Technologie Informacyjne Wykład 3

Wielkość: px
Rozpocząć pokaz od strony:

Download "Technologie Informacyjne Wykład 3"

Transkrypt

1 Technologie Informacyjne Wykład 3 Procesor i jego architektura (CISC, RISC, 32/64 bity) Systemy wieloprocesorowe Wojciech Myszka Jakub Słowiński Katedra Mechaniki i Inżynierii Materiałowej Wydział Mechaniczny Politechnika Wrocławska 23 października 2014 (IMMT PWr) TI-W01 23 października / 31

2 CISC CISC I Complex Instruction Set Computers nazwa architektury mikroprocesorów o następujących cechach: duża liczba rozkazów (instrukcji) mała optymalizacja niektóre rozkazy potrzebują dużej liczby cykli procesora do wykonania występowanie złożonych, specjalistycznych rozkazów duża liczba trybów adresowania do pamięci może się odwoływać bezpośrednio duża liczba rozkazów mniejsza od RISC-ów częstotliwość taktowania procesora powolne działanie dekodera rozkazów (IMMT PWr) TI-W01 23 października / 31

3 CISC CISC II Przykłady rodzin procesorów o architekturze CISC to między innymi: AMD x86 M68000 (IMMT PWr) TI-W01 23 października / 31

4 RISC RISC I Reduced Instruction Set Computers Zredukowana liczba rozkazów do niezbędnego minimum. Ich liczba wynosi kilkadziesiąt (setki w procesorach). Upraszcza to znacznie konstrukcję procesora. Redukcja trybów adresowania większość operacji wykonuje się wg schematu: rejestr C = rejestr A operacja rejestr B. Ograniczenie komunikacji pomiędzy pamięcią, a procesorem. Do przesyłania danych pomiędzy pamięcią, a rejestrami służą instrukcje, które nazywają się load (załaduj z pamięci), oraz store (zapisz do pamięci); pozostałe instrukcje operują wyłącznie na rejestrach. Schemat działania: załaduj daną z pamięci do rejestru, na zawartości rejestru wykonaj działanie, przepisz wynik z rejestru do pamięci. (IMMT PWr) TI-W01 23 października / 31

5 RISC RISC II Zwiększenie liczby rejestrów (np. 32, 192, 256, x86 jest 8), co również ma wpływ na zmniejszenie liczby odwołań do pamięci. Przetwarzanie potokowe (ang. pipelining): wszystkie rozkazy wykonują się w jednym cyklu maszynowym, (znaczne uproszczenie bloku wykonawczego), a zastosowanie superskalarności umożliwia równoległe wykonywanie rozkazów. (IMMT PWr) TI-W01 23 października / 31

6 RISC RISC III Superskalarność (ang. Superscalar) możliwość ukończenia kilku instrukcji w pojedynczym cyklu zegara dzięki zwielokrotnieniu jednostek wykonawczych. Pierwszym procesorem Intela z rodziny x86 wykorzystującym superskalarność był procesor Pentium. Większość procesorów superskalarnych nie ma w pełni zduplikowanej jednostki wykonywania kodu mogą mieć wiele ALU, jednostek zmiennopozycyjnych i tak dalej, wobec czego pewne instrukcje będą wykonywane bardzo szybko, a inne nie. (IMMT PWr) TI-W01 23 października / 31

7 VLIW VLIW Very Long Instruction Word uproszczenie jednostki sterującej, zwiększanie liczby jednostek wykonawczych, technika wcześniejszego wykonania instrukcji (Out-of-Order Execution), sterowanie pracą procesora zostało przerzucone na kompilator (to on decyduje o sposobie działania procesora). Kompilator (ang. compiler) to program służący do automatycznego tłumaczenia kodu napisanego w jednym języku (języku źródłowym) na równoważny kod w innym języku (języku wynikowym) (IMMT PWr) TI-W01 23 października / 31

8 ZISC ZISC Zero Instruction Set Computer Idea odwołuje się do sztucznych sieci neuronowych, istnieje zatem możliwość uczenia się. Wykorzystana zostaje technologia porównywanie wzorców czy eskploracji danych (data mining). Jeden z pierwszych procesorów ZISC zawierał 36 niezależnych komórek (uważane są za neurony lub równoległe procesory). Każda z nich może porównać wektor wejściowy (64 bajty) z podobnym wektorem przechowywanym w komórkach pamięci. Jeśli wektor wejściowy odpowiada wektorowi w komórce pamięci to komórka ta wypala. Sygnał wyjściowy zawiera komórkę, która miała dopasowanie, oraz znacznik mówiący, że nie wystąpiło dopasowanie. Watson (IMMT PWr) TI-W01 23 października / 31

9 Schemat procesora Schemat procesora Rejestr (akumulator) Arytmometr Wskazniki Pamiec (RAM) (IMMT PWr) TI-W01 23 października / 31

10 Podstawowe operacje realizowane przez komputer Podstawowe operacje Instrukcje arytmetyczne Šaduj adres pamięci przepisuje zawartość pamięci o wskazanym adresie do rejestru. (IMMT PWr) TI-W01 23 października / 31

11 Podstawowe operacje realizowane przez komputer Podstawowe operacje Instrukcje arytmetyczne Šaduj adres pamięci przepisuje zawartość pamięci o wskazanym adresie do rejestru. Zapisz adres pamięci przepisuje zawartość akumulatora do pamięci (IMMT PWr) TI-W01 23 października / 31

12 Podstawowe operacje realizowane przez komputer Podstawowe operacje Instrukcje arytmetyczne Šaduj adres pamięci przepisuje zawartość pamięci o wskazanym adresie do rejestru. Zapisz adres pamięci przepisuje zawartość akumulatora do pamięci Šaduj liczba zapisuje liczbę do rejestru (IMMT PWr) TI-W01 23 października / 31

13 Podstawowe operacje realizowane przez komputer Podstawowe operacje Instrukcje arytmetyczne Šaduj adres pamięci przepisuje zawartość pamięci o wskazanym adresie do rejestru. Zapisz adres pamięci przepisuje zawartość akumulatora do pamięci Šaduj liczba zapisuje liczbę do rejestru Dodaj adres pamięci do zawartości akumulatora dodaje zawartość komórki o wskazanym adresie (możemy tez założyć, że w podobny sposób potrafi policzyć różnicę, iloczyn i iloraz, choć, w rzeczywistości, nie musi to być prawdą). Wykonanie każdej operacji zmieniającej zawartość rejestru powoduje ustawienie wskaźników (zero, przepełnienie, ujemne). (IMMT PWr) TI-W01 23 października / 31

14 Podstawowe operacje realizowane przez komputer Podstawowe operacje Instrukcje na bitach Neguj zmienia znak liczby w akumulatorze (IMMT PWr) TI-W01 23 października / 31

15 Podstawowe operacje realizowane przez komputer Podstawowe operacje Instrukcje na bitach Neguj zmienia znak liczby w akumulatorze And adres pamięci iloczyn logiczny (bit po bicie dwu słów) (IMMT PWr) TI-W01 23 października / 31

16 Podstawowe operacje realizowane przez komputer Podstawowe operacje Instrukcje na bitach Neguj zmienia znak liczby w akumulatorze And adres pamięci iloczyn logiczny (bit po bicie dwu słów) Or adres pamięci (IMMT PWr) TI-W01 23 października / 31

17 Podstawowe operacje realizowane przez komputer Podstawowe operacje Instrukcje na bitach Neguj zmienia znak liczby w akumulatorze And adres pamięci iloczyn logiczny (bit po bicie dwu słów) Or adres pamięci Xor adres pamięci różnica symetryczna (IMMT PWr) TI-W01 23 października / 31

18 Podstawowe operacje realizowane przez komputer Podstawowe operacje Instrukcje na bitach Neguj zmienia znak liczby w akumulatorze And adres pamięci iloczyn logiczny (bit po bicie dwu słów) Or adres pamięci Xor adres pamięci różnica symetryczna Przesun_w_lewo (IMMT PWr) TI-W01 23 października / 31

19 Podstawowe operacje realizowane przez komputer Podstawowe operacje Instrukcje na bitach Neguj zmienia znak liczby w akumulatorze And adres pamięci iloczyn logiczny (bit po bicie dwu słów) Or adres pamięci Xor adres pamięci różnica symetryczna Przesun_w_lewo Przesun_w_prawo (IMMT PWr) TI-W01 23 października / 31

20 Podstawowe operacje realizowane przez komputer Podstawowe operacje Instrukcje na bitach Neguj zmienia znak liczby w akumulatorze And adres pamięci iloczyn logiczny (bit po bicie dwu słów) Or adres pamięci Xor adres pamięci różnica symetryczna Przesun_w_lewo Przesun_w_prawo Przesun_cyklicznie_w_lewo (IMMT PWr) TI-W01 23 października / 31

