Programowanie Funkcyjne. Marcin Kubica Świder,
|
|
- Patryk Smoliński
- 8 lat temu
- Przeglądów:
Transkrypt
1 Programowanie Funkcyjne Marcin Kubica Świder,
2 Czym jest programowanie funkcyjne? Obliczalne pojęcia matematyczne. Definicje stałych i funkcji i relacji. Wszystkie definicje są konstruktywne, tzn. określają sposób obliczenia danej wartości. Czy to wystarcza, żeby programować? TAK!
3 Czym nie jest programowanie funkcyjne? Brak zmiennych i przypisania. Brak pętli i instrukcji. Wzory matematyczne, to nie ciąg czynności do wykonania. We wzorach matematycznych brak jest pojęcia czasu.
4 Prosty przykład Dane są dwa prostokąty o bokach równoległych do osi układu współrzędnych. Jaka jest powierzchnia ich przecięcia? (x' 2,y' 2 ) (x 2,y 2 ) (x 1,y 1 ) (x' 1,y' 1 )
5 Prosty przykład c.d. Prostokąt można potraktować jak produkt kartezjański dwóch przedziałów. Problem można sprowadzić do przecięcia dwóch przedziałów. Powierzchnia przecięcia ((x 1,y 1 ),(x 2,y 2 )) i ((x' 1,y' 1 ),(x' 2,y' 2 )) = min (x 2,x' 2 ) max (x 1,x' 1 ) * min (y 2,y' 2 ) max (y 1,y' 1 )
6 Prosty przykład c.d. Taki wzór to już prawie program: let przeciecie (x1,x2) (y1,y2) = max (min x2 y2 - max x1 y1) 0;; let powierzchnia ((x1,y1),(x2,y2)) ((x1p,y1p),(x2p,y2p)) = przeciecie (x1,x2) (x1p,x2p) * przeciecie (y1,y2) (y1p,y2p);;
7 Silnia przykład rekurencji Wzór matematyczny na silnię: 1 jeśli n 1 n!={ } n (n 1)! wpp. Program: let rec fac n if n <= 1 then 1 else n * fac (n 1);; Obliczenie: fac 4 = 4*fac 3 = 4*3*fac 2 = 4*3*2*fac 1 = 4*3*2*1 = 24
8 Liczby Fibonacciego pierwsza odsłona Definicja ciągu Fibonacciego Fib 1 =Fib 2 =1 Fib n +2 =Fib n + Fib n+1 let rec fib n = if n <= 2 then 1 else fib (n - 1) + fib (n 2);; fib 5 = fib 4 + fib 3 = fib3 + fib 2 + fib 2 + fib 1= fib 2 + fib = = 5
9 Liczby Fibonacciego druga odsłona Zdefiniujmy pomocniczą funkcję f : f ( Fib k, Fib k+1,n)=fib k +n let rec f(a, b, n) = if n = 0 then a else f(b, (a + b), (n-1));; let fib n = f(1, 1, n-1);; fib 5 = f(1, 1, 4) = f(1, 2, 3) = f(2, 3, 2) = f(3, 5, 1) = f(5,8,0) = 5
10 Liczby Fibonacciego, c.d. W programowaniu funkcyjnym często łatwo napisać (nieefektywny) program. Napisanie programu efektywnego wymaga więcej wysiłku. Ćwiczenie: Jak zapisać jeszcze efektywniejszy program obliczający liczby Fibonacciego?
11 Garść technikaliów Podstawowe typy wartości: liczby całkowite (42, 2+2), liczby zmiennopozycyjne (3.14, 8.0 *. 5.25), wartości logiczne (true, flase, &&,, not), ciągi (listy) ([1; 2; 3], [], głowa::ogon), pary, trójki, n-tki ( (4, true, 5.34), (x, y), () ).
12 Garść technikaliów, c.d. Dopasowywanie wzorców: match <wartosc> with <wzorzec> -> <wartosc>... <wzorzec> -> <wartosc> match [1;2;3] with [] -> 0 h::t -> 2 * h match (3,6) with (x,y) -> x*y + (x+1)*y
13 Konstytucja programowania funkcyjnego Funkcje są pełnoprawnymi obywatelami, tak jak inne wartości. Konsekwencje: definiowanie (nazwanych) funkcji i stałych, funkcje mogą być wartością wyrażeń, funkcje mogą być argumentami funkcji, funkcje mogą być wynikami funkcji.
14 λ-abstrakcja Forma zapisu funkcji nienazwanych. Co jest potrzebne do zdefiniowania funkcji? x 2 x+1 fun x -> 2 * x + 1 Poniższe definicje są równoważne: let kwadrat x = x * x;; let kwadrat = fun x -> x * x;;
15 Funkcje wyższych rzędów Składanie funkcji let zloz f g = fun x -> f (g x);; Identyczność let id x = x;; Potęgowanie funkcji let rec potega f n = if n = 0 then id else zloz (potega f (n-1)) f;; Jaka jest dziedzina i przeciwdziedzina funkcji potega?
