Plan wykładu. Architektura systemów komputerowych. MnoŜenie realizacja sprzętowa (wersja 1) Układy mnoŝące liczby całkowite.
|
|
- Aleksander Pietrzak
- 7 lat temu
- Przeglądów:
Transkrypt
1 Plan wykładu rchitektura systemów komputerowych Poziom układów logicznych. Układy mnoŝące i dzielące Cezary Bolek Katedra Informatyki Układy mnoŝące liczby całkowite MnoŜenie liczb bez znaku MnoŜarka sekwencyjna dla liczb bez znaku MnoŜenie liczb ze znakiem MnoŜarka sekwencyjna dla liczb U Szybkie mnoŝarki Sumator z zachowaniem przeniesień MnoŜenie przy poszerzonej bazie Układy dzielące liczby całkowite Dzielenie liczb bez znaku Sekwencyjny układ dzielący liczby bez znaku Dzielenie ze znakiem rchitektura systemów komputerowych Cezary Bolek MnoŜenie liczb bez znaku Papier i ołówek = = Iloczyn = 56 m-bitowa mnoŝna n-bitowy mnoŝnik = (mn)-bit. iloczyn Operacje: przesuwanie i dodawanie Binarne mnoŝenie jest proste mnoŝna = mnoŝna = mnoŝna MnoŜenie realizacja sprzętowa (wersja ) Warunki początkowe: rejestru Iloczyn na Rozszerzenie zerowe mnoŝnej = []? = shift left a. Iloczyn = Iloczyn 6-bit LU add. Przesuń MnoŜną o b w lewo. Przesuń b. w prawo Iloczyn powtórzenie? MnoŜarka bity [] rchitektura systemów komputerowych Cezary Bolek rchitektura systemów komputerowych Cezary Bolek
2 MnoŜenie (wersja ) - przykład Operacja:, Iloczyn = rgumenty -bitowe, wynik 8-bitowy jest rozszerzony zerami (mnoŝenie bez znaku) [] = => DD SLL i SRL [] = => Nic nie rób SLL i SRL SLL i SRL SLL i SRL [] = => DD [] = => DD Iloczyn MnoŜarka wersja wnioski MoŜna dokonać optymalizacji w celu uproszczenia sprzętu Zamiast przesuwać mnoŝną w lewo: Przesuwanie iloczynu w prawo Generuje identyczny wynik Uproszczenie realizacji sprzętowej: Rejestr mnoŝnika moŝe zostać zmniejszony do bitów Rozmiar sumatora moŝe być takŝe zmniejszony do bitów Pojedynczy krok moŝe być wykonany w jednym cyklu Przesunięcie rejestru iloczynu i sumowanie w tym samym czasie rchitektura systemów komputerowych Cezary Bolek 5 rchitektura systemów komputerowych Cezary Bolek 6 MnoŜarka wersja MnoŜarka sekwencyjna wersja ostateczna Iloczyn w rejestrze podzielonym na dwie części: HI i LO Iloczyn przesuwany w prawo i sumator -bitowe bity -bit LU bity bity carry HI bity add LO bity [] = HI = HI []? powtórzenie? = Przesuń Iloczyn (HI,LO) w prawo Przesuń w prawo Eliminacja rejestru mnoŝnika LO = Iloczyn = HI i LO bity bity -bit LU add bity bity carry HI LO LO[] LO= = LO[]? = HI = HI Przesuń Iloczyn (HI,LO) w prawo powtórzenie? rchitektura systemów komputerowych Cezary Bolek 7 rchitektura systemów komputerowych Cezary Bolek 8
3 MnoŜarka sekwencyjna - przykład Operacja:, Iloczyn = rgumenty -bitowe, wynik 8-bitowy -bitowy sumator daje 5-bitowy wynik (carry) (LO = ) Przesuń w prawo Iloczyn = (HI, LO) LO[] = => Nic nie rób LO[] = => DD Carry Iloczyn = HI, LO Przesuń w prawo Iloczyn = (HI, LO) LO[] = => DD Przesuń w prawo Iloczyn = (HI, LO) LO[] = => DD Przesuń w prawo Iloczyn = (HI, LO) MnoŜenie liczb ze znakiem (U) MoŜliwe rozwiązanie (nieoptymalne) Konwersja mnoŝnej i mnoŝnika na liczby dodatnie Jeśli liczba jest ujemna obliczenie uzupełnienia dwójkowego i zapamiętanie znaku Przeprowadzenie mnoŝenia liczb bez znaku Wyznaczenie znaku wyniku Jeśli wynik ma być ujemny, konwersja uzyskanego wyniku na liczbę ujemną (uzupełnienie dwójkowe) Rozwiązanie optymalne MnoŜarka jak dla liczb dodatnich, lecz: Przy przesuwaniu Iloczynu w prawo rozszerzenie znakowe Jeśli mnoŝnik jest ujemny ostatni krok: odejmowanie rchitektura systemów komputerowych Cezary Bolek 9 rchitektura systemów komputerowych Cezary Bolek MnoŜenie liczb U MnoŜarka sekwencyjna dla liczb U Przypadek : Dodatni mnoŝnik = - = 5 Rozszerzenie znakowe Iloczyn = - Przypadek : Ujemny mnoŝnik = - = - Rozszerzenie znakowe (uzupelnienie dwójkowe liczby ) Iloczyn = rchitektura systemów komputerowych Cezary Bolek Podobna do mnoŝarki dla liczb bez znaku LU generuje wynik -bitowy i HI są rozszerzane znakowo Do rozszerzenia HI wykorzystuje się bit znaku (najstarszy bit LU) operacji dodawania (nie carry) bity -bit LU bity bity HI bity add, sub LO LO[] rchitektura systemów komputerowych Cezary Bolek = LO=, HI= LO[]? Pierwsze iteracji: HI = HI Ostatnia iteracja: HI = HI powtórzenie? = Przesuń Iloczyn (HI, LO) w prawo