21 Podstawowe operacje realizowane przez komputer Podstawowe operacje Instrukcje na bitach Neguj zmienia znak liczby w akumulatorze And adres pamięci iloczyn logiczny (bit po bicie dwu słów) Or adres pamięci Xor adres pamięci różnica symetryczna Przesun_w_lewo Przesun_w_prawo Przesun_cyklicznie_w_lewo Przesun_cyklicznie_w_prawo (IMMT PWr) TI-W01 23 października / 31

22 Podstawowe operacje realizowane przez komputer Podstawowe operacje Instrukcje sterujące Skocz adres pamięci bezwarunkowe przekazanie sterowanie do adresu (IMMT PWr) TI-W01 23 października / 31

23 Podstawowe operacje realizowane przez komputer Podstawowe operacje Instrukcje sterujące Skocz adres pamięci bezwarunkowe przekazanie sterowanie do adresu Skocz_jezeli_zero adres pamięci (IMMT PWr) TI-W01 23 października / 31

24 Podstawowe operacje realizowane przez komputer Podstawowe operacje Instrukcje sterujące Skocz adres pamięci bezwarunkowe przekazanie sterowanie do adresu Skocz_jezeli_zero adres pamięci Skocz_jezeli_ujemne adres pamięci (IMMT PWr) TI-W01 23 października / 31

25 Podstawowe operacje realizowane przez komputer Podstawowe operacje Instrukcje sterujące Skocz adres pamięci bezwarunkowe przekazanie sterowanie do adresu Skocz_jezeli_zero adres pamięci Skocz_jezeli_ujemne adres pamięci Skocz_jesli_nadmiar adres pamięci (IMMT PWr) TI-W01 23 października / 31

26 Podstawowe operacje realizowane przez komputer Podstawowe operacje Instrukcje sterujące Skocz adres pamięci bezwarunkowe przekazanie sterowanie do adresu Skocz_jezeli_zero adres pamięci Skocz_jezeli_ujemne adres pamięci Skocz_jesli_nadmiar adres pamięci Skocz_do_podprogramu adres pamięci bardzo podobne do instrukcji zwykłego skoku, ale dodatkowo zapisuje aktualny stan procesora w specjalnie do tego przeznaczonej pamięci (IMMT PWr) TI-W01 23 października / 31

27 Asembler język wewnętrzny komputera Asembler Bardzo proste działanie: A=B+C (IMMT PWr) TI-W01 23 października / 31

28 Asembler język wewnętrzny komputera Asembler Bardzo proste działanie: A=B+C W komórce o adresie A ma być umieszczony wynik dodawania zawartości komórek o adresie B i C. (IMMT PWr) TI-W01 23 października / 31

29 Asembler język wewnętrzny komputera Asembler Bardzo proste działanie: A=B+C W komórce o adresie A ma być umieszczony wynik dodawania zawartości komórek o adresie B i C. Realizacja komputerowa: Šaduj B Dodaj C Zapisz A (IMMT PWr) TI-W01 23 października / 31

30 Asembler język wewnętrzny komputera Asembler Bardziej skomplikowany przykład Z = [(A + B)(C + D)] W (IMMT PWr) TI-W01 23 października / 31

31 Asembler język wewnętrzny komputera Asembler Bardziej skomplikowany przykład Z = [(A + B)(C + D)] W T 1 = A + B (IMMT PWr) TI-W01 23 października / 31

32 Asembler język wewnętrzny komputera Asembler Bardziej skomplikowany przykład Z = [(A + B)(C + D)] W T 1 = A + B T 2 = C + D (IMMT PWr) TI-W01 23 października / 31

33 Asembler język wewnętrzny komputera Asembler Bardziej skomplikowany przykład Z = [(A + B)(C + D)] W T 1 = A + B T 2 = C + D T 3 = T 1 T 2 (IMMT PWr) TI-W01 23 października / 31

34 Asembler język wewnętrzny komputera Asembler Bardziej skomplikowany przykład Z = [(A + B)(C + D)] W T 1 = A + B T 2 = C + D T 3 = T 1 T 2 Z = T 3/W (IMMT PWr) TI-W01 23 października / 31

35 Odwrotna Notacja Polska Odwrotna Notacja Polska Popatrzmy na działanie: Ile wynosi wynik? (IMMT PWr) TI-W01 23 października / 31

36 Odwrotna Notacja Polska Odwrotna Notacja Polska Popatrzmy na działanie: Ile wynosi wynik? 50 czy 38? (IMMT PWr) TI-W01 23 października / 31

37 Odwrotna Notacja Polska Odwrotna Notacja Polska Popatrzmy na działanie: Ile wynosi wynik? 50 czy 38? A który jest poprawny? (IMMT PWr) TI-W01 23 października / 31

38 Odwrotna Notacja Polska Odwrotna Notacja Polska Popatrzmy na działanie: Ile wynosi wynik? 50 czy 38? A który jest poprawny? Czemu tak łatwo znaleźć kalkulator który liczy źle? (IMMT PWr) TI-W01 23 października / 31

39 Ważność działań arytmetycznych Ważność działań arytmetycznych 1 potęgowanie Nawiasy mogą ją zmieniać! (IMMT PWr) TI-W01 23 października / 31

40 Ważność działań arytmetycznych Ważność działań arytmetycznych 1 potęgowanie 2 mnożenie i dzielenie Nawiasy mogą ją zmieniać! (IMMT PWr) TI-W01 23 października / 31

41 Ważność działań arytmetycznych Ważność działań arytmetycznych 1 potęgowanie 2 mnożenie i dzielenie 3 dodawanie i odejmowanie Nawiasy mogą ją zmieniać! (IMMT PWr) TI-W01 23 października / 31

42 Ważność działań arytmetycznych Czy jest możliwy zapis jednoznaczny? Polski logik, Łukasiewicz, wprowadził notację przedrostkową. Zamiast z = x + y zaproponował zapis: +xy (IMMT PWr) TI-W01 23 października / 31

43 Ważność działań arytmetycznych Czy jest możliwy zapis jednoznaczny? Polski logik, Łukasiewicz, wprowadził notację przedrostkową. Zamiast z = x + y zaproponował zapis: +xy Zwracam uwagę że jest on bardzo podobny do zapisu funkcji dwu zmiennych: z = f (x, y) Funkcja suma jest też dwuargumentowa: z = +(x, y) (IMMT PWr) TI-W01 23 października / 31

44 Ważność działań arytmetycznych Zapis polski Działanie oznaczające 3 + (7 5) zapisujemy: }{{} 3 }{{} (IMMT PWr) TI-W01 23 października / 31

45 Ważność działań arytmetycznych Odwrotny zapis polski Utarło się używanie innego zapisu: najpierw podaje się argumenty działania, później samo działanie: xy+ Stąd nazwa: Odwrotna notacja polska. Nasze działanie zapisujemy tak: a to bardziej skomplikowane tak: A B + C D + W / (IMMT PWr) TI-W01 23 października / 31

46 Ważność działań arytmetycznych Odwrotna Notacja Polska stos Praktyczna realizacja działania A B + C D + W / wymaga stosu. I dodatkowych operacji w języku wewnętrznym: Zapisz_na_stos przepisuje zawartość akumulatora na stos. Pobierz_ze_stosu pobiera ze stosu wartość i przepisuje ją do akumulatora (IMMT PWr) TI-W01 23 października / 31

47 Stos Stos (IMMT PWr) TI-W01 23 października / 31

48 Stos Stos (IMMT PWr) TI-W01 23 października / 31

49 Prosty kalkulator Prosty kalkulator Praktyczna realizacja działania A = 1, B = 2, C = 3, D = 4, W = 5 A B + C D + W / (IMMT PWr) TI-W01 23 października / 31

50 Arytmetyka komputerów Arytmetyka komputerów Zapis liczb dwójkowy. (IMMT PWr) TI-W01 23 października / 31

51 Arytmetyka komputerów Arytmetyka komputerów Zapis liczb dwójkowy. Każda z liczb zapisywana jest za pomocą cyfr 0 i 1. (IMMT PWr) TI-W01 23 października / 31

52 Arytmetyka komputerów Arytmetyka komputerów Zapis liczb dwójkowy. Każda z liczb zapisywana jest za pomocą cyfr 0 i 1. Układ jest pozycyjny waga cyfry zależy od miejsca, w którym została ustawiona. (IMMT PWr) TI-W01 23 października / 31

53 Arytmetyka komputerów Arytmetyka komputerów Zapis liczb dwójkowy. Każda z liczb zapisywana jest za pomocą cyfr 0 i 1. Układ jest pozycyjny waga cyfry zależy od miejsca, w którym została ustawiona. Najmniej znaczące miejsca są po stronie prawej... (IMMT PWr) TI-W01 23 października / 31