16 Funkcje przetwarzające listy Przykłady typowych funkcji przetwarzających listy: let rec length l = match l with [] -> 0 h::t -> 1 + length t;; let rec sumuj l = match l with [] -> 0 h::t -> h + sumuj t;;
17 Funkcje przetwarzające listy, c.d. Ogólny schemat funkcji przetwarzającej listy, jako funkcja wyższego rzędu: let rec fold f a l = match l with [] -> a h::t -> fold f (f a h) t;; Zastosowanie schematu: let length l = fold (fun a x -> a + 1) 0 l;; let sumuj l = fold (+) 0 l;;
18 Origami przykład zastosowania funkcji wyższych rzędów Zadanie: Dana jest kartka papieru oraz ciąg złożeń. Zaprogramuj funkcję, która dla danego punktu określa ile warstw papieru jest w danym punkcie. Na początku kartka to kwadrat jednostkowy. Zgięcia są dane jako proste (skierowane), wzdłuż których zginamy papier (z lewa na prawo). Stan kartki można reprezentować za pomocą funkcji, która punktom przyporządkowuje liczbę warstw papieru.
19 Origami let kwadrat (x,y) = if 0.0 <= x && x <= 1.0 && 0.0 <= y && y <= 1.0 then 1 else 0;; let po_lewej ((x1,y1), (x2,y2)) (x,y) =... let odbij ((x1,y1), (x2,y2)) (x,y) =... let zloz k l = fun p-> if po_lewej l p then 0 else k p + k (odbij l p);; let origami l = fold zloz kwadrat l;;
20 Procedury wyższych rzędów, c.d. Fold, to tylko jeden z typowych schematów przetwarzania list. Mapa let map f l = fold_right (fun h t -> (f h)::t) l [];; Filtr let filter p l = fold_right (fun h t -> if p h then h::t else t) l [];;
21 Przykład sito Eratostenesa let rec ints a b = if a > b then [] else a::ints (a+1) b;; let rec sito l = match l with [] -> [] h::t -> h::sito (filter(fun x->x mod h<>0) t);; let eratostenes n = sito (ints 2 n);;
22 Uleniwianie Wartość funkcji jest obliczana dopiero gdy znane są wartości argumentów. Można opóźnić moment obliczenia wartości funkcji, przez dodanie sztucznego argumentu. Odroczona wartość x, to: fun () -> x Wymuszenie obliczenia wartości: let force x = x ();; Uleniwianie ze spamiętywaniem.
23 Funkcje dużo wyższych rzędów Funkcje są wystarczająco silnym narzędziem, żeby za ich pomocą zaimplementować inne typy danych. Wartości logiczne. let prawda x y = x;; let falsz x y = y;; let i x y = x y falsz;; let lub x y = x prawda y;; let nie x a b = x b a;; let jesli w k a = force (w k a);;
24 Funkcje dużo wyższych rzędów Produkty kartezjańskie let pr x y = function f -> f x y;; let p1 p = p prawda;; let p2 p = p falsz;; Liczby naturalne Churcha. Liczbę n utorzsamiamy z podnoszeniem funkcji do n-tej potęgi. n=f f n
25 Procedury dużo wyższych rzędów let zero f = id;; let jeden f = f;; let inc n f = zloz (n f) f;; let plus m n f = zloz (m f) (n f);; let razy = zloz;;
26 Procedury dużo wyższych rzędów let test_zera x = x (function _ -> falsz) prawda;; let dec n f x = p1 (n (fun p -> pr(p2 p) (f(p2 p))) (pr x x));; let minus m n = (n dec) m;; let wieksze m n = nie (test_zera (minus m n));;
27 Strumienie Strumień = lista z uleniwionym ogonem Podstawowe operacje: Cons (głowa, ogon) Nil = pusty strumień head (strumień) = głowa tail (strumień) = ogon Strumienie mogą być nieskończone i mogą być definiowane rekurencyjnie.
28 Strumień liczb pierwszych Schemat sita Eratostenesa
29 Strumień liczb pierwszych, c.d. let rec sito s = Cons (head s, sito (sitko (head s) (tail s)));; let primes = sito (integers_from 2);; let primes = sito (integers_from 2);;
30 Strumień liczb pierwszych, c.d. drugie podejście let rec primes = Cons (2, filter_stream prime (integers_from 3)); and prime n = let rec iter ps = in if square (head ps) > n then true else if divisible n (head ps) then false else iter (tail ps) iter primes
Wstęp do Programowania potok funkcyjny
Wstęp do Programowania potok funkcyjny Marcin Kubica 2010/2011 Outline 1 Pojęcie typu Definition (Typ danych) Typ danych to zbiór wartości wraz z zestawem podstawowych operacji na tych wartościach. Typy
Wstęp do Programowania potok funkcyjny
Wstęp do Programowania potok funkcyjny Marcin Kubica 2010/2011 Outline Procedury wyższych rzędów 1 Procedury wyższych rzędów jako abstrakcje konstrukcji programistycznych Intuicje Procedury wyższych rzędów
Wstęp do Programowania potok funkcyjny