4 MnoŜarka sekwencyjna U - przykład Operacja: (-) (-), Iloczyn = i HI są rozszerzane znakowo przed dodawaniem Ostatnie iteracja: dodanie uzupełnienia dwójkowego mnoŝnej (LO = ) Przesuń w prawo Iloczyn = (HI, LO) LO[] = => Nic nie rób LO[] = => DD Znak Iloczyn = HI, LO Przesuń w prawo Iloczyn = (HI, LO) LO[] = => DD Przesuń w prawo Iloczyn = (HI, LO) LO[] = => SUB (DD uzupełn. ) Przesuń w prawo Iloczyn = (HI, LO) rchitektura systemów komputerowych Cezary Bolek Szybkie układy mnoŝące mnoŝarka tablicowa Zastosowanie -bitowego sumatora dla kaŝdego bitu mnoŝnika sumatorów dla mnoŝenia liczb -bit Operacja ND z kaŝdym bitem mnoŝnika Iloczyn = zakumulowana, przesunięta suma KaŜdy sumator daje wynik -bit (carry) Najstarszy bit jest bitem przeniesienia Najmniej znaczący wynik mnoŝenia Starsze bity na wejście nast. sum. MoŜe być optymalizowana Zastosowanie sumatora z zachowaniem przeniesień (CS-Carry Save dder) Zastosowanie potokowości rchitektura systemów komputerowych Cezary Bolek B bits B bits -bit B B bits -bit -bit bits B bits bits bits... -bit bits bits bits bit bits bits bits P 6.. P.. P P P P Sumator z zachowaniem przeniesień Przykład dodawanie czterech liczb CS Carry Save dder a b a b a b a b a b c a b c a b c a b c Stosowany gdy sumowane musi być kilka argumentów (np. mnoŝarki Posiada wejścia i dwa wyjścia dla kaŝdego zestawu bitów (argumenty i wyniki) sumuje trzy liczby dając w wyniku sumę częściową i przeniesienie Wszystkie człony sumatora działają równolegle Przeniesienie nie musi być propagowane (RC) lub antycypowane (CL) Znaczenie szybszy niŝ inne sumatory s 5 s c c d d s s c d s B c d s s 5 s d s d d s s B C d s c out a b... s a b s Ripple Carry dder a b s c in a b c c' s'... a b c a b c c' s' Carry Save dder c' s' C Ripple Carry dder D Ripple Carry dder Ripple Carry dder S D Carry Save dder Carry Save dder Ripple Carry dder S rchitektura systemów komputerowych Cezary Bolek 5 rchitektura systemów komputerowych Cezary Bolek 6
5 MnoŜenie przy poszerzonej bazie typowe wartości składników (np. dla radix-) moŝna obliczać wstępnie lub stosować sumator CS rytmetyka liczb bez znaku Iloczyn Przesunięcie -bit Iloczyn x x x x -bity Przesunięcie -bit CS Dzielenie liczb bez znaku = 9 Iloraz Dzielnik = 7 Dzielna - Dzielnik = Iloraz Dzielnik Reszta 7 = Operację dzielenia binarnego uzyskuje się za pomocą przesuwania i odejmowania = 8 Reszta rchitektura systemów komputerowych Cezary Bolek 7 rchitektura systemów komputerowych Cezary Bolek 8 Dzielenie realizacja sprzętowa (wersja ) : Reszta = Dzielna (uzupełniona ) Załadowanie dzielnika do starszych bitów Iloraz = RóŜnica 6-bit LU Reszta Dzielnik Iloraz bity sub shift left set lsb rchitektura systemów komputerowych Cezary Bolek 9. Przesuń w prawo Dzielnik Przesuń w lewo Iloraz RóŜnica = Reszta Dzielnik RóŜnica?. Reszta = RóŜnica Ustaw najmniej znaczący bit Ilorazu powtórzenie? < Dzielenie (wersja ) - przykład Operacja: / (-bitowe dzielna i dzielnik) Iloraz:, Reszta = 8-bitowe rejestry dla Reszty i Dzielnika (8-bitowe LU) : Z < => Nic nie rób : R = Z, ustaw LSB Ilorazu : Z < => Nic nie rób : Z < => Nic nie rób Reszta (R) Dzielnik (D) RóŜnica (Z) Iloraz (I) : SRL: D; SLL: I; oblicz Z : SRL: D; SLL: I; oblicz Z : SRL: D; SLL: I; oblicz Z : SRL: D; SLL: I; oblicz Z rchitektura systemów komputerowych Cezary Bolek
6 Układ dzielący wersja wnioski MoŜna dokonać optymalizacji w celu uproszczenia sprzętu Zamiast przesuwać dzielnik w prawo: Przesuwanie reszty w lewo Generuje identyczny wynik Uproszczenie realizacji sprzętowej: Rejestr dzielnika moŝe zostać zmniejszony do bitów Rozmiar LU moŝe być takŝe zmniejszony do bitów Reszta i Iloraz mogą zostać umieszczone w tym samym rejestrze Sekwencyjny układ dzielący wersja ostateczna Przesuwania reszty w lewo daje taki sam efekt jak przesuwanie dzielnika w prawo Iloraz = Dzielna, Reszta = Dzielnik -bit LU RóŜnica bits Reszta bits Iloraz bits sub Control shift left set lsb. Przesuń w lewo (Reszta, Iloraz) RóŜnica = Reszta Dzielnik RóŜnica?. Reszta = RóŜnica Ustaw najmniej znaczący bit Ilorazu powtórzenie < rchitektura systemów komputerowych Cezary Bolek rchitektura systemów komputerowych Cezary Bolek Sekwencyjny układ dzielący przykład Operacja: / (-bitowe dzielna i dzielnik) Iloraz:, Reszta = -bitowe rejestry dla Reszty i Dzielnika (-bitowe LU) : Z < => Nic nie rób : R = Z, ustaw LSB Ilorazu : Z < => Nic nie rób : Z < => Nic nie rób Reszta (R) Iloraz (I) Dzielnik (D) RóŜnica (Z) : Przesuń w lewo, oblicz Z : Przesuń w lewo, oblicz Z : Przesuń w lewo, oblicz Z : Przesuń w lewo, oblicz Z Dzielenie liczb ze znakiem Najprostszy sposób: pamiętanie znaków Przekształć dzielną i dzielnik na wartości dodatnie Wyznacz uzupełnienie dwójkowe gdy ujemne, nic nie rób gdy dodatnie Przeprowadź dzielenie bez znaku Wyznacz znak ilorazu i reszty Znak ilorazu = Znak dzielnej XOR Znak dzielnika Znak reszty = Znak dzielnik Przekształć iloraz i resztę na ujemne jeśli ich znaki są ujemne Wyznacz uzupełnienie dwójkowe gdy mają być ujemne rchitektura systemów komputerowych Cezary Bolek rchitektura systemów komputerowych Cezary Bolek