54 Arytmetyka komputerów Arytmetyka komputerów Zapis liczb dwójkowy. Każda z liczb zapisywana jest za pomocą cyfr 0 i 1. Układ jest pozycyjny waga cyfry zależy od miejsca, w którym została ustawiona. Najmniej znaczące miejsca są po stronie prawej to czyli = 10 (IMMT PWr) TI-W01 23 października / 31

55 Arytmetyka komputerów Arytmetyka komputerów Zapis liczb dwójkowy. Każda z liczb zapisywana jest za pomocą cyfr 0 i 1. Układ jest pozycyjny waga cyfry zależy od miejsca, w którym została ustawiona. Najmniej znaczące miejsca są po stronie prawej to czyli = 10 liczby parzyste mają zero na końcu, nieparzyste 1. (IMMT PWr) TI-W01 23 października / 31

56 Arytmetyka komputerów Arytmetyka komputerów Zapis liczb dwójkowy. Każda z liczb zapisywana jest za pomocą cyfr 0 i 1. Układ jest pozycyjny waga cyfry zależy od miejsca, w którym została ustawiona. Najmniej znaczące miejsca są po stronie prawej to czyli = 10 liczby parzyste mają zero na końcu, nieparzyste 1. Arytmetyka dwójkowa bardzo prosta. (IMMT PWr) TI-W01 23 października / 31

57 Arytmetyka komputerów Arytmetyka komputerów Zapis liczb dwójkowy. Każda z liczb zapisywana jest za pomocą cyfr 0 i 1. Układ jest pozycyjny waga cyfry zależy od miejsca, w którym została ustawiona. Najmniej znaczące miejsca są po stronie prawej to czyli = 10 liczby parzyste mają zero na końcu, nieparzyste 1. Arytmetyka dwójkowa bardzo prosta = 0 (IMMT PWr) TI-W01 23 października / 31

58 Arytmetyka komputerów Arytmetyka komputerów Zapis liczb dwójkowy. Każda z liczb zapisywana jest za pomocą cyfr 0 i 1. Układ jest pozycyjny waga cyfry zależy od miejsca, w którym została ustawiona. Najmniej znaczące miejsca są po stronie prawej to czyli = 10 liczby parzyste mają zero na końcu, nieparzyste 1. Arytmetyka dwójkowa bardzo prosta = = = 1 (IMMT PWr) TI-W01 23 października / 31

59 Arytmetyka komputerów Arytmetyka komputerów Zapis liczb dwójkowy. Każda z liczb zapisywana jest za pomocą cyfr 0 i 1. Układ jest pozycyjny waga cyfry zależy od miejsca, w którym została ustawiona. Najmniej znaczące miejsca są po stronie prawej to czyli = 10 liczby parzyste mają zero na końcu, nieparzyste 1. Arytmetyka dwójkowa bardzo prosta = = = = 10 (IMMT PWr) TI-W01 23 października / 31

60 Arytmetyka komputerów Arytmetyka komputerów Zapis liczb dwójkowy. Każda z liczb zapisywana jest za pomocą cyfr 0 i 1. Układ jest pozycyjny waga cyfry zależy od miejsca, w którym została ustawiona. Najmniej znaczące miejsca są po stronie prawej to czyli = 10 liczby parzyste mają zero na końcu, nieparzyste 1. Arytmetyka dwójkowa bardzo prosta = = = = = 1 (IMMT PWr) TI-W01 23 października / 31

61 Arytmetyka komputerów Arytmetyka komputerów Zapis liczb dwójkowy. Każda z liczb zapisywana jest za pomocą cyfr 0 i 1. Układ jest pozycyjny waga cyfry zależy od miejsca, w którym została ustawiona. Najmniej znaczące miejsca są po stronie prawej to czyli = 10 liczby parzyste mają zero na końcu, nieparzyste 1. Arytmetyka dwójkowa bardzo prosta = = = = = = 0 1 = 0 (IMMT PWr) TI-W01 23 października / 31

62 Arytmetyka komputerów Arytmetyka komputerów Zapis liczb dwójkowy. Każda z liczb zapisywana jest za pomocą cyfr 0 i 1. Układ jest pozycyjny waga cyfry zależy od miejsca, w którym została ustawiona. Najmniej znaczące miejsca są po stronie prawej to czyli = 10 liczby parzyste mają zero na końcu, nieparzyste 1. Arytmetyka dwójkowa bardzo prosta = = = = = = 0 1 = = 0 (IMMT PWr) TI-W01 23 października / 31

63 Operacje logiczne Operacje logiczne (Podstawowe) operacje logiczne to suma logiczna (OR), iloczyn logiczny (AND), negacja (NOT), różnica symetryczna (XOR) OR AND XOR (IMMT PWr) TI-W01 23 października / 31

64 Arytmetyka komputera (c.d.) Arytmetyka komputera Arytmetyka klasyczna Jesteśmy przyzwyczajeni do następujących rzeczy : 1 Jeżeli x 0 to a a + x a (IMMT PWr) TI-W01 23 października / 31

65 Arytmetyka komputera (c.d.) Arytmetyka komputera Arytmetyka klasyczna Jesteśmy przyzwyczajeni do następujących rzeczy : 1 Jeżeli x 0 to a a + x a 2 a + b + + z = z + y + + b + a (IMMT PWr) TI-W01 23 października / 31

66 Arytmetyka komputera (c.d.) Arytmetyka komputera Arytmetyka klasyczna Jesteśmy przyzwyczajeni do następujących rzeczy : 1 Jeżeli x 0 to a a + x a 2 a + b + + z = z + y + + b + a 3 a, b R a < b c : a < c < b (IMMT PWr) TI-W01 23 października / 31

67 Arytmetyka komputera (c.d.) Arytmetyka komputera Arytmetyka klasyczna Jesteśmy przyzwyczajeni do następujących rzeczy : 1 Jeżeli x 0 to a a + x a 2 a + b + + z = z + y + + b + a 3 a, b R a < b c : a < c < b W arytmetyce komputerowej powyższe zasady nie obowiązują! (IMMT PWr) TI-W01 23 października / 31

68 Liczby zmiennoprzecinkowe Liczby zmiennoprzecinkowe 1 Arytmetyka 1 Liczby naturalne 2 Liczby całkowite 3 Liczby wymierne 4 Liczby rzeczywiste 2 Komputery 1 Liczby całkowite ( integer ) 2 Liczby stałoprzecinkowe 3 Liczby zmiennoprzecinkowe (IMMT PWr) TI-W01 23 października / 31

69 Liczby zmiennoprzecinkowe Liczby całkowite I Sytuacja dosyć klarowna. Na n bitach możemy zapisać liczby całkowite dodatnie z zakresu od zera do 2 n 1 Jest pewien problem z liczbami ujemnymi: trzeba zarezerwować miejsce na znak Trzeba to tak zrobić, żeby podstawowe operacje (dodawanie, odejmowanie i mnożenie,... ) były wykonywane tak samo gdy argumenty są dodatnie jak i wtedy gdy są ujemne. Układ uzupełnieniowy to załatwił. Czasami korzysta się z kodu BCD (Binary Coded Decimal (cyfry) dziesiętne kodowane binarnie: liczba zapisywana jest w układzie dziesiętnym (za pomocą cyfr dziesiętnych), ale poszczególne cyfry kodowane są binarnie 321 (10) zapisywane jest jako (IMMT PWr) TI-W01 23 października / 31

70 Liczby zmiennoprzecinkowe Liczby stałoprzecinkowe 1 Liczby w których na zapamiętanie części całkowitej przeznacza się kilka(naście/dziesiąt) bitów 2 Na zapamiętanie części ułamkowej również używa się kilku(nastu?) bitów: , co odczytujemy jako: lub czyli 10, Używany bardzo rzadko (finanse??) 4 Z matematycznego punktu widzenia są to liczby wymierne 5 Jak w tej postaci zapisać liczbę 1,1 (IMMT PWr) TI-W01 23 października / 31

71 Liczby zmiennoprzecinkowe Liczby zmiennoprzecinkowe I 1 Są to liczby zapisywane (kodowane) w sposób podobny do zananego nam: c = m/s 2 Czyli w postaci mantysa (2, ) plus wykładnik 8, zatem 2, *10 8 albo inaczej 2, e8 3 W przypadku komputerów podstawa kodowania (tak mantysy jak i wykładnika) to 2! 4 Dodatkowo liczby zapisywane są zawsze w postaci znormalizowanej czyli takiej, że cyfra przed przecinkiem (kropką) dziesiętnym jest zawsze z zakresu między 1 a 9. (a w układzie dwójkowym zawsze jest równa 1!) 5 Na zapamiętanie mantysy i wykładnika przeznaczana jest zawsze skończona liczba bitów. 6 Z matematycznego punktu widzenia są to liczby wymierne. (IMMT PWr) TI-W01 23 października / 31

