT 321 UHS Podkład akrylowy Wypełniający podkład akrylowy utwardzany izocyjanianem alifatycznym.
UHS Podkład akrylowy Wypełniający podkład akrylowy utwardzany izocyjanianem alifatycznym. PRODUKTY POWIĄZANE Utwardzacz do wyrobów poliuretanowych standardowy Utwardzacz do wyrobów poliuretanowych szybki
Szpachlówka uniwersalna. Szpachlówka Soft. Szpachlówka z włóknem Szklanym
Okiem fachowca! Szpachlówka uniwersalna Podstawowa szpachlówka poliestrowa o uniwersalnym zastosowaniu, bardzo łatwej obróbce i dobrej szlifowalności. Charakteryzuje się odpornością mechaniczną i elastycznością
Hybrydowa Drukarka 3D do Biura, Szkoły i Domu
Hybrydowa Drukarka 3D do Biura, Szkoły i Domu Wszechstronne drukowanie 3D Skanowanie 3D Frezowanie CNC Grawerowanie Drukowanie żywności i ceramiki ZMorph 2.0 S jest innowacyjną, hybrydową drukarką 3D,
SYSTEMY OPERACYJNE I SIECI KOMPUTEROWE
SYSTEMY OPERACYJNE I SIECI KOMPUTEROWE WINDOWS 1 SO i SK/WIN 006 Wydajność systemu 2 SO i SK/WIN Najprostszym sposobem na poprawienie wydajności systemu, jeżeli dysponujemy zbyt małą ilością pamięci RAM
TRYBO INNOWACJE: Drukowane tak dokładne, jak wtryskiwane.
TRYBO INNOWACJE: Drukowane tak dokładne, jak wtryskiwane www.igus.pl to czołowy producent prowadników kabli, przewodów do aplikacji ruchomych, polimerowych łożysk ślizgowych, liniowych systemów prowadzenia
czyli Arkuszy / Układów na podstawie modelu w zakładce MODEL
Przygotowanie dokumentacji technicznej 2D czyli Arkuszy / Układów na podstawie modelu w zakładce MODEL Przygotowanie dokumentacji technicznej w AutoCAD 1 Wydruk rysunku z AutoCAD można przygotować na dwa
stwórz coś WIELKIEGO.
stwórz coś WIELKIEGO. nieskończone możliwości. Wiemy, jak ważna jest niezależność w pracy. Im mniejszą część pracy powierzysz podwykonawcom, tym lepszy jest efekt końcowy. Od teraz możesz mieć pełną kontrolę
INKJET FLATBED DRUKARKI CYFROWE UV LED FJET24 GEN2/FJETXL
INKJET FLATBED DRUKARKI CYFROWE UV LED FJET24 GEN2/FJETXL DRUKARKI CYFROWE TYPU FLATBED FIRMY COMEC Umożliwiają drukowanie w wysokiej rozdzielczości bezpośrednio na przedmiotach (do 1200 dpi) w prosty
Tworzenie i modyfikacja modelu geologicznego
Tworzenie i modyfikacja modelu geologicznego Program: Stratygrafia 3D Plik powiązany: Demo_manual_39.gsg Poradnik Inżyniera Nr 39 Aktualizacja: 12/2018 Wprowadzenie Celem niniejszego Przewodnika Inżyniera
Cel i zakres ćwiczenia
MIKROMECHANIZMY I MIKRONAPĘDY 2 - laboratorium Ćwiczenie nr 5 Druk 3D oraz charakteryzacja mikrosystemu Cel i zakres ćwiczenia Celem ćwiczenia jest charakteryzacja geometryczna wykonanego w ćwiczeniu 1
Drukarka 3D KREATOR MOTION
O NAS 3DKreator Sp. z o. o. specjalizuje się w zaawansowanych technologiach druku 3D, oferując kompleksowe rozwiązania dla firm, instytucji oraz klientów indywidualnych. Drukarka 3D Kreator Motion powstała
Drogi Pasjonacie 3D! Drukowanie 3D Historia Materiały Ręczny druk 3D Wymiana filamentu... 11
od Spis treści Drogi Pasjonacie 3D!... 3 To powinieneś wiedzieć!... 4 Drukowanie 3D... 4 Historia... 4 Materiały... 5 Ręczny druk 3D... 6 Bezpieczeństwo... 7 Instrukcja użytkowania... 9 Zalecenia... 10
9. Sprawdzenie przed uruchomieniem
9. Sprawdzenie przed uruchomieniem Written By: Dozuki System 2019 manual.prusa3d.com/ Page 1 of 10 Step 1 Ustawienie sondy P.I.N.D.A. (część 1) Upewnij się, że drukarka nie jest włączona a przewód zasilający
Karta Techniczna PROTECT 330 Podkład akrylowy Wypełniający podkład akrylowy utwardzany izocyjanianem alifatycznym.
