Procesor i jego architektura (CISC, RISC, 32/64 bity). Systemy wieloprocesorowe. wer Wojciech Myszka 16 pa«zdziernika 2008

Wielkość: px
Rozpocząć pokaz od strony:

Download "Procesor i jego architektura (CISC, RISC, 32/64 bity). Systemy wieloprocesorowe. wer Wojciech Myszka 16 pa«zdziernika 2008"

Transkrypt

1 Procesor i jego architektura (CISC, RISC, 32/64 bity). Systemy wieloprocesorowe. wer. 1.4 Wojciech Myszka 16 pa«zdziernika 2008

2 CISC I Complex Instruction Set Computers nazwa architektury mikroprocesorów o następujących cechach: duża liczba rozkazów (instrukcji) mała optymalizacja niektóre rozkazy potrzebują dużej liczby cykli procesora do wykonania występowanie złożonych, specjalistycznych rozkazów duża liczba trybów adresowania do pamięci może się odwoływać bezpośrednio duża liczba rozkazów mniejsza od RISC-ów częstotliwość taktowania procesora powolne działanie dekodera rozkazów

3 CISC II Przykłady rodzin procesorów o architekturze CISC to między innymi: AMD x86 M68000

4 RISC I Reduced Instruction Set Computers Zredukowana liczba rozkazów do niezbędnego minimum. Ich liczba wynosi kilkadziesiąt (setki w procesorach). Upraszcza to znacznie konstrukcję procesora. Redukcja trybów adresowania większość operacji wykonuje się wg schematu: rejestr C = rejestr A operacja rejestr B.

5 RISC II Ograniczenie komunikacji pomiędzy pamięcią, a procesorem. Do przesyłania danych pomiędzy pamięcią, a rejestrami służą instrukcje, które nazywają się load (załaduj z pamięci), oraz store (zapisz do pamięci); pozostałe instrukcje operują wyłącznie na rejestrach. Schemat działania załaduj daną z pamięci do rejestru, na zawartości rejestru wykonaj działanie, przepisz wynik z rejestru do pamięci. Zwiększenie liczby rejestrów (np. 32, 192, 256, x86 jest 8), co również ma wpływ na zmniejszenie liczby odwołań do pamięci.

6 RISC III Przetwarzanie potokowe (ang. pipelining): wszystkie rozkazy wykonują się w jednym cyklu maszynowym, (znaczne uproszczenie bloku wykonawczego), a zastosowanie superskalarności umożliwia równoległe wykonywanie rozkazów. Superskalarność (ang. Superscalar) możliwość ukończenia kilku instrukcji w pojedynczym cyklu zegara. Jest to możliwe dzięki zwielokrotnieniu jednostek wykonawczych. Pierwszym procesorem Intela z rodziny x86 wykorzystującym superskalarność był procesor Pentium. Większość procesorów superskalarnych nie ma w pełni zduplikowanej jednostki wykonywania kodu mogą mieć wiele ALU, jednostek

7 RISC IV zmiennopozycyjnych i tak dalej, wobec czego pewne instrukcje będą wykonywane bardzo szybko, a inne nie.

8 VLIW Very Long Instruction Word uproszczenie jednostki sterującej, zwiększanie liczby jednostek wykonawczych, technika wcześniejszego wykonania instrukcji (Out-of-Order Execution), sterowanie pracą procesora zostało przerzucone na kompilator (to on decyduje o sposobie działania procesora). Kompilator (ang. compiler) to program służący do automatycznego tłumaczenia kodu napisanego w jednym języku (języku źródłowym) na równoważny kod w innym języku (języku wynikowym)

9 ZISC Zero Instruction Set Computer Jeden z pierwszych procesorów ZISC zawierał 36 niezależnych komórek (uważane są za neurony lub równoległe procesory). Każda z nich może porównać wektor wejściowy (64 bajty) z podobnym wektorem przechowywanym w komórkach pamięci. Jeśli wektor wejściowy odpowiada wektorowi w komórce pamięci to komórka ta wypala. Sygnał wyjściowy zawiera komórki, która miała dopasowanie, oraz znacznik mówiący, że nie wystąpiło dopasowanie.

10 Schemat procesora Rejestr (akumulator) Arytmometr Wskazniki Pamiec (RAM)

11 Podstawowe operacje Instrukcje arytmetyczne Ładuj <adres pamięci> przepisuje zawartość pamięci o wskazanym adresie do rejestru.

12 Podstawowe operacje Instrukcje arytmetyczne Ładuj <adres pamięci> przepisuje zawartość pamięci o wskazanym adresie do rejestru. Zapisz <adres pamięci> przepisuje zawartość akumulatora do pamięci

13 Podstawowe operacje Instrukcje arytmetyczne Ładuj <adres pamięci> przepisuje zawartość pamięci o wskazanym adresie do rejestru. Zapisz <adres pamięci> przepisuje zawartość akumulatora do pamięci Ładuj <liczba> zapisuje liczbę do rejestru

14 Podstawowe operacje Instrukcje arytmetyczne Ładuj <adres pamięci> przepisuje zawartość pamięci o wskazanym adresie do rejestru. Zapisz <adres pamięci> przepisuje zawartość akumulatora do pamięci Ładuj <liczba> zapisuje liczbę do rejestru Dodaj <adres pamięci> do zawartości akumulatora dodaje zawartość komórki o wskazanym adresie (możemy tez założyć, że w podobny sposób potrafi policzyć różnicę, iloczyn i iloraz, choć, w rzeczywistości, nie musi to być prawdą). Wykonanie każdej operacji zmieniającej zawartość rejestru powoduje ustawienie wskaźników (zero, przepełnienie, ujemne).

15 Podstawowe operacje Instrukcje na bitach Neguj zmienia znak liczby w akumulatorze

16 Podstawowe operacje Instrukcje na bitach Neguj zmienia znak liczby w akumulatorze And <adres pamięci> iloczyn logiczny (bit po bicie dwu słów)

17 Podstawowe operacje Instrukcje na bitach Neguj zmienia znak liczby w akumulatorze And <adres pamięci> iloczyn logiczny (bit po bicie dwu słów) Or <adres pamięci>

18 Podstawowe operacje Instrukcje na bitach Neguj zmienia znak liczby w akumulatorze And <adres pamięci> iloczyn logiczny (bit po bicie dwu słów) Or <adres pamięci> Xor <adres pamięci> różnica symetryczna

19 Podstawowe operacje Instrukcje na bitach Neguj zmienia znak liczby w akumulatorze And <adres pamięci> iloczyn logiczny (bit po bicie dwu słów) Or <adres pamięci> Xor <adres pamięci> różnica symetryczna Przesun_w_lewo

20 Podstawowe operacje Instrukcje na bitach Neguj zmienia znak liczby w akumulatorze And <adres pamięci> iloczyn logiczny (bit po bicie dwu słów) Or <adres pamięci> Xor <adres pamięci> różnica symetryczna Przesun_w_lewo Przesun_w_prawo

21 Podstawowe operacje Instrukcje na bitach Neguj zmienia znak liczby w akumulatorze And <adres pamięci> iloczyn logiczny (bit po bicie dwu słów) Or <adres pamięci> Xor <adres pamięci> różnica symetryczna Przesun_w_lewo Przesun_w_prawo Przesun_cyklicznie_w_lewo

22 Podstawowe operacje Instrukcje na bitach Neguj zmienia znak liczby w akumulatorze And <adres pamięci> iloczyn logiczny (bit po bicie dwu słów) Or <adres pamięci> Xor <adres pamięci> różnica symetryczna Przesun_w_lewo Przesun_w_prawo Przesun_cyklicznie_w_lewo Przesun_cyklicznie_w_prawo

23 Podstawowe operacje Instrukcje sterujące Skocz <adres pamięci> bezwarunkowe przekazanie sterowanie do adresu

24 Podstawowe operacje Instrukcje sterujące Skocz <adres pamięci> bezwarunkowe przekazanie sterowanie do adresu Skocz_jezeli_zero <adres pamięci>

25 Podstawowe operacje Instrukcje sterujące Skocz <adres pamięci> bezwarunkowe przekazanie sterowanie do adresu Skocz_jezeli_zero <adres pamięci> Skocz_jezeli_ujemne <adres pamięci>

26 Podstawowe operacje Instrukcje sterujące Skocz <adres pamięci> bezwarunkowe przekazanie sterowanie do adresu Skocz_jezeli_zero <adres pamięci> Skocz_jezeli_ujemne <adres pamięci> Skocz_jesli_nadmiar <adres pamięci>

27 Podstawowe operacje Instrukcje sterujące Skocz <adres pamięci> bezwarunkowe przekazanie sterowanie do adresu Skocz_jezeli_zero <adres pamięci> Skocz_jezeli_ujemne <adres pamięci> Skocz_jesli_nadmiar <adres pamięci> Skocz_do_podprogramu <adres pamięci> bardzo podobne do instrukcji zwykłego skoku, ale dodatkowo zapisuje aktualny stan procesora w specjalnie do tego przeznaczonej pamięci

28 Asembler Bardzo proste działanie: A=B+C

29 Asembler Bardzo proste działanie: A=B+C W komórce o adresie A ma być umieszczony wynik dodawania zawartości komórek o adresie B i C.