7 Dzielenie ze znakiem - przykłady. Dodatnia Dzielna i dodatni Dzielnik Przykład: 7 / Iloraz = 5 Reszta =. Dodatnia Dzielna i ujemny Dzielnik Przykład: 7 / Iloraz = 5 Reszta =. Ujemna Dzielna i dodatni Dzielnik Przykład: 7 / Iloraz = 5 Reszta =. Ujemna Dzielna i ujemny Dzielnik Przykład: 7 / Iloraz = 5 Reszta = Zawsze musi zachodzić zaleŝność: Dzielna = Iloraz Dzielnik Reszta rchitektura systemów komputerowych Cezary Bolek 5 Operacje przesunięć Operacje arytmetyczne Operacje logiczne MnoŜenie i dzielenie w oparciu o LU None = SLL = SRL = SR = DD = SUB = ND = OR = NOR = XOR = B Jednostka logiczna Shift mount lsb 5 Shifter rchitektura systemów komputerowych Cezary Bolek 6 c dd e r < MnoŜenie i dzielenie sekwencyjne moŝna zrealizować w oparciu wielofunkcyjne LU (w wielu krokach) overflow Wybór typu oper. Shift = SLT = rith = Logic = LU Result zero rchitektura systemów komputerowych Cezary Bolek 7
Architektura systemów komputerowych. Poziom układów logicznych. Układy mnoŝące i dzielące
Architektura systemów komputerowych Poziom układów logicznych. Układy mnoŝące i dzielące Cezary Bolek Katedra Informatyki Plan wykładu Układy mnoŝące liczby całkowite MnoŜenie liczb bez znaku MnoŜarka
Bardziej szczegółowoKod znak-moduł. Wartość liczby wynosi. Reprezentacja liczb w kodzie ZM w 8-bitowym formacie:
Wykład 3 3-1 Reprezentacja liczb całkowitych ze znakiem Do przedstawienia liczb całkowitych ze znakiem stosowane są następujące kody: - ZM (znak-moduł) - U1 (uzupełnienie do 1) - U2 (uzupełnienie do 2)
Bardziej szczegółowoKod U2 Opracował: Andrzej Nowak
PODSTAWY TEORII UKŁADÓW CYFROWYCH Kod U2 Opracował: Andrzej Nowak Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz http://pl.wikipedia.org/ System zapisu liczb ze znakiem opisany w poprzednim
Bardziej szczegółowoLABORATORIUM PROCESORY SYGNAŁOWE W AUTOMATYCE PRZEMYSŁOWEJ. Zasady arytmetyki stałoprzecinkowej oraz operacji arytmetycznych w formatach Q
LABORAORIUM PROCESORY SYGAŁOWE W AUOMAYCE PRZEMYSŁOWEJ Zasady arytmetyki stałoprzecinkowej oraz operacji arytmetycznych w formatach Q 1. Zasady arytmetyki stałoprzecinkowej. Kody stałopozycyjne mają ustalone
Bardziej szczegółowoSzybkie układy mnożące
Szybkie układy mnożące Operacja mnożenia Operacje dodawania i mnożenia są podstawą algorytmów obliczania wartości innych złożonych funkcji matematycznych oraz przetwarzania sygnałów Implementacje bitowo-szeregowe
Bardziej szczegółowoSzybkie układy mnożące
Szybkie układy mnożące Operacja mnożenia Operacje dodawania i mnożenia są podstawą algorytmów obliczania wartości innych złożonych funkcji matematycznych oraz przetwarzania sygnałów Implementacje bitowo-szeregowe
Bardziej szczegółowoKod uzupełnień do dwóch jest najczęściej stosowanym systemem zapisu liczb ujemnych wśród systemów binarnych.
Kod uzupełnień do dwóch jest najczęściej stosowanym systemem zapisu liczb ujemnych wśród systemów binarnych. Jeśli bit znaku przyjmie wartość 0 to liczba jest dodatnia lub posiada wartość 0. Jeśli bit
Bardziej szczegółowoMikrooperacje. Mikrooperacje arytmetyczne
Przygotowanie: Przemysław Sołtan e-mail: kerk@moskit.ie.tu.koszalin.pl Mikrooperacje Mikrooperacja to elementarna operacja wykonywana podczas jednego taktu zegara mikroprocesora na informacji przechowywanej
Bardziej szczegółowoOperacje arytmetyczne
PODSTAWY TEORII UKŁADÓW CYFROWYCH Operacje arytmetyczne Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz http://pl.wikipedia.org/ Dodawanie dwójkowe Opracował: Andrzej Nowak Ostatni wynik
Bardziej szczegółowoPodział sumatorów. Równoległe: Szeregowe (układy sekwencyjne) Z przeniesieniem szeregowym Z przeniesieniem równoległym. Zwykłe Akumulujące
Podział sumatorów Równoległe: Z przeniesieniem szeregowym Z przeniesieniem równoległym Szeregowe (układy sekwencyjne) Zwykłe Akumulujące 1 Sumator z przeniesieniami równoległymi G i - Warunek generacji
Bardziej szczegółowoArytmetyka stałopozycyjna
Wprowadzenie do inżynierii przetwarzania informacji. Ćwiczenie 3. Arytmetyka stałopozycyjna Cel dydaktyczny: Nabycie umiejętności wykonywania podstawowych operacji arytmetycznych na liczbach stałopozycyjnych.
Bardziej szczegółowoARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH
ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH reprezentacja danych ASK.RD.01 c Dr inż. Ignacy Pardyka UNIWERSYTET JANA KOCHANOWSKIEGO w Kielcach Rok akad. 2011/2012 c Dr inż. Ignacy Pardyka (Inf.UJK) ASK.RD.01 Rok
Bardziej szczegółowoARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia.
