POMIAR SIŁ I NAPRĘśEN MECHANICZNYCH 1. CEL ĆWICZENIA:
|
|
- Roman Wilczyński
- 8 lat temu
- Przeglądów:
Transkrypt
1 1 1. CEL ĆWICZENIA: POMIAR SIŁ I NAPRĘśEN MECHANICZNYCH Celem ćwiczenia jest zapoznanie się z przetwornikami i układami stosowanymi do pomiaru sił, mas i napręŝeń mechanicznych. 2. PRZEWORNIKI SIŁ I NAPRĘśEŃ Siła jest wielkością fizyczną, którą mierzy się pośrednio poprzez pomiar skutków jej działania. Skutki działania siły mogą być skutkami dynamicznymi lub statycznymi. Dynamicznym skutkiem działania siły jest ruch ciała z odpowiednim przyśpieszeniem lub odkształcenie ciała zmienne w czasie. Skutki statyczne to odkształcenia stałe w czasie. Do pomiaru sił korzystuje się obiekty odkształcalne spręŝyście wraz z czujnikami odkształceń lub czujnikami przyśpieszenia. Przetworniki do pomiaru sił mogą być korzystywane do pomiaru masy względu na linio związek pomiędzy masą i siłą cięŝkości. Najczęściej do pomiaru odkształceń statycznych korzystywane są parametryczne przetworniki rezystancyjne oraz magnetospręŝyste, natomiast do pomiaru sił dynamicznych korzystuje się generacyjne czujniki piezoelektryczne. Przetwornik tensometryczny (tensometr) ensometr jest przetwornikiem pomiarom przeznaczonym do pomiaru napręŝeń mechanicznych. Zbudowany jest ze cienkiej spręŝystej warst izolacyjnej, na którą naniesiono warstwę metaliczną folię metalową lub rzadziej drut oporo. Przetwornik przyklejany jest do badanego obiektu odpowiednim klejem. Warstwa izolacyjna powinna wraz z klejem przenosić napręŝenie badanego obiektu na element rezystancyjny. Odkształcenie obiektu powoduje odkształcenie tensometru, co za tym idzie zmianę miarów geometrycznych ścieŝki metalowej. Rezystancja ścieŝki metalowej jest funkcją rezystywności metalu ρ oraz jego długości l i pola przekroju S: l R = ρ. (1) S
2 2 Dla odkształceń spręŝystych ścieŝki, w zakresie stosowalności prawa Hooka, zmienia się długość ścieŝki i jej pole przekroju. NapręŜenie ε, definiowane następująco: l ε =, (2) l jest proporcjonalne do względnej zmiany rezystancji tensometru R według zaleŝności: R R = k ε. (3) Stała k nosi nazwę czułości odkształceniowej tensometru i dla typoch tensometrów folioch ma wartość rzędu 2. Czułość tensometru moŝna zwiększyć konstrukcyjnie stosując szereg cienkich ścieŝek ułoŝonych równolegle i połączonych szeregowo w sposób pokazany na rys.1. aki tensometr charakteryzuje się ponadto duŝą czułością na napręŝenie wzdłuŝ ścieŝek, oraz praktycznie zerową na napręŝenia poprzeczne. Rys.1. Przykłado kształt ścieŝek rezystancyjnych tensometru foliowego Wykonywane są takŝe tzw. rozety tensometryczne stanowiące układ tensometrów umieszczonych na jednym podłoŝu i usytuowanych pod odpowiednim kątem względem siebie (np. dwa tensometry pod kątem 90 o lub trzy pod katem 120 o ). akie tensometry umoŝliwiają pomiary napręŝeń w róŝnych kierunkach. ypowe tensometry foliowe powierzchnię od 2 do10 mm 2. Pozwalają one na pomiary napręŝeń o wartościach maksymalnie do kilku procent. Istotny wpływ na właściwości tensometru ma temperatura. Zmiany temperatury mogą skutkować zmianami geometrycznymi obiektu badanego jak i samego tensometru.
3 3 emperatura wołuje takŝe zmiany rezystancji ścieŝki rezystancyjnej oraz przewodów pomiaroch. Wpływ temperatury na tensometr moŝna zminimalizować stosując odpowiednie materiały konstrukcyjne. ŚcieŜki rezystancyjne konywane są na ogół ze stopu miedzi i niklu w proporcjach 55% do 45% zwanego konstantanem. Konstantan charakteryzuje się temperaturom współczynnikiem rezystancji równym 0,00002 K -1, temperaturom współczynnikiem rozszerzalności liniowej równym 14, K -1 oraz rezystywnością równą Ω m. Wykorzystuje się, choć na razie w niewielkim stopniu nowoczesne odmiany konstantanu: stopy typu A i P oraz stop typu Karma, charakteryzujące się tzw. samokompensacja temperaturową. PodłoŜe tensometrów konywane jest często z poliimidu lub wzmocnionej włóknem szklanym Ŝywicy epoksydowo-fenolowej. Zmiana rezystancji tensometru mierzona jest na ogół z zastosowaniem czteroramiennego mostka niezrównowaŝonego. W układzie mostka stosuje się jeden, dwa lub cztery czujniki tensometryczne włączone w miejsce rezystorów mostka. Pozostałe rezystory mostka mają jednakowe wartości rezystancji R równe rezystancji R nienapręŝonego tensometru. Mostek zasilany jest napięciem stałym lub przemiennym Z. JeŜeli na tensometr nie działa napręŝenie wówczas mostek pozostaje w stanie równowagi i napięcie jściowe jest zerowe. Rys.2. NiezrównowaŜony mostek tensometryczny W przypadku zastosowania jednego czujnika po stąpieniu dodatniego lub ujemnego napręŝenia R napięcie jściowe mostka ma wartość:
4 4 = Z ± R ( R ± ) + + R R R R 4 R Z Z. (4) względniając równanie (3) raŝenie (4) moŝna zapisać następująco: c Z ε, (5) 4 a zatem jest ono proporcjonalne do napręŝenia. Mostek niezrównowaŝony dla niewielkich zmian rezystancji stępujących w tensometrach jest liniom przetwornikiem zmian rezystancji na napięcie. Korzystną cechą mostków niezrównowaŝonych jest moŝliwość kompensacji wpływu temperatury na rezystancję tensometru. Rezystor włączony pomiędzy punkty C i B mostka zastępuje się tensometrem nienapręŝanym, o identycznych parametrach jak tensometr pomiaro. ensometr ten nazywany jest tensometrem kompensacyjnym i znajduje się w tej samej temperaturze, w której znajduje się tensometr pomiaro (aktywny). Całkowita zmiana rezystancji tensometru aktywnego jest sumą zmiany temperaturowej i pochodzącej od napręŝenia. Zmiana rezystancji tensometru kompensacyjnego jest łącznie zmianą temperaturową. Mostek w zakresie niewielkich zmian rezystancji tensometru moŝna uznać za przetwornik linio. Zgodnie z zasadą superpozycji napięcie jściowe mostka jest sumą odpowiedzi mostka na zmiany temperaturowe R () i pochodzące od napręŝenia R (ε). ( R ( ϑ) + R ( ε )) = ( R ( ϑ) ) + ( R ( ε )). (6) Z punktu widzenia zmian temperaturoch mostek pozostaje stale w równowadze, poniewaŝ niezaleŝnie od temperatury spełnione jest równanie równowagi mostka: ( ) R = R ( ϑ)r 1 ϑ 2 R. (6) Napięcie jściowe mostka jest z punktu widzenia temperatury stale zerowe. Inaczej mówiąc temperatura nie wpływa na wartość napięcia jściowego.
