Z.Z. Technologie Zbigniew warstwy Internetu. Zakrzewski Routing Sieci TCP/IP
|
|
- Ewa Grzybowska
- 9 lat temu
- Przeglądów:
Transkrypt
1 Technologie warstwy Internetu. Routing Protokoły routingu dynamicznego Z.Z. Technologie Zbigniew warstwy Internetu. Zakrzewski Routing Sieci TCP/IP ver. 1.0
2 RIPv1 RIPv1jest pierwszym protokołem ustanowionym jako sposób na dynamiczny routing. Do zasadniczych jego cech możemy zaliczyć: Wyłącznie klasowy routing Metryką używaną przy wyborze drogi jest liczba skoków (routerów) RFC 1058 Liczba skoków do danej sieci nie może przekroczyć 15, gdyż nie zostanie znaleziona trasa do tej sieci Aktualizacje routingu są automatycznie wysyłane jako komunikat rozgłoszeniowy lub grupowy co 30 sekund Nie zapewnia wsparcia dla uwierzytelniania routera Brak możliwości równoważenia obciążenia poprzez nadmiarowe (rezerwowe) łącza Długi czas konwergencji (osiągania zbieżności) Uaktualnienia przenoszone są przez UDP (port 520) Administracyjny dystans dla tego protokołu 120 Tabela routingu jest aktualizowana rozłożoną metodą Bellmana-Forda zapisywana jest tylko najlepsza pojedyncza droga do każdego punktu Z.Z. Technologie warstwy Internetu. Routing Sieci TCP/IP 2
3 Format pakietu RIPv1 RFC Polecenie Numer wersji [1] Pole zerowe (1) 2 bajty 32 Identyfikator rodziny adresów (AFI) sieć 1 Pole zerowe (2) 2 bajty 64 Adres sieciowy (zwykle IP) sieć Pole zerowe (3) 4 bajty Pole zerowe (4) 4bajty 160 Metryka (liczba skoków) do sieci 1 Dla IP wartość 2 Identyfikator rodziny adresów (AFI) sieć N Pole zerowe (1) 2 bajty Adres sieciowy (zwykle IP) sieć N Pole zerowe (2) 4 bajty Pole zerowe (3) 4 bajty Metryka (liczba skoków) do sieci N Z.Z. Technologie warstwy Internetu. Routing Sieci TCP/IP 3
4 Struktura wiadomości RIP RFC 1058 Maksymalnie 532 bajty Nagłówek IP Nagłówek UDP Wiadomość RIP 20 bajtów 8 bajtów x 25= 532 bajty Maksymalna wielkość wiadomości RIP = 52 bajty Minimalna wielkość wiadomości RIP Z.Z. Technologie warstwy Internetu. Routing Sieci TCP/IP 4
5 Eliminacja wpisu w tabeli RIP Algorytm linii czasu aktualizacji tablicy routingu wg protokołu RIPv1 RFC 1058 Aktualizacja wpisu w tabeli routingu 30 sekund Brak odpowiedzi -ustawienie wartości metryki na nieskończoność dla określonej sieci 3 minuty 4minuty Brak odpowiedzi -usunięcie wpisu z tabeli routingudla drogi uznanej za nieosiągalną (oczekiwanie przez 60 sekund od chwili maksymalizacji metryki) Z.Z. Technologie warstwy Internetu. Routing Sieci TCP/IP 5
6 RIPv2 RIPv2stanowi rozszerzenie funkcjonalności RIPv1 na wielu polach. Do zasadniczych jego cech możemy zaliczyć: Obsługa bezklasowego routingu (możliwość dokładnego maskowania) RFC 2453 Zapewnia wsparcia dla uwierzytelniania routera oraz wiadomości (MD5 128-bitowy) Metryką używaną przy wyborze drogi jest liczba skoków (routerów) Liczba skoków do danej sieci nie może przekroczyć 15, gdyż nie zostanie znaleziona trasa do tej sieci Aktualizacje routingu są automatycznie wysyłane jako komunikat multicastowy (eliminacja obsługi ruchu przez hosty nieroutujące) Brak możliwości równoważenia obciążenia poprzez nadmiarowe (rezerwowe) łącza Długi czas konwergencji (osiągania zbieżności) Uaktualnienia przenoszone są przez UDP (port 520) Administracyjny dystans dla tego protokołu 120 Tworzenie i aktualizowanie tabeli rozproszoną metodą Bellmana-Forda Z.Z. Technologie warstwy Internetu. Routing Sieci TCP/IP 6
7 Format pakietu RIPv RFC wyznaczona przez RIP w domenie IGP 0 Polecenie Numer wersji [2] Niewykorzystane 2 bajty Identyfikator rodziny adresów (AFI) sieć 1 Etykieta drogi 2 bajty 64 Adres sieciowy (zwykle IP) sieć Maska podsieci dla sieci 1 4 bajty Następny skok 4 bajty 160 Metryka (liczba skoków) do sieci 1 Dla IP wartość 2 Identyfikator rodziny adresów (AFI) sieć N Etykieta drogi 2 bajty Adres sieciowy (zwykle IP) sieć N Maska podsieci dla sieci N 4 bajty Następny skok 4 bajty Metryka (liczba skoków) do sieci N Z.Z. Technologie warstwy Internetu. Routing Sieci TCP/IP 7
8 Pakiet RIPv2 z uwierzytelnieniem RFC 2453 Polecenie Numer wersji [2] Niewykorzystane 2 bajty 0xFFFF Uwierzytelnienie hasło Rodzaj uwierzytelnienia (2 hasło tekstowe) 20 bajtów Identyfikator rodziny adresów (AFI) sieć 1 Etykieta drogi 2 bajty Adres sieciowy (zwykle IP) sieć 1 Maska podsieci dla sieci 1 4 bajty 20 bajtów Max 532 bajty Następny skok 4 bajty Metryka (liczba skoków) do sieci 1 Identyfikator rodziny adresów (AFI) sieć N Etykieta drogi 2 bajty Adres sieciowy (zwykle IP) sieć N Maska podsieci dla sieci N 4 bajty Następny skok 4 bajty Metryka (liczba skoków) do sieci N Z.Z. Technologie warstwy Internetu. Routing Sieci TCP/IP 8
9 RIPng RIPngstanowi uzupełnienie wspierające pracę sieci IPv6. Do zasadniczych jego cech możemy zaliczyć: Wsparcie dla protokołu IP tylko w wersji 6 (IPv6) RFC 2080 Nie zapewnia bezpośredniego wsparcia dla uwierzytelniania routera oraz wiadomości (usługa jest realizowana poprzez IPsec) Metryką używaną przy wyborze drogi jest liczba skoków (routerów) Nie wspiera odgórnego etykietowania dróg jak RIPv2 Liczba skoków do danej sieci nie może przekroczyć 15, gdyż nie zostanie znaleziona trasa do tej sieci Aktualizacje routingu są automatycznie wysyłane jako komunikat multicastowy FF02::9 (eliminacja obsługi ruchu przez hosty nieroutujące) Brak możliwości równoważenia obciążenia poprzez nadmiarowe (rezerwowe) łącza Długi czas konwergencji (osiągania zbieżności) Uaktualnienia przenoszone są przez UDP (port 521) Administracyjny dystans dla tego protokołu 120 Tworzenie i aktualizowanie tabeli rozproszoną metodą Bellmana-Forda Z.Z. Technologie warstwy Internetu. Routing Sieci TCP/IP 9
10 Format pakietu RIPng RFC Numer wersji 0 Polecenie Pole niewykorzystane (zerowe) 2 bajty [1 RIPngv1] IPv6-128-bitowy docelowy prefix wpisu trasy nr Etykieta drogi 2 bajty Długość prefixu Metryka Wpis trasy nr 1 Odpowiednik maski IPv6-128-bitowy docelowy prefix wpisu trasy nr N Wpis trasy nr N Etykieta drogi 2 bajty Długość prefixu Metryka Z.Z. Technologie warstwy Internetu. Routing Sieci TCP/IP 10
11 Wpis następnego skoku RIPng RFC bajtów 128-bitowy adres IPv6 następnego skoku Wpis next hop Same zera (0x0000) 2 bajty Same zera (0x00) 0xFF Wpis jest rozpoznawany na podstawie jedynek (0xFF) w miejscu metryki Tylko niezerowy adres IPv6 jest uznawany jako adres następnego skoku Zerowy adres wskazuje na inicjatora, czyli najbliższy węzeł Adresy następnego skoku są magazynowane osobno (inaczej niż w RIPv2) Z.Z. Technologie warstwy Internetu. Routing Sieci TCP/IP 11
