Routing. część 2: tworzenie tablic. Sieci komputerowe. Wykład 3. Marcin Bieńkowski
|
|
- Władysława Walczak
- 7 lat temu
- Przeglądów:
Transkrypt
1 Routing część 2: tworzenie tablic Sieci komputerowe Wykład 3 Marcin Bieńkowski
2 W poprzednim odcinku
3 Jedna warstwa sieci i globalne adresowanie Każde urządzenie w sieci posługuje się tym samym protokołem warstwy sieci. W Internecie: protokół IP. warstwa aplikacji warstwa transportow warstwa sieciowa warstwa łącza danych HTTP SMTP DNS NTP TCP IP UDP Ethernet PPP (WiFi) MPLS warstwa fizyczna kable miedziane światłowód DSL fale radiowe Każde urządzenie ma unikatowy adres. W Internecie: adresy IP. 3
4 Przełączanie pakietów Chcemy przesyłać między aplikacjami strumień danych. Wysyłany strumień danych dzielimy na małe porcje: pakiety. nagłówek pakietu dane pakietu Każdy pakiet przesyłany niezależnie router A router C router D router B router E 4
5 Notacja CIDR CIDR opisuje prefiksy adresów IP: = /28 = adresy zaczynające się od prefiksu 28-bitowego Zazwyczaj sieć może być opisana jednym prefiksem CIDR. 5
6 Tablice routingu Router podejmuje decyzję na podstawie nagłówka pakietu w oparciu o tablice routingu. Zawiera reguły typu jeśli adres docelowy pakietu zaczyna się od prefiksu A, to wyślij pakiet do X. prefiks CIDR akcja /24 do routera A /8 do routera B /24 do routera C /16 do routera C /16 do routera D A B C D Pakiet niepasujący do żadnej reguły jest odrzucany. 6
7 Dziś: tworzenie tablic
8 Ręczna konfiguracja routingu Sprawdza się w przypadku małej sieci. W Internecie bez szans powodzenia: dodawane lub usuwane routery i łącza; zmiana parametrów i awarie łączy. Chcemy zapewniać łączność i unikać cykli w routingu (pakietów krążących w kółko) 8
9 Tablica przekazywania i routingu Tablica przekazywania (forwarding table) Przez dwa ostatnie wykłady nazywaliśmy ją (potocznie) tablicą routingu. Informacje o następnym routerze na trasie. Używana do podejmowania decyzji o pakietach na podstawie najdłuższego pasującego prefiksu. prefiks CIDR akcja /24 do routera A /8 do routera B /24 do routera C /16 do routera C /16 do routera D Silnie zoptymalizowana struktura danych wspomagana sprzętowo. Tablica routingu (routing table) Informacje o trasach. Zawiera dodatkowe informacje, np. zapasowe trasy routingu. 9
10 Cel Chcemy skonfigurować poprawnie tablice przekazywania. Do dowolnego miejsca w sieci. Algorytm nie powinien tworzyć cykli w routingu. Algorytm trzeba zaimplementować w rozproszonym środowisku. A S C F B D E 10
11 Wiele różnych rozwiązań Chcemy dodatkowo minimalizować odległość do celu. Minimalna przepustowość na trasie? Problem: minimalna przepustowość na cyklu może być stała (nie możemy wymusić braku cyklu). Suma wartości krawędzi do celu (najkrótsza ścieżka). Nie zawiera cykli. Jak zdefiniować wartości krawędzi? (metryka) czas propagacji; koszt pieniężny; 1 odległość pomiędzy dwoma routerami = liczba routerów na trasie (hops). 11
12 Sąsiedztwo Warunek wstępny: Każdy router zna swoje bezpośrednie otoczenie (sieci i routery). Router zna stan sąsiadujących łączy przez okresowy monitoring, np. wymiana pakietów co 30 sekund z sąsiadem. sąsiedztwo routera B A D B S C E F sieć/router odległość B 0 S 1 A 1 C 1 D 1 12
13 Najkrótsze ścieżki w rozproszony sposób Algorytmy stanu łączy Powiadom wszystkich o swoim bezpośrednim sąsiedztwie. Na podstawie sąsiedztw zbuduj graf sieci i oblicz lokalnie najkrótsze ścieżki. Algorytmy wektora odległości Okresowo powiadamiaj sąsiadów o całej swojej tablicy przekazywania. Aktualizuj swoją tablicę routingu na tej podstawie. 13
14 Stan łączy
15 Dwa elementy Wysłanie informacji o sąsiedztwie do wszystkich routerów. Ogólny problem: jak wysłać coś do wszystkich bez mapy sieci? Lokalne obliczenie najkrótszych ścieżek. Algorytm Dijkstry (najkrótsze ścieżki od jednego źródła). Router musi przechowywać cały graf: O( V + E ) danych. Czas działania: O( V log V + E ). 15
16 Niekontrolowane zalewanie sieci informacją Reguła: po odebraniu informacji E od routera X, wyślij E do wszystkich sąsiadów poza X. Problem: 16
17 Niekontrolowane zalewanie sieci informacją Reguła: po odebraniu informacji E od routera X, wyślij E do wszystkich sąsiadów poza X. Problem: 16
18 Niekontrolowane zalewanie sieci informacją Reguła: po odebraniu informacji E od routera X, wyślij E do wszystkich sąsiadów poza X. Problem: 16
19 Niekontrolowane zalewanie sieci informacją Reguła: po odebraniu informacji E od routera X, wyślij E do wszystkich sąsiadów poza X. Problem: 16
20 Niekontrolowane zalewanie sieci informacją Reguła: po odebraniu informacji E od routera X, wyślij E do wszystkich sąsiadów poza X. Problem: 16
21 Niekontrolowane zalewanie sieci informacją Reguła: po odebraniu informacji E od routera X, wyślij E do wszystkich sąsiadów poza X. Problem: Nawet jeśli w grafie nie ma cykli: wiele kopii pakietu może dotrzeć do jednego routera i każda z nich zostanie przesłany dalej. Trzeba pamiętać, jakie informacje już rozsyłaliśmy. 16