5 5 Oprócz tensometrów metaloch buduje się równieŝ tensometry półprzewodnikowe, w których korzystuje się efekt piezorezystywny. NapręŜanie materiału piezorezystywnego powoduje silną zmianę rezystancji. Czułość odkształceniowa tensometrów półprzewodnikoch jest rzędu 100 (maksymalnie 200). Do wad tensometrów półprzewodnikoch moŝna zaliczyć nieliniowość i silną zaleŝność rezystancji od temperatury oraz Ŝszą cenę. ensometry korzystywane są do pomiarów napręŝeń w budownictwie i mechanice. W odpowiednim układzie mechanicznym tensometry pozwalają na pomiar sił i mas. Przetwornik magnetospręŝysty Przetworniki magnetospręŝyste korzystują zaleŝność przenikalności magnetycznej od siły działającej na rdzeń. Jest to zjawisko tzw. odwróconej magnetostrykcji zwane zjawiskiem Villariego. Przenikalność magnetyczna µ rdzenia jest funkcją działającej na niego siły: ( F ) µ = f. (7) Czujnik składa się ze rdzenia oraz dwóch cewek: wzbudzającej i pomiarowej usytuowanych względem siebie pod kątem 90 o jak na rys.3. Cewka wzbudzająca jest zasilana prądem sinusoidalnie przemiennym. Rozkład pola magnetycznego w rdzeniu zmienia się po przyłoŝeniu do niego siły ze względu na zmniejszenie przenikalności magnetycznej w kierunku działania siły oraz zwiększenie przenikalności w kierunku poprzecznym do kierunku jej działania. Wywołuje to zmianę wartość napięcia indukowanego w cewce odbiorczej. Rys.3. Budowa czujnika magnetospręŝystego.
6 6 Przetworniki magnetospręŝyste charakteryzują się duŝą czułością oraz odpornością na przeciąŝenie. Dostarczają sygnałów pomiaroch o stosunkowo duŝej wartości na jściu i charakteryzują się małą impedancją jściową. Wykorzystywane są do budo czujników duŝych sił oraz mas. Charakterystyki czujników magnetospręŝystych są liniowe w początkom zakresie, później stają się nieliniowe. Dodatkowo charakterystyka przetwarzania przetwornika charakteryzuje się histerezą - napięcie jściowe dla tej samej siły moŝe przyjmować dwie róŝne wartości w zaleŝności od wartości siły działającej uprzednio. Przetworniki piezoelektryczne W przetwornikach piezoelektrycznych korzystywane jest zjawisko generacji ładunku w materiale piezoelektrycznym poddanym działaniu siły. Do budo przetworników piezoelektrycznych korzystuje się kwarc, turmalin oraz materiały ceramiczne i sole. Generowany ładunek Q jest proporcjonalny do siły F: Q = cf. (8) Ładunek gromadzony w przetworniku jest dość szybko rozładowany przez impedancję układu pomiarowego współpracującego z przetwornikiem, a zatem przetwornik magnetospręŝysty nie moŝe być korzystywany do pomiaru sił statycznych. W pomiarach sił zmiennych w czasie ładunek jest na bieŝąco odbudowany. Przetworniki piezoelektryczne korzystuje się do pomiaru sił zmiennych w czasie o częstotliwościach do 60 khz. Budowane są podobnie jak w przypadku tensometrów czujniki złoŝone z dwóch lub trzech przetworników umoŝliwiające pomiary kierunkowe. 3. PROGRAM ĆWICZENIA 1. Dołączyć woltomierz cyfro do zacisków jścioch mostka tensometrycznego. 2. Wybrać wzmocnienie wzmacniacza równe Wybrać zakres miliwoltomierza cyfrowego napięcia stałego 200 mv. 4. Załączyć mostek tensometryczny.
7 7 5. Sprowadzić mostek do stanu równowagi za pomocą potencjometru wieloobrotowego. 6. Wyznaczyć charakterystykę napięcia jściowego w funkcji masy dokładanej na szalkę przetwornika. Masę zmieniać korzystując cięŝarki 500 gramowe. 7. Wybrać wzmocnienie wzmacniacza równe Ponownie sprowadzić mostek do stanu równowagi za pomocą potencjometru wieloobrotowego. 9. Wyznaczyć charakterystykę napięcia jściowego w funkcji masy dokładanej na szalkę przetwornika. 10. Wybrać wzmocnienie wzmacniacza równe Wybrać zakres miliwoltomierza cyfrowego napięcia stałego 2 V. 12. Sprowadzić mostek do stanu równowagi za pomocą potencjometru wieloobrotowego. 13. Wyznaczyć charakterystykę napięcia jściowego w funkcji masy dokładanej na szalkę przetwornika. 14. W sprawozdaniu znaczyć proste modelowe dla wzmocnień 1, 10, 100 metodą regresji liniowej. Narysować charakterystyki modelowe i wrysować punkty pomiarowe. Porównać nieliniowość i czułość układu dla róŝnych wzmocnień. 15. Dołączyć zaciski ZASILANIE do jścia transformatora separującego zgodnie ze wskazaniami prowadzącego. Szeregowo z zaciskami dołączyć amperomierz cyfro napięcia przemiennego na zakresie 2 A. 16. Do zacisków WYJŚCIE dołączyć woltomierz cyfro napięcia przemiennego na zakresie 2V. 17. Dla prądu zasilającego rzędu 400 ma znaczyć charakterystykę napięcia jściowego w funkcji masy. Masę zadawać cięŝarkami 500 g. Charakterystykę znaczyć zwiększając obciąŝenie szalki a następnie zmniejszając masę. Po znaczeniu charakterystyki na szalkę połoŝyć nieznaną masę i zapisać napięcie jściowe. 18. Pomiary zgodnie z punktem poprzednim konać dla prądu zasilającego 600 i 800 ma. 19. Na szalce umieścić masę ok. 2 kg. Wyznaczyć charakterystykę napięcia jściowego w funkcji prądu zasilającego. Charakterystykę znaczyć zwiększając i zmniejszając prąd zasilający.