ARYTMETYKA BINARNA ROZWINIĘCIE DWÓJKOWE Jednym z najlepiej znanych sposobów kodowania informacji zawartej w liczbach jest kodowanie w dziesiątkowym systemie pozycyjnym, w którym dla przedstawienia liczb
Bardziej szczegółowoWstęp do informatyki. Pojęcie liczebności. Zapis liczb. Liczenie bez liczebników. Podstawy arytmetyki komputerowej. Cezary Bolek
Pojęcie liczebności Wstęp do informatyki Podstawy arytmetyki komputerowej Cezary Bolek cbolek@ki.uni.lodz.pl Uniwersytet Łódzki Wydział Zarządzania Katedra Informatyki Naturalna zdolność człowieka do postrzegania
Bardziej szczegółowoPodstawy Informatyki
Podstawy Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 3 Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 1 / 42 Reprezentacja liczb całkowitych
Bardziej szczegółowoWprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne
Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne 1. Bit Pozycja rejestru lub komórki pamięci służąca do przedstawiania (pamiętania) cyfry w systemie (liczbowym)
Bardziej szczegółowo1. Operacje logiczne A B A OR B
1. Operacje logiczne OR Operacje logiczne są operacjami działającymi na poszczególnych bitach, dzięki czemu można je całkowicie opisać przedstawiając jak oddziałują ze sobą dwa bity. Takie operacje logiczne
Bardziej szczegółowoUkłady arytmetyczne. Joanna Ledzińska III rok EiT AGH 2011
Układy arytmetyczne Joanna Ledzińska III rok EiT AGH 2011 Plan prezentacji Metody zapisu liczb ze znakiem Układy arytmetyczne: Układy dodające Półsumator Pełny sumator Półsubtraktor Pełny subtraktor Układy
Bardziej szczegółowoWstęp do informatyki. Pojęcie liczebności. Liczenie bez liczebników. Podstawy arytmetyki komputerowej. Cezary Bolek
Wstęp do informatyki Podstawy arytmetyki komputerowej Cezary Bolek cbolek@ki.uni.lodz.pl Uniwersytet Łódzki Wydział Zarządzania Katedra Informatyki Pojęcie liczebności Naturalna zdolność człowieka do postrzegania
Bardziej szczegółowoArchitektura komputerów, Informatyka, sem.iii. Sumatory
Sumatory Architektury sumatorów (zarys) Sumatory 1-bitowe Sumatory z propagacją Przeniesień CPA (Carry Propagate Adders) Sumatory wieloargumentowe 3-argumentowe Half Adder HA Macierz sumatorów RCA Full
Bardziej szczegółowoPracownia Komputerowa wykład V
Pracownia Komputerowa wykład V dr Magdalena Posiadała-Zezula http://www.fuw.edu.pl/~mposiada/pk16 1 Reprezentacje liczb i znaków! Liczby:! Reprezentacja naturalna nieujemne liczby całkowite naturalny system
Bardziej szczegółowoB.B. 2. Sumowanie rozpoczynamy od ostatniej kolumny. Sumujemy cyfry w kolumnie zgodnie z podaną tabelką zapisując wynik pod kreską:
Dodawanie dwójkowe Do wykonywania dodawania niezbędna jest znajomość tabliczki dodawania, czyli wyników sumowania każdej cyfry z każdą inną. W systemie binarnym mamy tylko dwie cyfry 0 i 1, zatem tabliczka
Bardziej szczegółowoArytmetyka komputera. Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka. Opracował: Kamil Kowalski klasa III TI
Arytmetyka komputera Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka Opracował: Kamil Kowalski klasa III TI Spis treści 1. Jednostki informacyjne 2. Systemy liczbowe 2.1. System
Bardziej szczegółowoArytmetyka binarna - wykład 6
SWB - Arytmetyka binarna - wykład 6 asz 1 Arytmetyka binarna - wykład 6 Adam Szmigielski aszmigie@pjwstk.edu.pl SWB - Arytmetyka binarna - wykład 6 asz 2 Naturalny kod binarny (NKB) pozycja 7 6 5 4 3 2
Bardziej szczegółowoZapis liczb binarnych ze znakiem
Zapis liczb binarnych ze znakiem W tej prezentacji: Zapis Znak-Moduł (ZM) Zapis uzupełnień do 1 (U1) Zapis uzupełnień do 2 (U2) Zapis Znak-Moduł (ZM) Koncepcyjnie zapis znak - moduł (w skrócie ZM - ang.
Bardziej szczegółowoTechnika cyfrowa Układy arytmetyczne
Sławomir Kulesza Technika cyfrowa Układy arytmetyczne Wykład dla studentów III roku Informatyki Wersja 1.0, 05/10/2010 Układy arytmetyczne UKŁADY ARYTMETYCZNE UKŁADY SUMUJĄCE i ODEJMUJĄCE UKŁADY MNOŻĄCE
Bardziej szczegółowoSystemy zapisu liczb.
Systemy zapisu liczb. Cele kształcenia: Zapoznanie z systemami zapisu liczb: dziesiętny, dwójkowy, ósemkowy, szesnastkowy. Zdobycie umiejętności wykonywania działań na liczbach w różnych systemach. Zagadnienia:
Bardziej szczegółowoPracownia elektryczna i elektroniczna. Elektronika cyfrowa. Ćwiczenie nr 5.
Pracownia elektryczna i elektroniczna. Elektronika cyfrowa. Ćwiczenie nr 5. Klasa III Opracuj projekt realizacji prac związanych z badaniem działania cyfrowych bloków arytmetycznych realizujących operacje
Bardziej szczegółowoWstęp do Informatyki
Wstęp do Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 4 Bożena Woźna-Szcześniak (AJD) Wstęp do Informatyki Wykład 4 1 / 1 DZIELENIE LICZB BINARNYCH Dzielenie
Bardziej szczegółowoNaturalny kod binarny (NKB)
SWB - Arytmetyka binarna - wykład 6 asz 1 Naturalny kod binarny (NKB) pozycja 7 6 5 4 3 2 1 0 wartość 2 7 2 6 2 5 2 4 2 3 2 2 2 1 2 0 wartość 128 64 32 16 8 4 2 1 bity b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 System
Bardziej szczegółowoDYDAKTYKA ZAGADNIENIA CYFROWE ZAGADNIENIA CYFROWE
ZAGADNIENIA CYFROWE ZAGADNIENIA CYFROWE @KEMOR SPIS TREŚCI. SYSTEMY LICZBOWE...3.. SYSTEM DZIESIĘTNY...3.2. SYSTEM DWÓJKOWY...3.3. SYSTEM SZESNASTKOWY...4 2. PODSTAWOWE OPERACJE NA LICZBACH BINARNYCH...5
Bardziej szczegółowoDodawanie liczb binarnych
1.2. Działania na liczbach binarnych Liczby binarne umożliwiają wykonywanie operacji arytmetycznych (ang. arithmetic operations on binary numbers), takich jak suma, różnica, iloczyn i iloraz. Arytmetyką
Bardziej szczegółowo1.1. Pozycyjne systemy liczbowe
1.1. Pozycyjne systemy liczbowe Systemami liczenia nazywa się sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach. Dla dowolnego
Bardziej szczegółowoPodstawowe operacje arytmetyczne i logiczne dla liczb binarnych
1 Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1. Podstawowe operacje logiczne dla cyfr binarnych Jeśli cyfry 0 i 1 potraktujemy tak, jak wartości logiczne fałsz i prawda, to działanie
Bardziej szczegółowoPrzedmiot: Urządzenia techniki komputerowej Nauczyciel: Mirosław Ruciński
Przedmiot: Urządzenia techniki komputerowej Nauczyciel: Mirosław Ruciński Temat: Systemy zapisu liczb. Cele kształcenia: Zapoznanie z systemami zapisu liczb: dziesiętny, dwójkowy, ósemkowy, szesnastkowy.