12 IGRP IGRPpowstał przed zatwierdzeniem RIPv1, jednak zawiera więcej funkcjonalności. Do zasadniczych jego cech możemy zaliczyć: Wyłącznie klasowy routing Wektor odległości zawiera 5 różnych metryk dla każdej drogi Liczba skoków do danej sieci nie może przekroczyć 256 (numeracja od 0 do 255), gdyż nie zostanie znaleziona trasa do tej sieci Aktualizacje routingu są automatycznie wysyłane jako komunikat grupowy (multicastowy) co 90 sekund (z 10% tolerancją) niedostępność sieci jest włączana po czasie 3x90 sekund braku odpowiedzi Nie zapewnia wsparcia dla uwierzytelniania routera Posiada możliwości równoważenia oraz dzielenia obciążenia poprzez wykorzystanie różnych dróg do tej samej sieci (load balancing) Długi czas konwergencji (osiągania zbieżności) Uaktualnienia przenoszone są bezpośrednio przez IP (typ protokołu 9) Administracyjny dystans dla tego protokołu 100 Tabela routingu jest aktualizowana rozłożoną zmodyfikowanąmetodą Bellmana-Forda ze względu na load balancing Z.Z. Technologie warstwy Internetu. Routing Sieci TCP/IP 12
13 Format pakietu IGRP Nagłówek Wersja Operacja Licznik edycji Numer ID procesu IGRP 2 bajty Liczba dróg wewnętrznych wpisy dla sieci bezpośrednio połączonych Liczba domyślnych dróg zewnętrznych Liczba dróg zewnętrznych wpisy dla sieci połączonych pośrednio Bity kontroli parzystości 2 bajty 12 bajtów Adres sieci docelowej 3 bajty Opóźnienie Opóźnienie 3 bajty Pasmo przenoszenia 3 bajty Pasmo przenoszenia Najmniejsze MTU tej ścieżki 2 bajty Niezawodność 14 bajtów Przeciążenie Liczba skoków Adres sieci docelowej 3 bajty Adres sieci docelowej Opóźnienie 3 bajty Pasmo przenoszenia 3 bajty Najmniejsze MTU tej ścieżki 2 bajty Najmniejsze MTU Niezawodność Przeciążenie Liczba skoków 14 bajtów Z.Z. Technologie warstwy Internetu. Routing Sieci TCP/IP 13
14 EIGRP EIGRPstanowi rozszerzenie IGRPoraz zawiera wiele nowych funkcjonalności. Do zasadniczych jego cech możemy zaliczyć: Bezklasowy routing dyfuzyjny zapewniający brak zapętlania - DUAL Wektor odległości zawiera 5 różnych metryk (złożona metryka) Liczba skoków do danej sieci nie może przekroczyć 256 (numeracja od 0 do 255) domyślna wartość wynosi 100 Aktualizacje routingu są automatycznie wysyłane jako komunikat grupowy (multicastowy: ) co 90 sekund (z 10% tolerancją) niedostępność sieci jest włączana po czasie 3x90 sekund braku odpowiedzi Nie zapewnia wsparcia dla uwierzytelniania routera Posiada możliwości równoważenia oraz dzielenia obciążenia poprzez wykorzystanie różnych dróg do tej samej sieci (load balancing) Krótki czas konwergencji (osiągania zbieżności) - DUAL Uaktualnienia przenoszone są bezpośrednio przez IP (typ protokołu 88) Administracyjny dystans dla tego protokołu 90 (wew), 170 (zew) Zmianami w 3 tabelach (sąsiadów, routingu i topologii) zarządza algorytm DUAL (Diffusing Update ALgorithm) Z.Z. Technologie warstwy Internetu. Routing Sieci TCP/IP 14
15 Format nagłówka EIGRP Wersja [1] 1bajt Kod operacyjny Bity kontroli parzystości 2 bajty Flagi (1 nowe ustawienia sąsiada, 2 tryb warunkowego odbioru multicastowego) 4 bajty Sekwencja (wsparcie dla niezawodnego dostarczania wiadomości) 4 bajty 20 bajtów Potwierdzenie ACK (przedstawia sekwencyjny numer od sąsiada) 4 bajty Numer autonomicznego systemu (identyfikator tego procesu routingu EIGRP) 4 bajty Typ pola TLV 2 bajty Długość pola TLV 2 bajty Zmienna wielkość Wartość komunikatu EIGRP (TLV, Type-Length-Value) o zmiennej długości W polu Kod operacji określamy typ pakietu: aktualizacja (update) wartość 1 zapytanie (query) wartość 3 odpowiedź (reply) wartość 4 aktywności sąsiedzkiej (Hello) wartość 5 Z.Z. Technologie warstwy Internetu. Routing Sieci TCP/IP 15
16 Komunikat z parametrami EIGRP Typ pola TLV [0x0001] 2 bajty Długość pola TLV 2 bajty K1 1 bajt K2 1 bajt K3 1 bajt K4 1 bajt K5 1 bajt Zarezerwowany 1 bajt Czas wstrzymania 2 bajty 12 bajtów Czas oczekiwania przekazany do sąsiedniego routera na uznanie routera ogłaszającego za wyłączony Komunikat z parametrami EIGRP zawiera wagi potrzebne do obliczeń złożonej metryki: K1(szerokość pasma) domyślna wartość 1 K2 (obciążenie) domyślna wartość 0 K3 (opóźnienie) domyślna wartość 1 K4 (niezawodność) domyślna wartość 0 K5(niezawodność) domyślna wartość 0 Metryka domyślna = [K1 * szerokość pasma + K3 * opóźnienie] * /szerokość pasma [kb/s] Suma opóźnień/10ms Z.Z. Technologie warstwy Internetu. Routing Sieci TCP/IP 16
17 Wewnętrzny komunikat EIGRP Typ pola TLV [0x0002] 2 bajty Długość pola TLV 2 bajty Następny skok 4 bajty Opóźnienie 4 bajty Szerokość pasma 4 bajty Jednostka MTU 3 bajty Licznik skoków 28 bajtów Niezawodność Obciążenie Zarezerwowane 2 bajty Długość prefiksu Miejsce przeznaczenia 3 bajty Do najistotniejszych pól komunikatu zaliczamy: Opóźnienie suma opóźnień w jednostkach 10ms od źródła do celu (0xFFFFFFFF oznacza trasę nieosiągalną)) Szerokość pasma najniższa skonfigurowana szerokość pasma na dowolnym interfejsie znajdującym się na drodze Długość prefiksu określa liczbę bitów sieci w masce podsieci Miejsce przeznaczenia docelowy adres trasy Z.Z. Technologie warstwy Internetu. Routing Sieci TCP/IP 17
18 Zewnętrzny komunikat EIGRP Typ pola TLV [0x0003] 2 bajty Długość pola TLV 2 bajty Następny skok 4 bajty Początkowy router 4 bajty Numer początkowego systemu autonomicznego 4 bajty Znacznik arbitralności 4 bajty Zewnętrzne źródło trasy Metryka zewnętrznego protokołu 4 bajty Identyfikator zewn. Zarezerwowane 2 bajty protokołu Opóźnienie 4 bajty Szerokość pasma 4 bajty Jednostka MTU 3 bajty Flagi Licznik skoków Wewnętrzne źródło trasy Niezawodność Obciążenie Zarezerwowane 2 bajty Długość prefiksu Miejsce przeznaczenia 3 bajty Z.Z. Technologie warstwy Internetu. Routing Sieci TCP/IP 18
19 OSPFv2 OSPFv2stanowi dobry wybór dla dużych sieci wewnętrznych. Do zasadniczych jego cech możemy zaliczyć: RFC 2328 Bezklasowy routing zapewniający brak zapętlania podział na poddomeny Podział poddomenowywymusza stosowanie hierarchicznej struktury sieci z centralnym obszarem nadrzędnym (zerowym) Jest protokołem typu stanu łącza (link state) tylko wewnątrz danej domeny Liczba routerów w wydzielonej sieci trasowania może wynosić 500 Trasowanie wykonywane jest wielościeżkowo oraz najmniejszym kosztem Zapewnia wsparcia dla uwierzytelniania routera oraz wiadomości Posiada możliwości równoważenia oraz dzielenia obciążenia poprzez wykorzystanie różnych dróg do tej samej sieci (load balancing) Krótki czas konwergencji (osiągania zbieżności) podział na podsieci Uaktualnienia przenoszone są bezpośrednio przez IP (typ protokołu 89) Administracyjny dystans dla tego protokołu 110 W ramach pojedynczego obszaru wszystkie routery przeliczają trasy samodzielnie wg algorytmu Dijkstry pomiędzy obszarami stosowany jest wektor odległości, czyli przekazywanie tablic routingowych Z.Z. Technologie warstwy Internetu. Routing Sieci TCP/IP 19