8 8 20. W sprawozdaniu kreślić charakterystyki napięcia jściowego w funkcji masy dla odpowiednich prądów. Graficznie dla kaŝdego prądu znaczyć masę nieznanego cięŝarka wraz z graniczną wartością błędu nikającego z histerezy. Narysować charakterystykę napięcia jściowego w funkcji prądu zasilającego. Ocenić wpływ prądu zasilającego na pomiary przetwornikiem oraz wartość prądu dopuszczalnego przetwornika. 4. PYANIA KONROLNE: 1. Jakie skutki wołuje siła? 2. Wyjaśnić zasadę pomiaru napręŝeń mechanicznych przetwornikiem tensometrycznym. 3. W jaki sposób kompensuje się wpływ temperatury na tensometr? 4. Wyjaśnić zasadę działania przetwornika magnetospręŝystego. 5. Dlaczego przetworniki piezoelektryczne nie nadają się do pomiaru sił zmiennych w czasie? 5. LIERARA: 1. Parchański J.: Miernictwo elektryczne i elektroniczne. WSiP - Warszawa umański S.: echnika pomiarowa. WN, Warszawa Opracował: dr inŝ. Adam Cichy v.1 /
WOJSKOWA AKADEMIA TECHNICZNA
WOJSKOWA AKADEMIA TECHNICZNA INSTYTUT OPTOELEKTRONIKI LABORATORIUM DETEKCJI SYGNAŁÓW OPTYCZNYCH GRUPA:.. Skład podgrupy nr... 1.. 2.. 3.. 4.. 5.. 6.. PROTOKÓŁ DO ĆWICZENIA nr.. Temat ćwiczenia: Badanie
Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 1. Połączenia szeregowe oraz równoległe elementów RC
Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie ĆWICZENIE Połączenia szeregowe oraz równoległe elementów C. CEL ĆWICZENIA Celem ćwiczenia jest praktyczno-analityczna ocena wartości
Temat ćwiczenia. Pomiary przemieszczeń metodami elektrycznymi
POLITECHNIKA ŚLĄSKA W YDZIAŁ TRANSPORTU Temat ćwiczenia Pomiary przemieszczeń metodami elektrycznymi Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z elektrycznymi metodami pomiarowymi wykorzystywanymi
Skuteczna kompensacja rezystancji przewodów.
Skuteczna kompensacja rezystancji przewodów. Punkty pomiarowe, np. na mostach lub skrzydłach samolotów często znajdują się w większej odległości od przyrządów pomiarowych. Punkty pomiarowe, które nie są
Podstawy Badań Eksperymentalnych
Podstawy Badań Eksperymentalnych Katedra Pojazdów Mechanicznych i Transportu Wojskowa Akademia Techniczna Instrukcja do ćwiczenia. Temat 01 Pomiar siły z wykorzystaniem czujnika tensometrycznego Instrukcję
Miernictwo - W10 - dr Adam Polak Notatki: Marcin Chwedziak. Miernictwo I. dr Adam Polak WYKŁAD 10
Miernictwo I dr Adam Polak WYKŁAD 10 Pomiary wielkości elektrycznych stałych w czasie Pomiary prądu stałego: Technika pomiaru prądu: Zakresy od pa do setek A Czynniki wpływające na wynik pomiaru (jest
Temat: POMIAR SIŁ SKRAWANIA
AKADEMIA TECHNICZNO-HUMANISTYCZNA w Bielsku-Białej Katedra Technologii Maszyn i Automatyzacji Ćwiczenie wykonano: dnia:... Wykonał:... Wydział:... Kierunek:... Rok akadem.:... Semestr:... Ćwiczenie zaliczono:
Pomiary w oparciu o pomiary drogi i różniczkowanie - (elektryczne lub numeryczne)
Pomiary prędkości (kątowej, liniowej) Pomiary w oparciu o pomiary drogi i różniczkowanie - (elektryczne lub numeryczne) Różniczkowanie numeryczne W dziedzinie czasu (ilorazy różnicowe) W dziedzinie częstotliwości.