i programowanie dynamiczne Wstęp do Programowania potok funkcyjny Marcin Kubica 2010/2011 i programowanie dynamiczne Outline 1 i programowanie dynamiczne i programowanie dynamiczne Rekurencyjny zapis rozwiązania
Wstęp do Programowania potok funkcyjny
Wstęp do Programowania potok funkcyjny Marcin Kubica 2016/2017 Outline 1 Pojęcie typu Definition (Typ danych) Typ danych to zbiór wartości wraz z zestawem podstawowych operacji na tych wartościach. Typy
Wstęp do Programowania potok funkcyjny
Wstęp do Programowania potok funkcyjny Marcin Kubica 2010/2011 Outline Wyszukiwanie wzorców w tekście 1 Wyszukiwanie wzorców w tekście Problem wyszukiwania wzorca w tekście Na tym wykładzie zajmiemy się
Podstawy programowania funkcjonalnego
Podstawy programowania funkcjonalnego haskell.mariuszrozycki.pl Mariusz Różycki Churchill College, University of Cambridge rev. 2014.03.27.1 Wprowadzenie Materiały haskell.mariuszrozycki.pl Slajdy (w tym
Programowanie funkcyjne Wykład 13. Siła wyrazu rachunku lambda
Programowanie funkcyjne Wykład 13. Siła wyrazu rachunku lambda Zdzisław Spławski Zdzisław Spławski: Programowanie funkcyjne, Wykład 13. Siła wyrazu rachunku lambda 1 Wstęp Wartości logiczne Liczby naturalne
Składnia funkcji i Rekurencja w języku Haskell
Składnia funkcji i w języku Haskell Tomasz Ostrowski, Adrian Niechciał, Michał Workiewicz, Marcin Wilk 26 marca 2015 Składnia funkcji i w języku Haskell Spis treści Składnia funkcji Tomasz Ostrowski Adrian
FUNKCJA REKURENCYJNA. function s(n:integer):integer; begin if (n>1) then s:=n*s(n-1); else s:=1; end;
Rekurencja Wykład: rekursja, funkcje rekurencyjne, wywołanie samej siebie, wyznaczanie poszczególnych liczb Fibonacciego, potęgowanie, algorytm Euklidesa REKURENCJA Rekurencja (z łac. recurrere), zwana
Programowanie funkcyjne. Wykªad 13
Programowanie funkcyjne. Wykªad 13 Siªa wyrazu rachunku lambda Zdzisªaw Spªawski Zdzisªaw Spªawski: Programowanie funkcyjne. Wykªad 13, Siªa wyrazu rachunku lambda 1 Wst p Warto±ci logiczne Liczby naturalne
Wstęp do programowania
Wstęp do programowania Programowanie funkcyjne Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk(Wydział Fizyki) WP w. XIV Jesień 2013 1 / 25 Paradygmaty programowania Programowanie imperatywne Program
Analiza algorytmów zadania podstawowe
Analiza algorytmów zadania podstawowe Zadanie 1 Zliczanie Zliczaj(n) 1 r 0 2 for i 1 to n 1 3 do for j i + 1 to n 4 do for k 1 to j 5 do r r + 1 6 return r 0 Jaka wartość zostanie zwrócona przez powyższą
PARADYGMATY I JĘZYKI PROGRAMOWANIA. Programowanie funkcyjne (w- 9)
PARADYGMATY I JĘZYKI PROGRAMOWANIA Programowanie funkcyjne () Zagadnienia 2 Wstęp Rachunek lambda i programowanie funkcjonalne (Podstawa: An introduc/on to func/onal programming through lambda calculus.
Programowanie funkcyjne wprowadzenie Specyfikacje formalne i programy funkcyjne
Programowanie funkcyjne wprowadzenie Specyfikacje formalne i programy funkcyjne dr inż. Marcin Szlenk Politechnika Warszawska Wydział Elektroniki i Technik Informacyjnych m.szlenk@elka.pw.edu.pl Paradygmaty
Wstęp do Programowania potok funkcyjny
Wstęp do Programowania potok funkcyjny Marcin Kubica 2010/2011 Outline 1 Kilka podstawowych pojęć Definition Programy imperatywne zmieniają stan, czyli wartości zmiennych. Asercja = warunek logiczny, który
ALGORYTMY I STRUKTURY DANYCH
KATEDRASYSTEMÓWOBLICZENIOWYCH ALGORYTMY I STRUKTURY DANYCH 1.Rekurencja Rekurencja inaczej rekursja (ang. recursion) to wywołanie z poziomu metody jej samej. Programowanie z wykorzytaniem rekurencji pozwala
Teoretyczne Podstawy Języków Programowania Wykład 4. Siła wyrazu rachunku λ
Teoretyczne Podstawy Języków Programowania Wykład 4. Siła wyrazu rachunku λ Zdzisław Spławski Zdzisław Spławski: Teoretyczne Podstawy Języków Programowania, Wykład 4. Siła wyrazu rachunku λ 1 Wstęp Wartości
Języki i Paradygmaty Programowania
Języki i Paradygmaty Programowania Odkrywamy Haskell Marcin Benke 24 lutego 2014 Odkrywamy Haskell Haskell zasadniczo kompilowany, ale też interpreter: ghci $ ghci GHCi, version 7.6.2: http://www.haskell.org/ghc/
Informatyka A. Algorytmy
Informatyka A Algorytmy Spis algorytmów 1 Algorytm Euklidesa....................................... 2 2 Rozszerzony algorytm Euklidesa................................ 2 3 Wyszukiwanie min w tablicy..................................