20 OSPF dzieli sieć na obszary R1 BGP R3 R2 R4 R7 Obszar 0 R8 R6 R5 R9 R10 R11 R12 Obszar 1 Obszar 2 R13 R2 router graniczny (boundary) R3, R4, R7 routery rdzeniowe (core) R5, R6, R8, R13 routery brzegowe (border) R9, R10, R11, R12, R14, R15 routery wewnętrzne (interior) R14 Obszar 3 R15 Z.Z. Technologie warstwy Internetu. Routing Sieci TCP/IP 20
21 Ogłoszenia łącze-stan: LSA OSPF Rodzaje ogłoszeń dotyczących LSA (Link State Advertisement) łącze-stan: Router LSA (typecode= 1) -generowany dla połączeń punkt-punkt dla każdego interfejsu Network LSA (typecode= 2) jest stosowany w sieciach z wielopunktowym dostępem; komunikat jest desygnowany przez desygnowany router DR Network SummaryLSA (typecode= 3) - generowany przez router brzegowy ABR w celu ogłaszania dostępu do sieci z innego obszaru; dystrybucja prefixów IP pomiędzy obszarami AutonomousSystem BorderRouter (ASBR)SummaryLSA (typecode= 4) generowany przez router brzegowy do obszaru zewnętrznego AS ExternalLSA (typecode= 5) generowany przez router brzegowy ASBR w formie zewnętrznego ogłoszenia LSA Group MembershipLSA (typecode= 6) stosowany w multicastowym (grupowym) trybie OSPF NSSA ExternalLSA (typecode= 7) dla obszarów niezbyt cząstkowych ExternalAtributesLSA (typecode= 8) atrybuty na zewnątrz łącza (dla BGP); przestarzałe, zamiast tego stosowane będą 3 nowe typy OpaqueLSA, które będą określały zasięg propagacji informacji (type code = 9, 10 i 11) Z.Z. Technologie warstwy Internetu. Routing Sieci TCP/IP 21
22 Pakiety protokołu OSPF OSPFv2 wykorzystuje 5 typów pakietów LSP(Link-State-Protocol): Hello służą do tworzenia o podtrzymywania przyległości z innymi routerami OSPF (Typ = 1) DBD(DatabaseDescription) -opis bazy danych -pakiet zawiera skróconą listę bazy danych łącze-stan routera wysyłającego i jest używany przez odbierające routery do sprawdzania lokalnej bazy danych łącze-stan (Typ = 2) LSR(Link State Request) routery odbierające mogą żądać dodatkowych informacji o dowolnym wpisie z opisu DBD, wysyłając żądanie LSR (Typ = 3) LSU(Link State Update) pakiety aktualizacji są używane do odpowiadania na LSR i do ogłaszania nowych informacji. Pakiety LSU zawierają 7 różnego typu ogłoszeń LSA (Typ = 4) LSAck(Link State Acnowledgment) po odebraniu pakietu LSU router wysyła potwierdzenie (Typ = 5) Z.Z. Technologie warstwy Internetu. Routing Sieci TCP/IP 22
23 Nagłówek pakietu OSPFv2 i pakiet HELLO RFC Wersja = 2 Typ = 1 Długość pakietu 2 bajty Identyfikator routera 4 bajty Identyfikator obszaru 4 bajty Bity kontroli parzystości 2 bajty AuType- typ uwierzytelniania 2 bajty Uwierzytelnianie (hasło) 8 bajtów Nagłówek pakietu OSPFv2 Uwierzytelnianie (ciąg dalszy hasła) Maska podsieci 4 bajty Czas trwania HELLO 2 bajty Opcja Priorytet routera Czas uznania za nieczynny 4 bajty Router desygnowany (DR) 4 bajty Pakiety HELLO OSPFv2 Zapasowy router desygnowany (BDR) 4 bajty Lista sąsiadów 4 bajty na każdego Z.Z. Technologie warstwy Internetu. Routing Sieci TCP/IP 23
24 Rodzaje uwierzytelniania w OSPFv2 Typ Znaczenie Pole uwierzytelniania 0 Brak uwierzytelniania Dowolna wartość 1 Uwierzytelnianie oparte na prostym tekstowym haśle 2 Uwierzytelnianieprzy pomocy kryptograficznej sumy kontrolnej MD5 8-bajtowe hasło RFC 2328 Dodane jest kolejne 8-bajtowe pole x000 2 bajty Klucz ID 1 bajt Wielkość danych Au Numer kryptograficznej sekwencji 4 bajty Zwykle pola uwierzytelniania (16 bajtów) dodawane są na końcu pakietu OSPF Z.Z. Technologie warstwy Internetu. Routing Sieci TCP/IP 24
25 Pakiet DBD protokołu OSPFv2 RFC Wersja = 2 Typ = 2 Długość pakietu 2 bajty Identyfikator routera 4 bajty Identyfikator obszaru 4 bajty Bity kontroli parzystości 2 bajty AuType- typ uwierzytelniania 2 bajty Uwierzytelnianie (hasło) 8 bajtów Nagłówek pakietu OSPFv2 Uwierzytelnianie (ciąg dalszy hasła) Największy niefragmentowalny MTU 2 bajty Opcje 1 bajt Sekwencyjny numer DD sesji komunikacji z bazą danych 4 bajty I M M S Pakiety DBD OSPFv2 Nagłówki ogłoszeń LSA (część z nich lub wszystkie) Z.Z. Technologie warstwy Internetu. Routing Sieci TCP/IP 25
26 Pakiet LSR protokołu OSPFv2 RFC Wersja = 2 Typ = 3 Długość pakietu 2 bajty Identyfikator routera 4 bajty Identyfikator obszaru 4 bajty Bity kontroli parzystości 2 bajty AuType- typ uwierzytelniania 2 bajty Uwierzytelnianie (hasło) 8 bajtów Nagłówek pakietu OSPFv2 Uwierzytelnianie (ciąg dalszy hasła) Rodzaj LSA łącze-stan (router lub sieć) 4 bajty ID stanu łącza (określone przez typ ogłoszenia łącze-stan) 4 bajty Adres routera wysyłającego bieżące LSA 4 bajty Nagłówki żądań LSA (część z nich lub wszystkie) Pakiety LSR OSPFv2 Rodzaj LSA łącze-stan (router lub sieć) 4 bajty ID stanu łącza (określone przez typ ogłoszenia łącze-stan) 4 bajty Adres routera wysyłającego bieżące LSA 4 bajty Z.Z. Technologie warstwy Internetu. Routing Sieci TCP/IP 26
27 Pakiet LSU protokołu OSPFv2 RFC Wersja = 2 Typ = 4 Długość pakietu 2 bajty Identyfikator routera 4 bajty Identyfikator obszaru 4 bajty Bity kontroli parzystości 2 bajty AuType- typ uwierzytelniania 2 bajty Uwierzytelnianie (hasło) 8 bajtów Nagłówek pakietu OSPFv2 Uwierzytelnianie (ciąg dalszy hasła) Łączna liczba aktualizacyjnych ogłoszeń LSA 4 bajty Pakiety LSU OSPFv2 Aktualizacyjne dotyczące ogłoszeń LSA (jedno lub więcej) Pakiety LSA Z.Z. Technologie warstwy Internetu. Routing Sieci TCP/IP 27
28 Nagłówek pakietu LSA protokołu OSPFv2 RFC 2328 Maksymalny czas życia LSA (MaxAge) wynosi 1 godzinę Age: Liczba sekund od wysłania żądania 2 bajty Opcje domeny OSPF Typ (od 1 do 11) Identyfikator ID-LSA Łącze-stan 4 bajty Identyfikator źródłowego routera OSPF 4 bajty Sekwencyjny numer kolejnego ogłoszenia LSA 4 bajty Długość pakietu LSA wraz z nagłówkiem Bity kontroli parzystości 2 bajty 2 bajty Zabezpieczają cały pakiet oprócz pola Age Długość podana w bajtach Z.Z. Technologie warstwy Internetu. Routing Sieci TCP/IP 28