Dioda półprzewodnikowa
COACH 10 Dioda półprzewodnikowa Program: Coach 6 Projekt: na MN060c CMA Coach Projects\PTSN Coach 6\ Elektronika\dioda_2.cma Przykład wyników: dioda2_2.cmr Cel ćwiczenia - Pokazanie działania diody - Wyznaczenie
Metody mostkowe. Mostek Wheatstone a, Maxwella, Sauty ego-wiena
Metody mostkowe Mostek Wheatstone a, Maxwella, Sauty ego-wiena Rodzaje przewodników Do pomiaru rezystancji rezystorów, rezystancji i indukcyjności cewek, pojemności i stratności kondensatorów stosuje się
INSTYTUT ELEKTROENERGETYKI POLITECHNIKI ŁÓDZKIEJ BADANIE PRZETWORNIKÓW POMIAROWYCH
INSTYTUT ELEKTROENERGETYKI POLITECHNIKI ŁÓDZKIEJ ZAKŁAD ELEKTROWNI LABORATORIUM POMIARÓW I AUTOMATYKI W ELEKTROWNIACH BADANIE PRZETWORNIKÓW POMIAROWYCH Instrukcja do ćwiczenia Łódź 1996 1. CEL ĆWICZENIA
Mostek Wheatstone a, Maxwella, Sauty ego-wiena. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
Mostek Wheatstone a, Maxwella, Sauty ego-wiena Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego 2 Do pomiaru rezystancji rezystorów, rezystancji i indukcyjności
WYDZIAŁ PPT / KATEDRA INŻYNIERII BIOMEDYCZNE D-1 LABORATORIUM Z MIERNICTWA I AUTOMATYKI Ćwiczenie nr 14. Pomiary przemieszczeń liniowych
Cel ćwiczenia: Poznanie zasady działania czujników dławikowych i transformatorowych, w typowych układach pracy, określenie ich podstawowych parametrów statycznych oraz zbadanie ich podatności na zmiany
ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI
1 ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 15.1. CEL ĆWICZENIA Celem ćwiczenia jest poznanie podstawowych właściwości wzmacniaczy mocy małej częstotliwości oraz przyswojenie umiejętności
(zwane również sensorami)
Czujniki (zwane również sensorami) Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Czujniki Czujniki służą do
Pomiar rezystancji metodą techniczną
Pomiar rezystancji metodą techniczną Cel ćwiczenia. Poznanie metod pomiarów rezystancji liniowych, optymalizowania warunków pomiaru oraz zasad obliczania błędów pomiarowych. Zagadnienia teoretyczne. Definicja
Elektroniczny pomiar rezystancji
POLITECHNIKA POZNAŃSKA KATEDA STEOWANIA I INŻYNIEII SYSTEMÓW Pracownia kładów Elektronicznych i Przetwarzania Sygnałów ELEKTONICZNE SYSTEMY POMIAOWE Instrukcja do ćwiczeń laboratoryjnych Elektroniczny
Czujniki. Czujniki służą do przetwarzania interesującej nas wielkości fizycznej na wielkość elektryczną łatwą do pomiaru. Najczęściej spotykane są
Czujniki Ryszard J. Barczyński, 2010 2015 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Czujniki Czujniki służą do przetwarzania interesującej
LABORATORIUM ELEKTRONICZNYCH UKŁADÓW POMIAROWYCH I WYKONAWCZYCH. Badanie detektorów szczytowych
LABORATORIM ELEKTRONICZNYCH KŁADÓW POMIAROWYCH I WYKONAWCZYCH Badanie detektorów szczytoch Cel ćwiczenia Poznanie zasady działania i właściwości detektorów szczytoch Wyznaczane parametry Wzmocnienie detektora
Ć wiczenie 2 POMIARY REZYSTANCJI, INDUKCYJNOŚCI I POJEMNOŚCI
37 Ć wiczenie POMIARY REZYSTANCJI, INDUKCYJNOŚCI I POJEMNOŚCI 1. Wiadomości ogólne 1.1. Rezystancja Zasadniczą rolę w obwodach elektrycznych odgrywają przewodniki metalowe, z których wykonuje się przesyłowe
Linearyzatory czujników temperatury
AiR Pomiary przemysłowe ćw. seria II Linearyzatory czujników temperatury Zastosowanie opornika termometrycznego 100 do pomiaru temperatury Cel ćwiczenia Celem ćwiczenia jest zapoznanie studentów ze sposobami
POMIARY REZYSTANCJI. Cel ćwiczenia. Program ćwiczenia
Pomiary rezystancji 1 POMY EZYSTNCJI Cel ćwiczenia Celem ćwiczenia jest poznanie typowych metod pomiaru rezystancji elementów liniowych i nieliniowych o wartościach od pojedynczych omów do kilku megaomów,
Ćwiczenie 4 WYZNACZANIE INDUKCYJNOŚCI WŁASNEJ I WZAJEMNEJ
Ćwiczenie 4 WYZNCZNE NDUKCYJNOŚC WŁSNEJ WZJEMNEJ Celem ćwiczenia jest poznanie pośrednich metod wyznaczania indukcyjności własnej i wzajemnej na podstawie pomiarów parametrów elektrycznych obwodu. 4..
Ćwiczenie 9. Mostki prądu stałego. Program ćwiczenia:
Ćwiczenie 9 Mostki prądu stałego Program ćwiczenia: 1. Pomiar rezystancji laboratoryjnym mostkiem Wheatsone'a 2. Niezrównoważony mostek Wheatsone'a. Pomiar rezystancji technicznym mostkiem Wheatsone'a
Przyrządy i przetworniki pomiarowe
Przyrządy i przetworniki pomiarowe Są to narzędzia pomiarowe: Przyrządy -służące do wykonywania pomiaru i służące do zamiany wielkości mierzonej na sygnał pomiarowy Znajomość zasady działania przyrządów
Wyznaczanie przenikalności magnetycznej i krzywej histerezy
Ćwiczenie 13 Wyznaczanie przenikalności magnetycznej i krzywej histerezy 13.1. Zasada ćwiczenia W uzwojeniu, umieszczonym na żelaznym lub stalowym rdzeniu, wywołuje się przepływ prądu o stopniowo zmienianej
Badanie transformatora
Ćwiczenie 14 Badanie transformatora 14.1. Zasada ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. Do jednego uzwojenia (pierwotnego) przykłada się zmienne
Ćwiczenie 9. Mostki prądu stałego. Zakres wymaganych wiadomości do kolokwium wstępnego: Program ćwiczenia:
Ćwiczenie 9 Mostki prądu stałego Program ćwiczenia: 1. Pomiar rezystancji laboratoryjnym mostkiem Wheatsone'a 2. Pomiar rezystancji technicznym mostkiem Wheatsone'a. Pomiar rezystancji technicznym mostkiem
POLITECHNIKA WARSZAWSKA Wydział Elektryczny Zakład Systemów Informacyjno-Pomiarowych
POLITECHNIKA WARSZAWSKA Wydział Elektryczny Zakład Systemów Informacyjno-Pomiarowych Studia... Kierunek... Grupa dziekańska... Zespół... Nazwisko i Imię 1.... 2.... 3.... 4.... Laboratorium...... Ćwiczenie
OBWODY MAGNETYCZNE SPRZĘśONE
Obwody magnetyczne sprzęŝone... 1/3 OBWODY MAGNETYCZNE SPRZĘśONE Strumień magnetyczny: Φ = d B S (1) S Strumień skojarzony z cewką: Ψ = w Φ () Indukcyjność własna: L Ψ = (3) i Jeśli w przekroju poprzecznym
Elementy oporowe tensometryczne
Elementy oporowe tensometryczne Tensometrem oporowym nazywamy element rezystancyjny, w którym zmiana rezystancji następuje pod wpływem oddziaływań zewnętrznych rozciągających lub ściskających. Tensometr
ĆWICZENIE LABORATORYJNE. TEMAT: Wyznaczanie parametrów i charakterystyk wzmacniacza z tranzystorem bipolarnym (2 h)
ĆWCZENE LORTORYJNE TEMT: znaczanie parametrów i charakterystyk wzmacniacza z tranzystorem bipolarnym (2 h) 1. WPROWDZENE Przedmiotem ćwiczenia jest zapoznanie się z budową i zasadą działania podstawoch
SENSORY W BUDOWIE MASZYN I POJAZDÓW
SENSORY W BUDOWIE MASZYN I POJAZDÓW Wykład WYDZIAŁ MECHANICZNY Automatyka i Robotyka, rok II, sem. 4 Rok akademicki 2015/2016 Elementy oporowe tensometryczne Tensometrem oporowym nazywamy element rezystancyjny,
Badanie transformatora
Ćwiczenie 14 Badanie transformatora 14.1. Zasada ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. Do jednego uzwojenia (pierwotnego) przykłada się zmienne
PODSTAWY AUTOMATYKI I. URZĄDZENIA POMIAROWE W UKŁADACH AUTOMATYCZNEJ REGULACJI. Ćwiczenie nr 1 WYZNACZANIE CHARAKTERYSTYK STATYCZNYCH
PODSTAWY AUTOMATYKI I. URZĄDZENIA POMIAROWE W UKŁADACH AUTOMATYCZNEJ REGULACJI Ćwiczenie nr 1 WYZNACZANIE CHARAKTERYSTYK STATYCZNYCH I DYNAMICZNYCH Rzeszów 2001 2 1. WPROWADZENIE 1.1. Ogólna charakterystyka
Zakład Metrologii i Systemów Pomiarowych Laboratorium Metrologii I. Grupa. Nr ćwicz.