Bardziej szczegółowoProgramowanie Niskopoziomowe
Programowanie Niskopoziomowe Wykład 10: Arytmetyka całkowitoliczbowa Dr inż. Marek Mika Państwowa Wyższa Szkoła Zawodowa im. Jana Amosa Komeńskiego W Lesznie Plan Wprowadzenie Instrukcje przesunięcia bitowego
Bardziej szczegółowoArchitektura Systemów Komputerowych
Jarosław Kuchta Architektura Systemów Komputerowych ćwiczenie 3 Arytmetyka całkowita instrukcja laboratoryjna Wprowadzenie Celem ćwiczenia jest zapoznanie się z budową i sposobem działania jednostki arytmetyczno-logicznej
Bardziej szczegółowoLista Rozkazów: Język komputera
Lista Rozkazów: Język komputera Większość slajdów do tego wykładu to tłumaczenia i przeróbki oficjalnych sladjów do podręcznika Pattersona i Hennessy ego Lista rozkazów Zestaw rozkazów wykonywanych przez
Bardziej szczegółowoArytmetyka liczb binarnych
Wartość dwójkowej liczby stałoprzecinkowej Wartość dziesiętna stałoprzecinkowej liczby binarnej Arytmetyka liczb binarnych b n-1...b 1 b 0,b -1 b -2...b -m = b n-1 2 n-1 +... + b 1 2 1 + b 0 2 0 + b -1
Bardziej szczegółowoARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010
ARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010 Do zapisu liczby ze znakiem mamy tylko 8 bitów, pierwszy od lewej bit to bit znakowy, a pozostałem 7 to bity na liczbę. bit znakowy 1 0 1 1
Bardziej szczegółowoWprowadzenie do informatyki - ć wiczenia
Kod uzupełnień do 2 (U2) dr inż. Izabela Szczęch WSNHiD Ćwiczenia z wprowadzenia do informatyki Reprezentacja liczb całkowitych Jak kodowany jest znak liczby? Omó wimy dwa sposoby kodowania liczb ze znakiem:
Bardziej szczegółowoĆwiczenie nr 1: Systemy liczbowe
Ćwiczenie nr 1: Systemy liczbowe Barbara Łukawska, Adam Krechowicz, Tomasz Michno Podstawowym systemem liczbowym uŝywanym na co dzień jest system dziesiętny. Podstawą tego systemu jest 10 cyfr 0, 1, 2,
Bardziej szczegółowoPracownia Komputerowa wyk ad V
Pracownia Komputerowa wyk ad V dr Magdalena Posiada a-zezula Magdalena.Posiadala@fuw.edu.pl http://www.fuw.edu.pl/~mposiada Magdalena.Posiadala@fuw.edu.pl 1 Reprezentacje liczb i znaków Liczby: Reprezentacja
Bardziej szczegółowoCPU ROM, RAM. Rejestry procesora. We/Wy. Cezary Bolek Uniwersytet Łódzki Wydział Zarządzania Katedra Informatyki
Cezary Bolek Uniwersytet Łódzki Wydział Zarządzania Katedra Informatyki Komputer jest urządzeniem, którego działanie opiera się na wykonywaniu przez procesor instrukcji pobieranych z pamięci operacyjnej
Bardziej szczegółowoARYTMETYKA KOMPUTERA
006 URZĄDZENIA TECHNIKI KOMPUTEROWEJ ARYTMETYKA KOMPUTERA Systemy liczbowe o róŝnych podstawach 1 UTK System dziesiętny Cyfry: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Liczba 764.5 oznacza 7 * 10 2 + 6 * 10 1 + 4
Bardziej szczegółowoDZIESIĘTNY SYSTEM LICZBOWY
DZIESIĘTNY SYSTEM LICZBOWY Do zapisu dowolnej liczby system wykorzystuje dziesięć symboli (cyfr): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Dowolną liczbę w systemie dziesiętnym możemy przedstawić jako następująca
Bardziej szczegółowoSYSTEMY LICZBOWE 275,538 =
SYSTEMY LICZBOWE 1. Systemy liczbowe Najpopularniejszym systemem liczenia jest system dziesiętny, który doskonale sprawdza się w życiu codziennym. Jednak jego praktyczna realizacja w elektronice cyfrowej
Bardziej szczegółowoInstrukcja do ćwiczeń nr 4 typy i rodzaje zmiennych w języku C dla AVR, oraz ich deklarowanie, oraz podstawowe operatory
Instrukcja do ćwiczeń nr 4 typy i rodzaje zmiennych w języku C dla AVR, oraz ich deklarowanie, oraz podstawowe operatory Poniżej pozwoliłem sobie za cytować za wikipedią definicję zmiennej w informatyce.
Bardziej szczegółowoPodstawy programowania. 1. Operacje arytmetyczne Operacja arytmetyczna jest opisywana za pomocą znaku operacji i jednego lub dwóch wyrażeń.
Podstawy programowania Programowanie wyrażeń 1. Operacje arytmetyczne Operacja arytmetyczna jest opisywana za pomocą znaku operacji i jednego lub dwóch wyrażeń. W językach programowania są wykorzystywane
Bardziej szczegółowoSystem liczbowy jest zbiorem reguł określających jednolity sposób zapisu i nazewnictwa liczb.