72 Liczby zmiennoprzecinkowe Liczby zmiennoprzecinkowe II 7 Sposób zapisu liczb zmiennoprzecinkowych reguluje standard IEEE-754. (IMMT PWr) TI-W01 23 października / 31

73 Liczby zmiennoprzecinkowe Parę problemów 1 Zawsze(?) ograniczona liczba bitów przeznaczona na zapamiętanie liczby (ale znane są specjalne programy, które starają się te ograniczenie przezwyciężać). 2 Wynik działań arytmetycznych często prowadzi do powstania nadmiaru (czyli przekroczenia maksymalnej dopuszczalnej wartości liczb). 3 Większość liczb który (z przyzwyczajenia) traktujemy jako dokładne nie ma dokładnej reprezentacji dwójkowej (0,5 jest OK ale 0,1 już nie. (IMMT PWr) TI-W01 23 października / 31

Procesor i jego architektura (CISC, RISC, 32/64 bity). Systemy wieloprocesorowe. wer Wojciech Myszka 16 pa«zdziernika 2008

Procesor i jego architektura (CISC, RISC, 32/64 bity). Systemy wieloprocesorowe. wer Wojciech Myszka 16 pa«zdziernika 2008 Procesor i jego architektura (CISC, RISC, 32/64 bity). Systemy wieloprocesorowe. wer. 1.4 Wojciech Myszka 16 pa«zdziernika 2008 CISC I Complex Instruction Set Computers nazwa architektury mikroprocesorów

Bardziej szczegółowo

Technologie Informacyjne Wykład 4

Technologie Informacyjne Wykład 4 Technologie Informacyjne Wykład 4 Arytmetyka komputerów Wojciech Myszka Jakub Słowiński Katedra Mechaniki i Inżynierii Materiałowej Wydział Mechaniczny Politechnika Wrocławska 30 października 2014 Część

Bardziej szczegółowo

Architektura komputerów wer. 3

Architektura komputerów wer. 3 Architektura komputerów wer. 3 Wojciech Myszka, Maciej Panek listopad 2014 r. Karty perforowane Kalkulator IBM 601, 1931 IBM 601 kalkulator Maszyna czytała dwie liczby z karty, mnożyła je przez siebie

Bardziej szczegółowo

Technologie informacyjne wykład 2 wer. 1.2

Technologie informacyjne wykład 2 wer. 1.2 Technologie informacyjne wykład 2 wer. 1.2 Wojciech Myszka 24 października 2010 1 Część I Elementy systemu komputerowego. Czynniki wpływające na wydajność. Elementy systemu komputerowego. Czynniki wpływające

Bardziej szczegółowo

Architektura komputerów wer. 7

Architektura komputerów wer. 7 Architektura komputerów wer. 7 Wojciech Myszka 2013-10-29 19:47:07 +0100 Karty perforowane Kalkulator IBM 601, 1931 IBM 601 kalkulator Maszyna czytała dwie liczby z karty, mnożyła je przez siebie i wynik

Bardziej szczegółowo

Architektura mikroprocesorów TEO 2009/2010

Architektura mikroprocesorów TEO 2009/2010 Architektura mikroprocesorów TEO 2009/2010 Plan wykładów Wykład 1: - Wstęp. Klasyfikacje mikroprocesorów Wykład 2: - Mikrokontrolery 8-bit: AVR, PIC Wykład 3: - Mikrokontrolery 8-bit: 8051, ST7 Wykład

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Architektura komputerów wer. 14 Wojciech Myszka 2018-11-07 07:48:25 +0100 Karty perforowane Kalkulator IBM 601, 1931 IBM 601 kalkulator Maszyna czytała dwie, maksimum ośmiocyfrowe, liczby z karty, mnożyła

Bardziej szczegółowo

Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne

Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne 1. Bit Pozycja rejestru lub komórki pamięci służąca do przedstawiania (pamiętania) cyfry w systemie (liczbowym)

Bardziej szczegółowo

Podstawy Informatyki

Podstawy Informatyki Podstawy Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 5 Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 5 1 / 23 LICZBY RZECZYWISTE - Algorytm Hornera

Bardziej szczegółowo

Liczby rzeczywiste są reprezentowane w komputerze przez liczby zmiennopozycyjne. Liczbę k można przedstawid w postaci:

Liczby rzeczywiste są reprezentowane w komputerze przez liczby zmiennopozycyjne. Liczbę k można przedstawid w postaci: Reprezentacja liczb rzeczywistych w komputerze. Liczby rzeczywiste są reprezentowane w komputerze przez liczby zmiennopozycyjne. Liczbę k można przedstawid w postaci: k = m * 2 c gdzie: m częśd ułamkowa,

Bardziej szczegółowo

Arytmetyka binarna - wykład 6

Arytmetyka binarna - wykład 6 SWB - Arytmetyka binarna - wykład 6 asz 1 Arytmetyka binarna - wykład 6 Adam Szmigielski aszmigie@pjwstk.edu.pl SWB - Arytmetyka binarna - wykład 6 asz 2 Naturalny kod binarny (NKB) pozycja 7 6 5 4 3 2

Bardziej szczegółowo

Naturalny kod binarny (NKB)

Naturalny kod binarny (NKB) SWB - Arytmetyka binarna - wykład 6 asz 1 Naturalny kod binarny (NKB) pozycja 7 6 5 4 3 2 1 0 wartość 2 7 2 6 2 5 2 4 2 3 2 2 2 1 2 0 wartość 128 64 32 16 8 4 2 1 bity b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 System

Bardziej szczegółowo

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 1 Metody numeryczne Dział matematyki Metody rozwiązywania problemów matematycznych za pomocą operacji na liczbach. Otrzymywane

Bardziej szczegółowo

Teoretyczne Podstawy Informatyki

Teoretyczne Podstawy Informatyki Teoretyczne Podstawy Informatyki cel zajęć Celem kształcenia jest uzyskanie umiejętności i kompetencji w zakresie budowy schematów blokowych algor ytmów oraz ocenę ich złożoności obliczeniowej w celu optymizacji

Bardziej szczegółowo

Arytmetyka liczb binarnych

Arytmetyka liczb binarnych Wartość dwójkowej liczby stałoprzecinkowej Wartość dziesiętna stałoprzecinkowej liczby binarnej Arytmetyka liczb binarnych b n-1...b 1 b 0,b -1 b -2...b -m = b n-1 2 n-1 +... + b 1 2 1 + b 0 2 0 + b -1

Bardziej szczegółowo

Struktura i działanie jednostki centralnej

Struktura i działanie jednostki centralnej Struktura i działanie jednostki centralnej ALU Jednostka sterująca Rejestry Zadania procesora: Pobieranie rozkazów; Interpretowanie rozkazów; Pobieranie danych Przetwarzanie danych Zapisywanie danych magistrala

Bardziej szczegółowo

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1 Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1. Podstawowe operacje logiczne dla cyfr binarnych Jeśli cyfry 0 i 1 potraktujemy tak, jak wartości logiczne fałsz i prawda, to działanie

Bardziej szczegółowo

Architektura systemów komputerowych. Arytmetyka maszyn cyfrowych

Architektura systemów komputerowych. Arytmetyka maszyn cyfrowych Architektura systemów komputerowych Plan wykładu. Typy danych w komputerach. 2. Układ arytmetyczno-logiczny. 3. Instrukcje zależne od ALU. 4. Superskalarność. Cele Wiedza na temat arytmetyki maszyn cyfrowych.

Bardziej szczegółowo

Stan wysoki (H) i stan niski (L)

Stan wysoki (H) i stan niski (L) PODSTAWY Przez układy cyfrowe rozumiemy układy, w których w każdej chwili występują tylko dwa (zwykle) możliwe stany, np. tranzystor, jako element układu cyfrowego, może być albo w stanie nasycenia, albo

Bardziej szczegółowo

Pracownia Komputerowa wykład IV

Pracownia Komputerowa wykład IV Pracownia Komputerowa wykład IV dr Magdalena Posiadała-Zezula http://www.fuw.edu.pl/~mposiada/pk16 1 Reprezentacje liczb i znaków! Liczby:! Reprezentacja naturalna nieujemne liczby całkowite naturalny

Bardziej szczegółowo

Podstawy Informatyki. Inżynieria Ciepła, I rok. Wykład 5 Liczby w komputerze

Podstawy Informatyki. Inżynieria Ciepła, I rok. Wykład 5 Liczby w komputerze Podstawy Informatyki Inżynieria Ciepła, I rok Wykład 5 Liczby w komputerze Jednostki informacji Bit (ang. bit) (Shannon, 948) Najmniejsza ilość informacji potrzebna do określenia, który z dwóch równie

Bardziej szczegółowo

Kodowanie informacji. Kody liczbowe

Kodowanie informacji. Kody liczbowe Wykład 2 2-1 Kodowanie informacji PoniewaŜ komputer jest urządzeniem zbudowanym z układów cyfrowych, informacja przetwarzana przez niego musi być reprezentowana przy pomocy dwóch stanów - wysokiego i niskiego,

Bardziej szczegółowo

ARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia.

ARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia. ARYTMETYKA BINARNA ROZWINIĘCIE DWÓJKOWE Jednym z najlepiej znanych sposobów kodowania informacji zawartej w liczbach jest kodowanie w dziesiątkowym systemie pozycyjnym, w którym dla przedstawienia liczb

Bardziej szczegółowo

Logiczny model komputera i działanie procesora. Część 1.

Logiczny model komputera i działanie procesora. Część 1. Logiczny model komputera i działanie procesora. Część 1. Klasyczny komputer o architekturze podanej przez von Neumana składa się z trzech podstawowych bloków: procesora pamięci operacyjnej urządzeń wejścia/wyjścia.

Bardziej szczegółowo

Systemy liczbowe. 1. Przedstawić w postaci sumy wag poszczególnych cyfr liczbę rzeczywistą R = (10).

Systemy liczbowe. 1. Przedstawić w postaci sumy wag poszczególnych cyfr liczbę rzeczywistą R = (10). Wprowadzenie do inżynierii przetwarzania informacji. Ćwiczenie 1. Systemy liczbowe Cel dydaktyczny: Poznanie zasad reprezentacji liczb w systemach pozycyjnych o różnych podstawach. Kodowanie liczb dziesiętnych

Bardziej szczegółowo

Wstęp do programowania. Reprezentacje liczb. Liczby naturalne, całkowite i rzeczywiste w układzie binarnym

Wstęp do programowania. Reprezentacje liczb. Liczby naturalne, całkowite i rzeczywiste w układzie binarnym Wstęp do programowania Reprezentacje liczb Liczby naturalne, całkowite i rzeczywiste w układzie binarnym System dwójkowy W komputerach stosuje się dwójkowy system pozycyjny do reprezentowania zarówno liczb

Bardziej szczegółowo

Arytmetyka komputerów

Arytmetyka komputerów Arytmetyka komputerów Wersja: 5 z drobnymi modyfikacjami! Wojciech Myszka 2012-11-09 09:23:41 +0100 Część I Liczby binarne i arytmetyka komputerów Arytmetyka komputerów Zapis liczb dwójkowy. Każda z liczb

Bardziej szczegółowo

Kod IEEE754. IEEE754 (1985) - norma dotycząca zapisu binarnego liczb zmiennopozycyjnych (pojedynczej precyzji) Liczbę binarną o postaci

Kod IEEE754. IEEE754 (1985) - norma dotycząca zapisu binarnego liczb zmiennopozycyjnych (pojedynczej precyzji) Liczbę binarną o postaci Kod IEEE754 IEEE Institute of Electrical and Electronics Engineers IEEE754 (1985) - norma dotycząca zapisu binarnego liczb zmiennopozycyjnych (pojedynczej precyzji) Liczbę binarną o postaci (-1) s 1.f

Bardziej szczegółowo

Arytmetyka komputerów

Arytmetyka komputerów Arytmetyka komputerów wer. 4 z drobnymi modyfikacjami! Wojciech Myszka 2017-10-26 20:59:28 +0200 Liczby binarne Liczby dwójkowe nie są wcale nowym wynalazkiem: Pierwsze wzmianki pochodzą z Indii, z 5 2

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Architektura komputerów Wykład 3 Jan Kazimirski 1 Podstawowe elementy komputera. Procesor (CPU) 2 Plan wykładu Podstawowe komponenty komputera Procesor CPU Cykl rozkazowy Typy instrukcji Stos Tryby adresowania

Bardziej szczegółowo

Architektura systemów komputerowych. dr Artur Bartoszewski

Architektura systemów komputerowych. dr Artur Bartoszewski Architektura systemów komputerowych 1 dr Artur Bartoszewski Procesor część I 1. ALU 2. Cykl rozkazowy 3. Schemat blokowy CPU 4. Architektura CISC i RISC 2 Jednostka arytmetyczno-logiczna 3 Schemat blokowy

Bardziej szczegółowo

Architektura komputerów Reprezentacja liczb. Kodowanie rozkazów.

Architektura komputerów Reprezentacja liczb. Kodowanie rozkazów. Architektura komputerów Reprezentacja liczb. Kodowanie rozkazów. Prezentacja jest współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie pt. Innowacyjna dydaktyka

Bardziej szczegółowo

Budowa komputera Komputer computer computare

Budowa komputera Komputer computer computare 11. Budowa komputera Komputer (z ang. computer od łac. computare obliczać) urządzenie elektroniczne służące do przetwarzania wszelkich informacji, które da się zapisać w formie ciągu cyfr albo sygnału

Bardziej szczegółowo

Kod uzupełnień do dwóch jest najczęściej stosowanym systemem zapisu liczb ujemnych wśród systemów binarnych.

Kod uzupełnień do dwóch jest najczęściej stosowanym systemem zapisu liczb ujemnych wśród systemów binarnych. Kod uzupełnień do dwóch jest najczęściej stosowanym systemem zapisu liczb ujemnych wśród systemów binarnych. Jeśli bit znaku przyjmie wartość 0 to liczba jest dodatnia lub posiada wartość 0. Jeśli bit

Bardziej szczegółowo

Technologie Informacyjne

Technologie Informacyjne System binarny Szkoła Główna Służby Pożarniczej Zakład Informatyki i Łączności October 7, 26 Pojęcie bitu 2 Systemy liczbowe 3 Potęgi dwójki 4 System szesnastkowy 5 Kodowanie informacji 6 Liczby ujemne

Bardziej szczegółowo

Przedmiot: Urządzenia techniki komputerowej Nauczyciel: Mirosław Ruciński

Przedmiot: Urządzenia techniki komputerowej Nauczyciel: Mirosław Ruciński Przedmiot: Urządzenia techniki komputerowej Nauczyciel: Mirosław Ruciński Temat: Systemy zapisu liczb. Cele kształcenia: Zapoznanie z systemami zapisu liczb: dziesiętny, dwójkowy, ósemkowy, szesnastkowy.

Bardziej szczegółowo

LABORATORIUM PROCESORY SYGNAŁOWE W AUTOMATYCE PRZEMYSŁOWEJ. Zasady arytmetyki stałoprzecinkowej oraz operacji arytmetycznych w formatach Q

LABORATORIUM PROCESORY SYGNAŁOWE W AUTOMATYCE PRZEMYSŁOWEJ. Zasady arytmetyki stałoprzecinkowej oraz operacji arytmetycznych w formatach Q LABORAORIUM PROCESORY SYGAŁOWE W AUOMAYCE PRZEMYSŁOWEJ Zasady arytmetyki stałoprzecinkowej oraz operacji arytmetycznych w formatach Q 1. Zasady arytmetyki stałoprzecinkowej. Kody stałopozycyjne mają ustalone

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Architektura komputerów Wykład 4 Jan Kazimirski 1 Reprezentacja danych 2 Plan wykładu Systemy liczbowe Zapis dwójkowy liczb całkowitych Działania arytmetyczne Liczby rzeczywiste Znaki i łańcuchy znaków

Bardziej szczegółowo

Pracownia Komputerowa wykład VI

Pracownia Komputerowa wykład VI Pracownia Komputerowa wykład VI dr Magdalena Posiadała-Zezula http://www.fuw.edu.pl/~mposiada 1 Przypomnienie 125 (10) =? (2) Liczby całkowite : Operacja modulo % reszta z dzielenia: 125%2=62 reszta 1

Bardziej szczegółowo

Budowa Mikrokomputera

Budowa Mikrokomputera Budowa Mikrokomputera Wykład z Podstaw Informatyki dla I roku BO Piotr Mika Podstawowe elementy komputera Procesor Pamięć Magistrala (2/16) Płyta główna (ang. mainboard, motherboard) płyta drukowana komputera,

Bardziej szczegółowo

Instrukcja do ćwiczeń nr 4 typy i rodzaje zmiennych w języku C dla AVR, oraz ich deklarowanie, oraz podstawowe operatory

Instrukcja do ćwiczeń nr 4 typy i rodzaje zmiennych w języku C dla AVR, oraz ich deklarowanie, oraz podstawowe operatory Instrukcja do ćwiczeń nr 4 typy i rodzaje zmiennych w języku C dla AVR, oraz ich deklarowanie, oraz podstawowe operatory Poniżej pozwoliłem sobie za cytować za wikipedią definicję zmiennej w informatyce.