Laboratorium Metrologii I Politechnika zeszowska akład Metrologii i Systemów Pomiarowych Laboratorium Metrologii I Mostki niezrównoważone prądu stałego I Grupa Nr ćwicz. 12 1... kierownik 2... 3... 4...
2. CHARAKTERYSTYKI TERMOMETRYCZNE TERMOELEMENTÓW I METALOWYCH OPORNIKÓW TERMOMETRYCZNYCH
2. CHARAKTERYSTYKI TERMOMETRYCZNE TERMOELEMENTÓW I METALOWYCH OPORNIKÓW TERMOMETRYCZNYCH 2.1. Cel ćwiczenia: zapoznanie się ze zjawiskami fizycznymi, na których oparte jest działanie termoelementów i oporników
PL B1. INSTYTUT MECHANIKI GÓROTWORU POLSKIEJ AKADEMII NAUK, Kraków, PL BUP 21/08. PAWEŁ LIGĘZA, Kraków, PL
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 209493 (13) B1 (21) Numer zgłoszenia: 382135 (51) Int.Cl. G01F 1/698 (2006.01) G01P 5/12 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22)
Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu
Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu Pracownia elektryczna MontaŜ Maszyn Instrukcja laboratoryjna Pomiar mocy w układach prądu przemiennego (dwa ćwiczenia) Opracował: mgr inŝ.
CZUJNIKI I UKŁADY POMIAROWE
POLITECHNIKA WARSZAWSKA Wydział Mechaniczny Energetyki i Lotnictwa Instytut Techniki Lotniczej i Mechaniki Stosowanej Zakład Automatyki i Osprzętu Lotniczego CZUJNIKI I UKŁADY POMIAROWE Czujniki przykładowe
LABORATORIUM PODSTAW METROLOGII M-T Ćwiczenie nr 5 BADANIE CZUJNIKÓW CIŚNIENIA.
1. Wprowadzenie LABORATORIUM PODSTAW METROLOGII M-T Ćwiczenie nr 5 BADANIE CZUJNIKÓW CIŚNIENIA. W przemyśle (także w praktyce laboratoryjnej) pomiary ciśnienia oprócz pomiarów temperatury należą do najczęściej
Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7
Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi zastosowaniami wzmacniacza operacyjnego, poznanie jego charakterystyki przejściowej
Pomiary Elektryczne Wielkości Nieelektrycznych Ćw. 7
Pomiary Elektryczne Wielkości Nieelektrycznych Ćw. 7 Ćw. 7. Kondycjonowanie sygnałów pomiarowych Problemy teoretyczne: Moduły kondycjonujące serii 5B (5B34) podstawowa charakterystyka Moduł kondycjonowania
Ćwiczenie 2. Waga elektroniczna. Instrukcja do ćwiczenia laboratoryjnego
Ćwiczenie Waga elektroniczna Instrukcja do ćwiczenia laboratoryjnego opracował: Łukasz Śliwczyński v.. KS 0.09 . Cel ćwiczenia Zapoznanie się z działaniem wagi elektronicznej, pomiar charakterystyk przetwarzania
Ćwiczenie nr 10. Pomiar rezystancji metodą techniczną. Celem ćwiczenia jest praktyczne zapoznanie się z różnymi metodami pomiaru rezystancji.
Ćwiczenie nr 10 Pomiar rezystancji metodą techniczną. 1. Cel ćwiczenia Celem ćwiczenia jest praktyczne zapoznanie się z różnymi metodami pomiaru rezystancji. 2. Dane znamionowe Przed przystąpieniem do
Zastosowania nieliniowe wzmacniaczy operacyjnych
UKŁADY ELEKTRONICZNE Instrukcja do ćwiczeń laboratoryjnych Zastosowania nieliniowe wzmacniaczy operacyjnych Laboratorium Układów Elektronicznych Poznań 2008 1. Cel i zakres ćwiczenia Celem ćwiczenia jest
Ćwiczenie nr 3 Sprawdzenie prawa Ohma.