30 Asembler Bardzo proste działanie: A=B+C W komórce o adresie A ma być umieszczony wynik dodawania zawartości komórek o adresie B i C. Realizacja komputerowa: Ładuj B Dodaj C Zapisz A

31 MARIE MARIE A Machine Architecture that is Really Intuitive and Easy notacja dwójkowa, zapis w kodzie dopełnieniowym przechowywanie programu, stała długość słowa adresowanie słowne 4K pamięci głównej (12 bitów na każdy adres) 16-bitowe dane (16-bitowe słowa) 16-bitowe rozkazy (4-bitowy kod operacji + 12-bitowy adres) 16-bitowy akumulator (AC) 16-bitowy rejestr rozkazów (IR) 16-bitowy rejestr bufora pamięci (MBR) 12-bitowy licznik rozkazów (PC) 12-bitowy rejestr adresów pamięci (MAR) 8-o bitowy rejestr wejściowy (InREG) 8-o bitowy rejestr wyjściowy (OutREG)

32 Symulator MARIE

33 Asembler Bardziej skomplikowany przykład Z = [(A + B)(C + D)] W

34 Asembler Bardziej skomplikowany przykład Z = [(A + B)(C + D)] W T1 = A + B

35 Asembler Bardziej skomplikowany przykład Z = [(A + B)(C + D)] W T1 = A + B T2 = C + D

36 Asembler Bardziej skomplikowany przykład Z = [(A + B)(C + D)] W T1 = A + B T2 = C + D T3 = T1 T2

37 Asembler Bardziej skomplikowany przykład Z = [(A + B)(C + D)] W T1 = A + B T2 = C + D T3 = T1 T2 Z = T3/W

38 Odwrotna Notacja Polska Popatrzmy na działanie: Ile wynosi wynik?

39 Odwrotna Notacja Polska Popatrzmy na działanie: Ile wynosi wynik? 50 czy 38?

40 Odwrotna Notacja Polska Popatrzmy na działanie: Ile wynosi wynik? 50 czy 38? A który jest poprawny?

41 Odwrotna Notacja Polska Popatrzmy na działanie: Ile wynosi wynik? 50 czy 38? A który jest poprawny? Czemu tak łatwo znaleźć kalkulator który liczy źle?

42 Ważność działań arytmetycznych 1. potęgowanie Nawiasy mogą ją zmieniać!

43 Ważność działań arytmetycznych 1. potęgowanie 2. mnożenie i dzielenie Nawiasy mogą ją zmieniać!

44 Ważność działań arytmetycznych 1. potęgowanie 2. mnożenie i dzielenie 3. dodawanie i odejmowanie Nawiasy mogą ją zmieniać!

45 Czy jest możliwy zapis jednoznaczny? Polski logik, Łukasiewicz, wprowadził notację przedrostkową. Zamiast z = x + y zaproponował zapis: +xy

46 Czy jest możliwy zapis jednoznaczny? Polski logik, Łukasiewicz, wprowadził notację przedrostkową. Zamiast z = x + y zaproponował zapis: +xy Zwracam uwagę że jest on bardzo podobny do zapisu funkcji dwu zmiennych: z = f(x, y) Funkcja suma jest też dwuargumentowa: z = +(x, y)

47 Zapis polski Działanie oznaczające 3 + (7 5) zapisujemy: }{{} 3 }{{}

48 odwrotny zapis polski Utarło się używanie innego zapisu: najpierw podaje się argumenty działania, później samo działanie: xy+ Stąd nazwa: Odwrotna notacja polska. Nasze działanie zapisujemy tak: a to bardziej skomplikowane tak: A B + C D + W /

49 Odwrotna Notacja Polska stos Praktyczna realizacja działania A B + C D + W / wymaga stosu. I dodatkowych operacji w języku wewnętrznym: Zapisz_na_stos przepisuje zawartość akumulatora na stos. Pobierz_ze_stosu pobiera ze stosu wartość i przepisuje ją do akumulatora

50 Stos

51 Stos

52 Prosty kalkulator Praktyczna realizacja działania A B + C D + W / A = 1, B = 2, C = 3, D = 4, W = 5

53 Arytmetyka komputerów Zapis liczb dwójkowy.

54 Arytmetyka komputerów Zapis liczb dwójkowy. Każda z liczb zapisywana jest za pomocą cyfr 0 i 1.

55 Arytmetyka komputerów Zapis liczb dwójkowy. Każda z liczb zapisywana jest za pomocą cyfr 0 i 1. Układ jest pozycyjny waga cyfry zależy od miejsca, w którym została ustawiona.

56 Arytmetyka komputerów Zapis liczb dwójkowy. Każda z liczb zapisywana jest za pomocą cyfr 0 i 1. Układ jest pozycyjny waga cyfry zależy od miejsca, w którym została ustawiona. Najmniej znaczące miejsca są po stronie prawej...

57 Arytmetyka komputerów Zapis liczb dwójkowy. Każda z liczb zapisywana jest za pomocą cyfr 0 i 1. Układ jest pozycyjny waga cyfry zależy od miejsca, w którym została ustawiona. Najmniej znaczące miejsca są po stronie prawej to czyli = 10

58 Arytmetyka komputerów Zapis liczb dwójkowy. Każda z liczb zapisywana jest za pomocą cyfr 0 i 1. Układ jest pozycyjny waga cyfry zależy od miejsca, w którym została ustawiona. Najmniej znaczące miejsca są po stronie prawej to czyli = 10 NB liczby parzyste mają zero na końcu, nieparzyste 1.

59 Arytmetyka komputerów Zapis liczb dwójkowy. Każda z liczb zapisywana jest za pomocą cyfr 0 i 1. Układ jest pozycyjny waga cyfry zależy od miejsca, w którym została ustawiona. Najmniej znaczące miejsca są po stronie prawej to czyli = 10 NB liczby parzyste mają zero na końcu, nieparzyste 1. Arytmetyka dwójkowa bardzo prosta.