PROGRAMOWANIE W PYTHONIE OD PIERWSZYCH KROKÓW
PROGRAMOWANIE W PYTHONIE OD PIERWSZYCH KROKÓW http://metodycy.torun.pl/ m.informatyka@metodycy.torun.pl 1. Wprowadzenie do Pythona podstawowe informacje Python to język programowania wysokiego poziomu,
λ parametry. wartość funkcji suma = λ x y. x + y kwadrat = λ x. x * x K.M. Ocetkiewicz, 2008 WETI, PG 2 K.M. Ocetkiewicz, 2008 WETI, PG 3
Organizacja przedmiotu Języki programowania (Programming language concepts) Krzysztof M. Ocetkiewicz pok. 205 email: Krzysztof.Ocetkiewicz@eti.pg.gda.pl konsultacje: czwartek 10:15-11.00, 13:15-14:00 projekt:
Definicje wyższego poziomu
Definicje wyższego poziomu Interpreter Scheme-a nie będzie narzekad w przypadku wystąpienia niezdefionowanej zmiennej w ciele wyrażenia lambda dopóki nie będzie zastosowana Przykład braku informacji o
Wykład 5 Listy leniwe
Wykład 5 Listy leniwe Listy leniwe Funkcjonały dla list leniwych Przykład: generowanie liczb pierwszych metodą sita Eratostenesa Algorytmy przeszukiwania przestrzeni stanów Przykład: problem ośmiu hetmanów
Wstęp do Programowania potok funkcyjny
Wstęp do Programowania potok funkcyjny Marcin Kubica 2010/2011 Outline Programowanie imperatywne 1 Programowanie imperatywne Intuicje Programowanie imperatywne Paradygmat programowania imperatywnego: program
Programowanie strukturalne i obiektowe. Funkcje
Funkcje Często w programach spotykamy się z sytuacją, kiedy chcemy wykonać określoną czynność kilka razy np. dodać dwie liczby w trzech miejscach w programie. Oczywiście moglibyśmy to zrobić pisząc trzy
Programowanie strukturalne. Opis ogólny programu w Turbo Pascalu
Programowanie strukturalne Opis ogólny programu w Turbo Pascalu STRUKTURA PROGRAMU W TURBO PASCALU Program nazwa; } nagłówek programu uses nazwy modułów; } blok deklaracji modułów const } blok deklaracji
REKURENCJA W JĘZYKU HASKELL. Autor: Walczak Michał
REKURENCJA W JĘZYKU HASKELL Autor: Walczak Michał CZYM JEST REKURENCJA? Rekurencja zwana rekursją, polega na wywołaniu przez funkcję samej siebie. Algorytmy rekurencyjne zastępują w pewnym sensie iteracje.
Wykład 8. Rekurencja. Iterować jest rzeczą ludzką, wykonywać rekursywnie boską. L. Peter Deutsch
Wykład 8 Iterować jest rzeczą ludzką, wykonywać rekursywnie boską. Smok podsuszony zmok (patrz: Zmok). Zmok zmoczony smok (patrz: Smok). L. Peter Deutsch Stanisław Lem Wizja lokalna J. Cichoń, P. Kobylański
Wieczorowe Studia Licencjackie Wrocław, Wykład nr 6 (w oparciu o notatki K. Lorysia, z modyfikacjami) Sito Eratostenesa
Wieczorowe Studia Licencjackie Wrocław, 7.11.2006 Wstęp do programowania Wykład nr 6 (w oparciu o notatki K. Lorysia, z modyfikacjami) Sito Eratostenesa Zaprezentujemy teraz algorytm na wyznaczanie wszystkich
//warunki początkowe m=500; T=30; c=0.4; t=linspace(0,t,m); y0=[-2.5;2.5];
4.3. Przykłady wykorzystania funkcji bibliotecznych 73 MATLAB % definiowanie funkcji function [dx]=vderpol(t,y) global c; dx=[y(2); c*(1-y(1)^2)*y(2)-y(1)]; SCILAB // definiowanie układu function [f]=vderpol(t,y,c)
Programowanie - wykład 4
Programowanie - wykład 4 Filip Sośnicki Wydział Fizyki Uniwersytet Warszawski 20.03.2019 Przypomnienie Prosty program liczący i wyświeltający wartość silni dla wprowadzonej z klawiatury liczby: 1 # include
Bash - wprowadzenie. Bash - wprowadzenie 1/39
Bash - wprowadzenie Bash - wprowadzenie 1/39 Bash - wprowadzenie 2/39 Czym jest bash? Rysunek : Zadanie powłoki to ukrycie wywołań systemowych Bash - wprowadzenie 3/39 Czym jest bash? Przykład polecenia:
1 Powtórzenie wiadomości
1 Powtórzenie wiadomości Zadanie 1 Napisać program, który w trybie dialogu z użytkownikiem przyjmie liczbę całkowitą, a następnie wyświetli informację czy jest to liczba parzysta czy nieparzysta oraz czy
Obliczenia na stosie. Wykład 9. Obliczenia na stosie. J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 266 / 303
Wykład 9 J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 266 / 303 stos i operacje na stosie odwrotna notacja polska języki oparte na ONP przykłady programów J. Cichoń, P. Kobylański Wstęp
Paradygmaty programowania