22 Kontrolowane zalewanie sieci informacją Router źródłowy dodaje do informacji E: swój adres s, numer sekwencyjny n. Reguła: po odebraniu informacji (E,s,n) od routera X: sprawdź, czy już przekazywaliśmy jakąś informację z adresu s i o numerze n; jeśli nie, to wyślij (E,s,n) do wszystkich sąsiadów poza X. Jak długo trzymać informacje? (Globalny TTL). 17
23 Zbieżność do stanu stabilnego Jeśli sieć nie zmienia się przez pewien czas, to: każdy router będzie miał ten sam obraz sieci; stworzone tablice przekazywania będą bez cykli w routingu. Możliwe cykle, jeśli niektóre routery już wiedzą o awarii łącza a inne nie. 18
24 Algorytm stanu łączy w Internecie Protokół OSPF (Open Shortest Path First). Komunikaty LSA = Link State Advertisement (stan pojedynczego łącza). Przesyłane na początku + przy zmianie + co jakiś czas (30 min.) LSA zawiera źródło i numer sekwencyjny. Po 1h otrzymane LSA są wyrzucane z pamięci. 19
25 Wektory odległości
26 Co robi router Przechowuje wektor odległości V zawierający odległości do znanych mu routerów i sieci: początkowo: tylko sąsiedztwo. Co pewien czas: wysyła V do sąsiednich routerów; uaktualnia tablicę routingu na podstawie informacji od sąsiadów. tablica routingu = tablica przekazywania + informacja z V o odległościach do celu 21
27 Uaktualnianie tablicy routingu Aktualizacja tablicy dla routera X. A mówi: mam do B odległość d(a,b). d(x,b) min { d(x,b), s(x,a) + d(a,b) } Aktualna odległość od X do B. A jest sąsiadem X odległym o s(x,a). Uwagi: Przy aktualizacji d(x,b) ustawiamy też A jako pierwszy router na trasie do B. Jeśli X nie zna B, to aktualna wartość d(x,b) =. Rozproszony wariant algorytmu Bellmana-Forda. Przechowujemy tylko jedną (najlepszą) ścieżkę. 22
28 Przykład tworzenia tablic Krok 0. A S C F B D E A B C D E F trasa do A trasa do B trasa do C trasa do D trasa do E trasa do F 1 - trasa do S
29 Przykład tworzenia tablic Krok 0. A S C F B D E A B C D E F trasa do A trasa do B trasa do C mam ścieżkę do E długości 1 trasa do D trasa do E trasa do F 1 - trasa do S
30 Przykład tworzenia tablic Krok 1. A S C F B D E A B C D E F trasa do A (via D) 2 (via C) trasa do B (via D) 2 (via C) trasa do C (via E) 1 1 trasa do D (via E) - 1 trasa do E 2 (via C) 2 (via D) (via C) trasa do F 2 (via C) 2 (via C) 1 2 (via C) - trasa do S (via A) 2 (via C) 2 (via C) 24
31 Przykład tworzenia tablic Krok 1. A S C F B D E A B C D E F trasa do A (via D) 2 (via C) trasa do B (via D) 2 (via C) trasa do C (via E) 1 1 trasa do D (via E) - 1 trasa do E 2 (via C) 2 (via D) (via C) trasa do F 2 (via C) 2 (via C) 1 2 (via C) - trasa do S (via A) 2 (via C) 2 (via C) mam ścieżkę do F długości 2 24
32 Przykład tworzenia tablic Krok 2. A S C F stan stabilny: kolejne wysłania wektorów nie powodują aktualizacji D B E A B C D E F trasa do A (via D) 2 (via C) trasa do B (via D) 2 (via C) trasa do C (via E) 1 1 trasa do D (via E) (via C) trasa do E 2 (via C) 2 (via D) (via C) trasa do F 2 (via C) 2 (via C) 1 3 (via A) 2 (via C) - trasa do S (via A) 2 (via C) 2 (via C) 25
33 Dodawanie routera Krok 0. A S C F G B D E A B C D E F G trasa do A (via D) 2 (via C) trasa do B (via D) 2 (via C) trasa do C (via E) 1 1 trasa do D (via E) (via C) trasa do E 2 (via C) 2 (via D) (via C) trasa do F 2 (via C) 2 (via C) 1 3 (via A) 2 (via C) - 1 trasa do S (via A) 2 (via C) 2 (via C) trasa do G 1 26
34 Dodawanie routera Krok 1. A S C F G B D E A B C D E F G trasa do A (via D) 2 (via C) 3 (via F) trasa do B (via D) 2 (via C) 3 (via F) trasa do C (via E) (via F) trasa do D (via E) (via C) 4 (via F) trasa do E 2 (via C) 2 (via D) (via C) 3 (via F) trasa do F 2 (via C) 2 (via C) 1 3 (via A) 2 (via C) - 1 trasa do S (via A) 2 (via C) 2 (via C) 3 (via F) trasa do G 2 (via F) 1-27
35 Dodawanie routera Krok 3. A S C F G B D E A B C D E F G trasa do A (via D) 2 (via C) 3 (via F) trasa do B (via D) 2 (via C) 3 (via F) trasa do C (via E) (via F) trasa do D (via E) (via C) 4 (via F) trasa do E 2 (via C) 2 (via D) (via C) 3 (via F) trasa do F 2 (via C) 2 (via C) 1 3 (via A) 2 (via C) - 1 trasa do S (via A) 2 (via C) 2 (via C) 3 (via F) trasa do G 3 (via C) 3 (via C) 2 (via F) 3 (via C) 1-28
36 Dodawanie routera Krok 4. A S C F G B D E A B C D E F G trasa do A (via D) 2 (via C) 3 (via F) trasa do B (via D) 2 (via C) 3 (via F) trasa do C (via E) (via F) trasa do D (via E) (via C) 4 (via F) trasa do E 2 (via C) 2 (via D) (via C) 3 (via F) trasa do F 2 (via C) 2 (via C) 1 3 (via A) 2 (via C) - 1 trasa do S (via A) 2 (via C) 2 (via C) 3 (via F) trasa do G 3 (via C) 3 (via C) 2 (via F) 4 (via B) 3 (via C) 1-29
37 Szybkość zbieżności Odległości będą poprawne po D turach, gdzie D jest średnicą sieci. Informacja o dodaniu routera lub łącza propaguje się z prędkością jednej krawędzi na turę. A informacja o awarii? 30