Bardziej szczegółowo

1259 (10) = 1 * * * * 100 = 1 * * * *1

1259 (10) = 1 * * * * 100 = 1 * * * *1 Zamiana liczba zapisanych w dowolnym systemie na system dziesiętny: W systemie pozycyjnym o podstawie 10 wartości kolejnych cyfr odpowiadają kolejnym potęgom liczby 10 licząc od strony prawej i numerując

Bardziej szczegółowo

Samodzielnie wykonaj następujące operacje: 13 / 2 = 30 / 5 = 73 / 15 = 15 / 23 = 13 % 2 = 30 % 5 = 73 % 15 = 15 % 23 =

Samodzielnie wykonaj następujące operacje: 13 / 2 = 30 / 5 = 73 / 15 = 15 / 23 = 13 % 2 = 30 % 5 = 73 % 15 = 15 % 23 = Systemy liczbowe Dla każdej liczby naturalnej x Î N oraz liczby naturalnej p >= 2 istnieją jednoznacznie wyznaczone: liczba n Î N oraz ciąg cyfr c 0, c 1,..., c n-1 (gdzie ck Î {0, 1,..., p - 1}) taki,

Bardziej szczegółowo

1. Operacje logiczne A B A OR B

1. Operacje logiczne A B A OR B 1. Operacje logiczne OR Operacje logiczne są operacjami działającymi na poszczególnych bitach, dzięki czemu można je całkowicie opisać przedstawiając jak oddziałują ze sobą dwa bity. Takie operacje logiczne

Bardziej szczegółowo

Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl

Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl System dziesiętny 7 * 10 4 + 3 * 10 3 + 0 * 10 2 + 5 *10 1 + 1 * 10 0 = 73051 Liczba 10 w tym zapisie nazywa się podstawą systemu liczenia. Jeśli liczba 73051 byłaby zapisana w systemie ósemkowym, co powinniśmy

Bardziej szczegółowo

ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH

ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH reprezentacja danych ASK.RD.01 c Dr inż. Ignacy Pardyka UNIWERSYTET JANA KOCHANOWSKIEGO w Kielcach Rok akad. 2011/2012 c Dr inż. Ignacy Pardyka (Inf.UJK) ASK.RD.01 Rok

Bardziej szczegółowo

Pracownia Komputerowa wyk ad IV

Pracownia Komputerowa wyk ad IV Pracownia Komputerowa wykad IV dr Magdalena Posiadaa-Zezula Magdalena.Posiadala@fuw.edu.pl http://www.fuw.edu.pl/~mposiada Magdalena.Posiadala@fuw.edu.pl 1 Reprezentacje liczb i znaków Liczby: Reprezentacja

Bardziej szczegółowo

Zestaw 3. - Zapis liczb binarnych ze znakiem 1

Zestaw 3. - Zapis liczb binarnych ze znakiem 1 Zestaw 3. - Zapis liczb binarnych ze znakiem 1 Zapis znak - moduł (ZM) Zapis liczb w systemie Znak - moduł Znak liczby o n bitach zależy od najstarszego bitu b n 1 (tzn. cyfry o najwyższej pozycji): b

Bardziej szczegółowo

12. Wprowadzenie Sygnały techniki cyfrowej Systemy liczbowe. Matematyka: Elektronika:

12. Wprowadzenie Sygnały techniki cyfrowej Systemy liczbowe. Matematyka: Elektronika: PRZYPOMNIJ SOBIE! Matematyka: Dodawanie i odejmowanie "pod kreską". Elektronika: Sygnały cyfrowe. Zasadę pracy tranzystorów bipolarnych i unipolarnych. 12. Wprowadzenie 12.1. Sygnały techniki cyfrowej

Bardziej szczegółowo

Wielkości liczbowe. Wykład z Podstaw Informatyki dla I roku BO. Piotr Mika

Wielkości liczbowe. Wykład z Podstaw Informatyki dla I roku BO. Piotr Mika Wielkości liczbowe Wykład z Podstaw Informatyki dla I roku BO Piotr Mika Wprowadzenie, liczby naturalne Komputer to podstawowe narzędzie do wykonywania obliczeń Jeden bajt reprezentuje 0 oraz liczby naturalne

Bardziej szczegółowo

Organizacja typowego mikroprocesora

Organizacja typowego mikroprocesora Organizacja typowego mikroprocesora 1 Architektura procesora 8086 2 Architektura współczesnego procesora 3 Schemat blokowy procesora AVR Mega o architekturze harwardzkiej Wszystkie mikroprocesory zawierają

Bardziej szczegółowo

Architektura systemów komputerowych

Architektura systemów komputerowych Studia stacjonarne inżynierskie, kierunek INFORMATYKA Architektura systemów komputerowych Architektura systemów komputerowych dr Artur Bartoszewski Procesor część I 1. ALU 2. Cykl rozkazowy 3. Schemat

Bardziej szczegółowo

Podstawy Informatyki. Metalurgia, I rok. Wykład 3 Liczby w komputerze

Podstawy Informatyki. Metalurgia, I rok. Wykład 3 Liczby w komputerze Podstawy Informatyki Metalurgia, I rok Wykład 3 Liczby w komputerze Jednostki informacji Bit (ang. bit) (Shannon, 1948) Najmniejsza ilość informacji potrzebna do określenia, który z dwóch równie prawdopodobnych

Bardziej szczegółowo

Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego

Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego Arytmetyka cyfrowa Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego (binarnego). Zapis binarny - to system liczenia

Bardziej szczegółowo

Dane, informacja, programy. Kodowanie danych, kompresja stratna i bezstratna

Dane, informacja, programy. Kodowanie danych, kompresja stratna i bezstratna Dane, informacja, programy Kodowanie danych, kompresja stratna i bezstratna DANE Uporządkowane, zorganizowane fakty. Główne grupy danych: tekstowe (znaki alfanumeryczne, znaki specjalne) graficzne (ilustracje,

Bardziej szczegółowo

Wielkości liczbowe. Wykład z Podstaw Informatyki. Piotr Mika

Wielkości liczbowe. Wykład z Podstaw Informatyki. Piotr Mika Wielkości liczbowe Wykład z Podstaw Informatyki Piotr Mika Wprowadzenie, liczby naturalne Komputer to podstawowe narzędzie do wykonywania obliczeń Jeden bajt reprezentuje oraz liczby naturalne od do 255

Bardziej szczegółowo

Pozycyjny system liczbowy

Pozycyjny system liczbowy Arytmetyka binarna Pozycyjny system liczbowy w pozycyjnych systemach liczbowych wkład danego symbolu do wartości liczby jest określony zarówno przez sam symbol, jak i jego pozycję w liczbie i tak np. w

Bardziej szczegółowo

Języki i metodyka programowania. Reprezentacja danych w systemach komputerowych

Języki i metodyka programowania. Reprezentacja danych w systemach komputerowych Reprezentacja danych w systemach komputerowych Kod (łac. codex - spis), ciąg składników sygnału (kombinacji sygnałów elementarnych, np. kropek i kresek, impulsów prądu, symboli) oraz reguła ich przyporządkowania

Bardziej szczegółowo

Technika mikroprocesorowa I Studia niestacjonarne rok II Wykład 2

Technika mikroprocesorowa I Studia niestacjonarne rok II Wykład 2 Technika mikroprocesorowa I Studia niestacjonarne rok II Wykład 2 Literatura: www.zilog.com Z80 Family, CPU User Manual Cykle magistrali w mikroprocesorze Z80 -odczyt kodu rozkazu, -odczyt-zapis pamięci,

Bardziej szczegółowo

Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2010/2011

Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2010/2011 SYLLABUS na rok akademicki 010/011 Tryb studiów Studia stacjonarne Kierunek studiów Informatyka Poziom studiów Pierwszego stopnia Rok studiów/ semestr 1(rok)/1(sem) Specjalność Bez specjalności Kod katedry/zakładu

Bardziej szczegółowo

Dr inż. Grażyna KRUPIŃSKA. D-10 pokój 227 WYKŁAD 2 WSTĘP DO INFORMATYKI

Dr inż. Grażyna KRUPIŃSKA. D-10 pokój 227 WYKŁAD 2 WSTĘP DO INFORMATYKI Dr inż. Grażyna KRUPIŃSKA Grazyna.Krupinska@fis.agh.edu.pl D-10 pokój 227 WYKŁAD 2 WSTĘP DO INFORMATYKI Ćwiczenia i laboratorium 2 Kolokwia zaliczeniowe - 1 termin - poniedziałek, 29 stycznia 2018 11:30

Bardziej szczegółowo

Przykładowe pytania DSP 1

Przykładowe pytania DSP 1 Przykładowe pytania SP Przykładowe pytania Systemy liczbowe. Przedstawić liczby; -, - w kodzie binarnym i hexadecymalnym uzupełnionym do dwóch (liczba 6 bitowa).. odać dwie liczby binarne w kodzie U +..