Paradygmaty programowania Jacek Michałowski, Piotr Latanowicz 15 kwietnia 2014 Jacek Michałowski, Piotr Latanowicz () Paradygmaty programowania 15 kwietnia 2014 1 / 12 Zadanie 1 Zadanie 1 Rachunek predykatów
Elementy języka Scheme
Elementy języka Scheme Historia języka Lisp Historia języka Lisp Wyrażenia i ewaluacja wyrażeń Identyfikatory i wyrażenie let Wyrażenia lambda Definicje globalne Wyrażenia warunkowe Przypisanie Kontynuacje
Ćwiczenia z wyliczania wartości funkcji
Ćwiczenia z wyliczania wartości funkcji 4 października 2011 1 Wprowadzenie Wyliczanie wartości wyrażenia nie jest sprawą oczywistą, szczególnie jeżeli chodzi o aplikację funkcji. Poniższy tekst nie jest
wykład II uzupełnienie notatek: dr Jerzy Białkowski Programowanie C/C++ Język C - funkcje, tablice i wskaźniki wykład II dr Jarosław Mederski Spis
i cz. 2 Programowanie uzupełnienie notatek: dr Jerzy Białkowski 1 i cz. 2 2 i cz. 2 3 Funkcje i cz. 2 typ nazwa ( lista-parametrów ) { deklaracje instrukcje } i cz. 2 typ nazwa ( lista-parametrów ) { deklaracje
Wstęp do programowania. Drzewa. Piotr Chrząstowski-Wachtel
Wstęp do programowania Drzewa Piotr Chrząstowski-Wachtel Drzewa Drzewa definiują matematycy, jako spójne nieskierowane grafy bez cykli. Równoważne określenia: Spójne grafy o n wierzchołkach i n-1 krawędziach
Języki programowania Haskell
Języki programowania Haskell zadanie projektowe nr. 4 2014/15 K. Turowski, T. Goluch 1. Kompilacja, uruchamianie i Hello world Kompilacja i uruchamianie: ghc --make hello.hs./hello Interaktywny interpreter:
Grafem nazywamy strukturę G = (V, E): V zbiór węzłów lub wierzchołków, Grafy dzielimy na grafy skierowane i nieskierowane:
Wykład 4 grafy Grafem nazywamy strukturę G = (V, E): V zbiór węzłów lub wierzchołków, E zbiór krawędzi, Grafy dzielimy na grafy skierowane i nieskierowane: Formalnie, w grafach skierowanych E jest podzbiorem
Schematy blokowe I. 1. Dostępne bloki: 2. Prosty program drukujący tekst.
Schematy blokowe I Jeżeli po schematach blokowych będzie używany język C, to należy używać operatorów: '&&', ' ', '!=', '%' natomiast jeśli Ruby to 'and', 'or', '%', '!='. 1. Dostępne bloki: a) początek:
Zasada indukcji matematycznej
Zasada indukcji matematycznej Twierdzenie 1 (Zasada indukcji matematycznej). Niech ϕ(n) będzie formą zdaniową zmiennej n N 0. Załóżmy, że istnieje n 0 N 0 takie, że 1. ϕ(n 0 ) jest zdaniem prawdziwym,.
4. Funkcje. Przykłady
4. Funkcje Przykłady 4.1. Napisz funkcję kwadrat, która przyjmuje jeden argument: długość boku kwadratu i zwraca pole jego powierzchni. Używając tej funkcji napisz program, który obliczy pole powierzchni
Wykład 3 Funkcje wyższych rzędów
Wykład 3 Funkcje wyższych rzędów Funkcje jako dane Rozwijanie i zwijanie funkcji Składanie funkcji Funkcjonały dla list Funkcje wyższego rzędu jako struktury sterowania Semantyka denotacyjna prostego języka
O LICZBACH NIEOBLICZALNYCH I ICH ZWIĄZKACH Z INFORMATYKĄ
O LICZBACH NIEOBLICZALNYCH I ICH ZWIĄZKACH Z INFORMATYKĄ Jakie obiekty matematyczne nazywa się nieobliczalnymi? Jakie obiekty matematyczne nazywa się nieobliczalnymi? Najczęściej: a) liczby b) funkcje
Wstęp do Programowania potok funkcyjny
Wstęp do Programowania potok funkcyjny Marcin Kubica 2016/2017 Outline Moduły i bariery abstrakcji 1 Moduły i bariery abstrakcji Moduły co to jest i po co to jest? Duży system dzielimy na mniejsze, łatwiejsze
Przykładowo, jeśli współrzędna x zmienia się od 0 do 8 co 1, a współrzędna y od 12 co 2 do 25, to punkty powinny wyglądać następująco:
Informatyka I Przypomnienie wiadomości z poprzednich zajęć: Kolokwium!!! II Nowe wiadomości: 1 Funkcje trójwymiarowe Wykresy trójwymiarowe tworzone są na podstawie funkcji dwóch zmiennych Wejściem takich
Informatyka 1. Wyrażenia i instrukcje, złożoność obliczeniowa
Informatyka 1 Wykład III Wyrażenia i instrukcje, złożoność obliczeniowa Robert Muszyński ZPCiR ICT PWr Zagadnienia: składnia wyrażeń, drzewa rozbioru gramatycznego i wyliczenia wartości wyrażeń, operatory
Programowanie. Lista zadań nr 15. Na ćwiczenia 11, 19 i 23 czerwca 2008
Programowanie Lista zadań nr 15 Na ćwiczenia 11, 19 i 23 czerwca 2008 Zadanie 1. Pokaż, że w systemie z polimorfizmem parametrycznym można napisać program P n rozmiaru O(n), którego typ ma rozmiar 2 2Ω(n).