Ćwiczenie nr 3 Sprawdzenie prawa Ohma. 1. Cel ćwiczenia Celem ćwiczenia jest praktyczne wykazanie i potwierdzenie słuszności zależności określonych prawem Ohma. Zastosowanie prawa Ohma dla zmierzenia oporności
Źródła zasilania i parametry przebiegu zmiennego
POLIECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGEYKI INSYU MASZYN I URZĄDZEŃ ENERGEYCZNYCH LABORAORIUM ELEKRYCZNE Źródła zasilania i parametry przebiegu zmiennego (E 1) Opracował: Dr inż. Włodzimierz
Ćwiczenie EA9 Czujniki położenia
Akademia Górniczo-Hutnicza im.s.staszica w Krakowie KATEDRA MASZYN ELEKTRYCZNYCH Ćwiczenie EA9 Program ćwiczenia I. Transformator położenia kątowego 1. Wyznaczenie przekładni napięciowych 2. Pomiar napięć
PRZETWORNIKI CIŚNIENIA. ( )
PRZETWORNIKI CIŚNIENIA. 1. Wprowadzenie Pomiary ciśnień należą do najczęściej wykonywanych pomiarów wraz z pomiarami temperatury zarówno w przemyśle wytwórczym jak i w badaniach laboratoryjnych. Pomiary
ĆWICZENIE 5. POMIARY NAPIĘĆ I PRĄDÓW STAŁYCH Opracowała: E. Dziuban. I. Cel ćwiczenia
ĆWICZEIE 5 I. Cel ćwiczenia POMIAY APIĘĆ I PĄDÓW STAŁYCH Opracowała: E. Dziuban Celem ćwiczenia jest zaznajomienie z przyrządami do pomiaru napięcia i prądu stałego: poznanie budowy woltomierza i amperomierza
METROLOGIA. Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki
METOLOGIA Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EINS Zjazd 13, wykład nr 0 Prawo autorskie Niniejsze materiały podlegają ochronie
Pomiar indukcyjności.
Pomiar indukcyjności.. Cel ćwiczenia: Celem ćwiczenia jest zapoznanie się z metodami pomiaru indukcyjności, ich wadami i zaletami, wynikającymi z nich błędami pomiarowymi, oraz umiejętnością ich właściwego
LABORATORIUM POMIARÓW WIELKOŚCI NIEELEKTRYCZNYCH. Pomiary statycznych parametrów indukcyjnościowych przetworników przemieszczenia liniowego
LABORATORIUM POMIARÓW WIELKOŚCI NIEELEKTRYCZNYCH Pomiary statycznych parametrów indukcyjnościowych przetworników przemieszczenia liniowego Wrocław 1994 1 Pomiary statycznych parametrów indukcyjnościowych
Uniwersytet Pedagogiczny
Uniwersytet Pedagogiczny im. Komisji Edukacji Narodowej w Krakowie Laboratorium elektroniki Ćwiczenie nr 5 Temat: STABILIZATORY NAPIĘCIA Rok studiów Grupa Imię i nazwisko Data Podpis Ocena 1. Cel ćwiczenia
PRZETWORNIKI POMIAROWE
PRZETWORNIKI POMIAROWE PRZETWORNIK POMIAROWY element systemu pomiarowego, który dokonuje fizycznego przetworzenia z określoną dokładnością i według określonego prawa mierzonej wielkości na inną wielkość
Ćwiczenie 2a. Pomiar napięcia z izolacją galwaniczną Doświadczalne badania charakterystyk układów pomiarowych CZUJNIKI POMIAROWE I ELEMENTY WYKONAWCZE
Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych 90-924 Łódź, ul. Wólczańska 221/223, bud. B18 tel. 42 631 26 28 faks 42 636 03 27 e-mail secretary@dmcs.p.lodz.pl http://www.dmcs.p.lodz.pl
Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4)
OBWODY JEDNOFAZOWE POMIAR PRĄDÓW, NAPIĘĆ. Obwody prądu stałego.. Pomiary w obwodach nierozgałęzionych wyznaczanie rezystancji metodą techniczną. Metoda techniczna pomiaru rezystancji polega na określeniu
Laboratorium Podstaw Elektrotechniki i Elektroniki
Politechnika Gdańska Wydział Elektrotechniki i utomatyki 1) Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDLNEGO
Wybrane elementy elektroniczne. Rezystory NTC. Rezystory NTC
Wybrane elementy elektroniczne Rezystory NTC Czujniki temperatury Rezystancja nominalna 20Ω 40MΩ (typ 2kΩ 40kΩ) Współczynnik temperaturowy -2-5% [%/K] Max temperatura pracy 120 200 (350) [ºC] Współczynnik
PRZETWORNIKI CYFROWO - ANALOGOWE POMIARY, WŁAŚCIWOŚCI, ZASTOSOWANIA.
strona 1 PRZETWORNIKI CYFROWO - ANALOGOWE POMIARY, WŁAŚCIWOŚCI, ZASTOSOWANIA. Cel ćwiczenia Celem ćwiczenia jest przedstawienie istoty działania przetwornika C/A, źródeł błędów przetwarzania, sposobu definiowania
POMIARY TEMPERATURY I
Cel ćwiczenia Ćwiczenie 5 POMIARY TEMPERATURY I Celem ćwiczenia jest poznanie budowy i zasady działania rezystancyjnych czujników temperatury, układów połączeń czujnika z elektrycznymi układami przetwarzającymi
Laboratorium Elektroniczna aparatura Medyczna
EAM - laboratorium Laboratorium Elektroniczna aparatura Medyczna Ćwiczenie REOMETR IMPEDANCYJY Opracował: dr inŝ. Piotr Tulik Zakład InŜynierii Biomedycznej Instytut Metrologii i InŜynierii Biomedycznej
Katedra Elektrotechniki Teoretycznej i Informatyki
Katedra lektrotechniki Teoretycznej i Informatyki Laboratorium Teorii Obwodów Przedmiot: lektrotechnika teoretyczna Numer ćwiczenia: 1 Temat: Liniowe obwody prądu stałego, prawo Ohma i prawa Kirchhoffa
Katedra Sterowania i InŜynierii Systemów Laboratorium elektrotechniki i elektroniki. Badanie przekaźników
Katedra Sterowania i InŜynierii Systemów 3 Temat Badanie przekaźników 1. Cel ćwiczenia. Celem ćwiczenia jest zapoznanie się z działaniem i własnościami wybranych przekaźników. 2. Wiadomości podstawowe.