Bardziej szczegółowo

Wstęp do informatyki- wykład 1 Systemy liczbowe

Wstęp do informatyki- wykład 1 Systemy liczbowe 1 Wstęp do informatyki- wykład 1 Systemy liczbowe Treści prezentowane w wykładzie zostały oparte o: S. Prata, Język C++. Szkoła programowania. Wydanie VI, Helion, 2012 www.cplusplus.com Jerzy Grębosz,

Bardziej szczegółowo

Architektura komputerów. Asembler procesorów rodziny x86

Architektura komputerów. Asembler procesorów rodziny x86 Architektura komputerów Asembler procesorów rodziny x86 Architektura komputerów Asembler procesorów rodziny x86 Rozkazy mikroprocesora Rozkazy mikroprocesora 8086 można podzielić na siedem funkcjonalnych

Bardziej szczegółowo

SYSTEMY LICZBOWE. SYSTEMY POZYCYJNE: dziesiętny (arabski): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 rzymski: I, II, III, V, C, M

SYSTEMY LICZBOWE. SYSTEMY POZYCYJNE: dziesiętny (arabski): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 rzymski: I, II, III, V, C, M SYSTEMY LICZBOWE SYSTEMY POZYCYJNE: dziesiętny (arabski):,, 2, 3, 4, 5, 6, 7, 8, 9 rzymski: I, II, III, V, C, M System pozycyjno wagowy: na przykład liczba 444 4 4 4 4 4 4 Wagi systemu dziesiętnego:,,,,...

Bardziej szczegółowo

Systemy zapisu liczb.

Systemy zapisu liczb. Systemy zapisu liczb. Cele kształcenia: Zapoznanie z systemami zapisu liczb: dziesiętny, dwójkowy, ósemkowy, szesnastkowy. Zdobycie umiejętności wykonywania działań na liczbach w różnych systemach. Zagadnienia:

Bardziej szczegółowo

Kod U2 Opracował: Andrzej Nowak

Kod U2 Opracował: Andrzej Nowak PODSTAWY TEORII UKŁADÓW CYFROWYCH Kod U2 Opracował: Andrzej Nowak Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz http://pl.wikipedia.org/ System zapisu liczb ze znakiem opisany w poprzednim

Bardziej szczegółowo

Arytmetyka stało i zmiennoprzecinkowa

Arytmetyka stało i zmiennoprzecinkowa Arytmetyka stało i zmiennoprzecinkowa Michał Rudowicz 171047 Łukasz Sidorkiewicz 170991 Piotr Lemański 171009 Wydział Elektroniki Politechnika Wrocławska 26 października 2011 Spis Treści 1 Reprezentacja

Bardziej szczegółowo

Cyfrowy zapis informacji. 5 grudnia 2013 Wojciech Kucewicz 2

Cyfrowy zapis informacji. 5 grudnia 2013 Wojciech Kucewicz 2 Cyfrowy zapis informacji 5 grudnia 2013 Wojciech Kucewicz 2 Bit, Bajt, Słowo 5 grudnia 2013 Wojciech Kucewicz 3 Cyfrowy zapis informacji Bit [ang. binary digit] jest elementem zbioru dwuelementowego używanym

Bardziej szczegółowo

Podstawy Informatyki

Podstawy Informatyki Podstawy Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 3 Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 1 / 42 Reprezentacja liczb całkowitych

Bardziej szczegółowo

1.1. Pozycyjne systemy liczbowe

1.1. Pozycyjne systemy liczbowe 1.1. Pozycyjne systemy liczbowe Systemami liczenia nazywa się sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach. Dla dowolnego

Bardziej szczegółowo

System liczbowy jest zbiorem reguł określających jednolity sposób zapisu i nazewnictwa liczb.

System liczbowy jest zbiorem reguł określających jednolity sposób zapisu i nazewnictwa liczb. 2. Arytmetyka komputera. Systemy zapisu liczb: dziesietny, dwójkowy (binarny), ósemkowy, szesnatskowy. Podstawowe operacje arytmetyczne na liczbach binarnych. Zapis liczby binarnej ze znakiem. Reprezentacja

Bardziej szczegółowo

Zapis liczb binarnych ze znakiem

Zapis liczb binarnych ze znakiem Zapis liczb binarnych ze znakiem W tej prezentacji: Zapis Znak-Moduł (ZM) Zapis uzupełnień do 1 (U1) Zapis uzupełnień do 2 (U2) Zapis Znak-Moduł (ZM) Koncepcyjnie zapis znak - moduł (w skrócie ZM - ang.

Bardziej szczegółowo

Reprezentacja stałoprzecinkowa. Reprezentacja zmiennoprzecinkowa zapis zmiennoprzecinkowy liczby rzeczywistej

Reprezentacja stałoprzecinkowa. Reprezentacja zmiennoprzecinkowa zapis zmiennoprzecinkowy liczby rzeczywistej Informatyka, studia niestacjonarne I stopnia Rok akademicki /, Wykład nr 4 /6 Plan wykładu nr 4 Informatyka Politechnika Białostocka - Wydział lektryczny lektrotechnika, semestr II, studia niestacjonarne

Bardziej szczegółowo

RODZAJE INFORMACJI. Informacje analogowe. Informacje cyfrowe. U(t) U(t) Umax. Umax. R=(0,Umax) nieskończony zbiór możliwych wartości. Umax.

RODZAJE INFORMACJI. Informacje analogowe. Informacje cyfrowe. U(t) U(t) Umax. Umax. R=(0,Umax) nieskończony zbiór możliwych wartości. Umax. RODZAJE INFORMACJI Informacje analogowe U(t) Umax Umax 0 0 R=(0,Umax) nieskończony zbiór możliwych wartości WE MASZYNA ANALOGOWA WY Informacje cyfrowe U(t) Umaxq Umax R=(U, 2U, 3U, 4U) # # MASZYNA # CYFROWA

Bardziej szczegółowo

Arytmetyka komputera. Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka. Opracował: Kamil Kowalski klasa III TI

Arytmetyka komputera. Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka. Opracował: Kamil Kowalski klasa III TI Arytmetyka komputera Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka Opracował: Kamil Kowalski klasa III TI Spis treści 1. Jednostki informacyjne 2. Systemy liczbowe 2.1. System

Bardziej szczegółowo

Kod znak-moduł. Wartość liczby wynosi. Reprezentacja liczb w kodzie ZM w 8-bitowym formacie:

Kod znak-moduł. Wartość liczby wynosi. Reprezentacja liczb w kodzie ZM w 8-bitowym formacie: Wykład 3 3-1 Reprezentacja liczb całkowitych ze znakiem Do przedstawienia liczb całkowitych ze znakiem stosowane są następujące kody: - ZM (znak-moduł) - U1 (uzupełnienie do 1) - U2 (uzupełnienie do 2)

Bardziej szczegółowo

ARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010

ARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010 ARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010 Do zapisu liczby ze znakiem mamy tylko 8 bitów, pierwszy od lewej bit to bit znakowy, a pozostałem 7 to bity na liczbę. bit znakowy 1 0 1 1

Bardziej szczegółowo

O bitach, bajtach i hardware. R. Robert Gajewski omklnx.il.pw.edu.pl/~rgajewski

O bitach, bajtach i hardware. R. Robert Gajewski omklnx.il.pw.edu.pl/~rgajewski O bitach, bajtach i hardware R. Robert Gajewski omklnx.il.pw.edu.pl/~rgajewski www.il.pw.edu.pl/~rg s-rg@siwy.il.pw.edu.pl Bity i bajty Jednostkę ilości informacji nazywamy bitem (bi to po angielsku kawałek)

Bardziej szczegółowo

Informatyka kodowanie liczb. dr hab. inż. Mikołaj Morzy

Informatyka kodowanie liczb. dr hab. inż. Mikołaj Morzy Informatyka kodowanie liczb dr hab. inż. Mikołaj Morzy plan wykładu definicja informacji sposoby kodowania reprezentacja liczb naturalnych i całkowitych arytmetyka binarna arytmetyka oktalna arytmetyka

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Wykład jest przygotowany dla IV semestru kierunku Elektronika i Telekomunikacja. Studia I stopnia Dr inż. Małgorzata Langer Architektura komputerów Prezentacja multimedialna współfinansowana przez Unię

Bardziej szczegółowo

Podstawy Informatyki dla Nauczyciela

Podstawy Informatyki dla Nauczyciela Podstawy Informatyki dla Nauczyciela Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 2 Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki dla Nauczyciela Wykład 2 1 / 1 Informacja