60 Arytmetyka komputerów Zapis liczb dwójkowy. Każda z liczb zapisywana jest za pomocą cyfr 0 i 1. Układ jest pozycyjny waga cyfry zależy od miejsca, w którym została ustawiona. Najmniej znaczące miejsca są po stronie prawej to czyli = 10 NB liczby parzyste mają zero na końcu, nieparzyste 1. Arytmetyka dwójkowa bardzo prosta = 0

61 Arytmetyka komputerów Zapis liczb dwójkowy. Każda z liczb zapisywana jest za pomocą cyfr 0 i 1. Układ jest pozycyjny waga cyfry zależy od miejsca, w którym została ustawiona. Najmniej znaczące miejsca są po stronie prawej to czyli = 10 NB liczby parzyste mają zero na końcu, nieparzyste 1. Arytmetyka dwójkowa bardzo prosta = = = 1

62 Arytmetyka komputerów Zapis liczb dwójkowy. Każda z liczb zapisywana jest za pomocą cyfr 0 i 1. Układ jest pozycyjny waga cyfry zależy od miejsca, w którym została ustawiona. Najmniej znaczące miejsca są po stronie prawej to czyli = 10 NB liczby parzyste mają zero na końcu, nieparzyste 1. Arytmetyka dwójkowa bardzo prosta = = = = 10

63 Arytmetyka komputerów Zapis liczb dwójkowy. Każda z liczb zapisywana jest za pomocą cyfr 0 i 1. Układ jest pozycyjny waga cyfry zależy od miejsca, w którym została ustawiona. Najmniej znaczące miejsca są po stronie prawej to czyli = 10 NB liczby parzyste mają zero na końcu, nieparzyste 1. Arytmetyka dwójkowa bardzo prosta = = = = = 1

64 Arytmetyka komputerów Zapis liczb dwójkowy. Każda z liczb zapisywana jest za pomocą cyfr 0 i 1. Układ jest pozycyjny waga cyfry zależy od miejsca, w którym została ustawiona. Najmniej znaczące miejsca są po stronie prawej to czyli = 10 NB liczby parzyste mają zero na końcu, nieparzyste 1. Arytmetyka dwójkowa bardzo prosta = = = = = = 0 1 = 0

65 Arytmetyka komputerów Zapis liczb dwójkowy. Każda z liczb zapisywana jest za pomocą cyfr 0 i 1. Układ jest pozycyjny waga cyfry zależy od miejsca, w którym została ustawiona. Najmniej znaczące miejsca są po stronie prawej to czyli = 10 NB liczby parzyste mają zero na końcu, nieparzyste 1. Arytmetyka dwójkowa bardzo prosta = = = = = = 0 1 = = 0

66 Operacje logiczne (Podstawowe) operacje logiczne to suma logiczna (OR), iloczyn logiczny (AND), negacja (NOT), różnica symetryczna (XOR) OR AND XOR

67 Arytmetyka komputera Arytmetyka klasyczna Jesteśmy przyzwyczajeni do następujących rzeczy : 1. Jeżeli x 0 to a a + x a

68 Arytmetyka komputera Arytmetyka klasyczna Jesteśmy przyzwyczajeni do następujących rzeczy : 1. Jeżeli x 0 to a a + x a 2. a + b + + z = z + y + + b + a

69 Arytmetyka komputera Arytmetyka klasyczna Jesteśmy przyzwyczajeni do następujących rzeczy : 1. Jeżeli x 0 to a a + x a 2. a + b + + z = z + y + + b + a 3. a, b R a < b c : a < c < b

70 Arytmetyka komputera Arytmetyka klasyczna Jesteśmy przyzwyczajeni do następujących rzeczy : 1. Jeżeli x 0 to a a + x a 2. a + b + + z = z + y + + b + a 3. a, b R a < b c : a < c < b W arytmetyce komputerowej powyższe zasady nie obowiązują!

71 Liczby zmiennoprzecinkowe 1. Arytmetyka 1.1 Liczby naturalne 1.2 Liczby całkowite 1.3 Liczby wymierne 1.4 Liczby rzeczywiste 2. Komptery 2.1 Liczby całkowite ( integer ) 2.2 Liczby stałoprzecinkowe 2.3 Liczby zmiennoprzecinkowe

72 Liczby całkowite I Sytuacja dosyć klarowna. Na n bitach możemy zapisać liczby całkowite dodatnie z zakresu od zera do 2 n 1 Jest pewien problem z liczbami ujemnymi: trzeba zarezerwować miejsce na znak Trzeba to tak zrobić, żeby podstawowe operacje (dodawanie, odejmowanie i mnożenie,... ) były wykonywane tak samo gdy argumenty są dodatnie jak i wtedy gdy są ujemne. Układ uzupełnieniowy to załatwił.

73 Liczby całkowite II Czasami korzysta się z kodu BCD (Binary Coded Decimal (cyfry) dziesiętne kodowane binarnie: liczba zapisywana jest w układzie dziesiętnym (za pomocą cyfr dziesiętnych), ale poszczególne cyfry kodowane są binarnie 321 (10) zapisywane jest jako

74 Liczby stałoprzecinkowe 1. Liczby w których na zapamiętanie części całkowitej przeznacza się kilka(naście/dziesiąt) bitów 2. Na zapamiętanie części ułamkowej również używa się kilku(nastu?) bitów: , co odczytujemy jako: lub czyli 10, Używany bardzo rzadko (finanse??) 4. Z matematycznego punktu widzenia są to liczby wymierne 5. Jak w tej postaci zapisać liczbę 1,1

75 Liczby zmiennoprzecinkowe I 1. Są to liczby zapisywane (kodowane) w sposób podobny do zananego nam: c = m/s 2. Czyli w postaci mantysa (2, ) plus wykładnik 8, zatem 2, *10 8 albo inaczej 2, e8 3. W przypadku komputerów podstawa kodowania (tak mantysy jak i wykładnika) to 2! 4. Dodatkowo liczby zapisywane są zawsze w postaci znormalizowanej czyli takiej, że cyfra przed przecinkiem (kropką) dziesiętnym jest zawsze z zakresu między 1 a 9. (a w układzie dwójkowym zawsze jest równa 1!) 5. Na zapamiętanie mantysy i wykładnika przeznaczana jest zawsze skończona liczba bitów.

76 Liczby zmiennoprzecinkowe II 6. Z matematycznego punktu widzenia są to liczby wymierne. 7. Sposób zapisu liczb zmiennoprzecinkowych reguluje standard IEE-754.

77 Parę problemów 1. Zawsze(?) ograniczona liczba bitów przeznaczona na zapamiętanie liczby (ale znane są specjalne programy, które starają się te ograniczenie przezwyciężać). 2. Wynik działań arytmetycznych często prowadzi do powstania nadmiaru (czyli przekroczenia maksymalnej dopuszczalnej wartości liczb). 3. Większość liczb który (z przyzwyczajenia) traktujemy jako dokładne nie ma dokładnej reprezentacji dwójkowej (0,5 jest OK ale 0,1 już nie.

Technologie Informacyjne Wykład 3

Technologie Informacyjne Wykład 3 Technologie Informacyjne Wykład 3 Procesor i jego architektura (CISC, RISC, 32/64 bity) Systemy wieloprocesorowe Wojciech Myszka Jakub Słowiński Katedra Mechaniki i Inżynierii Materiałowej Wydział Mechaniczny

Bardziej szczegółowo

Architektura komputerów wer. 3

Architektura komputerów wer. 3 Architektura komputerów wer. 3 Wojciech Myszka, Maciej Panek listopad 2014 r. Karty perforowane Kalkulator IBM 601, 1931 IBM 601 kalkulator Maszyna czytała dwie liczby z karty, mnożyła je przez siebie

Bardziej szczegółowo

Architektura komputerów wer. 7

Architektura komputerów wer. 7 Architektura komputerów wer. 7 Wojciech Myszka 2013-10-29 19:47:07 +0100 Karty perforowane Kalkulator IBM 601, 1931 IBM 601 kalkulator Maszyna czytała dwie liczby z karty, mnożyła je przez siebie i wynik

Bardziej szczegółowo

Technologie informacyjne wykład 2 wer. 1.2

Technologie informacyjne wykład 2 wer. 1.2 Technologie informacyjne wykład 2 wer. 1.2 Wojciech Myszka 24 października 2010 1 Część I Elementy systemu komputerowego. Czynniki wpływające na wydajność. Elementy systemu komputerowego. Czynniki wpływające

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Architektura komputerów wer. 14 Wojciech Myszka 2018-11-07 07:48:25 +0100 Karty perforowane Kalkulator IBM 601, 1931 IBM 601 kalkulator Maszyna czytała dwie, maksimum ośmiocyfrowe, liczby z karty, mnożyła

Bardziej szczegółowo

Technologie Informacyjne Wykład 4

Technologie Informacyjne Wykład 4 Technologie Informacyjne Wykład 4 Arytmetyka komputerów Wojciech Myszka Jakub Słowiński Katedra Mechaniki i Inżynierii Materiałowej Wydział Mechaniczny Politechnika Wrocławska 30 października 2014 Część