Laboratorium Podstaw Pomiarów
Laboratorium Podstaw Pomiarów Ćwiczenie 5 Pomiary rezystancji Instrukcja Opracował: dr hab. inż. Grzegorz Pankanin, prof. PW Instytut Systemów Elektronicznych Wydział Elektroniki i Technik Informacyjnych
WIECZOROWE STUDIA NIESTACJONARNE LABORATORIUM UKŁADÓW ELEKTRONICZNYCH
POLITECHNIKA WARSZAWSKA Instytut Radioelektroniki Zakład Radiokomunikacji WIECZOROWE STUDIA NIESTACJONARNE Semestr III LABORATORIUM UKŁADÓW ELEKTRONICZNYCH Ćwiczenie Temat: Badanie wzmacniacza operacyjnego
Wyznaczenie parametrów schematu zastępczego transformatora
Wyznaczenie parametrów schematu zastępczego transformatora Wprowadzenie Transformator jest statycznym urządzeniem elektrycznym działającym na zasadzie indukcji elektromagnetycznej. adaniem transformatora
Ćwiczenie nr.14. Pomiar mocy biernej prądu trójfazowego. Q=UIsinϕ (1)
1 Ćwiczenie nr.14 Pomiar mocy biernej prądu trójfazowego 1. Zasada pomiaru Przy prądzie jednofazowym moc bierna wyraża się wzorem: Q=UIsinϕ (1) Do pomiaru tej mocy stosuje się waromierze jednofazowe typu
Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDALNEGO
Politechnika Gdańska Wydział Elektrotechniki i Automatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Mechatronika (WM) Laboratorium Elektrotechniki Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDALNEGO
POLITECHNIKA OPOLSKA
POLTECHK OPOLSK STYTT TOMTYK FOMTYK LBOTOM METOLO ELEKTOCZEJ 1. POMY EZYSTCJ METODM MOSTKOWYM 1. METODY POM EZYSTCJ 1.1. Wstęp 1.1.1 Metody techniczne 1.1.1.1.kład poprawnie mierzonego napięcia kład poprawnie
PL B1. POLITECHNIKA GDAŃSKA, Gdańsk, PL BUP 19/09. MACIEJ KOKOT, Gdynia, PL WUP 03/14. rzecz. pat.
PL 216395 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 216395 (13) B1 (21) Numer zgłoszenia: 384627 (51) Int.Cl. G01N 27/00 (2006.01) H01L 21/00 (2006.01) Urząd Patentowy Rzeczypospolitej
POMIARY CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWEJ IMPEDANCJI ELEMENTÓW R L C
ĆWICZENIE 4EMC POMIARY CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWEJ IMPEDANCJI ELEMENTÓW R L C Cel ćwiczenia Pomiar parametrów elementów R, L i C stosowanych w urządzeniach elektronicznych w obwodach prądu zmiennego.
Laboratorium Podstaw Elektrotechniki i Elektroniki
Politechnika Gdańska Wydział Elektrotechniki i utomatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 3 OBWODY LINIOWE PĄDU SINUSOIDLNEGO
Ćwiczenie 2. Waga elektroniczna. Instrukcja do ćwiczenia laboratoryjnego
Ćwiczenie Waga elektroniczna Instrukcja do ćwiczenia laboratoryjnego opracował: Łukasz Śliwczyński v.. 0.08 . Cel ćwiczenia Zapoznanie się z działaniem wagi elektronicznej, pomiar charakterystyk przetwarzania
Ćwiczenie. Elektryczne metody pomiaru temperatury
Program Rozwojowy Politechniki Warszawskiej, Zadanie 36 Przygotowanie i modernizacja programów studiów oraz materiałów dydaktycznych na Wydziale Elektrycznym Laboratorium Akwizycja, przetwarzanie i przesyłanie
Zakres wymaganych wiadomości do testów z przedmiotu Metrologia. Wprowadzenie do obsługi multimetrów analogowych i cyfrowych
Zakres wymaganych wiadomości do testów z przedmiotu Metrologia Ćwiczenie 1 Wprowadzenie do obsługi multimetrów analogowych i cyfrowych budowa i zasada działania przyrządów analogowych magnetoelektrycznych
Lekcja 69. Budowa przyrządów pomiarowych.
Lekcja 69. Budowa przyrządów pomiarowych. Metrologia jest jednym z działów nauki zajmująca się problemami naukowo-technicznymi związanymi z pomiarami, niezależnie od rodzaju wielkości mierzonej i od dokładności
ε (1) ε, R w ε WYZNACZANIE SIŁY ELEKTROMOTOTYCZNEJ METODĄ KOMPENSACYJNĄ
WYZNACZANIE SIŁY ELEKTROMOTOTYCZNEJ METODĄ KOMPENSACYJNĄ I. Cel ćwiczenia: wyznaczanie metodą kompensacji siły elektromotorycznej i oporu wewnętrznego kilku źródeł napięcia stałego. II. Przyrządy: zasilacz
Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania Podstawy Automatyki laboratorium
Cel ćwiczenia: Celem ćwiczenia jest uzyskanie wykresów charakterystyk skokowych członów róŝniczkujących mechanicznych i hydraulicznych oraz wyznaczenie w sposób teoretyczny i graficzny ich stałych czasowych.
STABILIZATORY NAPIĘCIA STAŁEGO O DZIAŁANIU CIĄGŁYM
STABILIZATORY NAPIĘCIA STAŁEGO O DZIAŁANIU CIĄGŁYM Celem ćwiczenia jest zapoznanie się z problemami związanymi z projektowaniem, realizacją i pomiarami wartości parametrów stabilizatorów parametrycznych
Pomiar przemieszczeń i prędkości liniowych i kątowych
POLITECHNIKA ŚLĄSKA WYDZIAŁ TRANSPORTU KATEDRA TRANSPORTU SZYNOWEGO LABORATORIUM DIAGNOSTYKI POJAZDÓW SZYNOWYCH ĆWICZENIE 11 Pomiar przemieszczeń i prędkości liniowych i kątowych Katowice, 2009.10.01 1.
REZONANS SZEREGOWY I RÓWNOLEGŁY. I. Rezonans napięć
REZONANS SZEREGOWY I RÓWNOLEGŁY I. Rezonans napięć Zjawisko rezonansu napięć występuje w gałęzi szeregowej RLC i polega na tym, Ŝe przy określonej częstotliwości sygnałów w obwodzie, zwanej częstotliwością
Pomiar wielkości nieelektrycznych: temperatury, przemieszczenia i prędkości.