38 Awaria łącza Aktualizacja sąsiedztwa: Wpisujemy odległość nieskończoną do nieosiągalnego routera / sieci. Aktualizacja tablicy dla routera X jeśli A jest pierwszym routerem na trasie do B. d(x,b) s(x,a) + d(a,b) A mówi: mam do B odległość d(a,b). Aktualizujemy, nawet jeśli nowa trasa jest gorsza niż posiadana A jest sąsiadem X odległym o s(x,a). 31
39 Przykład awarii łącza (1) A B C D trasa do D A B C czas = 0 3 (via B) 2 (via C) 1 32
40 Przykład awarii łącza (1) A B C D Łącze pomiędzy C i D psuje się. trasa do D A B C czas = 0 3 (via B) 2 (via C) 1 czas = 1 3 (via B) 2 (via C) 32
41 Przykład awarii łącza (1) A B C D Łącze pomiędzy C i D psuje się. Dobry przypadek: C przekazuje swoją tablicę do B wcześniej niż B do C. B przekazuje swoją tablicę do A wcześniej niż A do B. trasa do D A B C czas = 0 3 (via B) 2 (via C) 1 czas = 1 3 (via B) 2 (via C) czas = 2 3 (via B) 32
42 Przykład awarii łącza (1) A B C D Łącze pomiędzy C i D psuje się. Dobry przypadek: C przekazuje swoją tablicę do B wcześniej niż B do C. B przekazuje swoją tablicę do A wcześniej niż A do B. trasa do D A B C czas = 0 3 (via B) 2 (via C) 1 czas = 1 3 (via B) 2 (via C) czas = 2 3 (via B) czas = 3 32
43 Przykład awarii łącza (2) A B C D Łącze pomiędzy C i D psuje się. Zły przypadek: B przekazuje najpierw swoją tablicę do C. trasa do D A B C czas = 0 3 (via B) 2 (via C) 1 czas = 1 3 (via B) 2 (via C) 33
44 Przykład awarii łącza (2) A B C D Łącze pomiędzy C i D psuje się. Zły przypadek: B przekazuje najpierw swoją tablicę do C. trasa do D A B C czas = 0 3 (via B) 2 (via C) 1 czas = 1 3 (via B) 2 (via C) czas = 2 3 (via B) 2 (via C) 3 (via B) 33
45 Przykład awarii łącza (2) A B C D Łącze pomiędzy C i D psuje się. cykl w routingu! Zły przypadek: B przekazuje najpierw swoją tablicę do C. trasa do D A B C czas = 0 3 (via B) 2 (via C) 1 czas = 1 3 (via B) 2 (via C) czas = 2 3 (via B) 2 (via C) 3 (via B) 33
46 Przykład awarii łącza (2) A B C D Łącze pomiędzy C i D psuje się. cykl w routingu! Zły przypadek: B przekazuje najpierw swoją tablicę do C. trasa do D A B C czas = 0 3 (via B) 2 (via C) 1 czas = 1 3 (via B) 2 (via C) czas = 2 3 (via B) 2 (via C) 3 (via B) czas = 3 3 (via B) 4 (via C) 3 (via B) 33
47 Przykład awarii łącza (2) A B C D Łącze pomiędzy C i D psuje się. cykl w routingu! Zły przypadek: B przekazuje najpierw swoją tablicę do C. trasa do D A B C czas = 0 3 (via B) 2 (via C) 1 czas = 1 3 (via B) 2 (via C) czas = 2 3 (via B) 2 (via C) 3 (via B) czas = 3 3 (via B) 4 (via C) 3 (via B) czas = 4 5 (via B) 4 (via C) 5 (via B) 33
48 Przykład awarii łącza (2) A B C D Łącze pomiędzy C i D psuje się. cykl w routingu! Zły przypadek: B przekazuje najpierw swoją tablicę do C. trasa do D A B C czas = 0 3 (via B) 2 (via C) 1 czas = 1 3 (via B) 2 (via C) czas = 2 3 (via B) 2 (via C) 3 (via B) czas = 3 3 (via B) 4 (via C) 3 (via B) czas = 4 5 (via B) 4 (via C) 5 (via B) czas = 5 5 (via B) 6 (via C) 5 (via B) 33
49 Przykład awarii łącza (2) A B C D Łącze pomiędzy C i D psuje się. cykl w routingu! Zły przypadek: B przekazuje najpierw swoją tablicę do C. trasa do D A B C czas = 0 3 (via B) 2 (via C) 1 czas = 1 3 (via B) 2 (via C) czas = 2 3 (via B) 2 (via C) 3 (via B) czas = 3 3 (via B) 4 (via C) 3 (via B) czas = 4 5 (via B) 4 (via C) 5 (via B) czas = 5 5 (via B) 6 (via C) 5 (via B) 33
50 Zliczanie do nieskończoności (1) Problem zliczania do nieskończoności: Routery zwiększają znaną odległość do D średnio o 1 na turę. Dlaczego problem wystąpił: B wysłał do C informację o odległości do D ale C jest na tej trasie! A B C D Zatruwanie ścieżki (route poisoning): Jeśli X jest wpisany jako następny router na ścieżce do Y to wysyłamy do X informację mam do Y ścieżkę nieskończoną. Może nie pomóc w większych sieciach. 34
51 Zatruwanie ścieżki Jeśli X jest wpisany jako następny router na ścieżce do Y to wysyłamy do X informację mam do Y ścieżkę nieskończoną. Po co w ogóle coś wysyłać? A B C Moja odległość do A to 1. Moja odległość do A to 1.
52 Zatruwanie ścieżki Jeśli X jest wpisany jako następny router na ścieżce do Y to wysyłamy do X informację mam do Y ścieżkę nieskończoną. Po co w ogóle coś wysyłać? A B C B: moja odległość do A to 1. C: moja odległość do A to 1. Moja odległość do A to 1. Moja odległość do A to 1.
53 Zatruwanie ścieżki Jeśli X jest wpisany jako następny router na ścieżce do Y to wysyłamy do X informację mam do Y ścieżkę nieskończoną. Po co w ogóle coś wysyłać? A B C B: moja odległość do A to 1. C: moja odległość do A to 1. Moja odległość do A to 1. Moja odległość do A to 1.
54 Zatruwanie ścieżki Jeśli X jest wpisany jako następny router na ścieżce do Y to wysyłamy do X informację mam do Y ścieżkę nieskończoną. Po co w ogóle coś wysyłać? A B C B: moja odległość do A to 1. C: moja odległość do A to 1. Nie mam połączenia z A. Nie mam połączenia z A.
55 Zatruwanie ścieżki Jeśli X jest wpisany jako następny router na ścieżce do Y to wysyłamy do X informację mam do Y ścieżkę nieskończoną. Po co w ogóle coś wysyłać? A B C C: moja odległość do A to 1. B: moja odległość do A to 1. Nie mam połączenia z A. Nie mam połączenia z A.