2. Arytmetyka komputera. Systemy zapisu liczb: dziesietny, dwójkowy (binarny), ósemkowy, szesnatskowy. Podstawowe operacje arytmetyczne na liczbach binarnych. Zapis liczby binarnej ze znakiem. Reprezentacja
Bardziej szczegółowoSYSTEMY LICZBOWE. Zapis w systemie dziesiętnym
SYSTEMY LICZBOWE 1. Systemy liczbowe Najpopularniejszym systemem liczenia jest system dziesiętny, który doskonale sprawdza się w życiu codziennym. Jednak jego praktyczna realizacja w elektronice cyfrowej
Bardziej szczegółowoInformatyka 1. Wykład nr 5 (13.04.2008) Politechnika Białostocka. - Wydział Elektryczny. dr inŝ. Jarosław Forenc
Informatyka Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia niestacjonarne I stopnia (zaoczne) Rok akademicki 2007/2008 Wykład nr 5 (3.04.2008) Rok akademicki 2007/2008,
Bardziej szczegółowo1259 (10) = 1 * * * * 100 = 1 * * * *1
Zamiana liczba zapisanych w dowolnym systemie na system dziesiętny: W systemie pozycyjnym o podstawie 10 wartości kolejnych cyfr odpowiadają kolejnym potęgom liczby 10 licząc od strony prawej i numerując
Bardziej szczegółowoProgramowanie Niskopoziomowe
Programowanie Niskopoziomowe Wykład 2: Reprezentacja danych Dr inż. Marek Mika Państwowa Wyższa Szkoła Zawodowa im. Jana Amosa Komeńskiego W Lesznie Plan Kilka ciekawostek Zapisy binarny, oktalny, decymalny
Bardziej szczegółowoArytmetyka komputerów
Arytmetyka komputerów wer. 4 z drobnymi modyfikacjami! Wojciech Myszka 2017-10-26 20:59:28 +0200 Liczby binarne Liczby dwójkowe nie są wcale nowym wynalazkiem: Pierwsze wzmianki pochodzą z Indii, z 5 2
Bardziej szczegółowoUkłady kombinacyjne. cz.2
Układy kombinacyjne cz.2 Układy kombinacyjne 2/26 Kombinacyjne bloki funkcjonalne Kombinacyjne bloki funkcjonalne - dekodery 3/26 Dekodery Są to układy zamieniające wybrany kod binarny (najczęściej NB)
Bardziej szczegółowoMagistrala systemowa (System Bus)
Cezary Bolek cbolek@ki.uni.lodz.pl Uniwersytet Łódzki Wydział Zarządzania Katedra Informatyki systemowa (System Bus) Pamięć operacyjna ROM, RAM Jednostka centralna Układy we/wy In/Out Wstęp do Informatyki
Bardziej szczegółowoOperacje arytmetyczne w systemie dwójkowym
Artykuł pobrano ze strony eioba.pl Operacje arytmetyczne w systemie dwójkowym Zasady arytmetyki w systemie binarnym są identyczne (prawie) jak w dobrze nam znanym systemie dziesiętnym. Zaletą arytmetyki
Bardziej szczegółowoPracownia Komputerowa wykład IV
Pracownia Komputerowa wykład IV dr Magdalena Posiadała-Zezula http://www.fuw.edu.pl/~mposiada/pk16 1 Reprezentacje liczb i znaków! Liczby:! Reprezentacja naturalna nieujemne liczby całkowite naturalny
Bardziej szczegółowoWstęp do informatyki. System komputerowy. Magistrala systemowa. Architektura komputera. Cezary Bolek
Wstęp do informatyki Architektura komputera Cezary Bolek cbolek@ki.uni.lodz.pl Uniwersytet Łódzki Wydział Zarządzania Katedra Informatyki System komputerowy systemowa (System Bus) Pamięć operacyjna ROM,
Bardziej szczegółowoPodstawy Informatyki. Inżynieria Ciepła, I rok. Wykład 5 Liczby w komputerze
Podstawy Informatyki Inżynieria Ciepła, I rok Wykład 5 Liczby w komputerze Jednostki informacji Bit (ang. bit) (Shannon, 948) Najmniejsza ilość informacji potrzebna do określenia, który z dwóch równie
Bardziej szczegółowoWykład 2. Informatyka Stosowana. 10 października Informatyka Stosowana Wykład 2 10 października / 42
Wykład 2 Informatyka Stosowana 10 października 2016 Informatyka Stosowana Wykład 2 10 października 2016 1 / 42 Systemy pozycyjne Informatyka Stosowana Wykład 2 10 października 2016 2 / 42 Definicja : system
Bardziej szczegółowoWykład 2. Informatyka Stosowana. 9 października Informatyka Stosowana Wykład 2 9 października / 42
Wykład 2 Informatyka Stosowana 9 października 2017 Informatyka Stosowana Wykład 2 9 października 2017 1 / 42 Systemy pozycyjne Informatyka Stosowana Wykład 2 9 października 2017 2 / 42 Definicja : system
Bardziej szczegółowoArchitektura komputera. Cezary Bolek. Uniwersytet Łódzki. Wydział Zarządzania. Katedra Informatyki. System komputerowy
Wstęp do informatyki Architektura komputera Cezary Bolek cbolek@ki.uni.lodz.pl Uniwersytet Łódzki Wydział Zarządzania Katedra Informatyki System komputerowy systemowa (System Bus) Pamięć operacyjna ROM,
Bardziej szczegółowoArchitektura systemów komputerowych. Arytmetyka maszyn cyfrowych
Architektura systemów komputerowych Plan wykładu. Typy danych w komputerach. 2. Układ arytmetyczno-logiczny. 3. Instrukcje zależne od ALU. 4. Superskalarność. Cele Wiedza na temat arytmetyki maszyn cyfrowych.