Zakład Napędów Wieloźródłowych Instytut Maszyn Roboczych CięŜkich PW Laboratorium Elektrotechniki i Elektroniki Ćwiczenie E3 - protokół Pomiar wielkości nieelektrycznych: temperatury, przemieszczenia i
Mechatronika i inteligentne systemy produkcyjne. Sensory (czujniki)
Mechatronika i inteligentne systemy produkcyjne Sensory (czujniki) 1 Zestawienie najważniejszych wielkości pomiarowych w układach mechatronicznych Położenie (pozycja), przemieszczenie Prędkość liniowa,
BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO POMIAR NAPRĘśEŃ BADANIE ODWROTNEGO ZJAWISKA PIEZOELEKTRYCZNEGO METODĄ STATYCZNĄ. POMIAR MAŁYCH DEFORMACJI
BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO POMIAR NAPRĘśEŃ BADANIE ODWROTNEGO ZJAWISKA PIEZOELEKTRYCZNEGO METODĄ STATYCZNĄ. POMIAR MAŁYCH DEFORMACJI Zagadnienia: - Pojęcie zjawiska piezoelektrycznego
Temat nr 3: Pomiar temperatury termometrami termoelektrycznymi
Temat nr 3: Pomiar temperatury termometrami termoelektrycznymi 1.Wiadomości podstawowe Termometry termoelektryczne należą do najbardziej rozpowszechnionych przyrządów, służących do bezpośredniego pomiaru
WAT - WYDZIAŁ ELEKTRONIKI INSTYTUT SYSTEMÓW ELEKTRONICZNYCH. Przedmiot: CZUJNIKI I PRZETWORNIKI Ćwiczenie nr 1 PROTOKÓŁ / SPRAWOZDANIE
Grupa: WAT - WYDZIAŁ ELEKTRONIKI INSTYTT SYSTEMÓW ELEKTRONICZNYCH Przedmiot: CZJNIKI I PRZETWORNIKI Ćwiczenie nr 1 PROTOKÓŁ / SPRAWOZDANIE Temat: Przetworniki tensometryczne /POMIARY SIŁ I CIŚNIEŃ PRZY
2. Narysuj schemat zastępczy rzeczywistego źródła napięcia i oznacz jego elementy.
Ćwiczenie 2. 1. Czym się różni rzeczywiste źródło napięcia od źródła idealnego? Źródło rzeczywiste nie posiada rezystancji wewnętrznej ( wew = 0 Ω). Źródło idealne posiada pewną rezystancję własną ( wew
Ćwiczenie nr 43: HALOTRON
Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Data wykonania Data oddania Zwrot do popr. Rok Grupa Zespół Nr ćwiczenia Data oddania Data zaliczenia OCENA Ćwiczenie nr 43: HALOTRON Cel
WAT WYDZIAŁ ELEKTRONIKI INSTYTUT SYSTEMÓW ELEKTRONICZNYCH. Przedmiot: CZUJNIKI I PRZETWORNIKI Ćwiczenie nr 5 PROTOKÓŁ / SPRAWOZDANIE
WAT WYDZIAŁ ELEKTRONIKI INTYTUT YTEMÓW ELEKTRONICZNYCH Przedmiot: CZUJNIKI I PRZETWORNIKI Ćwiczenie nr 5 PROTOKÓŁ / PRAWOZDANIE Grupa:... 1.... 2.... 3.... 4.... Temat: Przetworniki piezoelektryczne /POMIARY
Ćwiczenie 21 Temat: Komparatory ze wzmacniaczem operacyjnym. Przerzutnik Schmitta i komparator okienkowy Cel ćwiczenia
Ćwiczenie 21 Temat: Komparatory ze wzmacniaczem operacyjnym. Przerzutnik Schmitta i komparator okienkowy Cel ćwiczenia Poznanie zasady działania układów komparatorów. Prześledzenie zależności napięcia
Tranzystory bipolarne. Podstawowe układy pracy tranzystorów.
ĆWICZENIE 4 Tranzystory bipolarne. Podstawowe układy pracy tranzystorów. I. Cel ćwiczenia Zapoznanie się z układami zasilania tranzystorów. Wybór punktu pracy tranzystora. Statyczna prosta pracy. II. Układ
POMIARY WIELKOŚCI NIEELEKTRYCZNYCH
POMIARY WIELKOŚCI NIEELEKTRYCZNYCH Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMNS Semestr zimowy studia niestacjonarne Wykład nr
Temat ćwiczenia. Pomiary drgań
POLITECHNIKA ŚLĄSKA W YDZIAŁ TRANSPORTU Temat ćwiczenia Pomiary drgań 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie studentów z metodami pomiarów drgań urządzeń mechanicznych oraz zasadą działania przetwornika
ZASADA DZIAŁANIA miernika V-640
ZASADA DZIAŁANIA miernika V-640 Zasadniczą częścią przyrządu jest wzmacniacz napięcia mierzonego. Jest to układ o wzmocnieniu bezpośred nim, o dużym współczynniku wzmocnienia i dużej rezystancji wejściowej,
Laboratorium Metrologii
Laboratorium Metrologii Ćwiczenie nr 3 Oddziaływanie przyrządów na badany obiekt I Zagadnienia do przygotowania na kartkówkę: 1 Zdefiniować pojęcie: prąd elektryczny Podać odpowiednią zależność fizyczną
LDPS-12ME LISTWOWY DWUPRZEWODOWY PRZETWORNIK SYGNAŁOWY DOKUMENTACJA TECHNICZNO-RUCHOWA. Wrocław, marzec 2003 r.
LISTWOWY DWUPRZEWODOWY PRZETWORNIK SYGNAŁOWY ME DOKUMENTACJA TECHNICZNO-RUCHOWA Wrocław, marzec 2003 r. 50-305 WROCŁAW TEL./FAX (+71) 373-52-27 ul. S. Jaracza 57-57a TEL. 0-602-62-32-71 str.2 SPIS TREŚCI
Wyznaczanie przenikalności magnetycznej i krzywej histerezy
Ćwiczenie E8 Wyznaczanie przenikalności magnetycznej i krzywej histerezy E8.1. Cel ćwiczenia Celem ćwiczenia jest pomiar zależności B(I) dla cewki z rdzeniem stalowym lub żelaznym, wykreślenie krzywej
LDPY-11 LISTWOWY DWUPRZEWODOWY PRZETWORNIK POŁOŻENIA DOKUMENTACJA TECHNICZNO-RUCHOWA. Wrocław, czerwiec 1997 r.
LISTWOWY DWUPRZEWODOWY PRZETWORNIK POŁOŻENIA DOKUMENTACJA TECHNICZNO-RUCHOWA Wrocław, czerwiec 1997 r. 50-305 WROCŁAW TEL./FAX (+71) 373-52-27 ul. S.JARACZA 57-57A TEL. 0-602-62-32-71 str.2 SPIS TREŚCI