56 Zatruwanie ścieżki Jeśli X jest wpisany jako następny router na ścieżce do Y to wysyłamy do X informację mam do Y ścieżkę nieskończoną. Po co w ogóle coś wysyłać? A B C Trasa do A prowadzi przez C. Trasa do A prowadzi przez B. 35
57 Zatruwanie ścieżki Jeśli X jest wpisany jako następny router na ścieżce do Y to wysyłamy do X informację mam do Y ścieżkę nieskończoną. Po co w ogóle coś wysyłać? A B C Trasa do A prowadzi przez C. Trasa do A prowadzi przez B. Teraz wysłanie zatrutej trasy rozwiąże ten problem, w przeciwnym przypadku sytuacja pozostanie niezmieniona! 35
58 Zliczanie do nieskończoności (2) Dodatkowe pomysły rozwiązania: Wysyłanie również pierwszego routera na trasie (nie pomaga w większych sieciach). Szybsza aktualizacja w momencie wykrycia awarii. Jeśli wszystko inne zawiedzie: ustalić wartość graniczną odległości powyżej, której router jest już uważany za nieosiągalny. 36
59 Algorytmy wektora odległości w Internecie Protokół RIP (Routing Information Protocol) wysyłanie wektora odległości co 30 sek + w momencie zmiany; zatruwanie ścieżek; = 16 (w RIPv1); nieefektywny dla większych sieci. 37
60 Porównanie algorytmów stan łączy wektory odległości pamięć O( V + E ) O( V ) implementacja trudniejszy (zalewanie) łatwiejszy (tylko kontakt z sąsiadami) szybkość zbieżności (w praktyce) zapotrzebowanie na moc obliczeniową szybsza większe (algorytm Dijkstry) wolniejsza mniejsze (tylko aktualizacja odległości) 38
61 Routing w Internecie
62 Routing w Internecie Omówiliśmy dwa podejścia minimalizujące pewną funkcję celu: przesyłają wszystko ścieżką najkrótszą; po modyfikacji: można omijać łącza o małej przepustowości. Nie to, co chciałby optymalizować ISP! 40
63 Systemy autonomiczne Każdy ISP posiada jeden lub więcej system autonomiczny (AS). ~18 tys. ISP, ~33 tys. AS. Spójna polityka wewnętrznego routingu (często OSPF, rzadziej RIP). router brzegowy AS z jednym wyjściem AS z wieloma wyjściami (nietranzytowy) AS tranzytowy relacje pieniężne dostawca-klient Gdzie jesteśmy na mapie: łącza partnerskie (peering) 41
64 Czego chcą ISP? Wybór tras routingu na podstawie polityki ISP, np.: Chcę płacić jak najmniej. Nie chcę udostępniać wewnętrznych szczegółów na temat AS. Nie chcę żeby ktoś przesyłał dane przez mój AS, jeśli nie mam z tego zysku. Względy ekonomiczne, prywatności, autonomii. Polityki nie są realizowane przez najkrótsze ścieżki! 42
65 Border Gateway Protocol (BGP) Algorytm routingu pomiędzy AS. Bazuje na algorytmach wektora odległości stan łączy nie gwarantuje prywatności i wymaga uzgodnień pomiędzy ISP Rozgłaszane są całe poznane trasy Sieć /16 jest osiągalna przez trasę {AS3, AS21, AS13}, pierwszy router to łatwe unikanie cykli. ISP sam decyduje, czy i komu rozgłosić poznaną trasę. ISP sam określa, które trasy wykorzysta do tworzenia tablic przekazywania. 43
66 Filtrowanie tras: które trasy warto rozgłaszać? Zawartość naszego AS (prefiksy CIDR): Inaczej nikt do nas nie trafi. Trasy do naszych klientów: Tak, bo klienci nam płacą, za przesyłane dane. Szczególnie warto rozgłaszać je naszym partnerom, bo to jest ruch za który nie płacimy. Trasy do naszych dostawców: Naszym klientom tak. Poza tym nie: nie chcemy, żeby inni przesyłali przez nasz AS ruch do naszego dostawcy (my płacimy, nam nie płacą). Trasy do naszych partnerów: Naszym klientom tak. Poza tym zazwyczaj nie. 44
67 Wybór tras Wiele możliwości dotarcia do jakiejś sieci (prefiksu CIDR) Zazwyczaj wybór najkrótszej trasy (najmniejsza liczba AS). Ale można zmienić taki wybór. Częsta polityka: wybierz najpierw trasę przez swojego klienta, potem przez partnera, a na końcu trasę przez dostawcę. 45
68 Routing pomiędzy i wewnątrz AS, idea (1) Routery brzegowe danego AS (via BGP): rozgłoś prefiksy CIDR tego AS; Znam trasy do Znam trasy do dowiedz się o trasach do innych AS. 46
69 Routing pomiędzy i wewnątrz AS, idea (1) Routery brzegowe danego AS (via BGP): rozgłoś prefiksy CIDR tego AS; Znam trasy do Znam trasy do dowiedz się o trasach do innych AS. AS z jednym wyjściem X: Ustal routing wewnątrz AS (OSPF lub RIP lub IS-IS lub ) Dodaj X na wszystkich routerach jako bramę domyślną. 46
70 Routing pomiędzy i wewnątrz AS, idea (2) Routery brzegowe danego AS (via BGP): rozgłoś prefiksy CIDR tego AS; Znam trasy do Znam trasy do dowiedz się o trasach do innych AS. AS z wieloma wyjściami X 1,X 2,X 3,, opcja 1 (hot-potato routing) Ustal routing wewnątrz AS (bez udziału zewnętrznych tras). Każdy router wybiera najbliższy X i jako bramę domyślną. Informacja o dostępnych trasach musi być synchronizowana między routerami X i (protokołem ibgp). 47
71 Routing pomiędzy i wewnątrz AS, idea (3) Routery brzegowe danego AS (via BGP): rozgłoś prefiksy CIDR tego AS; Znam trasy do Znam trasy do dowiedz się o trasach do innych AS. AS z wieloma wyjściami X 1,X 2,X 3,, opcja 2: Routery X i biorą udział w protokole routingu wewnątrz AS udostępniając trasy, których nauczyły się przez BGP jako swoje sąsiedztwo (z odpowiednimi odległościami). Lepsze trasy ale każdy router musi przechowywać informacje o wielu sieciach. 48
72 Lektura dodatkowa Kurose & Ross: rozdział 4. Tanenbaum: rozdział 5. Dokumentacja RIP i OSPF:
Routing. część 2: tworzenie tablic. Sieci komputerowe. Wykład 3. Marcin Bieńkowski
Routing część 2: tworzenie tablic Sieci komputerowe Wykład 3 Marcin Bieńkowski W poprzednim odcinku Jedna warstwa sieci i globalne adresowanie Każde urządzenie w sieci posługuje się tym samym protokołem
Routing. część 2: tworzenie tablic. Sieci komputerowe. Wykład 3. Marcin Bieńkowski
Routing część 2: tworzenie tablic Sieci komputerowe Wykład 3 Marcin Bieńkowski W poprzednim odcinku Jedna warstwa sieci i globalne adresowanie Każde urządzenie w sieci posługuje się tym samym protokołem
Wykład 3: Internet i routing globalny. A. Kisiel, Internet i routing globalny
Wykład 3: Internet i routing globalny 1 Internet sieć sieci Internet jest siecią rozproszoną, globalną, z komutacją pakietową Internet to sieć łącząca wiele sieci Działa na podstawie kombinacji protokołów
Routing. mgr inż. Krzysztof Szałajko
Routing mgr inż. Krzysztof Szałajko Modele odniesienia 7 Aplikacji 6 Prezentacji 5 Sesji 4 Transportowa 3 Sieciowa 2 Łącza danych 1 Fizyczna Aplikacji Transportowa Internetowa Dostępu do sieci Wersja 1.0
Ruting. Protokoły rutingu a protokoły rutowalne
Ruting. Protokoły rutingu a protokoły rutowalne ruting : proces znajdowania najwydajniejszej ścieżki dla przesyłania pakietów między danymi dwoma urządzeniami protokół rutingu : protokół za pomocą którego
DR INŻ. ROBERT WÓJCIK DR INŻ. JERZY DOMŻAŁ PODSTAWY RUTINGU IP. WSTĘP DO SIECI INTERNET Kraków, dn. 7 listopada 2016 r.