29 Ładunek pakietu LSA routera OSPFv2 Łącze wirtualne Router graniczny AS Router brzegowy RFC V E B 0x00 Liczba łączy (interfejsów routera) 2 bajty Typ łącza Identyfikator ID łącza 4 bajty Dane dotyczące łącza 4 bajty N-TOS liczba usług Metryka 2 bajty TOS rodzaj usług 0x00 Metryka TOS 2 bajty Typ łącza Identyfikator ID łącza 4 bajty Dane dotyczące łącza 4 bajty N-TOS liczba usług Metryka 2 bajty TOS rodzaj usług 0x00 Metryka TOS 2 bajty Z.Z. Technologie warstwy Internetu. Routing Sieci TCP/IP 29
30 Zestawienie typów łączy dla LSA routera RFC 2328 Typ łącza Opis ID łącza Dane na temat łącza 1 Łącze typu punkt- Sąsiednie routery, Adres IP interfejsu punkt ID routera źródłowego routera 2 Łącze do sieci tranzytowej 3 Łącze do zakończenia sieci IP adres interfejsu wyznaczonego routera AdresIP sieci lub podsieci Adres IP interfejsu źródłowego routera Adres IP sieci 4 Łącze wirtualne Sąsiednie routery, IP Adres IP interfejsu routera Z.Z. Technologie warstwy Internetu. Routing Sieci TCP/IP 30
31 Ładunek pakietu LSA sieci OSPFv2 RFC Maska sieci (standardowa maska podsieci) 4 bajty Dołączone routery (jeden wpis (4 bajty) dla każdego przyległego routera) Z.Z. Technologie warstwy Internetu. Routing Sieci TCP/IP 31
32 OSPFv3 OSPFv3stanowi protokół OSPF dla sieci IPv6. Do zasadniczych jego cech możemy zaliczyć: Bezklasowy routingipv6 zapewniający brak zapętlania podział na poddomeny RFC 2740 Podział poddomenowywymusza stosowanie hierarchicznej struktury sieci z centralnym obszarem nadrzędnym (zerowym) Jest protokołem typu stanu łącza (link state) tylko wewnątrz danej domeny Liczba routerów w wydzielonej sieci trasowania może wynosić 500 Trasowanie wykonywane jest wielościeżkowo oraz najmniejszym kosztem Nie zapewnia wsparcia dla uwierzytelniania routera oraz wiadomości Posiada możliwości równoważenia oraz dzielenia obciążenia poprzez wykorzystanie różnych dróg do tej samej sieci (load balancing) Krótki czas konwergencji (osiągania zbieżności) podział na podsieci Uaktualnienia przenoszone są bezpośrednio przez IP (typ protokołu 89) Administracyjny dystans dla tego protokołu 110 W ramach pojedynczego obszaru wszystkie routery przeliczają trasy samodzielnie wg algorytmu Dijkstry pomiędzy obszarami, wektor odległości Z.Z. Technologie warstwy Internetu. Routing Sieci TCP/IP 32
33 Nagłówek pakietu OSPFv3 RFC Wersja = 3 Typ ładunku Długość pakietu 2 bajty Identyfikator routera 4 bajty Identyfikator obszaru 4 bajty Bity kontroli parzystości 2 bajty ID Instancji 0x00 W części ładunkowej umieszczane są te same typy wiadomości co w OSPFv2 (Hello, DD, LS DatabaseRequest, LS DatabaseUpdate, LS Acknowledgment), jednak w wielu miejscach różnią się co do budowy Uwierzytelnianie jest realizowane w obszarze rozszerzeń nagłówka IPv6 Możliwość realizacji kilku instancji OSPFv3 w ramach tego samego połączenia (pole ID Instancji) ma zastosowanie tylko w przypadku łączy lokalnych Adresy grupowe (multicastowe) są stosowane w odniesieniu do adresów IPv4 dla OSPFv2 ( , ), czyli dla IPv6 są to: FF02::5 oraz FF02::6 (tak samo funkcjonują tylko w zakresie połączeń lokalnych) Z.Z. Technologie warstwy Internetu. Routing Sieci TCP/IP 33
34 Protokół IntegratedIS-IS IntegratedIS-ISstanowi dostosowanie opracowania protokołuiso/is-isdla sieci autonomicznych IP. Do zasadniczych jego cech możemy zaliczyć: Bezklasowy routing IPv4 zapewniający obsługę VLSM (osobna wersja dla IPv6) Jest protokołem typu stanu łącza (link state) wewnątrz danej domeny Każdy router IS-IS buduje niezależnie bazę na temat topologii sieci Do poszukiwania najlepszej drogi jest stosowany algorytm Dijkstry RFC 1195 Wprowadzono podział na interobszaryoraz intraobszary(tryby pracy routerów: 1 intra, 2 inter, 1-2 obydwa) brak obszaru 0 Granicę między sieciami wyznaczają routery poziomów 2 lub 1-2 Trasowanie wykonywane jest wielościeżkowo oraz najmniejszym kosztem Umożliwia obsługę innych protokołów niż IP w wersji ISO/IS-IS Posiada możliwości równoważenia oraz dzielenia obciążenia poprzez wykorzystanie różnych dróg do tej samej sieci (load balancing) oraz obługiwania dużych sieci zastosowanie do sieci operatorskich ISP Administracyjny dystans dla tego protokołu 115 Wykorzystuje pakiety Hallo oraz podsumowania adresów między obszarami Z.Z. Technologie warstwy Internetu. Routing Sieci TCP/IP 34
35 Protokół BGPv4 BGPv4(BorderGatewayProtocol) jest stosowany jako podstawowy rdzeniowy protokół routingowyw rozległych zewnętrznych sieciach Internet. Do jego cech charakterystycznych można zaliczyć: Routingzarówno w wersji IPv4 jak i IPv6 Bazowanie na określaniu wektora ścieżki (odległości) Jest transportowany przez protokół TCP(aktualizacje: port 179) Cała tablica trasowania jest wymieniana tylko podczas początkowej sesji RFC 4271 Sesje BGP są utrzymywane poprzez wiadomości typu "keepalive wysyłane co 30 sekund Każda zmiana w sieci powoduje wysłanie zawiadomienia o aktualizacji BGP ma swoją własną tablicę BGP. Każda pozycja w sieci musi znaleźć się najpierw w tablicy BGP Obsługuje VLSM, czyli bezklasowe trasowanie międzydomenowe Możliwość tworzenia własnych zasad podejmowania decyzji o routowaniu Jest w pełni zdecentralizowanym protokołem tworzącym system NSFNET Możliwość agregacji dróg routingowychw celu zmniejszenia zapotrzebowania na rezerwację zasobów w pojedynczej drodze połączeniowej Z.Z. Technologie warstwy Internetu. Routing Sieci TCP/IP 35
Technologie warstwy Internetu. Routing
Technologie warstwy Internetu. Routing Protokoły routingu dynamicznego Z.Z. Technologie Zbigniew warstwy Internetu. Zakrzewski Routing Sieci TCP/IP ver. 1.0 RIPv1 RFC 1058 RIPv1 jest pierwszym protokołem
Sieci komputerowe. Routing. dr inż. Andrzej Opaliński. Akademia Górniczo-Hutnicza w Krakowie. www.agh.edu.pl
Sieci komputerowe Routing Akademia Górniczo-Hutnicza w Krakowie dr inż. Andrzej Opaliński Plan wykładu Wprowadzenie Urządzenia Tablice routingu Typy protokołów Wstęp Routing Trasowanie (pl) Algorytm Definicja:
Księgarnia PWN: Mark McGregor Akademia sieci cisco. Semestr piąty
Księgarnia PWN: Mark McGregor Akademia sieci cisco. Semestr piąty Rozdział 1. Przegląd sieci skalowalnych 19 Model projektu skalowalnej sieci hierarchicznej 19 Trójwarstwowy model projektu sieci 20 Funkcja
Routing. mgr inż. Krzysztof Szałajko
Routing mgr inż. Krzysztof Szałajko Modele odniesienia 7 Aplikacji 6 Prezentacji 5 Sesji 4 Transportowa 3 Sieciowa 2 Łącza danych 1 Fizyczna Aplikacji Transportowa Internetowa Dostępu do sieci Wersja 1.0
Routing dynamiczny... 2 Czym jest metryka i odległość administracyjna?... 3 RIPv1... 4 RIPv2... 4 Interfejs pasywny... 5 Podzielony horyzont...