Podkład akrylowy Wypełniający podkład akrylowy utwardzany izocyjanianem alifatycznym. PRODUKTY POWIĄZANE HARD 0 Utwardzacz do wyrobów poliuretanowych, standardowy, szybki Rozcieńczalnik uniwersalny, wolny,
Recykling tworzyw sztucznych na przykładzie butelek PET. Firma ELCEN Sp. z o.o.
Recykling tworzyw sztucznych na przykładzie butelek PET Firma ELCEN Sp. z o.o. Zakres działalności firmy ELCEN Włókno poliestrowe Płatek PET Butelki PET Recykling butelek PET Każdy z nas w ciągu jednego
NARZĘDZIA YATO WIELOFUNKCYJNE I AKCESORIA NARZĘDZIA OSCYLACYJNE YATO QUICK RELEASE S Y S T E M S Y S T E M
E N J Y C A L Y C S O NARZĘDZIA E N J Y C K N U F O L E I W I AKCESORIA YATO WIELOFUNKCYJNE NARZĘDZIA OSCYLACYJNE YATO Wielofunkcyjne narzędzia oscylacyjne są najbardziej uniwersalnymi narzędziami na rynku.
stwórz coś WIELKIEGO.
stwórz coś WIELKIEGO. nieskończone możliwości. Wiemy, jak ważna jest niezależność w pracy. Im mniejszą część pracy powierzysz podwykonawcom, tym lepszy jest efekt końcowy. Od teraz możesz mieć pełną kontrolę
Karta Techniczna PROTECT 321 Podkład akrylowy Wypełniający podkład akrylowy utwardzany izocyjanianem alifatycznym.
Podkład akrylowy Wypełniający podkład akrylowy utwardzany izocyjanianem alifatycznym. PRODUKTY POWIĄZANE Utwardzacz do wyrobów poliuretanowych, standardowy, szybki Rozcieńczalnik uniwersalny, wolny, standardowy,
Zastosowanie druku przestrzennego we wzornictwie przemysłowym.
Akademia Sztuk Pięknych w Warszawie Wydział Wzornictwa Przemysłowego dr inż. Przemysław Siemiński e-mail: przemyslaw.sieminski@asp.waw.pl www.3druk.pl Zastosowanie druku przestrzennego we wzornictwie przemysłowym.
INSTRUKCJA UŻYTKOWNIKA. Spis treści. I. Wprowadzenie... 2. II. Tworzenie nowej karty pracy... 3. a. Obiekty... 4. b. Nauka pisania...
INSTRUKCJA UŻYTKOWNIKA Spis treści I. Wprowadzenie... 2 II. Tworzenie nowej karty pracy... 3 a. Obiekty... 4 b. Nauka pisania... 5 c. Piktogramy komunikacyjne... 5 d. Warstwy... 5 e. Zapis... 6 III. Galeria...
Drogi Pasjonacie 3D! Co powinieneś wiedzieć o druku 3D...4. Drukowanie 3D...4. Historia...4. Materiały...5. Ręczny druk 3D...