DR INŻ. ROBERT WÓJCIK DR INŻ. JERZY DOMŻAŁ PODSTAWY RUTINGU IP WSTĘP DO SIECI INTERNET Kraków, dn. 7 listopada 2016 r. PLAN Ruting a przełączanie Klasyfikacja rutingu Ruting statyczny Ruting dynamiczny
PORADNIKI. Routery i Sieci
PORADNIKI Routery i Sieci Projektowanie routera Sieci IP są sieciami z komutacją pakietów, co oznacza,że pakiety mogą wybierać różne trasy między hostem źródłowym a hostem przeznaczenia. Funkcje routingu
RUTERY. Dr inŝ. Małgorzata Langer
RUTERY Dr inŝ. Małgorzata Langer Co to jest ruter (router)? Urządzenie, które jest węzłem komunikacyjnym Pracuje w trzeciej warstwie OSI Obsługuje wymianę pakietów pomiędzy róŝnymi (o róŝnych maskach)
Routing i protokoły routingu
Routing i protokoły routingu Po co jest routing Proces przesyłania informacji z sieci źródłowej do docelowej poprzez urządzenie posiadające co najmniej dwa interfejsy sieciowe i stos IP. Routing przykład
ZiMSK. Routing dynamiczny 1
ZiMSK dr inż. Łukasz Sturgulewski, luk@kis.p.lodz.pl, http://luk.kis.p.lodz.pl/ dr inż. Artur Sierszeń, asiersz@kis.p.lodz.pl dr inż. Andrzej Frączyk, a.fraczyk@kis.p.lodz.pl Routing dynamiczny 1 Wykład
Warstwa sieciowa rutowanie
Warstwa sieciowa rutowanie Protokół IP - Internet Protocol Protokoły rutowane (routed) a rutowania (routing) Rutowanie statyczne i dynamiczne (trasowanie) Statyczne administrator programuje trasy Dynamiczne
Sieci komputerowe. Routing. dr inż. Andrzej Opaliński. Akademia Górniczo-Hutnicza w Krakowie. www.agh.edu.pl
Sieci komputerowe Routing Akademia Górniczo-Hutnicza w Krakowie dr inż. Andrzej Opaliński Plan wykładu Wprowadzenie Urządzenia Tablice routingu Typy protokołów Wstęp Routing Trasowanie (pl) Algorytm Definicja:
ISP od strony technicznej. Fryderyk Raczyk
ISP od strony technicznej Fryderyk Raczyk Agenda 1. BGP 2. MPLS 3. Internet exchange BGP BGP (Border Gateway Protocol) Dynamiczny protokół routingu Standard dla ISP Wymiana informacji pomiędzy Autonomous
PBS. Wykład Routing dynamiczny OSPF EIGRP 2. Rozwiązywanie problemów z obsługą routingu.
PBS Wykład 5 1. Routing dynamiczny OSPF EIGRP 2. Rozwiązywanie problemów z obsługą routingu. mgr inż. Roman Krzeszewski roman@kis.p.lodz.pl mgr inż. Artur Sierszeń asiersz@kis.p.lodz.pl mgr inż. Łukasz
Rozległe Sieci Komputerowe
Rozległe Sieci Komputerowe Rozległe Sieci Komputerowe Literatura: D.E. Conner Sieci komputerowe i intersieci R. W. McCarty Cisco WAN od podstaw R. Wright Elementarz routingu IP Interconnecting Cisco Network
Sieci komputerowe - Protokoły wspierające IPv4
2013-06-20 Piotr Kowalski KAiTI Plan i problematyka wykładu 1. Odwzorowanie adresów IP na sprzętowe i odwrotnie protokoły ARP i RARP. - Protokoły wspierające IPv4 2. Routing IP Tablice routingu, routing
Przesyłania danych przez protokół TCP/IP
Przesyłania danych przez protokół TCP/IP PAKIETY Protokół TCP/IP transmituje dane przez sieć, dzieląc je na mniejsze porcje, zwane pakietami. Pakiety są często określane różnymi terminami, w zależności
Routing. routing bezklasowy (classless) pozwala na używanie niestandardowych masek np. /27 stąd rozdzielczość trasowania jest większa
1 Routing przez routing rozumiemy poznanie przez router ścieżek do zdalnych sieci o gdy routery korzystają z routingu dynamicznego, informacje te są uzyskiwane na podstawie danych pochodzących od innych
52. Mechanizm trasowania pakietów w Internecie Informacje ogólne
52. Mechanizm trasowania pakietów w Internecie Informacje ogólne Trasowanie (Routing) to mechanizm wyznaczania trasy i przesyłania pakietów danych w intersieci, od stacji nadawczej do stacji odbiorczej.