Routing dynamiczny... 2 Czym jest metryka i odległość administracyjna?... 3 RIPv1... 4 RIPv2... 4 Interfejs pasywny... 5 Podzielony horyzont... 5 Podzielony horyzont z zatruciem wstecz... 5 Vyatta i RIP...
DR INŻ. ROBERT WÓJCIK DR INŻ. JERZY DOMŻAŁ PODSTAWY RUTINGU IP. WSTĘP DO SIECI INTERNET Kraków, dn. 7 listopada 2016 r.
DR INŻ. ROBERT WÓJCIK DR INŻ. JERZY DOMŻAŁ PODSTAWY RUTINGU IP WSTĘP DO SIECI INTERNET Kraków, dn. 7 listopada 2016 r. PLAN Ruting a przełączanie Klasyfikacja rutingu Ruting statyczny Ruting dynamiczny
Sieci komputerowe dr Zbigniew Lipiński
Sieci komputerowe Podstawy routingu dr Zbigniew Lipiński Instytut Matematyki i Informatyki ul. Oleska 48 50-204 Opole zlipinski@math.uni.opole.pl Routing Routing jest procesem wyznaczania najlepszej trasy
Sieci komputerowe Protokoły routingu
Sieci komputerowe Protokoły routingu 212-5-24 Sieci komputerowe Protokoły routingu dr inż. Maciej Piechowiak 1 Protokoły routingu 2 Protokoły routingu Wykorzystywane do wymiany informacji o routingu między
Rozległe Sieci Komputerowe
Rozległe Sieci Komputerowe Rozległe Sieci Komputerowe Literatura: D.E. Conner Sieci komputerowe i intersieci R. W. McCarty Cisco WAN od podstaw R. Wright Elementarz routingu IP Interconnecting Cisco Network
Ruting. Protokoły rutingu a protokoły rutowalne
Ruting. Protokoły rutingu a protokoły rutowalne ruting : proces znajdowania najwydajniejszej ścieżki dla przesyłania pakietów między danymi dwoma urządzeniami protokół rutingu : protokół za pomocą którego
Warstwa sieciowa rutowanie
Warstwa sieciowa rutowanie Protokół IP - Internet Protocol Protokoły rutowane (routed) a rutowania (routing) Rutowanie statyczne i dynamiczne (trasowanie) Statyczne administrator programuje trasy Dynamiczne
Plan wykładu. Wyznaczanie tras. Podsieci liczba urządzeń w klasie C. Funkcje warstwy sieciowej
Wyznaczanie tras (routing) 1 Wyznaczanie tras (routing) 2 Wyznaczanie tras VLSM Algorytmy rutingu Tablica rutingu CIDR Ruting statyczny Plan wykładu Wyznaczanie tras (routing) 3 Funkcje warstwy sieciowej
PBS. Wykład Routing dynamiczny OSPF EIGRP 2. Rozwiązywanie problemów z obsługą routingu.
PBS Wykład 5 1. Routing dynamiczny OSPF EIGRP 2. Rozwiązywanie problemów z obsługą routingu. mgr inż. Roman Krzeszewski roman@kis.p.lodz.pl mgr inż. Artur Sierszeń asiersz@kis.p.lodz.pl mgr inż. Łukasz
Wstęp... 2 Ruting statyczny... 3 Ruting dynamiczny... 3 Metryka i odległość administracyjna... 4 RIPv1... 5 RIPv2... 5 EIGRP... 5 EIGRP komunikaty...
Wstęp... 2 Ruting statyczny... 3 Ruting dynamiczny... 3 Metryka i odległość administracyjna... 4 RIPv1... 5 RIPv2... 5 EIGRP... 5 EIGRP komunikaty... 5 EIGRP metryka... 6 EIGRP tablice... 6 EIGRP trasy...
Warstwa sieciowa. Model OSI Model TCP/IP. Aplikacji. Aplikacji. Prezentacji. Sesji. Transportowa. Transportowa
Warstwa sieciowa Model OSI Model TCP/IP Aplikacji Prezentacji Aplikacji podjęcie decyzji o trasowaniu (rutingu) na podstawie znanej, lokalnej topologii sieci ; - podział danych na pakiety Sesji Transportowa
Link-State. Z s Link-state Q s Link-state. Y s Routing Table. Y s Link-state
OSPF Open Shortest Path First Protokół typu link-state Publiczna specyfikacja Szybka zbieżność Obsługa VLSMs(Variable Length Subnet Masks) i sumowania tras Nie wymaga okresowego wysyłania uaktualnień Mechanizmy
Sieci komputerowe - Protokoły wspierające IPv4
2013-06-20 Piotr Kowalski KAiTI Plan i problematyka wykładu 1. Odwzorowanie adresów IP na sprzętowe i odwrotnie protokoły ARP i RARP. - Protokoły wspierające IPv4 2. Routing IP Tablice routingu, routing
Administracja sieciami LAN/WAN
Administracja sieciami LAN/WAN Protokoły routingu dr Zbigniew Lipiński Instytut Matematyki i Informatyki ul. Oleska 48 50-204 Opole zlipinski@math.uni.opole.pl Zagadnienia Protokół Protokół Protokół Protokół
Akademia sieci Cisco CCNA Exploration : semestr 2 : protokoły i koncepcje routingu / Rick Graziani, Allan Johnson. wyd. 1, dodr. 4.
Akademia sieci Cisco CCNA Exploration : semestr 2 : protokoły i koncepcje routingu / Rick Graziani, Allan Johnson. wyd. 1, dodr. 4. Warszawa, 2013 Spis treści O autorach 17 O redaktorach technicznych 17
Spis treúci. Księgarnia PWN: Rick Graziani, Allan Johnson - Akademia sieci Cisco. CCNA Exploration. Semestr 2
Księgarnia PWN: Rick Graziani, Allan Johnson - Akademia sieci Cisco. CCNA Exploration. Semestr 2 Spis treúci O autorach... 17 O redaktorach technicznych... 17 Dedykacje... 18 Podziękowania... 19 Symbole
Spis treúci. Księgarnia PWN: Wayne Lewis - Akademia sieci Cisco. CCNA semestr 3
Księgarnia PWN: Wayne Lewis - Akademia sieci Cisco. CCNA semestr 3 Spis treúci Informacje o autorze...9 Informacje o redaktorach technicznych wydania oryginalnego...9 Podziękowania...10 Dedykacja...11
3. Routing z wykorzystaniem wektora odległości, RIP
3. Routing z wykorzystaniem wektora odległości, RIP 3.1. Aktualizacje routingu z wykorzystaniem wektora odległości W routingu z wykorzystaniem wektora odległości tablice routingu są aktualizowane okresowo.
Routing. routing bezklasowy (classless) pozwala na używanie niestandardowych masek np. /27 stąd rozdzielczość trasowania jest większa
1 Routing przez routing rozumiemy poznanie przez router ścieżek do zdalnych sieci o gdy routery korzystają z routingu dynamicznego, informacje te są uzyskiwane na podstawie danych pochodzących od innych
ZiMSK. Routing dynamiczny 1
ZiMSK dr inż. Łukasz Sturgulewski, luk@kis.p.lodz.pl, http://luk.kis.p.lodz.pl/ dr inż. Artur Sierszeń, asiersz@kis.p.lodz.pl dr inż. Andrzej Frączyk, a.fraczyk@kis.p.lodz.pl Routing dynamiczny 1 Wykład
PBS. Wykład Podstawy routingu. 2. Uwierzytelnianie routingu. 3. Routing statyczny. 4. Routing dynamiczny (RIPv2).
PBS Wykład 4 1. Podstawy routingu. 2. Uwierzytelnianie routingu. 3. Routing statyczny. 4. Routing dynamiczny (RIPv2). mgr inż. Roman Krzeszewski roman@kis.p.lodz.pl mgr inż. Artur Sierszeń asiersz@kis.p.lodz.pl
Routing i protokoły routingu
Routing i protokoły routingu Po co jest routing Proces przesyłania informacji z sieci źródłowej do docelowej poprzez urządzenie posiadające co najmniej dwa interfejsy sieciowe i stos IP. Routing przykład
ARP Address Resolution Protocol (RFC 826)
1 ARP Address Resolution Protocol (RFC 826) aby wysyłać dane tak po sieci lokalnej, jak i pomiędzy różnymi sieciami lokalnymi konieczny jest komplet czterech adresów: adres IP nadawcy i odbiorcy oraz adres
A i B rozsyłają nowe wektory.