Bardziej szczegółowo

Architektura mikroprocesorów TEO 2009/2010

Architektura mikroprocesorów TEO 2009/2010 Architektura mikroprocesorów TEO 2009/2010 Plan wykładów Wykład 1: - Wstęp. Klasyfikacje mikroprocesorów Wykład 2: - Mikrokontrolery 8-bit: AVR, PIC Wykład 3: - Mikrokontrolery 8-bit: 8051, ST7 Wykład

Bardziej szczegółowo

Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne

Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne 1. Bit Pozycja rejestru lub komórki pamięci służąca do przedstawiania (pamiętania) cyfry w systemie (liczbowym)

Bardziej szczegółowo

Struktura i działanie jednostki centralnej

Struktura i działanie jednostki centralnej Struktura i działanie jednostki centralnej ALU Jednostka sterująca Rejestry Zadania procesora: Pobieranie rozkazów; Interpretowanie rozkazów; Pobieranie danych Przetwarzanie danych Zapisywanie danych magistrala

Bardziej szczegółowo

Podstawy Informatyki

Podstawy Informatyki Podstawy Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 5 Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 5 1 / 23 LICZBY RZECZYWISTE - Algorytm Hornera

Bardziej szczegółowo

Liczby rzeczywiste są reprezentowane w komputerze przez liczby zmiennopozycyjne. Liczbę k można przedstawid w postaci:

Liczby rzeczywiste są reprezentowane w komputerze przez liczby zmiennopozycyjne. Liczbę k można przedstawid w postaci: Reprezentacja liczb rzeczywistych w komputerze. Liczby rzeczywiste są reprezentowane w komputerze przez liczby zmiennopozycyjne. Liczbę k można przedstawid w postaci: k = m * 2 c gdzie: m częśd ułamkowa,

Bardziej szczegółowo

Naturalny kod binarny (NKB)

Naturalny kod binarny (NKB) SWB - Arytmetyka binarna - wykład 6 asz 1 Naturalny kod binarny (NKB) pozycja 7 6 5 4 3 2 1 0 wartość 2 7 2 6 2 5 2 4 2 3 2 2 2 1 2 0 wartość 128 64 32 16 8 4 2 1 bity b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 System

Bardziej szczegółowo

Teoretyczne Podstawy Informatyki

Teoretyczne Podstawy Informatyki Teoretyczne Podstawy Informatyki cel zajęć Celem kształcenia jest uzyskanie umiejętności i kompetencji w zakresie budowy schematów blokowych algor ytmów oraz ocenę ich złożoności obliczeniowej w celu optymizacji

Bardziej szczegółowo

Arytmetyka binarna - wykład 6

Arytmetyka binarna - wykład 6 SWB - Arytmetyka binarna - wykład 6 asz 1 Arytmetyka binarna - wykład 6 Adam Szmigielski aszmigie@pjwstk.edu.pl SWB - Arytmetyka binarna - wykład 6 asz 2 Naturalny kod binarny (NKB) pozycja 7 6 5 4 3 2

Bardziej szczegółowo

Stan wysoki (H) i stan niski (L)

Stan wysoki (H) i stan niski (L) PODSTAWY Przez układy cyfrowe rozumiemy układy, w których w każdej chwili występują tylko dwa (zwykle) możliwe stany, np. tranzystor, jako element układu cyfrowego, może być albo w stanie nasycenia, albo

Bardziej szczegółowo

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1 Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1. Podstawowe operacje logiczne dla cyfr binarnych Jeśli cyfry 0 i 1 potraktujemy tak, jak wartości logiczne fałsz i prawda, to działanie

Bardziej szczegółowo

Logiczny model komputera i działanie procesora. Część 1.

Logiczny model komputera i działanie procesora. Część 1. Logiczny model komputera i działanie procesora. Część 1. Klasyczny komputer o architekturze podanej przez von Neumana składa się z trzech podstawowych bloków: procesora pamięci operacyjnej urządzeń wejścia/wyjścia.

Bardziej szczegółowo

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 1 Metody numeryczne Dział matematyki Metody rozwiązywania problemów matematycznych za pomocą operacji na liczbach. Otrzymywane

Bardziej szczegółowo

Arytmetyka liczb binarnych

Arytmetyka liczb binarnych Wartość dwójkowej liczby stałoprzecinkowej Wartość dziesiętna stałoprzecinkowej liczby binarnej Arytmetyka liczb binarnych b n-1...b 1 b 0,b -1 b -2...b -m = b n-1 2 n-1 +... + b 1 2 1 + b 0 2 0 + b -1

Bardziej szczegółowo

Pracownia Komputerowa wykład IV

Pracownia Komputerowa wykład IV Pracownia Komputerowa wykład IV dr Magdalena Posiadała-Zezula http://www.fuw.edu.pl/~mposiada/pk16 1 Reprezentacje liczb i znaków! Liczby:! Reprezentacja naturalna nieujemne liczby całkowite naturalny

Bardziej szczegółowo

A Machine Architecture that is Really Intuitive and Easy. Dane: notacja dwójkowa, zapis w kodzie dopełnieniowym

A Machine Architecture that is Really Intuitive and Easy.  Dane: notacja dwójkowa, zapis w kodzie dopełnieniowym MARIE A Machine Architecture that is Really Intuitive and Easy http://computerscience.jbpub.com/ecoa Słowo 16b Dane: notacja dwójkowa, zapis w kodzie dopełnieniowym od 8000h (- 32,768 = -2^15) do 7FFFh

Bardziej szczegółowo

Systemy liczbowe. 1. Przedstawić w postaci sumy wag poszczególnych cyfr liczbę rzeczywistą R = (10).

Systemy liczbowe. 1. Przedstawić w postaci sumy wag poszczególnych cyfr liczbę rzeczywistą R = (10). Wprowadzenie do inżynierii przetwarzania informacji. Ćwiczenie 1. Systemy liczbowe Cel dydaktyczny: Poznanie zasad reprezentacji liczb w systemach pozycyjnych o różnych podstawach. Kodowanie liczb dziesiętnych

Bardziej szczegółowo

Wstęp do programowania. Reprezentacje liczb. Liczby naturalne, całkowite i rzeczywiste w układzie binarnym

Wstęp do programowania. Reprezentacje liczb. Liczby naturalne, całkowite i rzeczywiste w układzie binarnym Wstęp do programowania Reprezentacje liczb Liczby naturalne, całkowite i rzeczywiste w układzie binarnym System dwójkowy W komputerach stosuje się dwójkowy system pozycyjny do reprezentowania zarówno liczb

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Architektura komputerów Wykład 3 Jan Kazimirski 1 Podstawowe elementy komputera. Procesor (CPU) 2 Plan wykładu Podstawowe komponenty komputera Procesor CPU Cykl rozkazowy Typy instrukcji Stos Tryby adresowania

Bardziej szczegółowo

Architektura systemów komputerowych. Arytmetyka maszyn cyfrowych

Architektura systemów komputerowych. Arytmetyka maszyn cyfrowych Architektura systemów komputerowych Plan wykładu. Typy danych w komputerach. 2. Układ arytmetyczno-logiczny. 3. Instrukcje zależne od ALU. 4. Superskalarność. Cele Wiedza na temat arytmetyki maszyn cyfrowych.

Bardziej szczegółowo

Kodowanie informacji. Kody liczbowe

Kodowanie informacji. Kody liczbowe Wykład 2 2-1 Kodowanie informacji PoniewaŜ komputer jest urządzeniem zbudowanym z układów cyfrowych, informacja przetwarzana przez niego musi być reprezentowana przy pomocy dwóch stanów - wysokiego i niskiego,

Bardziej szczegółowo

ARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia.

ARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia. ARYTMETYKA BINARNA ROZWINIĘCIE DWÓJKOWE Jednym z najlepiej znanych sposobów kodowania informacji zawartej w liczbach jest kodowanie w dziesiątkowym systemie pozycyjnym, w którym dla przedstawienia liczb

Bardziej szczegółowo

LABORATORIUM PROCESORY SYGNAŁOWE W AUTOMATYCE PRZEMYSŁOWEJ. Zasady arytmetyki stałoprzecinkowej oraz operacji arytmetycznych w formatach Q

LABORATORIUM PROCESORY SYGNAŁOWE W AUTOMATYCE PRZEMYSŁOWEJ. Zasady arytmetyki stałoprzecinkowej oraz operacji arytmetycznych w formatach Q LABORAORIUM PROCESORY SYGAŁOWE W AUOMAYCE PRZEMYSŁOWEJ Zasady arytmetyki stałoprzecinkowej oraz operacji arytmetycznych w formatach Q 1. Zasady arytmetyki stałoprzecinkowej. Kody stałopozycyjne mają ustalone

Bardziej szczegółowo

Architektura systemów komputerowych. dr Artur Bartoszewski

Architektura systemów komputerowych. dr Artur Bartoszewski Architektura systemów komputerowych 1 dr Artur Bartoszewski Procesor część I 1. ALU 2. Cykl rozkazowy 3. Schemat blokowy CPU 4. Architektura CISC i RISC 2 Jednostka arytmetyczno-logiczna 3 Schemat blokowy

Bardziej szczegółowo

Organizacja typowego mikroprocesora

Organizacja typowego mikroprocesora Organizacja typowego mikroprocesora 1 Architektura procesora 8086 2 Architektura współczesnego procesora 3 Schemat blokowy procesora AVR Mega o architekturze harwardzkiej Wszystkie mikroprocesory zawierają

Bardziej szczegółowo

Arytmetyka komputerów

Arytmetyka komputerów Arytmetyka komputerów wer. 4 z drobnymi modyfikacjami! Wojciech Myszka 2017-10-26 20:59:28 +0200 Liczby binarne Liczby dwójkowe nie są wcale nowym wynalazkiem: Pierwsze wzmianki pochodzą z Indii, z 5 2

Bardziej szczegółowo

Kod uzupełnień do dwóch jest najczęściej stosowanym systemem zapisu liczb ujemnych wśród systemów binarnych.

Kod uzupełnień do dwóch jest najczęściej stosowanym systemem zapisu liczb ujemnych wśród systemów binarnych. Kod uzupełnień do dwóch jest najczęściej stosowanym systemem zapisu liczb ujemnych wśród systemów binarnych. Jeśli bit znaku przyjmie wartość 0 to liczba jest dodatnia lub posiada wartość 0. Jeśli bit

Bardziej szczegółowo

Arytmetyka komputerów

Arytmetyka komputerów Arytmetyka komputerów Wersja: 5 z drobnymi modyfikacjami! Wojciech Myszka 2012-11-09 09:23:41 +0100 Część I Liczby binarne i arytmetyka komputerów Arytmetyka komputerów Zapis liczb dwójkowy. Każda z liczb

Bardziej szczegółowo

Podstawy Informatyki. Inżynieria Ciepła, I rok. Wykład 5 Liczby w komputerze

Podstawy Informatyki. Inżynieria Ciepła, I rok. Wykład 5 Liczby w komputerze Podstawy Informatyki Inżynieria Ciepła, I rok Wykład 5 Liczby w komputerze Jednostki informacji Bit (ang. bit) (Shannon, 948) Najmniejsza ilość informacji potrzebna do określenia, który z dwóch równie

Bardziej szczegółowo

Instrukcja do ćwiczeń nr 4 typy i rodzaje zmiennych w języku C dla AVR, oraz ich deklarowanie, oraz podstawowe operatory

Instrukcja do ćwiczeń nr 4 typy i rodzaje zmiennych w języku C dla AVR, oraz ich deklarowanie, oraz podstawowe operatory Instrukcja do ćwiczeń nr 4 typy i rodzaje zmiennych w języku C dla AVR, oraz ich deklarowanie, oraz podstawowe operatory Poniżej pozwoliłem sobie za cytować za wikipedią definicję zmiennej w informatyce.

Bardziej szczegółowo

Przykładowe pytania DSP 1

Przykładowe pytania DSP 1 Przykładowe pytania SP Przykładowe pytania Systemy liczbowe. Przedstawić liczby; -, - w kodzie binarnym i hexadecymalnym uzupełnionym do dwóch (liczba 6 bitowa).. odać dwie liczby binarne w kodzie U +..

Bardziej szczegółowo

Budowa komputera Komputer computer computare

Budowa komputera Komputer computer computare 11. Budowa komputera Komputer (z ang. computer od łac. computare obliczać) urządzenie elektroniczne służące do przetwarzania wszelkich informacji, które da się zapisać w formie ciągu cyfr albo sygnału

Bardziej szczegółowo

Pracownia Komputerowa wyk ad IV

Pracownia Komputerowa wyk ad IV Pracownia Komputerowa wykad IV dr Magdalena Posiadaa-Zezula Magdalena.Posiadala@fuw.edu.pl http://www.fuw.edu.pl/~mposiada Magdalena.Posiadala@fuw.edu.pl 1 Reprezentacje liczb i znaków Liczby: Reprezentacja

Bardziej szczegółowo

12. Wprowadzenie Sygnały techniki cyfrowej Systemy liczbowe. Matematyka: Elektronika:

12. Wprowadzenie Sygnały techniki cyfrowej Systemy liczbowe. Matematyka: Elektronika: PRZYPOMNIJ SOBIE! Matematyka: Dodawanie i odejmowanie "pod kreską". Elektronika: Sygnały cyfrowe. Zasadę pracy tranzystorów bipolarnych i unipolarnych. 12. Wprowadzenie 12.1. Sygnały techniki cyfrowej

Bardziej szczegółowo

ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH

ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH reprezentacja danych ASK.RD.01 c Dr inż. Ignacy Pardyka UNIWERSYTET JANA KOCHANOWSKIEGO w Kielcach Rok akad. 2011/2012 c Dr inż. Ignacy Pardyka (Inf.UJK) ASK.RD.01 Rok

Bardziej szczegółowo

Architektura systemów komputerowych

Architektura systemów komputerowych Studia stacjonarne inżynierskie, kierunek INFORMATYKA Architektura systemów komputerowych Architektura systemów komputerowych dr Artur Bartoszewski Procesor część I 1. ALU 2. Cykl rozkazowy 3. Schemat

Bardziej szczegółowo

Przedmiot: Urządzenia techniki komputerowej Nauczyciel: Mirosław Ruciński

Przedmiot: Urządzenia techniki komputerowej Nauczyciel: Mirosław Ruciński Przedmiot: Urządzenia techniki komputerowej Nauczyciel: Mirosław Ruciński Temat: Systemy zapisu liczb. Cele kształcenia: Zapoznanie z systemami zapisu liczb: dziesiętny, dwójkowy, ósemkowy, szesnastkowy.

Bardziej szczegółowo

Zapis liczb binarnych ze znakiem

Zapis liczb binarnych ze znakiem Zapis liczb binarnych ze znakiem W tej prezentacji: Zapis Znak-Moduł (ZM) Zapis uzupełnień do 1 (U1) Zapis uzupełnień do 2 (U2) Zapis Znak-Moduł (ZM) Koncepcyjnie zapis znak - moduł (w skrócie ZM - ang.