Protokoły sieciowe - TCP/IP
Protokoły sieciowe Protokoły sieciowe - TCP/IP TCP/IP TCP/IP (Transmission Control Protocol / Internet Protocol) działa na sprzęcie rożnych producentów może współpracować z rożnymi protokołami warstwy
Routing - wstęp... 2 Routing statyczny... 3 Konfiguracja routingu statycznego IPv Konfiguracja routingu statycznego IPv6...
Routing - wstęp... 2 Routing statyczny... 3 Konfiguracja routingu statycznego IPv4... 3 Konfiguracja routingu statycznego IPv6... 3 Sprawdzenie połączenia... 4 Zadania... 4 Routing - wstęp O routowaniu
Plan wykładu. Wyznaczanie tras. Podsieci liczba urządzeń w klasie C. Funkcje warstwy sieciowej
Wyznaczanie tras (routing) 1 Wyznaczanie tras (routing) 2 Wyznaczanie tras VLSM Algorytmy rutingu Tablica rutingu CIDR Ruting statyczny Plan wykładu Wyznaczanie tras (routing) 3 Funkcje warstwy sieciowej
3. Routing z wykorzystaniem wektora odległości, RIP
3. Routing z wykorzystaniem wektora odległości, RIP 3.1. Aktualizacje routingu z wykorzystaniem wektora odległości W routingu z wykorzystaniem wektora odległości tablice routingu są aktualizowane okresowo.
PBS. Wykład Podstawy routingu. 2. Uwierzytelnianie routingu. 3. Routing statyczny. 4. Routing dynamiczny (RIPv2).
PBS Wykład 4 1. Podstawy routingu. 2. Uwierzytelnianie routingu. 3. Routing statyczny. 4. Routing dynamiczny (RIPv2). mgr inż. Roman Krzeszewski roman@kis.p.lodz.pl mgr inż. Artur Sierszeń asiersz@kis.p.lodz.pl
Wykorzystanie połączeń VPN do zarządzania MikroTik RouterOS
Wykorzystanie połączeń VPN do zarządzania MikroTik RouterOS Największe centrum szkoleniowe Mikrotik w Polsce Ul. Ogrodowa 58, Warszawa Centrum Warszawy Bliskość dworca kolejowego Komfortowe klimatyzowane
Akademickie Centrum Informatyki PS. Wydział Informatyki PS
kademickie Centrum Informatyki PS Wydział Informatyki PS Wydział Informatyki Sieci komputerowe i Telekomunikacyjne Transmisja w protokole IP Krzysztof ogusławski tel. 4 333 950 kbogu@man.szczecin.pl 1.
1. Podstawy routingu IP
1. Podstawy routingu IP 1.1. Routing i adresowanie Mianem routingu określa się wyznaczanie trasy dla pakietu danych, w taki sposób aby pakiet ten w możliwie optymalny sposób dotarł do celu. Odpowiedzialne
1.1 Ustawienie adresów IP oraz masek portów routera za pomocą konsoli
1. Obsługa routerów... 1 1.1 Ustawienie adresów IP oraz masek portów routera za pomocą konsoli... 1 1.2 Olicom ClearSight obsługa podstawowa... 2 1.3 Konfiguracja protokołu RIP... 5 Podgląd tablicy routingu...
Algorytmy routingu. Kontynuacja wykładu
Algorytmy routingu Kontynuacja wykładu Algorytmy routingu Wektor odległości (distnace vector) (algorytm Bellmana-Forda): Określa kierunek i odległość do danej sieci. Stan łącza (link state): Metoda najkrótszej
LABORATORIUM SIECI KOMPUTEROWYCH (compnet.et.put.poznan.pl)
Wydział Elektroniki i Telekomunikacji POLITECHNIKA POZNAŃSKA fax: (+48 61) 665 25 72 ul. Piotrowo 3a, 60-965 Poznań tel: (+48 61) 665 22 93 LABORATORIUM SIECI KOMPUTEROWYCH (compnet.et.put.poznan.pl) Protokoły
Sieci komputerowe. Wykład 3: Protokół IP. Marcin Bieńkowski. Instytut Informatyki Uniwersytet Wrocławski. Sieci komputerowe (II UWr) Wykład 3 1 / 25
Sieci komputerowe Wykład 3: Protokół IP Marcin Bieńkowski Instytut Informatyki Uniwersytet Wrocławski Sieci komputerowe (II UWr) Wykład 3 1 / 25 W poprzednim odcinku Podstawy warstwy pierwszej (fizycznej)
Konfigurowanie protokołu BGP w systemie Linux
Konfigurowanie protokołu BGP w systemie Linux 1. Wprowadzenie Wymagania wstępne: wykonanie ćwiczeń Zaawansowana adresacja IP oraz Dynamiczny wybór trasy w ruterach Cisco, znajomość pakietu Zebra. Internet
A i B rozsyłają nowe wektory.
REAKCJA NA USZKODZENIE A i B rozsyłają nowe wektory. Węzeł E otrzymuje wektor od B. Wszystkie sieci w otrzymanej informacji mają koszt równy lub większy niż te, wpisane do tablicy. Jednocześnie jednak
Zarządzanie ruchem w sieci IP. Komunikat ICMP. Internet Control Message Protocol DSRG DSRG. DSRG Warstwa sieciowa DSRG. Protokół sterujący
Zarządzanie w sieci Protokół Internet Control Message Protocol Protokół sterujący informacje o błędach np. przeznaczenie nieosiągalne, informacje sterujące np. przekierunkowanie, informacje pomocnicze
Routing / rutowanie (marszrutowanie) (trasowanie)
Routing / rutowanie (marszrutowanie) (trasowanie) Router / router (trasownik) Static routing / Trasa statyczna Dynamic routing / Trasa dynamiczna Static routing table / tablica trasy statycznej root@pendragon:~#
Funkcje warstwy sieciowej. Podstawy wyznaczania tras. Dostarczenie pakietu od nadawcy od odbiorcy (RIP, IGRP, OSPF, EGP, BGP)
Wyznaczanie tras (routing) 1 Wyznaczanie tras (routing) 17 Funkcje warstwy sieciowej Podstawy wyznaczania tras Routing statyczny Wprowadzenie jednolitej adresacji niezaleŝnej od niŝszych warstw (IP) Współpraca
Routing dynamiczny... 2 Czym jest metryka i odległość administracyjna?... 3 RIPv1... 4 RIPv2... 4 Interfejs pasywny... 5 Podzielony horyzont...