REAKCJA NA USZKODZENIE A i B rozsyłają nowe wektory. Węzeł E otrzymuje wektor od B. Wszystkie sieci w otrzymanej informacji mają koszt równy lub większy niż te, wpisane do tablicy. Jednocześnie jednak
GRAF DECYZJI O TRASIE PAKIETU
GRAF DECYZJI O TRASIE PAKIETU ROUTING STATYCZNY W SIECIACH IP Routery są urządzeniami, które na podstawie informacji zawartych w nagłówku odebranego pakietu oraz danych odebranych od sąsiednich urządzeń
52. Mechanizm trasowania pakietów w Internecie Informacje ogólne
52. Mechanizm trasowania pakietów w Internecie Informacje ogólne Trasowanie (Routing) to mechanizm wyznaczania trasy i przesyłania pakietów danych w intersieci, od stacji nadawczej do stacji odbiorczej.
BADANIE DOBORU TRAS W WIELODROGOWEJ ARCHITEKTURZE SIECIOWEJ ZE WZGLĘDU NA ZMIENNE WARUNKI SIECIOWE
RAFAŁ POLAK rafal.polak@student.wat.edu.pl DARIUSZ LASKOWSKI dlaskowski@wat.edu.pl Instytut Telekomunikacji, Wydział Elektroniki, Wojskowa Akademia Techniczna w Warszawie BADANIE DOBORU TRAS W WIELODROGOWEJ
Aby lepiej zrozumieć działanie adresów przedstawmy uproszczony schemat pakietów IP podróżujących w sieci.
Struktura komunikatów sieciowych Każdy pakiet posiada nagłówki kolejnych protokołów oraz dane w których mogą być zagnieżdżone nagłówki oraz dane protokołów wyższego poziomu. Każdy protokół ma inne zadanie
Routing - wstęp... 2 Routing statyczny... 3 Konfiguracja routingu statycznego IPv Konfiguracja routingu statycznego IPv6...
Routing - wstęp... 2 Routing statyczny... 3 Konfiguracja routingu statycznego IPv4... 3 Konfiguracja routingu statycznego IPv6... 3 Sprawdzenie połączenia... 4 Zadania... 4 Routing - wstęp O routowaniu
Algorytmy routingu. Kontynuacja wykładu
Algorytmy routingu Kontynuacja wykładu Algorytmy routingu Wektor odległości (distnace vector) (algorytm Bellmana-Forda): Określa kierunek i odległość do danej sieci. Stan łącza (link state): Metoda najkrótszej
Zarządzanie ruchem w sieci IP. Komunikat ICMP. Internet Control Message Protocol DSRG DSRG. DSRG Warstwa sieciowa DSRG. Protokół sterujący
Zarządzanie w sieci Protokół Internet Control Message Protocol Protokół sterujący informacje o błędach np. przeznaczenie nieosiągalne, informacje sterujące np. przekierunkowanie, informacje pomocnicze
Podstawy Transmisji Danych. Wykład IV. Protokół IPV4. Sieci WAN to połączenia pomiędzy sieciami LAN
Podstawy Transmisji Danych Wykład IV Protokół IPV4 Sieci WAN to połączenia pomiędzy sieciami LAN 1 IPv4/IPv6 TCP (Transmission Control Protocol) IP (Internet Protocol) ICMP (Internet Control Message Protocol)
Sieci komputerowe dr Zbigniew Lipiński
Sieci komputerowe Protokoły routingu dr Zbigniew Lipiński Instytut Matematyki i Informatyki ul. Oleska 48 50-204 Opole zlipinski@math.uni.opole.pl Routing Information Protocol (RIP) Protokół RIP, (ang.)
PORADNIKI. Routery i Sieci
PORADNIKI Routery i Sieci Projektowanie routera Sieci IP są sieciami z komutacją pakietów, co oznacza,że pakiety mogą wybierać różne trasy między hostem źródłowym a hostem przeznaczenia. Funkcje routingu
OSPF... 3 Komunikaty OSPF... 3 Przyległość... 3 Sieć wielodostępowa a punkt-punkt... 3 Router DR i BDR... 4 System autonomiczny OSPF...
OSPF... 3 Komunikaty OSPF... 3 Przyległość... 3 Sieć wielodostępowa a punkt-punkt... 3 Router DR i BDR... 4 System autonomiczny OSPF... 4 Metryka OSPF... 5 Vyatta i OSPF... 5 Komendy... 5 Wyłączenie wiadomości
Sieci komputerowe - Wstęp do intersieci, protokół IPv4
Piotr Kowalski KAiTI Internet a internet - Wstęp do intersieci, protokół IPv Plan wykładu Informacje ogólne 1. Ogólne informacje na temat sieci Internet i protokołu IP (ang. Internet Protocol) w wersji.
1. Podstawy routingu IP
1. Podstawy routingu IP 1.1. Routing i adresowanie Mianem routingu określa się wyznaczanie trasy dla pakietu danych, w taki sposób aby pakiet ten w możliwie optymalny sposób dotarł do celu. Odpowiedzialne
Funkcje warstwy sieciowej. Podstawy wyznaczania tras. Dostarczenie pakietu od nadawcy od odbiorcy (RIP, IGRP, OSPF, EGP, BGP)
Wyznaczanie tras (routing) 1 Wyznaczanie tras (routing) 17 Funkcje warstwy sieciowej Podstawy wyznaczania tras Routing statyczny Wprowadzenie jednolitej adresacji niezaleŝnej od niŝszych warstw (IP) Współpraca
Warstwa sieciowa. mgr inż. Krzysztof Szałajko
Warstwa sieciowa mgr inż. Krzysztof Szałajko Modele odniesienia 7 Aplikacji 6 Prezentacji 5 Sesji 4 Transportowa 3 Sieciowa 2 Łącza danych 1 Fizyczna Aplikacji Transportowa Internetowa Dostępu do sieci
MODEL OSI A INTERNET
MODEL OSI A INTERNET W Internecie przyjęto bardziej uproszczony model sieci. W modelu tym nacisk kładzie się na warstwy sieciową i transportową. Pozostałe warstwy łączone są w dwie warstwy - warstwę dostępu
Podstawy sieci komputerowych
mariusz@math.uwb.edu.pl http://math.uwb.edu.pl/~mariusz Uniwersytet w Białymstoku 2018/2019 Ekspancja sieci TCP/IP i rozwój adresacji IP 1975 opracowanie IPv4 32 bity na adres IP 2 32, czyli ok. 4 miliardów
DR INŻ. ROBERT WÓJCIK DR INŻ. JERZY DOMŻAŁ ADRESACJA W SIECIACH IP. WSTĘP DO SIECI INTERNET Kraków, dn. 24 października 2016r.