Bardziej szczegółowo

Technologie Informacyjne

Technologie Informacyjne System binarny Szkoła Główna Służby Pożarniczej Zakład Informatyki i Łączności October 7, 26 Pojęcie bitu 2 Systemy liczbowe 3 Potęgi dwójki 4 System szesnastkowy 5 Kodowanie informacji 6 Liczby ujemne

Bardziej szczegółowo

Pracownia Komputerowa wykład VI

Pracownia Komputerowa wykład VI Pracownia Komputerowa wykład VI dr Magdalena Posiadała-Zezula http://www.fuw.edu.pl/~mposiada 1 Przypomnienie 125 (10) =? (2) Liczby całkowite : Operacja modulo % reszta z dzielenia: 125%2=62 reszta 1

Bardziej szczegółowo

1259 (10) = 1 * * * * 100 = 1 * * * *1

1259 (10) = 1 * * * * 100 = 1 * * * *1 Zamiana liczba zapisanych w dowolnym systemie na system dziesiętny: W systemie pozycyjnym o podstawie 10 wartości kolejnych cyfr odpowiadają kolejnym potęgom liczby 10 licząc od strony prawej i numerując

Bardziej szczegółowo

Samodzielnie wykonaj następujące operacje: 13 / 2 = 30 / 5 = 73 / 15 = 15 / 23 = 13 % 2 = 30 % 5 = 73 % 15 = 15 % 23 =

Samodzielnie wykonaj następujące operacje: 13 / 2 = 30 / 5 = 73 / 15 = 15 / 23 = 13 % 2 = 30 % 5 = 73 % 15 = 15 % 23 = Systemy liczbowe Dla każdej liczby naturalnej x Î N oraz liczby naturalnej p >= 2 istnieją jednoznacznie wyznaczone: liczba n Î N oraz ciąg cyfr c 0, c 1,..., c n-1 (gdzie ck Î {0, 1,..., p - 1}) taki,

Bardziej szczegółowo

Zestaw 3. - Zapis liczb binarnych ze znakiem 1

Zestaw 3. - Zapis liczb binarnych ze znakiem 1 Zestaw 3. - Zapis liczb binarnych ze znakiem 1 Zapis znak - moduł (ZM) Zapis liczb w systemie Znak - moduł Znak liczby o n bitach zależy od najstarszego bitu b n 1 (tzn. cyfry o najwyższej pozycji): b

Bardziej szczegółowo

1. Operacje logiczne A B A OR B

1. Operacje logiczne A B A OR B 1. Operacje logiczne OR Operacje logiczne są operacjami działającymi na poszczególnych bitach, dzięki czemu można je całkowicie opisać przedstawiając jak oddziałują ze sobą dwa bity. Takie operacje logiczne

Bardziej szczegółowo

Systemy zapisu liczb.

Systemy zapisu liczb. Systemy zapisu liczb. Cele kształcenia: Zapoznanie z systemami zapisu liczb: dziesiętny, dwójkowy, ósemkowy, szesnastkowy. Zdobycie umiejętności wykonywania działań na liczbach w różnych systemach. Zagadnienia:

Bardziej szczegółowo

Architektura komputerów Reprezentacja liczb. Kodowanie rozkazów.

Architektura komputerów Reprezentacja liczb. Kodowanie rozkazów. Architektura komputerów Reprezentacja liczb. Kodowanie rozkazów. Prezentacja jest współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie pt. Innowacyjna dydaktyka

Bardziej szczegółowo

1.1. Pozycyjne systemy liczbowe

1.1. Pozycyjne systemy liczbowe 1.1. Pozycyjne systemy liczbowe Systemami liczenia nazywa się sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach. Dla dowolnego

Bardziej szczegółowo

Cyfrowy zapis informacji. 5 grudnia 2013 Wojciech Kucewicz 2

Cyfrowy zapis informacji. 5 grudnia 2013 Wojciech Kucewicz 2 Cyfrowy zapis informacji 5 grudnia 2013 Wojciech Kucewicz 2 Bit, Bajt, Słowo 5 grudnia 2013 Wojciech Kucewicz 3 Cyfrowy zapis informacji Bit [ang. binary digit] jest elementem zbioru dwuelementowego używanym

Bardziej szczegółowo

Architektura komputerów. Asembler procesorów rodziny x86

Architektura komputerów. Asembler procesorów rodziny x86 Architektura komputerów Asembler procesorów rodziny x86 Architektura komputerów Asembler procesorów rodziny x86 Rozkazy mikroprocesora Rozkazy mikroprocesora 8086 można podzielić na siedem funkcjonalnych

Bardziej szczegółowo

Kod IEEE754. IEEE754 (1985) - norma dotycząca zapisu binarnego liczb zmiennopozycyjnych (pojedynczej precyzji) Liczbę binarną o postaci

Kod IEEE754. IEEE754 (1985) - norma dotycząca zapisu binarnego liczb zmiennopozycyjnych (pojedynczej precyzji) Liczbę binarną o postaci Kod IEEE754 IEEE Institute of Electrical and Electronics Engineers IEEE754 (1985) - norma dotycząca zapisu binarnego liczb zmiennopozycyjnych (pojedynczej precyzji) Liczbę binarną o postaci (-1) s 1.f

Bardziej szczegółowo

Języki i metodyka programowania. Reprezentacja danych w systemach komputerowych

Języki i metodyka programowania. Reprezentacja danych w systemach komputerowych Reprezentacja danych w systemach komputerowych Kod (łac. codex - spis), ciąg składników sygnału (kombinacji sygnałów elementarnych, np. kropek i kresek, impulsów prądu, symboli) oraz reguła ich przyporządkowania

Bardziej szczegółowo

Technika mikroprocesorowa I Studia niestacjonarne rok II Wykład 2

Technika mikroprocesorowa I Studia niestacjonarne rok II Wykład 2 Technika mikroprocesorowa I Studia niestacjonarne rok II Wykład 2 Literatura: www.zilog.com Z80 Family, CPU User Manual Cykle magistrali w mikroprocesorze Z80 -odczyt kodu rozkazu, -odczyt-zapis pamięci,

Bardziej szczegółowo

ARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010

ARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010 ARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010 Do zapisu liczby ze znakiem mamy tylko 8 bitów, pierwszy od lewej bit to bit znakowy, a pozostałem 7 to bity na liczbę. bit znakowy 1 0 1 1

Bardziej szczegółowo

Budowa Mikrokomputera

Budowa Mikrokomputera Budowa Mikrokomputera Wykład z Podstaw Informatyki dla I roku BO Piotr Mika Podstawowe elementy komputera Procesor Pamięć Magistrala (2/16) Płyta główna (ang. mainboard, motherboard) płyta drukowana komputera,

Bardziej szczegółowo

Podstawy Informatyki. Metalurgia, I rok. Wykład 3 Liczby w komputerze

Podstawy Informatyki. Metalurgia, I rok. Wykład 3 Liczby w komputerze Podstawy Informatyki Metalurgia, I rok Wykład 3 Liczby w komputerze Jednostki informacji Bit (ang. bit) (Shannon, 1948) Najmniejsza ilość informacji potrzebna do określenia, który z dwóch równie prawdopodobnych

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Architektura komputerów Wykład 4 Jan Kazimirski 1 Reprezentacja danych 2 Plan wykładu Systemy liczbowe Zapis dwójkowy liczb całkowitych Działania arytmetyczne Liczby rzeczywiste Znaki i łańcuchy znaków

Bardziej szczegółowo

Kod U2 Opracował: Andrzej Nowak

Kod U2 Opracował: Andrzej Nowak PODSTAWY TEORII UKŁADÓW CYFROWYCH Kod U2 Opracował: Andrzej Nowak Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz http://pl.wikipedia.org/ System zapisu liczb ze znakiem opisany w poprzednim

Bardziej szczegółowo

Dane, informacja, programy. Kodowanie danych, kompresja stratna i bezstratna

Dane, informacja, programy. Kodowanie danych, kompresja stratna i bezstratna Dane, informacja, programy Kodowanie danych, kompresja stratna i bezstratna DANE Uporządkowane, zorganizowane fakty. Główne grupy danych: tekstowe (znaki alfanumeryczne, znaki specjalne) graficzne (ilustracje,

Bardziej szczegółowo

SYSTEMY LICZBOWE. SYSTEMY POZYCYJNE: dziesiętny (arabski): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 rzymski: I, II, III, V, C, M

SYSTEMY LICZBOWE. SYSTEMY POZYCYJNE: dziesiętny (arabski): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 rzymski: I, II, III, V, C, M SYSTEMY LICZBOWE SYSTEMY POZYCYJNE: dziesiętny (arabski):,, 2, 3, 4, 5, 6, 7, 8, 9 rzymski: I, II, III, V, C, M System pozycyjno wagowy: na przykład liczba 444 4 4 4 4 4 4 Wagi systemu dziesiętnego:,,,,...

Bardziej szczegółowo

Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego

Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego Arytmetyka cyfrowa Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego (binarnego). Zapis binarny - to system liczenia

Bardziej szczegółowo

RODZAJE INFORMACJI. Informacje analogowe. Informacje cyfrowe. U(t) U(t) Umax. Umax. R=(0,Umax) nieskończony zbiór możliwych wartości. Umax.