Routing dynamiczny... 2 Czym jest metryka i odległość administracyjna?... 3 RIPv1... 4 RIPv2... 4 Interfejs pasywny... 5 Podzielony horyzont... 5 Podzielony horyzont z zatruciem wstecz... 5 Vyatta i RIP...
DWA ZDANIA O TEORII GRAFÓW. przepływ informacji tylko w kierunku
DWA ZDANIA O TEORII GRAFÓW Krawędź skierowana Grafy a routing Każdą sieć przedstawić składającego przedstawiają E, inaczej węzłami). komunikacyjną można w postaci grafu G się z węzłów V (które węzły sieci)
GRAF DECYZJI O TRASIE PAKIETU
GRAF DECYZJI O TRASIE PAKIETU ROUTING STATYCZNY W SIECIACH IP Routery są urządzeniami, które na podstawie informacji zawartych w nagłówku odebranego pakietu oraz danych odebranych od sąsiednich urządzeń
Warstwa sieciowa. Model OSI Model TCP/IP. Aplikacji. Aplikacji. Prezentacji. Sesji. Transportowa. Transportowa
Warstwa sieciowa Model OSI Model TCP/IP Aplikacji Prezentacji Aplikacji podjęcie decyzji o trasowaniu (rutingu) na podstawie znanej, lokalnej topologii sieci ; - podział danych na pakiety Sesji Transportowa
Wstęp. Sieci komputerowe. Wykład 1. Marcin Bieńkowski
Wstęp Sieci komputerowe Wykład 1 Marcin Bieńkowski Cel przedmiotu Przedstawienie koncepcji leżących u podstaw sieci komputerowych na przykładzie Internetu. 2 Sieć komputerowa? Zbiór urządzeń połączonych
Model OSI. mgr inż. Krzysztof Szałajko
Model OSI mgr inż. Krzysztof Szałajko Protokół 2 / 26 Protokół Def.: Zestaw reguł umożliwiający porozumienie 3 / 26 Komunikacja w sieci 101010010101101010101 4 / 26 Model OSI Open Systems Interconnection
router wielu sieci pakietów
Dzisiejsze sieci komputerowe wywierają ogromny wpływ na naszą codzienność, zmieniając to, jak żyjemy, pracujemy i spędzamy wolny czas. Sieci mają wiele rozmaitych zastosowań, wśród których można wymienić
Sieci Komputerowe. Wykład 1: TCP/IP i adresowanie w sieci Internet
Sieci Komputerowe Wykład 1: TCP/IP i adresowanie w sieci Internet prof. nzw dr hab. inż. Adam Kisiel kisiel@if.pw.edu.pl Pokój 114 lub 117d 1 Kilka ważnych dat 1966: Projekt ARPANET finansowany przez DOD
Cisco Packet Tracer - routing SOISK systemy operacyjne i sieci kompu...
Cisco Packet Tracer - routing Z SOISK systemy operacyjne i sieci komputerowe Zadaniem naczelnym routerów jest wyznaczanie ścieżki oraz przełączanie interfejsów. Proces kierowania ruchem nosi nazwę trasowania,
Tutorial 9 Routing dynamiczny
1 Tutorial 9 Routing dynamiczny 1. Wprowadzenie Sieci danych, których używamy na co dzień do nauki, pracy i zabawy to zarówno sieci małe, lokalne, jak i duże, globalne. W domu często mamy router i dwa
Link-State. Z s Link-state Q s Link-state. Y s Routing Table. Y s Link-state
OSPF Open Shortest Path First Protokół typu link-state Publiczna specyfikacja Szybka zbieżność Obsługa VLSMs(Variable Length Subnet Masks) i sumowania tras Nie wymaga okresowego wysyłania uaktualnień Mechanizmy
Sieci komputerowe - Wstęp do intersieci, protokół IPv4
Piotr Kowalski KAiTI Internet a internet - Wstęp do intersieci, protokół IPv Plan wykładu Informacje ogólne 1. Ogólne informacje na temat sieci Internet i protokołu IP (ang. Internet Protocol) w wersji.
Rys. 1. Wynik działania programu ping: n = 5, adres cyfrowy. Rys. 1a. Wynik działania programu ping: l = 64 Bajty, adres mnemoniczny
41 Rodzaje testów i pomiarów aktywnych ZAGADNIENIA - Jak przeprowadzać pomiary aktywne w sieci? - Jak zmierzyć jakość usług sieciowych? - Kto ustanawia standardy dotyczące jakości usług sieciowych? - Jakie
Konfigurowanie protokołu BGP w ruterach Cisco
Konfigurowanie protokołu BGP w ruterach Cisco 1. Wprowadzenie Internet tworzą połączone ze sobą sieci IP. Centralne zarządzanie siecią komputerową o globalnym rozmiarze jest technicznie niemożliwe, a ponadto
Sieci komputerowe Protokoły routingu
Sieci komputerowe Protokoły routingu 212-5-24 Sieci komputerowe Protokoły routingu dr inż. Maciej Piechowiak 1 Protokoły routingu 2 Protokoły routingu Wykorzystywane do wymiany informacji o routingu między
Sieci komputerowe dr Zbigniew Lipiński
Sieci komputerowe Podstawy routingu dr Zbigniew Lipiński Instytut Matematyki i Informatyki ul. Oleska 48 50-204 Opole zlipinski@math.uni.opole.pl Routing Routing jest procesem wyznaczania najlepszej trasy
Warstwa sieciowa. mgr inż. Krzysztof Szałajko
Warstwa sieciowa mgr inż. Krzysztof Szałajko Modele odniesienia 7 Aplikacji 6 Prezentacji 5 Sesji 4 Transportowa 3 Sieciowa 2 Łącza danych 1 Fizyczna Aplikacji Transportowa Internetowa Dostępu do sieci
Plan prezentacji. Konfiguracja protokołu routingu OSPF. informatyka+
1 Plan prezentacji Wprowadzenie do budowy i konfiguracji routerów Wprowadzenie do konfiguracji routingu statycznego Wprowadzenie do konfiguracji protokołów routingu dynamicznego Konfiguracja protokołów
Temat: Routing. 1.Informacje ogólne
Temat: Routing 1.Informacje ogólne Routing (ang.- trasowanie) jest to algorytm, dzięki któremu możliwa jest wymiana pakietów pomiędzy dwoma sieciami. Jest to o tyle istotne, ponieważ gdyby nie urządzenia
Technologie warstwy Internetu. Routing
Technologie warstwy Internetu. Routing Protokoły routingu dynamicznego Z.Z. Technologie Zbigniew warstwy Internetu. Zakrzewski Routing Sieci TCP/IP ver. 1.0 RIPv1 RFC 1058 RIPv1 jest pierwszym protokołem
Routing statyczny vs. dynamiczny. Routing dynamiczny. Routing statyczny vs. dynamiczny. Wymagania stawiane protokołom routingu
Routing dynamiczny 1 Routing dynamiczny 5 Routing statyczny vs. dynamiczny Routing dynamiczny tablice routingu konfigurowane przez administratora (-ów), przewidywalny trasa po której pakiet jest przesyłany
Spis treúci. Księgarnia PWN: Wayne Lewis - Akademia sieci Cisco. CCNA semestr 3
Księgarnia PWN: Wayne Lewis - Akademia sieci Cisco. CCNA semestr 3 Spis treúci Informacje o autorze...9 Informacje o redaktorach technicznych wydania oryginalnego...9 Podziękowania...10 Dedykacja...11
Podstawy sieci komputerowych
mariusz@math.uwb.edu.pl http://math.uwb.edu.pl/~mariusz Uniwersytet w Białymstoku 2018/2019 Skąd się wziął Internet? Komutacja pakietów (packet switching) Transmisja danych za pomocą zaadresowanych pakietów,
Sieci komputerowe. Tadeusz Kobus, Maciej Kokociński Instytut Informatyki, Politechnika Poznańska
Sieci komputerowe Tadeusz Kobus, Maciej Kokociński Instytut Informatyki, Politechnika Poznańska Routing statyczny w Linuksie Sieci Komputerowe, T. Kobus, M. Kokociński 2 Sieci Komputerowe, T. Kobus, M.