Podstawy algorytmiki i programowania - wykład 2 Tablice dwuwymiarowe cd Funkcje rekurencyjne
1 Podstawy algorytmiki i programowania - wykład 2 Tablice dwuwymiarowe cd Funkcje rekurencyjne Treści prezentowane w wykładzie zostały oparte o: S. Prata, Język C++. Szkoła programowania. Wydanie VI, Helion,
Zadanie 1. Algorytmika ćwiczenia
Zadanie 1 Algorytmika ćwiczenia Zadanie 2 Zadanie 3 Zadanie 4 Zadanie 5 Zadanie 6 Zadanie 7 Wiązka zadań Ułamki dwójkowe W systemach pozycyjnych o podstawie innej niż 10 można zapisywać nie tylko liczby
Podstawy programowania skrót z wykładów:
Podstawy programowania skrót z wykładów: // komentarz jednowierszowy. /* */ komentarz wielowierszowy. # include dyrektywa preprocesora, załączająca biblioteki (pliki nagłówkowe). using namespace
Jak należy się spodziewać, mamy. Zauważmy jednak, że nie zachodzi równość
11. Wykład 11: Rachunek λ. Obliczenia i obliczalność. Rachunek λ jest systemem pozornie bardzo prostym. Abstrakcja i aplikacja wydają się trywialnymi operacjami, i może się zdawać, że niczego ciekawego
Wykład 3 Funkcje wyższych rzędów
Wykład 3 Funkcje wyższych rzędów Funkcje jako dane Rozwijanie i zwijanie funkcji Składanie funkcji Funkcjonały dla list Funkcje wyższego rzędu jako struktury sterowania Semantyka denotacyjna prostego języka
JAVAScript w dokumentach HTML (2)
Informatyka ćw.6 JAVAScript w dokumentach HTML (2) Interakcyjne wprowadzanie danych Jednym ze sposobów jest stosowanie metody prompt dla wbudowanego obiektu window: zmienna= prompt("tekst zachęty, np.
Algorytm i złożoność obliczeniowa algorytmu
Algorytm i złożoność obliczeniowa algorytmu Algorytm - przepis postępowania, którego wykonanie prowadzi do rozwiązania określonego problemu określa czynności, jakie należy wykonać wyszczególnia wszystkie
Analiza algorytmów zadania podstawowe
Analiza algorytmów zadania podstawowe 15 stycznia 2019 Zadanie 1 Zliczanie Zliczaj(n) 1 r 0 2 for i 1 to n 1 3 do for j i + 1 to n 4 do for k 1 to j 5 do r r + 1 6 return r P Jaka wartość zostanie zwrócona
Algorytmy i struktury danych
Algorytmy i struktury danych Funkcje i procedury Zasięg zmiennych Rekurencja Witold Marańda maranda@dmcs.p.lodz.pl 1 Modularyzacja programu Algorytmy strukturalne moŝna redukować, zastępując złoŝone fragmenty
Technologie informacyjne Wykład VII-IX
Technologie informacyjne -IX A. Matuszak 19 marca 2013 A. Matuszak Technologie informacyjne -IX Rekurencja A. Matuszak (2) Technologie informacyjne -IX Gotowanie jajek na miękko weż czysty garnek włóż
Technologie i systemy oparte na logice rozmytej
Zagadnienia I Technologie i systemy oparte na logice rozmytej Mają zastosowania w sytuacjach kiedy nie posiadamy wystarczającej wiedzy o modelu matematycznym rządzącym danym zjawiskiem oraz tam gdzie zbudowanie
Rekurencja (rekursja)
Rekurencja (rekursja) Rekurencja wywołanie funkcji przez nią samą wewnątrz ciała funkcji. Rekurencja może być pośrednia funkcja jest wywoływana przez inną funkcję, wywołaną (pośrednio lub bezpośrednio)
Indukcja. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak
Indukcja Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak Charakteryzacja zbioru liczb naturalnych Arytmetyka liczb naturalnych Jedną z najważniejszych teorii matematycznych jest arytmetyka
Funkcje. Deklaracja funkcji. Definicja funkcji. Wykorzystanie funkcji w programie.
Funkcje Deklaracja funkcji typ funkcji identyfikator_funkcji(lista parametrów formalnych); Typ funkcji określa typ wartości zwracanej przez funkcję (typ zdefiniowany pierwotnie jak int, typ zdefiniowany
Programowanie w Logice Przykłady programów. Przemysław Kobylański
Programowanie w Logice Przykłady programów Przemysław Kobylański Język Imperator 1 jest prostym językiem imperatywnym. Jego składnię opisuje poniższa gramatyka BNF: PROGRAM ::= PROGRAM ::= INSTRUKCJA ;
Programowanie Delphi obliczenia, schematy blokowe
Informatyka II MPZI2 ćw.2 Programowanie Delphi obliczenia, schematy blokowe Zastosowania obliczeń numerycznych Wyrażenia arytmetyczne służą do zapisu wykonywania operacji obliczeniowych w trakcie przebiegu
Podstawy programowania. Podstawy C# Przykłady algorytmów
Podstawy programowania Podstawy C# Przykłady algorytmów Proces tworzenia programu Sformułowanie problemu funkcje programu zakres i postać danych postać i dokładność wyników Wybór / opracowanie metody rozwiązania
Rekurencja. Przykład. Rozważmy ciąg
Rekurencja Definicje rekurencyjne Definicja: Mówimy, iż ciąg jest zdefiniowany rekurencyjnie, jeżeli: (P) Określony jest pewien skończony zbiór wyrazów tego ciągu, zwykle jest to pierwszy wyraz tego ciągu
Poprawność semantyczna
Poprawność składniowa Poprawność semantyczna Poprawność algorytmu Wypisywanie zdań z języka poprawnych składniowo Poprawne wartościowanie zdań języka, np. w języku programowania skutki wystąpienia wyróżnionych
- Dla danego zbioru S zbiór wszystkich jego podzbiorów oznaczany symbolem 2 S.