RODZAJE INFORMACJI. Informacje analogowe. Informacje cyfrowe. U(t) U(t) Umax. Umax. R=(0,Umax) nieskończony zbiór możliwych wartości. Umax. RODZAJE INFORMACJI Informacje analogowe U(t) Umax Umax 0 0 R=(0,Umax) nieskończony zbiór możliwych wartości WE MASZYNA ANALOGOWA WY Informacje cyfrowe U(t) Umaxq Umax R=(U, 2U, 3U, 4U) # # MASZYNA # CYFROWA

Bardziej szczegółowo

Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl

Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl System dziesiętny 7 * 10 4 + 3 * 10 3 + 0 * 10 2 + 5 *10 1 + 1 * 10 0 = 73051 Liczba 10 w tym zapisie nazywa się podstawą systemu liczenia. Jeśli liczba 73051 byłaby zapisana w systemie ósemkowym, co powinniśmy

Bardziej szczegółowo

Układ wykonawczy, instrukcje i adresowanie. Dariusz Chaberski

Układ wykonawczy, instrukcje i adresowanie. Dariusz Chaberski Układ wykonawczy, instrukcje i adresowanie Dariusz Chaberski System mikroprocesorowy mikroprocesor C A D A D pamięć programu C BIOS dekoder adresów A C 1 C 2 C 3 A D pamięć danych C pamięć operacyjna karta

Bardziej szczegółowo

LEKCJA TEMAT: Współczesne procesory.

LEKCJA TEMAT: Współczesne procesory. LEKCJA TEMAT: Współczesne procesory. 1. Wymagania dla ucznia: zna pojęcia: procesor, CPU, ALU, potrafi podać typowe rozkazy; potrafi omówić uproszczony i rozszerzony schemat mikroprocesora; potraf omówić

Bardziej szczegółowo

System liczbowy jest zbiorem reguł określających jednolity sposób zapisu i nazewnictwa liczb.

System liczbowy jest zbiorem reguł określających jednolity sposób zapisu i nazewnictwa liczb. 2. Arytmetyka komputera. Systemy zapisu liczb: dziesietny, dwójkowy (binarny), ósemkowy, szesnatskowy. Podstawowe operacje arytmetyczne na liczbach binarnych. Zapis liczby binarnej ze znakiem. Reprezentacja

Bardziej szczegółowo

Dr inż. Grażyna KRUPIŃSKA. D-10 pokój 227 WYKŁAD 2 WSTĘP DO INFORMATYKI

Dr inż. Grażyna KRUPIŃSKA. D-10 pokój 227 WYKŁAD 2 WSTĘP DO INFORMATYKI Dr inż. Grażyna KRUPIŃSKA Grazyna.Krupinska@fis.agh.edu.pl D-10 pokój 227 WYKŁAD 2 WSTĘP DO INFORMATYKI Ćwiczenia i laboratorium 2 Kolokwia zaliczeniowe - 1 termin - poniedziałek, 29 stycznia 2018 11:30

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Architektura komputerów Wykład 5 Jan Kazimirski 1 Podstawowe elementy komputera. Procesor (CPU) c.d. 2 Architektura CPU Jednostka arytmetyczno-logiczna (ALU) Rejestry Układ sterujący przebiegiem programu

Bardziej szczegółowo

Wstęp do informatyki- wykład 1 Systemy liczbowe

Wstęp do informatyki- wykład 1 Systemy liczbowe 1 Wstęp do informatyki- wykład 1 Systemy liczbowe Treści prezentowane w wykładzie zostały oparte o: S. Prata, Język C++. Szkoła programowania. Wydanie VI, Helion, 2012 www.cplusplus.com Jerzy Grębosz,

Bardziej szczegółowo

LICZBY ZMIENNOPRZECINKOWE

LICZBY ZMIENNOPRZECINKOWE LICZBY ZMIENNOPRZECINKOWE Liczby zmiennoprzecinkowe są komputerową reprezentacją liczb rzeczywistych zapisanych w formie wykładniczej (naukowej). Aby uprościć arytmetykę na nich, przyjęto ograniczenia

Bardziej szczegółowo

Kod znak-moduł. Wartość liczby wynosi. Reprezentacja liczb w kodzie ZM w 8-bitowym formacie:

Kod znak-moduł. Wartość liczby wynosi. Reprezentacja liczb w kodzie ZM w 8-bitowym formacie: Wykład 3 3-1 Reprezentacja liczb całkowitych ze znakiem Do przedstawienia liczb całkowitych ze znakiem stosowane są następujące kody: - ZM (znak-moduł) - U1 (uzupełnienie do 1) - U2 (uzupełnienie do 2)

Bardziej szczegółowo

Reprezentacja stałoprzecinkowa. Reprezentacja zmiennoprzecinkowa zapis zmiennoprzecinkowy liczby rzeczywistej

Reprezentacja stałoprzecinkowa. Reprezentacja zmiennoprzecinkowa zapis zmiennoprzecinkowy liczby rzeczywistej Informatyka, studia niestacjonarne I stopnia Rok akademicki /, Wykład nr 4 /6 Plan wykładu nr 4 Informatyka Politechnika Białostocka - Wydział lektryczny lektrotechnika, semestr II, studia niestacjonarne

Bardziej szczegółowo

Podstawy Informatyki

Podstawy Informatyki Podstawy Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 3 Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 1 / 42 Reprezentacja liczb całkowitych

Bardziej szczegółowo

Pozycyjny system liczbowy

Pozycyjny system liczbowy Arytmetyka binarna Pozycyjny system liczbowy w pozycyjnych systemach liczbowych wkład danego symbolu do wartości liczby jest określony zarówno przez sam symbol, jak i jego pozycję w liczbie i tak np. w

Bardziej szczegółowo

Podstawy działania układów cyfrowych...2 Systemy liczbowe...2 Kodowanie informacji...3 Informacja cyfrowa...4 Bramki logiczne...

Podstawy działania układów cyfrowych...2 Systemy liczbowe...2 Kodowanie informacji...3 Informacja cyfrowa...4 Bramki logiczne... Podstawy działania układów cyfrowych...2 Systemy liczbowe...2 Kodowanie informacji...3 Informacja cyfrowa...4 Bramki logiczne...4 Podział układów logicznych...6 Cyfrowe układy funkcjonalne...8 Rejestry...8

Bardziej szczegółowo

Wydajność obliczeń a architektura procesorów. Krzysztof Banaś Obliczenia Wysokiej Wydajności 1

Wydajność obliczeń a architektura procesorów. Krzysztof Banaś Obliczenia Wysokiej Wydajności 1 Wydajność obliczeń a architektura procesorów Krzysztof Banaś Obliczenia Wysokiej Wydajności 1 Wydajność komputerów Modele wydajności-> szacowanie czasu wykonania zadania Wydajność szybkość realizacji wyznaczonych

Bardziej szczegółowo

Informatyka kodowanie liczb. dr hab. inż. Mikołaj Morzy

Informatyka kodowanie liczb. dr hab. inż. Mikołaj Morzy Informatyka kodowanie liczb dr hab. inż. Mikołaj Morzy plan wykładu definicja informacji sposoby kodowania reprezentacja liczb naturalnych i całkowitych arytmetyka binarna arytmetyka oktalna arytmetyka

Bardziej szczegółowo

Architektura komputera. Dane i rozkazy przechowywane są w tej samej pamięci umożliwiającej zapis i odczyt

Architektura komputera. Dane i rozkazy przechowywane są w tej samej pamięci umożliwiającej zapis i odczyt Architektura komputera Architektura von Neumanna: Dane i rozkazy przechowywane są w tej samej pamięci umożliwiającej zapis i odczyt Zawartośd tej pamięci jest adresowana przez wskazanie miejsca, bez względu

Bardziej szczegółowo

UTK Można stwierdzić, że wszystkie działania i operacje zachodzące w systemie są sterowane bądź inicjowane przez mikroprocesor.