DR INŻ. ROBERT WÓJCIK DR INŻ. JERZY DOMŻAŁ ADRESACJA W SIECIACH IP WSTĘP DO SIECI INTERNET Kraków, dn. 24 października 2016r. PLAN Reprezentacja liczb w systemach cyfrowych Protokół IPv4 Adresacja w sieciach
Konfiguracja routerów CISCO protokoły rutingu: statyczny, RIP, IGRP, OSPF. Autorzy : Milczarek Arkadiusz Małek Grzegorz 4FDS
Konfiguracja routerów CISCO protokoły rutingu: statyczny, RIP, IGRP, OSPF Autorzy : Milczarek Arkadiusz Małek Grzegorz 4FDS Streszczenie: Tematem projektu jest zasada działania protokołów rutingu statycznego
Adresy w sieciach komputerowych
Adresy w sieciach komputerowych 1. Siedmio warstwowy model ISO-OSI (ang. Open System Interconnection Reference Model) 7. Warstwa aplikacji 6. Warstwa prezentacji 5. Warstwa sesji 4. Warstwa transportowa
Wykład 3: Internet i routing globalny. A. Kisiel, Internet i routing globalny
Wykład 3: Internet i routing globalny 1 Internet sieć sieci Internet jest siecią rozproszoną, globalną, z komutacją pakietową Internet to sieć łącząca wiele sieci Działa na podstawie kombinacji protokołów
6. Routing z wykorzystaniem stanu łącza, OSPF
6. Routing z wykorzystaniem stanu łącza, OSPF 6.1. Routing stanu łącza a routing wektora odległości Zasada działania protokołów routingu według stanu łącza jest inna niż w przypadku protokołów działających
Podstawy sieci komputerowych
mariusz@math.uwb.edu.pl http://math.uwb.edu.pl/~mariusz Uniwersytet w Białymstoku Zakład Dydaktyki i Nowoczesnych Technologii w Kształceniu 2017/2018 Ekspancja sieci TCP/IP i rozwój adresacji IP 1975 opracowanie
Sieci komputerowe W4. Warstwa sieciowa Modelu OSI
Sieci komputerowe W4 Warstwa sieciowa Modelu OSI 1 Warstwa sieciowa Odpowiada za transmisję bloków informacji poprzez sieć. Podstawową jednostką informacji w warstwie sieci jest pakiet. Określa, jaką drogą
Systemy operacyjne i sieci komputerowe Szymon Wilk Adresowanie w sieciach Klasy adresów IP a) klasa A
i sieci komputerowe Szymon Wilk Adresowanie w sieciach 1 1. Klasy adresów IP a) klasa A sieć host 0 mało sieci (1 oktet), dużo hostów (3 oktety) pierwszy bit równy 0 zakres adresów dla komputerów 1.0.0.0-127.255.255.255
Plan i problematyka wykładu. Sieci komputerowe IPv6. Rozwój sieci Internet. Dlaczego IPv6? Przykład zatykania dziur w funkcjonalności IPv4 - NAT
IPv6 dr inż. Piotr Kowalski Katedra Automatyki i Technik Informacyjnych Plan i problematyka wykładu 1. Uzasadnienie dla rozwoju protokołu IPv6 i próby ratowania idei IPv6 2. Główne aspekty funkcjonowania
Routing statyczny vs. dynamiczny. Routing dynamiczny. Routing statyczny vs. dynamiczny. Wymagania stawiane protokołom routingu
Routing dynamiczny 1 Routing dynamiczny 5 Routing statyczny vs. dynamiczny Routing dynamiczny tablice routingu konfigurowane przez administratora (-ów), przewidywalny trasa po której pakiet jest przesyłany
Routing. część 2: tworzenie tablic. Sieci komputerowe. Wykład 3. Marcin Bieńkowski
Routing część 2: tworzenie tablic Sieci komputerowe Wykład 3 Marcin Bieńkowski W poprzednim odcinku Jedna warstwa sieci i globalne adresowanie Każde urządzenie w sieci posługuje się tym samym protokołem
Plan prezentacji. Konfiguracja protokołu routingu OSPF. informatyka+
1 Plan prezentacji Wprowadzenie do budowy i konfiguracji routerów Wprowadzenie do konfiguracji routingu statycznego Wprowadzenie do konfiguracji protokołów routingu dynamicznego Konfiguracja protokołów
Zarządzanie systemem komendy
Zarządzanie systemem komendy Nazwa hosta set system host name nazwa_hosta show system host name delete system host name Nazwa domeny set system domain name nazwa_domeny show system domain name delete system
TCP/IP formaty ramek, datagramów, pakietów...
SIECI KOMPUTEROWE DATAGRAM IP Protokół IP jest przeznaczony do sieci z komutacją pakietów. Pakiet jest nazywany przez IP datagramem. Każdy datagram jest podstawową, samodzielną jednostką przesyłaną w sieci
Sieci komputerowe Warstwa sieci i warstwa transportowa
Sieci komputerowe Warstwa sieci i warstwa transportowa Ewa Burnecka / Janusz Szwabiński ewa@ift.uni.wroc.pl / szwabin@ift.uni.wroc.pl Sieci komputerowe (C) 2003 Janusz Szwabiński p.1/43 Model ISO/OSI Warstwa
OSPF: Open Shortest Path First
LAN 1 OSPF: Open Shortest Path First informacje ogólne motywacja wprowadzenia RIP jest wolny, zawodny, produkuje duży ruch, pozwala na ścieżki o maksymalnie 15 przeskokach RIP źle się skaluje: rozrost
Plan wykładu. Warstwa sieci. Po co adresacja w warstwie sieci? Warstwa sieci
Sieci komputerowe 1 Sieci komputerowe 2 Plan wykładu Warstwa sieci Miejsce w modelu OSI/ISO unkcje warstwy sieciowej Adresacja w warstwie sieciowej Protokół IP Protokół ARP Protokoły RARP, BOOTP, DHCP
Dlaczego? Mało adresów IPv4. Wprowadzenie ulepszeń względem IPv4 NAT CIDR
IPv6 Dlaczego? Mało adresów IPv4 NAT CIDR Wprowadzenie ulepszeń względem IPv4 Większa pula adresów Lepszy routing Autokonfiguracja Bezpieczeństwo Lepsza organizacja nagłówków Przywrócenie end-to-end connectivity
Protokół IPsec. Patryk Czarnik
Protokół IPsec Patryk Czarnik Bezpieczeństwo sieci komputerowych MSUI 2009/10 Standard IPsec IPsec (od IP security) to standard opisujacy kryptograficzne rozszerzenia protokołu IP. Implementacja obowiazkowa
Praktyczne aspekty implementacji IGP
Praktyczne aspekty implementacji IGP Piotr Jabłoński pijablon@cisco.com 1 Ogólne rekomendacje Jeden proces IGP w całej sieci. Idealnie jeden obszar. Wiele obszarów w całej sieci w zależności od ilości
RUTERY. Dr inŝ. Małgorzata Langer
RUTERY Dr inŝ. Małgorzata Langer Co to jest ruter (router)? Urządzenie, które jest węzłem komunikacyjnym Pracuje w trzeciej warstwie OSI Obsługuje wymianę pakietów pomiędzy róŝnymi (o róŝnych maskach)
Routing. część 2: tworzenie tablic. Sieci komputerowe. Wykład 3. Marcin Bieńkowski
Routing część 2: tworzenie tablic Sieci komputerowe Wykład 3 Marcin Bieńkowski W poprzednim odcinku Jedna warstwa sieci i globalne adresowanie Każde urządzenie w sieci posługuje się tym samym protokołem
Protokoły sieciowe - TCP/IP
Protokoły sieciowe Protokoły sieciowe - TCP/IP TCP/IP TCP/IP (Transmission Control Protocol / Internet Protocol) działa na sprzęcie rożnych producentów może współpracować z rożnymi protokołami warstwy
DR INŻ. ROBERT WÓJCIK DR INŻ. JERZY DOMŻAŁ
DR INŻ. ROBERT WÓJCIK DR INŻ. JERZY DOMŻAŁ INTERNET PROTOCOL (IP) INTERNET CONTROL MESSAGE PROTOCOL (ICMP) WSTĘP DO SIECI INTERNET Kraków, dn. 7 listopada 2016 r. PLAN IPv4: schemat nagłówka ICMP: informacje
MODUŁ: SIECI KOMPUTEROWE. Dariusz CHAŁADYNIAK Józef WACNIK
MODUŁ: SIECI KOMPUTEROWE Dariusz CHAŁADYNIAK Józef WACNIK WSZECHNICA PORANNA Wykład 1. Podstawy budowy i działania sieci komputerowych Korzyści wynikające z pracy w sieci. Role komputerów w sieci. Typy
Przesyłania danych przez protokół TCP/IP
Przesyłania danych przez protokół TCP/IP PAKIETY Protokół TCP/IP transmituje dane przez sieć, dzieląc je na mniejsze porcje, zwane pakietami. Pakiety są często określane różnymi terminami, w zależności
ZADANIE.03 Routing dynamiczny i statyczny (OSPF, trasa domyślna) 1,5h
Imię Nazwisko ZADANIE.03 Routing dynamiczny i statyczny (OSPF, trasa domyślna) 1,5h 1. Zbudować sieć laboratoryjną 2. Czynności wstępne 3. Włączyć i skonfigurować routing dynamiczny 4. Wyłączyć routing
Jedną z fundamentalnych cech IPv4 jest występowanie klucza bitowego w sposób jednoznaczny dzielącego adres na network-prefix oraz host-number.
ADRESOWANIE KLASOWE IPv4 Wszystkie hosty w danej sieci posiadają ten sam network-prefix lecz muszą mieć przypisany unikatowy host-number. Analogicznie, dowolne dwa hosty w różnych sieciach muszą posiadać
Tutorial 9 Routing dynamiczny
1 Tutorial 9 Routing dynamiczny 1. Wprowadzenie Sieci danych, których używamy na co dzień do nauki, pracy i zabawy to zarówno sieci małe, lokalne, jak i duże, globalne. W domu często mamy router i dwa
Sieci komputerowe Zjazd 3
Sieci komputerowe Zjazd 3 Warstwa sieciowa Modelu OSI Dr inż. Robert Banasiak Sieci Komputerowe 2011/2012 Studia niestacjonarne 1 Warstwa sieciowa Odpowiada za transmisję bloków informacji poprzez sieć.