Bardziej szczegółowoSystem Liczbowe. Szesnastkowy ( heksadecymalny)
SYSTEMY LICZBOWE 1 System Liczbowe Dwójkowy ( binarny) Szesnastkowy ( heksadecymalny) Ósemkowy ( oktalny) Dziesiętny ( decymalny) 2 System dziesiętny Symbol Wartość w systemie Liczba 6 6 *10 0 sześć 65
Bardziej szczegółowoTechnologie Informacyjne
System binarny Szkoła Główna Służby Pożarniczej Zakład Informatyki i Łączności October 7, 26 Pojęcie bitu 2 Systemy liczbowe 3 Potęgi dwójki 4 System szesnastkowy 5 Kodowanie informacji 6 Liczby ujemne
Bardziej szczegółowoStan wysoki (H) i stan niski (L)
PODSTAWY Przez układy cyfrowe rozumiemy układy, w których w każdej chwili występują tylko dwa (zwykle) możliwe stany, np. tranzystor, jako element układu cyfrowego, może być albo w stanie nasycenia, albo
Bardziej szczegółowoPracownia Komputerowa wykład VI
Pracownia Komputerowa wykład VI dr Magdalena Posiadała-Zezula http://www.fuw.edu.pl/~mposiada 1 Przypomnienie 125 (10) =? (2) Liczby całkowite : Operacja modulo % reszta z dzielenia: 125%2=62 reszta 1
Bardziej szczegółowoMetody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015
Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 1 Metody numeryczne Dział matematyki Metody rozwiązywania problemów matematycznych za pomocą operacji na liczbach. Otrzymywane
Bardziej szczegółowoKodowanie informacji. Kody liczbowe
Wykład 2 2-1 Kodowanie informacji PoniewaŜ komputer jest urządzeniem zbudowanym z układów cyfrowych, informacja przetwarzana przez niego musi być reprezentowana przy pomocy dwóch stanów - wysokiego i niskiego,
Bardziej szczegółowoWprowadzenie do informatyki ćwiczenia
Podstawowe działania na liczbach binarnych dr inż. Izabela Szczęch WSNHiD 2010/2011 Ćwiczenia z wprowadzenia do informatyki Dodawanie Odejmowanie Mnoż enie Dzielenie Plan zajęć 2 Izabela Szczęch 1 Dodawanie
Bardziej szczegółowoKrótkie przypomnienie
Krótkie przypomnienie Prawa de Morgana: Kod Gray'a A+ B= Ā B AB= Ā + B Układ kombinacyjne: Tablicy prawdy Symbolu graficznego Równania Boole a NOR Negative-AND w.11, p.1 XOR Układy arytmetyczne Cyfrowe
Bardziej szczegółowoPlan wyk ladu. Kodowanie informacji. Systemy addytywne. Definicja i klasyfikacja. Systemy liczbowe. prof. dr hab. inż.
Plan wyk ladu Systemy liczbowe Poznań, rok akademicki 2008/2009 1 Plan wyk ladu 2 Systemy liczbowe Systemy liczbowe Systemy pozycyjno-wagowe y 3 Przeliczanie liczb Algorytm Hornera Rozwini ecie liczby
Bardziej szczegółowoUkłady kombinacyjne 1
Układy kombinacyjne 1 Układy kombinacyjne są to układy cyfrowe, których stany wyjść są zawsze jednoznacznie określone przez stany wejść. Oznacza to, że doprowadzając na wejścia tych układów określoną kombinację
Bardziej szczegółowoSystemy liczbowe używane w technice komputerowej
Systemy liczbowe używane w technice komputerowej Systemem liczenia nazywa się sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach.
Bardziej szczegółowoOperatory AND, OR, NOT, XOR Opracował: Andrzej Nowak Bibliografia:
Operatory logiczne Komputery i ich logika AND - && Podstawy programowania w C++ Operatory AND, OR, NOT, XOR Opracował: Andrzej Nowak Bibliografia: CPA: PROGRAMMING ESSENTIALS IN C++ https://www.netacad.com
Bardziej szczegółowoStruktura i działanie jednostki centralnej
Struktura i działanie jednostki centralnej ALU Jednostka sterująca Rejestry Zadania procesora: Pobieranie rozkazów; Interpretowanie rozkazów; Pobieranie danych Przetwarzanie danych Zapisywanie danych magistrala
Bardziej szczegółowoCyfrowy zapis informacji
F1-1 Cyfrowy zapis informacji Alfabet: uporządkowany zbiór znaków, np. A = {a,b,..., z} Słowa (ciągi) informacyjne: łańcuchy znakowe, np. A i = gdtr Długość słowa n : liczba znaków słowa, np. n(sbdy) =
Bardziej szczegółowoDr inż. Grażyna KRUPIŃSKA. D-10 pokój 227 WYKŁAD 7 WSTĘP DO INFORMATYKI
Dr inż. Grażyna KRUPIŃSKA Grazyna.Krupinska@fis.agh.edu.pl D-10 pokój 227 WYKŁAD 7 WSTĘP DO INFORMATYKI Wyrażenia 2 Wyrażenia w języku C są bardziej elastyczne niż wyrażenia w jakimkolwiek innym języku
Bardziej szczegółowoSamodzielnie wykonaj następujące operacje: 13 / 2 = 30 / 5 = 73 / 15 = 15 / 23 = 13 % 2 = 30 % 5 = 73 % 15 = 15 % 23 =
Systemy liczbowe Dla każdej liczby naturalnej x Î N oraz liczby naturalnej p >= 2 istnieją jednoznacznie wyznaczone: liczba n Î N oraz ciąg cyfr c 0, c 1,..., c n-1 (gdzie ck Î {0, 1,..., p - 1}) taki,
Bardziej szczegółowoUkłady sekwencyjne. Wstęp doinformatyki. Zegary. Układy sekwencyjne. Automaty sekwencyjne. Element pamięciowy. Układy logiczne komputerów
Wstęp doinformatyki Układy sekwencyjne Układy logiczne komputerów Układy sekwencyjne Dr inż. Ignacy Pardyka Akademia Świętokrzyska Kielce, 2001 Wstęp do informatyki I. Pardyka Akademia Świętokrzyska Kielce,
Bardziej szczegółowoPracownia Komputerowa wyk ad IV
Pracownia Komputerowa wykad IV dr Magdalena Posiadaa-Zezula Magdalena.Posiadala@fuw.edu.pl http://www.fuw.edu.pl/~mposiada Magdalena.Posiadala@fuw.edu.pl 1 Reprezentacje liczb i znaków Liczby: Reprezentacja