Spis treści Drogi Pasjonacie 3D!... 3 Co powinieneś wiedzieć o druku 3D...4 Drukowanie 3D...4 Historia...4 Materiały...5 Ręczny druk 3D...6 BEZPIECZEŃSTWO...7 Instrukcja użytkowania...9 Zalecenia...10
Generator recept. Program pomagający tworzyć wypełnione wydruki recept lekarskich. Instrukcja obsługi użytkownika
Generator recept Program pomagający tworzyć wypełnione wydruki recept lekarskich Instrukcja obsługi użytkownika Copyright Paulina Głąb, Wojciech Januszek 2012-1 - Spis treści 1. Cel programu.... 3 2. Instalacja
vademecum materiałów
vademecum materiałów What are you looking for(m)? Produkty najwyższej jakości powinny być zrobione z najlepszych materiałów to jasne. Jednak dopiero funkcja, jaką ma pełnić projektowany przedmiot, pomaga
TARCZE DO CIĘCIA I SZLIFOWANIA
8 I NARZĘDZIA I AKCESORIA NARZĘDZIA I AKCESORIA SPAWALNICZE SPAWALNICZE Tarcze do cięcia i szlifowania... 96-98 Akcesoria do szlifowania.... 99 95 I 8 I I Weldline oferuje szeroką gamę tarcz tnących i
szybkie wytwarzanie wielomateriałowych/kolorowych fizycznych obiektów
Drukarki 3D firmy Pyramid 3D Studio znajdują zastosowanie i umożliwiają: szybkie wytwarzanie wielomateriałowych/kolorowych fizycznych obiektów rozwijanie umiejętności potrzebnych na aktualnym rynku pracy
Instrukcja do skanera 3D MF:
Instrukcja do skanera 3D MF: Jak używać skanera: Skaner został zaprojektowany aby można go było używać w różnie naświetlonych pomieszczeniach. Jeśli planujesz skanowanie na zewnątrz, należy pamiętać, że
Przed rozpoczęciem pracy otwórz nowy plik (Ctrl +N) wykorzystując szablon acadiso.dwt
Przed rozpoczęciem pracy otwórz nowy plik (Ctrl +N) wykorzystując szablon acadiso.dwt Zadanie: Utwórz szablon rysunkowy składający się z: - warstw - tabelki rysunkowej w postaci bloku (według wzoru poniżej)
1. Druk akcydensowy wizytówki
1. Druk akcydensowy wizytówki Rys. 1: Cel ćwiczenia 1.1. Projekt logo Rys. 2: Cel projektu logo Pierwszym etapem wykonywania ćwiczenia będzie projekt logo (symbolu graficznego) firmy (instytucji, organizacji),
Praktyczny Kurs Druku
Druk 3D SZKOŁA Poziom tekstu: łatwy W czwartym odcinku naszego kursu sprawdzimy, w jaki sposób dostać się do poszczególnych ustawień związanych z planowanym wydrukiem po to, by zmienić parametry na najbardziej
Drukarka ręczna 3D v.1. wersja instrukcji: 1.2
Drukarka ręczna 3D v.1 wersja instrukcji: 1.2 Spis treści Drogi Pasjonato 3D!... 3 Co powinieneś wiedzieć o druku 3D...4 Drukowanie 3D...4 Wehikuł czasu - przeszłość...4 Materiały...5 Ręczny druk 3D...6
Te i wiele innych cech sprawia, że program mimo swej prostoty jest bardzo funkcjonalny i spełnia oczekiwania większości klientów.
Instrukcja użytkownika OFERTOWANIE 3.0 Program OFERTOWANIE 3.0 to intuicyjne i łatwe w użyciu narzędzie do szybkiego przygotowania i wydrukowania profesjonalnie wyglądającej oferty dla klienta, Program
Opis funkcji modułu Konwerter 3D
Opis funkcji modułu Konwerter 3D www.cadprojekt.com.pl Kliknij na tytuł rozdziału, aby przejść do wybranego zagadnienia MODUŁ KONWERTER 3D...3 Wygląd i funkcje okna modułu Konwerter 3D...3 Konwertowanie
Serwer druku w Windows Server
Serwer druku w Windows Server Ostatnimi czasy coraz większą popularnością cieszą się drukarki sieciowe. Często w domach użytkownicy posiadają więcej niż jedno urządzenie podłączone do sieci, z którego
ValueJet 426UF VJ-426UF. > Specialty & Industrial. MUTOH Belgium nv - 15/5/ For Mutoh Authorised Resellers Only
1 Opis produktu Kompaktowy ploter LED UV A3+ typu flatbed (stół z podsysem) 6 kolorów : C, M, Y, K, biały i lakier Bez ozonu, bez rtęci bez ołowiu Druk na różnorodnych materiałach - max. grubość 70mm Zimne
Skalowanie i ustawianie arkuszy/układów wydruku w AutoCAD autor: M. Motylewicz, 2012
1 z 72 Rysunek rysujemy w skali rzeczywistej tzn. jeżeli pas ruchu ma szerokość 3,5m to wpisujemy w AutoCAD: 3,5 jednostki (mapa oczywiście również musi być wstawiona w skali 1:1). Opisany w dalszym ciągu
Malowanie ścian: łączenie kolorów za pomocą taśmy malarskiej
Malowanie ścian: łączenie kolorów za pomocą taśmy malarskiej Taśma malarska to nieodłączny ekwipunek przy malowaniu ścian. Za jej pomocą nie tylko ochronimy powierzchnię sąsiadującą z malowanym fragmentem,
Co to są farby dyspersyjne?
Co to są farby dyspersyjne? Technologia obecnie ułatwia nam wiele dziedzin życia. Mowa tutaj także o wykańczaniu wnętrz. Produkty do wykańczania, w tym farby, są coraz lepszej jakości - dużo trwalsze i
Drogi Pasjonacie 3D! Co powinieneś wiedzieć o druku 3D...4. Drukowanie 3D...4. Historia...4. Materiały...5. Ręczny druk 3D...