1 Zbiór potęgowy - Dla danego zbioru S zbiór wszystkich jego podzbiorów oznaczany symbolem 2 S. - Dowolny podzbiór R zbioru 2 S nazywa się rodziną zbiorów względem S. - Jeśli S jest n-elementowym zbiorem,
Instrukcje pętli przykłady. Odgadywanie hasła. 1) Program pyta o hasło i podaje adres, gdy hasło poprawne lub komunikat o błędnym haśle.
Instrukcje pętli przykłady. Odgadywanie hasła. 1) Program pyta o hasło i podaje adres, gdy hasło poprawne lub komunikat o błędnym haśle. Sub Hasla1() Dim wzor_hasla As String Dim haslo As String Dim adres
Wprowadzenie komentarzy do programu
Wprowadzenie komentarzy do programu W programach mogą wystąpić objaśnienia, uwagi zamykane w klamrach { } lub nawiasach z gwiazdką (* *). Komentarze ułatwiają zrozumienie programów. Przyjmijmy, że komentarze
Funkcje. Piotr Zierhoffer. 7 października Institute of Computer Science Poznań University of Technology
Funkcje Piotr Zierhoffer Institute of Computer Science Poznań University of Technology 7 października 2012 Funkcje Funkcja podprogram. Nazwany blok kodu realizujacy jakieś zadanie. sin(x), arccos(x), min(a,
Zadanie 1. Suma silni (11 pkt)
2 Egzamin maturalny z informatyki Zadanie 1. Suma silni (11 pkt) Pojęcie silni dla liczb naturalnych większych od zera definiuje się następująco: 1 dla n = 1 n! = ( n 1! ) n dla n> 1 Rozpatrzmy funkcję
Podprogramy. Procedury
Podprogramy Turbo Pascal oferuje metody ułatwiające tworzenie struktury programu, szczególnie dotyczy to większych programów. Przy tworzeniu większego programu stosuje się jego podział na kilka mniejszych
Wstęp do informatyki
Wstęp do informatyki Algorytmy i struktury danych Piotr Fulmański Wydział Matematyki i Informatyki, Uniwersytet Łódzki, Polska 30 października 2009 Spis treści 1 Algorytm 2 Przetwarzane informacje 3 Struktury
Wstęp do Programowania potok funkcyjny
Wstęp do Programowania potok funkcyjny Marcin Kubica 2010/2011 Outline Funktory 1 Funktory Intuicje Funktory Intuicje Funktory to moduły sparametryzowane (innymi modułami). Wykorzystywanie jednych modułów
Logika i teoria mnogości Wykład 14
Teoria rekursji Teoria rekursji to dział logiki matematycznej zapoczątkowany w latach trzydziestych XX w. Inicjatorzy tej dziedziny to: Alan Turing i Stephen Kleene. Teoria rekursji bada obiekty (np. funkcje,
Podstawy programowania 2. Temat: Funkcje i procedury rekurencyjne. Przygotował: mgr inż. Tomasz Michno
Instrukcja laboratoryjna 6 Podstawy programowania 2 Temat: Funkcje i procedury rekurencyjne Przygotował: mgr inż. Tomasz Michno Wstęp teoretyczny Rekurencja (inaczej nazywana rekursją, ang. recursion)
Laboratorium nr 1. i 2.
Laboratorium nr 1. i 2. Celem laboratorium jest zapoznanie się ze zintegrowanym środowiskiem programistycznym, na przykładzie podstawowych aplikacji z obsługą standardowego wejścia wyjścia, podstawowych
Rekurencja, schemat rekursji i funkcje pierwotnie rekurencyjne
Rekurencja, schemat rekursji i funkcje pierwotnie rekurencyjne Elementy Logiki i Teorii Mnogości 2015/2016 Zadanie 1. Oblicz iteracyjnie i rekurencyjnie f(4), gdzie f jest funkcją określoną na zbiorze
R. D. Tennent, The Denotational Semantics of Programming Languages [1976]
R. D. Tennent, The Denotational Semantics of Programming Languages [1976] Programowanie 2009 - seminarium grupy zaawansowanej Instytut Informatyki Uniwersytetu Wrocławskiego 1 lipca 2009 1 Motywacja Funkcje
Paradygmaty programowania
Paradygmaty programowania Paradygmat funkcyjny Cezary Bolek Katedra Informatyki UŁ 1 Dlaczego programowanie funkcyjne? Języki imperatywne, a w duŝym stopniu takŝe obiektowe, są bardzo silnie związane z
LibreOffice Calc VBA
LibreOffice Calc VBA LibreOffice Calc umożliwia tworzenie własnych funkcji i procedur przy użyciu składni języka VBA. Dostęp do edytora makr: Narzędzia->Makra->Zarządaj makrami->libreoffice Calc Aby rozpocząć
Wstęp do programowania. Różne różności
Wstęp do programowania Różne różności Typy danych Typ danych określa dwie rzeczy: Jak wartości danego typu są określane w pamięci Jakie operacje są dozwolone na obiektach danego typu 2 Rodzaje typów Proste
Zajęcia nr. 3 notatki
Zajęcia nr. 3 notatki 22 kwietnia 2005 1 Funkcje liczbowe wprowadzenie Istnieje nieskończenie wiele funkcji w matematyce. W dodaktu nie wszystkie są liczbowe. Rozpatruje się funkcje które pobierają argumenty
Wstęp do programowania
Wstęp do programowania Rekurencja, metoda dziel i zwyciężaj Paweł Daniluk Wydział Fizyki Jesień 2014 P. Daniluk(Wydział Fizyki) WP w. VIII Jesień 2014 1 / 27 Rekurencja Recursion See Recursion. P. Daniluk(Wydział
Wstęp do programowania. Drzewa podstawowe techniki. Piotr Chrząstowski-Wachtel
Wstęp do programowania Drzewa podstawowe techniki Piotr Chrząstowski-Wachtel Drzewa wyszukiwań Drzewa często służą do przechowywania informacji. Jeśli uda sie nam stworzyć drzewo o niewielkiej wysokości
PoniŜej znajdują się pytania z egzaminów zawodowych teoretycznych. Jest to materiał poglądowy.