Bardziej szczegółowo

2 Arytmetyka. d r 2 r + d r 1 2 r 1...d d 0 2 0,

2 Arytmetyka. d r 2 r + d r 1 2 r 1...d d 0 2 0, 2 Arytmetyka Niech b = d r d r 1 d 1 d 0 będzie zapisem liczby w systemie dwójkowym Zamiana zapisu liczby b na system dziesiętny odbywa się poprzez wykonanie dodawania d r 2 r + d r 1 2 r 1 d 1 2 1 + d

Bardziej szczegółowo

LICZBY ZMIENNOPRZECINKOWE

LICZBY ZMIENNOPRZECINKOWE LICZBY ZMIENNOPRZECINKOWE Liczby zmiennoprzecinkowe są komputerową reprezentacją liczb rzeczywistych zapisanych w formie wykładniczej (naukowej). Aby uprościć arytmetykę na nich, przyjęto ograniczenia

Bardziej szczegółowo

3.3.1. Metoda znak-moduł (ZM)

3.3.1. Metoda znak-moduł (ZM) 3.3. Zapis liczb binarnych ze znakiem 1 0-1 0 1 : 1 0 0 1 1 0 1 1 0 1 0 0 0 0 1 0 0 0 1 reszta 0 0 0 0 0 0 0 1 3.3. Zapis liczb binarnych ze znakiem W systemie dziesiętnym liczby ujemne opatrzone są specjalnym

Bardziej szczegółowo

Wstęp do Informatyki. Reprezentacja liczb w komputerze Arytmetyka stało- i zmiennoprzecinkowa Przechowywanie danych pliki i foldery

Wstęp do Informatyki. Reprezentacja liczb w komputerze Arytmetyka stało- i zmiennoprzecinkowa Przechowywanie danych pliki i foldery Wstęp do Informatyki Reprezentacja liczb w komputerze Arytmetyka stało- i zmiennoprzecinkowa Przechowywanie danych pliki i foldery Pozycyjne systemy liczbowe Dziesiętny system liczbowy (o podstawie 10):

Bardziej szczegółowo

Wstęp do informatyki- wykład 2

Wstęp do informatyki- wykład 2 MATEMATYKA 1 Wstęp do informatyki- wykład 2 Systemy liczbowe Treści prezentowane w wykładzie zostały oparte o: S. Prata, Język C++. Szkoła programowania. Wydanie VI, Helion, 2012 www.cplusplus.com Jerzy

Bardziej szczegółowo

Pracownia Komputerowa wykład V

Pracownia Komputerowa wykład V Pracownia Komputerowa wykład V dr Magdalena Posiadała-Zezula http://www.fuw.edu.pl/~mposiada/pk16 1 Reprezentacje liczb i znaków! Liczby:! Reprezentacja naturalna nieujemne liczby całkowite naturalny system

Bardziej szczegółowo

Wydajność obliczeń a architektura procesorów. Krzysztof Banaś Obliczenia Wysokiej Wydajności 1

Wydajność obliczeń a architektura procesorów. Krzysztof Banaś Obliczenia Wysokiej Wydajności 1 Wydajność obliczeń a architektura procesorów Krzysztof Banaś Obliczenia Wysokiej Wydajności 1 Wydajność komputerów Modele wydajności-> szacowanie czasu wykonania zadania Wydajność szybkość realizacji wyznaczonych

Bardziej szczegółowo

LEKCJA TEMAT: Współczesne procesory.

LEKCJA TEMAT: Współczesne procesory. LEKCJA TEMAT: Współczesne procesory. 1. Wymagania dla ucznia: zna pojęcia: procesor, CPU, ALU, potrafi podać typowe rozkazy; potrafi omówić uproszczony i rozszerzony schemat mikroprocesora; potraf omówić

Bardziej szczegółowo

Kodowanie liczb całkowitych w systemach komputerowych

Kodowanie liczb całkowitych w systemach komputerowych Kodowanie liczb całkowitych w systemach komputerowych System pozycyjny Systemy addytywne znaczenie historyczne Systemy pozycyjne r podstawa systemu liczbowego (radix) A wartość liczby a - cyfra i pozycja

Bardziej szczegółowo

Podstawy działania układów cyfrowych...2 Systemy liczbowe...2 Kodowanie informacji...3 Informacja cyfrowa...4 Bramki logiczne...

Podstawy działania układów cyfrowych...2 Systemy liczbowe...2 Kodowanie informacji...3 Informacja cyfrowa...4 Bramki logiczne... Podstawy działania układów cyfrowych...2 Systemy liczbowe...2 Kodowanie informacji...3 Informacja cyfrowa...4 Bramki logiczne...4 Podział układów logicznych...6 Cyfrowe układy funkcjonalne...8 Rejestry...8

Bardziej szczegółowo

DYDAKTYKA ZAGADNIENIA CYFROWE ZAGADNIENIA CYFROWE

DYDAKTYKA ZAGADNIENIA CYFROWE ZAGADNIENIA CYFROWE ZAGADNIENIA CYFROWE ZAGADNIENIA CYFROWE @KEMOR SPIS TREŚCI. SYSTEMY LICZBOWE...3.. SYSTEM DZIESIĘTNY...3.2. SYSTEM DWÓJKOWY...3.3. SYSTEM SZESNASTKOWY...4 2. PODSTAWOWE OPERACJE NA LICZBACH BINARNYCH...5

Bardziej szczegółowo

Zapoznanie z technikami i narzędziami programistycznymi służącymi do tworzenia programów współbieżnych i obsługi współbieżności przez system.

Zapoznanie z technikami i narzędziami programistycznymi służącymi do tworzenia programów współbieżnych i obsługi współbieżności przez system. Wstęp Zapoznanie z technikami i narzędziami programistycznymi służącymi do tworzenia programów współbieżnych i obsługi współbieżności przez system. Przedstawienie architektur sprzętu wykorzystywanych do

Bardziej szczegółowo

Wykład I: Kodowanie liczb w systemach binarnych. Studia Podyplomowe INFORMATYKA Podstawy Informatyki

Wykład I: Kodowanie liczb w systemach binarnych. Studia Podyplomowe INFORMATYKA Podstawy Informatyki Studia Podyplomowe INFORMATYKA Podstawy Informatyki Wykład I: Kodowanie liczb w systemach binarnych 1 Część 1 Dlaczego system binarny? 2 I. Dlaczego system binarny? Pojęcie bitu Bit jednostka informacji

Bardziej szczegółowo

MIKROKONTROLERY I MIKROPROCESORY

MIKROKONTROLERY I MIKROPROCESORY PLAN... work in progress 1. Mikrokontrolery i mikroprocesory - architektura systemów mikroprocesorów ( 8051, AVR, ARM) - pamięci - rejestry - tryby adresowania - repertuar instrukcji - urządzenia we/wy

Bardziej szczegółowo

Rejestry procesora. Nazwa ilość bitów. AX 16 (accumulator) rejestr akumulatora. BX 16 (base) rejestr bazowy. CX 16 (count) rejestr licznika

Rejestry procesora. Nazwa ilość bitów. AX 16 (accumulator) rejestr akumulatora. BX 16 (base) rejestr bazowy. CX 16 (count) rejestr licznika Rejestry procesora Procesor podczas wykonywania instrukcji posługuje się w dużej części pamięcią RAM. Pobiera z niej kolejne instrukcje do wykonania i dane, jeżeli instrukcja operuje na jakiś zmiennych.

Bardziej szczegółowo

Język programowania: Lista instrukcji (IL Instruction List)

Język programowania: Lista instrukcji (IL Instruction List) Język programowania: Lista instrukcji (IL Instruction List) Wykład w ramach przedmiotu: Sterowniki programowalne Opracował dr inż. Jarosław Tarnawski 08.12.2009 Norma IEC 1131 Języki tekstowe Języki graficzne

Bardziej szczegółowo

Podstawy Informatyki. Wykład 2. Reprezentacja liczb w komputerze

Podstawy Informatyki. Wykład 2. Reprezentacja liczb w komputerze Podstawy Informatyki Wykład 2 Reprezentacja liczb w komputerze Jednostki informacji Bit (ang. bit) (Shannon, 948) Najmniejsza ilość informacji potrzebna do określenia, który z dwóch równie prawdopodobnych

Bardziej szczegółowo

Technika mikroprocesorowa I Wykład 2

Technika mikroprocesorowa I Wykład 2 Technika mikroprocesorowa I Wykład 2 Literatura: www.zilog.com Z80 Family, CPU User Manual Cykle magistrali w mikroprocesorze Z80 -odczyt kodu rozkazu, -odczyt-zapis pamięci, -odczyt-zapis urządzenia we-wy,

Bardziej szczegółowo