Bardziej szczegółowo...o. 2. ZARYS ORGANIZACJI MASZYNY TYPOWEJ
24 2 Zarys organizacji maszyny typowej 2 ZARYS ORGANIZACJI MASZYNY TYPOWEJ [2 Arytmetyka uzupełnieniowa; 22 Krótki opis maszyny typowcjj 23 Kod rozkazowy] 2 ARYTMETYKA UZUPEŁNIENIOWA 2 Zajmiemy się obecnie
Bardziej szczegółowoLiczby rzeczywiste są reprezentowane w komputerze przez liczby zmiennopozycyjne. Liczbę k można przedstawid w postaci:
Reprezentacja liczb rzeczywistych w komputerze. Liczby rzeczywiste są reprezentowane w komputerze przez liczby zmiennopozycyjne. Liczbę k można przedstawid w postaci: k = m * 2 c gdzie: m częśd ułamkowa,
Bardziej szczegółowoZestaw 3. - Zapis liczb binarnych ze znakiem 1
Zestaw 3. - Zapis liczb binarnych ze znakiem 1 Zapis znak - moduł (ZM) Zapis liczb w systemie Znak - moduł Znak liczby o n bitach zależy od najstarszego bitu b n 1 (tzn. cyfry o najwyższej pozycji): b
Bardziej szczegółowoprzeniesienie pożyczka
1.4. Działania arytmetycznie 33 liter i znaków (jest tzw. kodem alfanumerycznym). Większość kombinacji kodowych może mieć dwa różne znaczenia; o wyborze właściwego decyduje to, który z symboli Litery",
Bardziej szczegółowoMNOŻENIE W SYSTEMACH UZUPEŁNIENIOWYCH PEŁNYCH (algorytm uniwersalny)
MNOŻENIE W SYSTEMACH UZUPEŁNIENIOWYCH PEŁNYCH (algorytm uniwersalny) SPOSÓB 1 (z rozszerzeniem mnożnika): Algorytm jak zwykle jest prosty: lewostronne rozszerzenie mnożnej o kilka cyfr (na pewno wystarczy
Bardziej szczegółowoAlgorytm mnożenia sekwencyjnego (wariant 1)
Przygotowanie: Przemysław Sołtan e-mail: kerk@moskit.ie.tu.koszalin.pl Algorytm mnożenia sekwencyjnego (wariant 1) //Poczynając z mniej znaczących bitów mnożnika, przesuwamy formowany //rezultat w stronę
Bardziej szczegółowoWykład 2. Informatyka Stosowana. 8 października 2018, M. A-B. Informatyka Stosowana Wykład 2 8 października 2018, M. A-B 1 / 41
Wykład 2 Informatyka Stosowana 8 października 2018, M. A-B Informatyka Stosowana Wykład 2 8 października 2018, M. A-B 1 / 41 Elementy logiki matematycznej Informatyka Stosowana Wykład 2 8 października
Bardziej szczegółowoWstęp do informatyki- wykład 2
MATEMATYKA 1 Wstęp do informatyki- wykład 2 Systemy liczbowe Treści prezentowane w wykładzie zostały oparte o: S. Prata, Język C++. Szkoła programowania. Wydanie VI, Helion, 2012 www.cplusplus.com Jerzy
Bardziej szczegółowoArchitektura komputerów
Architektura komputerów Wykład 4 Jan Kazimirski 1 Reprezentacja danych 2 Plan wykładu Systemy liczbowe Zapis dwójkowy liczb całkowitych Działania arytmetyczne Liczby rzeczywiste Znaki i łańcuchy znaków
Bardziej szczegółowoAGH Akademia Górniczo-Hutnicza w Krakowie Katedra Elektroniki
AGH Akademia Górniczo-Hutnicza w Krakowie Katedra Elektroniki Technika mikroprocesorowa Laboratorium 5 Operacje arytmetyczne Autor: Paweł Russek Tłumaczenie: Marcin Pietroń i Ernest Jamro http://www.fpga.agh.edu.pl/tm
Bardziej szczegółowoKodowanie liczb całkowitych w systemach komputerowych
Kodowanie liczb całkowitych w systemach komputerowych System pozycyjny Systemy addytywne znaczenie historyczne Systemy pozycyjne r podstawa systemu liczbowego (radix) A wartość liczby a - cyfra i pozycja
Bardziej szczegółowoLuty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl
System dziesiętny 7 * 10 4 + 3 * 10 3 + 0 * 10 2 + 5 *10 1 + 1 * 10 0 = 73051 Liczba 10 w tym zapisie nazywa się podstawą systemu liczenia. Jeśli liczba 73051 byłaby zapisana w systemie ósemkowym, co powinniśmy
Bardziej szczegółowoSystemem liczenia systemach addytywnych !!" Pozycyjny system liczbowy podstawą systemu pozycyjnego
Systemem liczenia nazywa się sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach. Podstawą systemów liczenia są systemy liczbowe
Bardziej szczegółowoPracownia Komputerowa wyk ad VI
Pracownia Komputerowa wyk ad VI dr Magdalena Posiada a-zezula Magdalena.Posiadala@fuw.edu.pl http://www.fuw.edu.pl/~mposiada Magdalena.Posiadala@fuw.edu.pl 1 Przypomnienie 125 (10) =? (2) Liczby ca kowite
Bardziej szczegółowoTechnologie Informacyjne Wykład 4
Technologie Informacyjne Wykład 4 Arytmetyka komputerów Wojciech Myszka Jakub Słowiński Katedra Mechaniki i Inżynierii Materiałowej Wydział Mechaniczny Politechnika Wrocławska 30 października 2014 Część
Bardziej szczegółowoInformatyka kodowanie liczb. dr hab. inż. Mikołaj Morzy
Informatyka kodowanie liczb dr hab. inż. Mikołaj Morzy plan wykładu definicja informacji sposoby kodowania reprezentacja liczb naturalnych i całkowitych arytmetyka binarna arytmetyka oktalna arytmetyka
Bardziej szczegółowoOperatory. Operatory bitowe i uzupełnienie informacji o pozostałych operatorach. Programowanie Proceduralne 1
Operatory Operatory bitowe i uzupełnienie informacji o pozostałych operatorach. Programowanie Proceduralne 1 Przypomnienie: operatory Operator przypisania = przypisanie x = y x y Operatory arytmetyczne
Bardziej szczegółowo