PoniŜej znajdują się pytania z egzaminów zawodowych teoretycznych. Jest to materiał poglądowy. 1. Instrukcję case t of... w przedstawionym fragmencie programu moŝna zastąpić: var t : integer; write( Podaj
Informatyka I. Klasy i obiekty. Podstawy programowania obiektowego. dr inż. Andrzej Czerepicki. Politechnika Warszawska Wydział Transportu 2018
Informatyka I Klasy i obiekty. Podstawy programowania obiektowego dr inż. Andrzej Czerepicki Politechnika Warszawska Wydział Transportu 2018 Plan wykładu Pojęcie klasy Deklaracja klasy Pola i metody klasy
Patrycja Prokopiuk. Zastosowanie rachunku prawdopodobieństwa w Pokerze Pięciokartowym
Patrycja Prokopiuk Zastosowanie rachunku prawdopodobieństwa w Pokerze Pięciokartowym Wrocław 7 maja 04 Spis treści Wstęp........................................ Objaśnienie obliczeń................................
5. Rekurencja. Przykłady
5. Rekurencja Uwaga! W tym rozdziale nie są omówione żadne nowe konstrukcje języka C++. Omówiona jest za to technika wykorzystująca funkcje, która pozwala na rozwiązanie pewnych nowych rodzajów zadań.
Elementy języka Scheme
Elementy języka Scheme Historia języka Lisp Wyrażenia i ewaluacja wyrażeń Identyfikatory i wyrażenie let Wyrażenia lambda Definicje globalne Wyrażenia warunkowe Przypisanie Kontynuacje Historia języka
3. Instrukcje warunkowe
. Instrukcje warunkowe Przykłady.1. Napisz program, który pobierze od użytkownika liczbę i wypisze na ekran słowo ujemna lub nieujemna, w zależności od tego czy dana liczba jest ujemna czy nie. 1 #include
2. FUNKCJE. jeden i tylko jeden element y ze zbioru, to takie przyporządkowanie nazwiemy FUNKCJĄ, lub
WYKŁAD 2 1 2. FUNKCJE. 2.1.PODSTAWOWE DEFINICJE. Niech będą dane zbiory i. Jeżeli każdemu elementowi x ze zbioru,, przyporządkujemy jeden i tylko jeden element y ze zbioru, to takie przyporządkowanie nazwiemy
Wstęp do programowania. Listy. Piotr Chrząstowski-Wachtel
Wstęp do programowania Listy Piotr Chrząstowski-Wachtel Do czego stosujemy listy? Listy stosuje się wszędzie tam, gdzie występuje duży rozrzut w możliwym rozmiarze danych, np. w reprezentacji grafów jeśli
1. Informatyka - dyscyplina naukowa i techniczna zajmująca się przetwarzaniem informacji.
Temat: Technologia informacyjna a informatyka 1. Informatyka - dyscyplina naukowa i techniczna zajmująca się przetwarzaniem informacji. Technologia informacyjna (ang.) Information Technology, IT jedna
IMIĘ NAZWISKO... grupa C... sala Egzamin ELiTM I
IMIĘ NAZWISKO............................ grupa C... sala 10... Egzamin ELiTM I 02.02.15 1. 2. 3. 4.. 1. (8 pkt.) Niech X a,b = {(x, y) R 2 : (x b) 2 + (y 1 b )2 a 2 } dla a, b R, a > 0, b 0. Wyznaczyć:
RACHUNEK LAMBDA DLA POCZĄTKUJĄCYCH
Informatyka w Edukacji, XVI UMK Toruń, 2019 RACHUNEK LAMBDA DLA POCZĄTKUJĄCYCH Wydział Matematyki i Informatyki, Uniwersytet Wrocławski tdr@cs.uni.wroc.pl; ii.uni.wroc.pl/~tdr Abstract. This paper presents
Dynamiczne struktury danych
Listy Zbiór dynamiczny Zbiór dynamiczny to zbiór wartości pochodzących z pewnego określonego uniwersum, którego zawartość zmienia się w trakcie działania programu. Elementy zbioru dynamicznego musimy co