Spis treści Drogi Pasjonacie 3D!... 3 Co powinieneś wiedzieć o druku 3D...4 Drukowanie 3D...4 Historia...4 Materiały...5 Ręczny druk 3D...6 BEZPIECZEŃSTWO...7 Instrukcja użytkowania...9 Zalecenia...11
7. Sprawdzenie przed uruchomieniem
7. Sprawdzenie przed uruchomieniem Written By: Dozuki System 2018 manual.prusa3d.com/ Page 1 of 10 Step 1 Ustawienie sondy P.I.N.D.A. (część 1) Upewnij się, że drukarka nie jest włączona a przewód zasilający
Techniki druku 3D. Jan BIS Marek KRET
Techniki druku 3D przykłady zastosowań Jan BIS Marek KRET Paweł PŁATEK Laboratorium szybkiego prototypowania Laboratorium szybkiego prototypowania... Panel sterujący Zbiornik do wypłukiwania struktury
Page Summa BVBA
Page 1 Dane podstawowe Podstawa Powierzchnia robocza (dla wszystkich narzędzi standardowych) 160 cm X 120 cm Wymiary urządzenia: +/- 196 x 235 x 110cm (+/- 500 kg) Wymiary przy transporcie +/- 223 x 253
Drukarka ręczna 3D v.2. wersja instrukcji: 1.2
Drukarka ręczna 3D v.2 wersja instrukcji: 1.2 Spis treści Drogi Pasjonato 3D!... 3 Co powinieneś wiedzieć o druku 3D...4 Drukowanie 3D...4 Wehikuł czasu - przeszłość...4 Materiały...5 Ręczny druk 3D...6
PRZEMYSŁOWE POSADZKI EPOKSYDOWE
POSADZKI ŻYWICZNE WŁAŚCIWOŚCI I ZASTOSOWANIE PRZEMYSŁOWE POSADZKI EPOKSYDOWE Wybierając podłogę kierujemy się nie tylko względami dekoracyjnymi. Istotny jest również aspekt użytkowy wytrzymałość parkietu
Temat: Termotransfer i termosublimacja
Temat: Termotransfer i termosublimacja 1. Termotransfer (termonadruk) - technika nadruku polegająca na termicznym wgrzaniu w materiał wcześniej przygotowanego rysunku, naniesionego na specjalny papier
stwórz coś WIELKIEGO.
stwórz coś WIELKIEGO. nieskończone możliwości. Wiemy, jak ważna jest niezależność w pracy. Im mniejszą część pracy powierzysz podwykonawcom, tym lepszy jest efekt końcowy. Od teraz możesz mieć pełną kontrolę
HYDROIZOLACJA UŻYTKOWEGO PŁASKIEGO DACHU Z PŁYNNĄ MEMBRANĄ POLIURETANOWĄ I OCHRONNĄ POWŁOKĄ ALIFATYCZNĄ
HYDROIZOLACJA UŻYTKOWEGO PŁASKIEGO DACHU Z PŁYNNĄ MEMBRANĄ POLIURETANOWĄ I OCHRONNĄ POWŁOKĄ ALIFATYCZNĄ Α) HYDROIZOLACJA UŻYTKOWEGO PŁASKIEGO DACHU Z PŁYNNĄ MEMBRANĄ POLIURETANOWĄ I OCHRONNĄ POWŁOKĄ ALIFATYCZNĄ
Animacje cz. 2. Rysujemy koło zębate
Animacje cz. 2 1. Do wykonania poniższej animacji będziemy potrzebować dodatkowego desenia. Znajduje się on w folderze z instrukcją, żeby program Gimp mógł z niego skorzystać musimy wskazać mu ścieżkę
Budowa. Podwójne głowice. System naciągu materiału. Wysokość głowicy do 6mm. Klapy : przez które czyścimy głowicę. Zintegrowana rynienka na atrament
M U T O H V a l u e J e t 1 9 3 8 TX 1 Opis 191 cm szerokość Podwójne głowice DX 6 Idealny do druku tkanin: na próbki ; lokalne reklamy Ploter posiada zaawansowany system prowadzenia mediów Ploter drukuje
BLU Line. Panele LED LGP
BLU Line Panele LED LGP LED LGP backlight Seria systemów laserowych Sei Laser BLU Line jest przeznaczona do cięcia i grawerowania arkuszy materiału PMMA, które w połączeniu z diodami LED zapewniają perfekcyjne