UTK Można stwierdzić, że wszystkie działania i operacje zachodzące w systemie są sterowane bądź inicjowane przez mikroprocesor. Zadaniem centralnej jednostki przetwarzającej CPU (ang. Central Processing Unit), oprócz przetwarzania informacji jest sterowanie pracą pozostałych układów systemu. W skład CPU wchodzą mikroprocesor oraz

Bardziej szczegółowo

Technika mikroprocesorowa I Wykład 2

Technika mikroprocesorowa I Wykład 2 Technika mikroprocesorowa I Wykład 2 Literatura: www.zilog.com Z80 Family, CPU User Manual Cykle magistrali w mikroprocesorze Z80 -odczyt kodu rozkazu, -odczyt-zapis pamięci, -odczyt-zapis urządzenia we-wy,

Bardziej szczegółowo

Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2010/2011

Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2010/2011 SYLLABUS na rok akademicki 010/011 Tryb studiów Studia stacjonarne Kierunek studiów Informatyka Poziom studiów Pierwszego stopnia Rok studiów/ semestr 1(rok)/1(sem) Specjalność Bez specjalności Kod katedry/zakładu

Bardziej szczegółowo

Wstęp do informatyki. Architektura co to jest? Architektura Model komputera. Od układów logicznych do CPU. Automat skończony. Maszyny Turinga (1936)

Wstęp do informatyki. Architektura co to jest? Architektura Model komputera. Od układów logicznych do CPU. Automat skończony. Maszyny Turinga (1936) Wstęp doinformatyki Architektura co to jest? Architektura Model komputera Dr inż Ignacy Pardyka Slajd 1 Slajd 2 Od układów logicznych do CPU Automat skończony Slajd 3 Slajd 4 Ile jest automatów skończonych?

Bardziej szczegółowo

Wielkości liczbowe. Wykład z Podstaw Informatyki dla I roku BO. Piotr Mika

Wielkości liczbowe. Wykład z Podstaw Informatyki dla I roku BO. Piotr Mika Wielkości liczbowe Wykład z Podstaw Informatyki dla I roku BO Piotr Mika Wprowadzenie, liczby naturalne Komputer to podstawowe narzędzie do wykonywania obliczeń Jeden bajt reprezentuje 0 oraz liczby naturalne

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Wykład jest przygotowany dla IV semestru kierunku Elektronika i Telekomunikacja. Studia I stopnia Dr inż. Małgorzata Langer Architektura komputerów Prezentacja multimedialna współfinansowana przez Unię

Bardziej szczegółowo

Pracownia Komputerowa wykład V

Pracownia Komputerowa wykład V Pracownia Komputerowa wykład V dr Magdalena Posiadała-Zezula http://www.fuw.edu.pl/~mposiada/pk16 1 Reprezentacje liczb i znaków! Liczby:! Reprezentacja naturalna nieujemne liczby całkowite naturalny system

Bardziej szczegółowo

MIKROKONTROLERY I MIKROPROCESORY

MIKROKONTROLERY I MIKROPROCESORY PLAN... work in progress 1. Mikrokontrolery i mikroprocesory - architektura systemów mikroprocesorów ( 8051, AVR, ARM) - pamięci - rejestry - tryby adresowania - repertuar instrukcji - urządzenia we/wy

Bardziej szczegółowo

Kodowanie liczb całkowitych w systemach komputerowych

Kodowanie liczb całkowitych w systemach komputerowych Kodowanie liczb całkowitych w systemach komputerowych System pozycyjny Systemy addytywne znaczenie historyczne Systemy pozycyjne r podstawa systemu liczbowego (radix) A wartość liczby a - cyfra i pozycja

Bardziej szczegółowo

Arytmetyka komputera. Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka. Opracował: Kamil Kowalski klasa III TI

Arytmetyka komputera. Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka. Opracował: Kamil Kowalski klasa III TI Arytmetyka komputera Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka Opracował: Kamil Kowalski klasa III TI Spis treści 1. Jednostki informacyjne 2. Systemy liczbowe 2.1. System

Bardziej szczegółowo

Architektura typu Single-Cycle

Architektura typu Single-Cycle Architektura typu Single-Cycle...czyli budujemy pierwszą maszynę parową Przepływ danych W układach sekwencyjnych przepływ danych synchronizowany jest sygnałem zegara Elementy procesora - założenia Pamięć

Bardziej szczegółowo

Spis treœci. Co to jest mikrokontroler? Kody i liczby stosowane w systemach komputerowych. Podstawowe elementy logiczne

Spis treœci. Co to jest mikrokontroler? Kody i liczby stosowane w systemach komputerowych. Podstawowe elementy logiczne Spis treści 5 Spis treœci Co to jest mikrokontroler? Wprowadzenie... 11 Budowa systemu komputerowego... 12 Wejścia systemu komputerowego... 12 Wyjścia systemu komputerowego... 13 Jednostka centralna (CPU)...

Bardziej szczegółowo

O bitach, bajtach i hardware. R. Robert Gajewski omklnx.il.pw.edu.pl/~rgajewski

O bitach, bajtach i hardware. R. Robert Gajewski omklnx.il.pw.edu.pl/~rgajewski O bitach, bajtach i hardware R. Robert Gajewski omklnx.il.pw.edu.pl/~rgajewski www.il.pw.edu.pl/~rg s-rg@siwy.il.pw.edu.pl Bity i bajty Jednostkę ilości informacji nazywamy bitem (bi to po angielsku kawałek)

Bardziej szczegółowo

Wielkości liczbowe. Wykład z Podstaw Informatyki. Piotr Mika

Wielkości liczbowe. Wykład z Podstaw Informatyki. Piotr Mika Wielkości liczbowe Wykład z Podstaw Informatyki Piotr Mika Wprowadzenie, liczby naturalne Komputer to podstawowe narzędzie do wykonywania obliczeń Jeden bajt reprezentuje oraz liczby naturalne od do 255

Bardziej szczegółowo

Wstęp do Informatyki. Reprezentacja liczb w komputerze Arytmetyka stało- i zmiennoprzecinkowa Przechowywanie danych pliki i foldery

Wstęp do Informatyki. Reprezentacja liczb w komputerze Arytmetyka stało- i zmiennoprzecinkowa Przechowywanie danych pliki i foldery Wstęp do Informatyki Reprezentacja liczb w komputerze Arytmetyka stało- i zmiennoprzecinkowa Przechowywanie danych pliki i foldery Pozycyjne systemy liczbowe Dziesiętny system liczbowy (o podstawie 10):

Bardziej szczegółowo

Rejestry procesora. Nazwa ilość bitów. AX 16 (accumulator) rejestr akumulatora. BX 16 (base) rejestr bazowy. CX 16 (count) rejestr licznika

Rejestry procesora. Nazwa ilość bitów. AX 16 (accumulator) rejestr akumulatora. BX 16 (base) rejestr bazowy. CX 16 (count) rejestr licznika Rejestry procesora Procesor podczas wykonywania instrukcji posługuje się w dużej części pamięcią RAM. Pobiera z niej kolejne instrukcje do wykonania i dane, jeżeli instrukcja operuje na jakiś zmiennych.

Bardziej szczegółowo

CPU ROM, RAM. Rejestry procesora. We/Wy. Cezary Bolek Uniwersytet Łódzki Wydział Zarządzania Katedra Informatyki

CPU ROM, RAM. Rejestry procesora. We/Wy. Cezary Bolek Uniwersytet Łódzki Wydział Zarządzania Katedra Informatyki Cezary Bolek Uniwersytet Łódzki Wydział Zarządzania Katedra Informatyki Komputer jest urządzeniem, którego działanie opiera się na wykonywaniu przez procesor instrukcji pobieranych z pamięci operacyjnej

Bardziej szczegółowo

Oprogramowanie komputerów wer. 9

Oprogramowanie komputerów wer. 9 Oprogramowanie komputerów wer. 9 Wojciech Myszka, Maciej Panek listopad 2014 r. Od czego zależy szybkość komputerów? Od czego zależy szybkość komputerów? 1. Częstość zegara. Od czego zależy szybkość komputerów?

Bardziej szczegółowo