LABORATORIUM SIECI KOMPUTEROWYCH (compnet.et.put.poznan.pl)
Wydział Elektroniki i Telekomunikacji POLITECHNIKA POZNAŃSKA fax: (+48 61) 665 25 72 ul. Piotrowo 3a, 60-965 Poznań tel: (+48 61) 665 22 93 LABORATORIUM SIECI KOMPUTEROWYCH (compnet.et.put.poznan.pl) Protokoły
Struktura adresu IP v4
Adresacja IP v4 E13 Struktura adresu IP v4 Adres 32 bitowy Notacja dziesiętna - każdy bajt (oktet) z osobna zostaje przekształcony do postaci dziesiętnej, liczby dziesiętne oddzielone są kropką. Zakres
Laboratorium 6.7.2: Śledzenie pakietów ICMP
Topologia sieci Tabela adresacji Urządzenie Interfejs Adres IP Maska podsieci Domyślna brama R1-ISP R2-Central Serwer Eagle S0/0/0 10.10.10.6 255.255.255.252 Nie dotyczy Fa0/0 192.168.254.253 255.255.255.0
DWA ZDANIA O TEORII GRAFÓW. przepływ informacji tylko w kierunku
DWA ZDANIA O TEORII GRAFÓW Krawędź skierowana Grafy a routing Każdą sieć przedstawić składającego przedstawiają E, inaczej węzłami). komunikacyjną można w postaci grafu G się z węzłów V (które węzły sieci)
Routowanie we współczesnym Internecie. Adam Bielański
Routowanie we współczesnym Internecie Adam Bielański Historia Prehistoria: 5.12.1969 1989 ARPANET Przepustowość łączy osiągnęła: 230.4 kb/s w 1970 Protokół 1822 Czasy historyczne: 1989 30.04.1995 NSFNet
Konfiguracja połączenia G.SHDSL punkt-punkt w trybie routing w oparciu o routery P-791R.
Konfiguracja połączenia G.SHDSL punkt-punkt w trybie routing w oparciu o routery P-791R. Topologia sieci: Lokalizacja B Lokalizacja A Niniejsza instrukcja nie obejmuje konfiguracji routera dostępowego
Laboratorium - Przeglądanie tablic routingu hosta
Topologia Cele Część 1: Dostęp do tablicy routingu hosta Część 2: Badanie wpisów tablicy routingu IPv4 hosta Część 3: Badanie wpisów tablicy routingu IPv6 hosta Scenariusz Aby uzyskać dostęp do zasobów
Adresacja IPv4 (Internet Protocol wersja 4)
Adresacja IPv4 (Internet Protocol wersja 4) Komputer, który chce wysłać pewne dane do innego komputera poprzez sieć, musi skonstruować odpowiednią ramkę (ramki). W nagłówku ramki musi znaleźć się tzw.
Enkapsulacja RARP DANE TYP PREAMBUŁA SFD ADRES DOCELOWY ADRES ŹRÓDŁOWY TYP SUMA KONTROLNA 2 B 2 B 1 B 1 B 2 B N B N B N B N B Typ: 0x0835 Ramka RARP T
Skąd dostać adres? Metody uzyskiwania adresów IP Część sieciowa Jeśli nie jesteśmy dołączeni do Internetu wyssany z palca. W przeciwnym przypadku numer sieci dostajemy od NIC organizacji międzynarodowej
Skąd dostać adres? Metody uzyskiwania adresów IP. Statycznie RARP. Część sieciowa. Część hosta
Sieci komputerowe 1 Sieci komputerowe 2 Skąd dostać adres? Metody uzyskiwania adresów IP Część sieciowa Jeśli nie jesteśmy dołączeni do Internetu wyssany z palca. W przeciwnym przypadku numer sieci dostajemy
Badanie protokołów routingu
lp wykonawca nr w dzienniku (dz) 1. Grzegorz Pol 2. Michał Grzybowski 3. Artur Mazur grupa (g) 3 Topologia: zadanie Protokół routingu wybór 1. RIPng 2. OSPFv3 x 3. EIGRP Tabela 1. Plan adresacji: dane
Protokół DHCP. DHCP Dynamic Host Configuration Protocol
Protokół DHCP Patryk Czarnik Bezpieczeństwo sieci komputerowych MSUI 2010/11 DHCP Dynamic Host Configuration Protocol Zastosowanie Pobranie przez stację w sieci lokalnej danych konfiguracyjnych z serwera
SIECI KOMPUTEROWE. Dariusz CHAŁADYNIAK Józef WACNIK
MODUŁ: SIECI KOMPUTEROWE Dariusz CHAŁADYNIAK Józef WACNIK NIE ARACHNOFOBII!!! Sieci i komputerowe są wszędzie WSZECHNICA PORANNA Wykład 1. Podstawy budowy i działania sieci komputerowych WYKŁAD: Role
ADRESY PRYWATNE W IPv4
ADRESY PRYWATNE W IPv4 Zgodnie z RFC 1918 zaleca się by organizacje dla hostów wymagających połączenia z siecią korporacyjną a nie wymagających połączenia zewnętrznego z Internetem wykorzystywały tzw.
Tutorial 10 Protokoły routingu wektora odległości
1 Tutorial 10 Protokoły routingu wektora odległości 1. Wprowadzenie Na tym wykładzie poświęconych skupimy się na protokołach bramy wewnętrznej (IGP). Jak wyjaśniono w poprzednim wykładzie, protokoły IGP
Pracownia sieci komputerowych
Załącznik nr 4 do zarządzenia nr 12 Rektora UJ z 15 lutego 2012 r. Sylabus modułu kształcenia na studiach wyższych Nazwa Wydziału Nazwa jednostki prowadzącej moduł Nazwa modułu kształcenia Wydział Matematyki
Warstwa sieciowa (technika VLSM)
Warstwa sieciowa (technika VLSM) Zadania 1. Mając do dyspozycji sieć o adresie 10.10.1.0/24 zaproponuj podział dostępnej puli adresowej na następujące podsieci liczące: 10 hostów 13 hostów 44 hosty 102
Analysis of PCE-based path optimization in multi-domain SDN/MPLS/BGP-LS network
Analysis of PCE-based path optimization in multi-domain SDN/MPLS/BGP-LS network Grzegorz Rzym AGH, Department of Telecommunications 20-21.10.2016, Poznań www.agh.edu.pl Agenda Motywacja PCE SDN Środowisko
Uproszczony opis obsługi ruchu w węźle IP. Trasa routingu. Warunek:
Uproszczony opis obsługi ruchu w węźle IP Poniższa procedura jest dokonywana dla każdego pakietu IP pojawiającego się w węźle z osobna. W routingu IP nie wyróżniamy połączeń. Te pojawiają się warstwę wyżej
Protokół DHCP. Patryk Czarnik. Bezpieczeństwo sieci komputerowych MSUI 2010/11. Wydział Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski
Protokół DHCP Patryk Czarnik Wydział Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski Bezpieczeństwo sieci komputerowych MSUI 2010/11 Patryk Czarnik (MIMUW) 10 DHCP BSK 2010/11 1 / 18 DHCP ogólnie
WYŻSZA SZKOŁA ZARZĄDZANIA I MARKETINGU BIAŁYSTOK, ul. Ciepła 40 filia w EŁKU, ul. Grunwaldzka
14 Protokół IP WYŻSZA SZKOŁA ZARZĄDZANIA I MARKETINGU BIAŁYSTOK, ul. Ciepła 40 Podstawowy, otwarty protokół w LAN / WAN (i w internecie) Lata 70 XX w. DARPA Defence Advanced Research Project Agency 1971
Komunikacja w sieciach komputerowych
Komunikacja w sieciach komputerowych Dariusz CHAŁADYNIAK 2 Plan prezentacji Wstęp do adresowania IP Adresowanie klasowe Adresowanie bezklasowe - maski podsieci Podział na podsieci Translacja NAT i PAT
Sterowanie ruchem w sieciach szkieletowych Transmisja wielościeżkowa
Sterowanie ruchem w sieciach szkieletowych Transmisja wielościeżkowa Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie AGH University of Science and Technology Wydział Informatyki, Elektroniki
Konfigurowanie protokołu OSPF w systemie Linux
Konfigurowanie protokołu OSPF w systemie Linux 1. Wprowadzenie Wymagania wstępne: wykonanie ćwiczeń Zaawansowana adresacja IP oraz Dynamiczny wybór trasy w ruterach Cisco. (Uwaga ze względu na brak polskich