Konfiguracja routerów CISCO protokoły rutingu: statyczny, RIP, IGRP, OSPF. Autorzy : Milczarek Arkadiusz Małek Grzegorz 4FDS
Konfiguracja routerów CISCO protokoły rutingu: statyczny, RIP, IGRP, OSPF Autorzy : Milczarek Arkadiusz Małek Grzegorz 4FDS Streszczenie: Tematem projektu jest zasada działania protokołów rutingu statycznego
Uproszczony opis obsługi ruchu w węźle IP. Trasa routingu. Warunek:
Uproszczony opis obsługi ruchu w węźle IP Poniższa procedura jest dokonywana dla każdego pakietu IP pojawiającego się w węźle z osobna. W routingu IP nie wyróżniamy połączeń. Te pojawiają się warstwę wyżej
Wykład 4: Protokoły TCP/UDP i usługi sieciowe. A. Kisiel,Protokoły TCP/UDP i usługi sieciowe
N, Wykład 4: Protokoły TCP/UDP i usługi sieciowe 1 Adres aplikacji: numer portu Protokoły w. łącza danych (np. Ethernet) oraz w. sieciowej (IP) pozwalają tylko na zaadresowanie komputera (interfejsu sieciowego),
Protokół BGP Podstawy i najlepsze praktyki Wersja 1.0
Protokół BGP Podstawy i najlepsze praktyki Wersja 1.0 Cisco Systems Polska ul. Domaniewska 39B 02-672, Warszawa http://www.cisco.com/pl Tel: (22) 5722700 Fax: (22) 5722701 Wstęp do ćwiczeń Ćwiczenia do
Transport. część 1: niezawodny transport. Sieci komputerowe. Wykład 6. Marcin Bieńkowski
Transport część 1: niezawodny transport Sieci komputerowe Wykład 6 Marcin Bieńkowski Protokoły w Internecie warstwa aplikacji HTTP SMTP DNS NTP warstwa transportowa TCP UDP warstwa sieciowa IP warstwa
Sieci komputerowe Zjazd 3
Sieci komputerowe Zjazd 3 Warstwa sieciowa Modelu OSI Dr inż. Robert Banasiak Sieci Komputerowe 2011/2012 Studia niestacjonarne 1 Warstwa sieciowa Odpowiada za transmisję bloków informacji poprzez sieć.
1 2004 BRINET Sp. z o. o.
W niektórych routerach Vigor (np. serie 2900/2900V) interfejs WAN występuje w postaci portu Ethernet ze standardowym gniazdem RJ-45. Router 2900 potrafi obsługiwać ruch o natężeniu kilkudziesięciu Mbit/s,
Praktyczne aspekty implementacji IGP
Praktyczne aspekty implementacji IGP Piotr Jabłoński pijablon@cisco.com 1 Ogólne rekomendacje Jeden proces IGP w całej sieci. Idealnie jeden obszar. Wiele obszarów w całej sieci w zależności od ilości
Wykład 2: Budowanie sieci lokalnych. A. Kisiel, Budowanie sieci lokalnych
Wykład 2: Budowanie sieci lokalnych 1 Budowanie sieci lokalnych Technologie istotne z punktu widzenia konfiguracji i testowania poprawnego działania sieci lokalnej: Protokół ICMP i narzędzia go wykorzystujące
Bezpieczeństwo w M875
Bezpieczeństwo w M875 1. Reguły zapory sieciowej Funkcje bezpieczeństwa modułu M875 zawierają Stateful Firewall. Jest to metoda filtrowania i sprawdzania pakietów, która polega na analizie nagłówków pakietów
Aby lepiej zrozumieć działanie adresów przedstawmy uproszczony schemat pakietów IP podróżujących w sieci.
Struktura komunikatów sieciowych Każdy pakiet posiada nagłówki kolejnych protokołów oraz dane w których mogą być zagnieżdżone nagłówki oraz dane protokołów wyższego poziomu. Każdy protokół ma inne zadanie
PROJEKT WSPÓŁFINANSOWANY ZE ŚRODKÓW UNII EUROPEJSKIEJ W RAMACH EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO OPIS PRZEDMIOTU. Sieci komputerowe II
OPIS PRZEDMIOTU Nazwa przedmiotu Sieci komputerowe II Kod przedmiotu Wydział Wydział Matematyki, Fizyki i Techniki Instytut/Katedra Instytut Mechaniki i Informatyki Stosowanej Kierunek informatyka Specjalizacja/specjalność
OSPF... 3 Komunikaty OSPF... 3 Przyległość... 3 Sieć wielodostępowa a punkt-punkt... 3 Router DR i BDR... 4 System autonomiczny OSPF...
OSPF... 3 Komunikaty OSPF... 3 Przyległość... 3 Sieć wielodostępowa a punkt-punkt... 3 Router DR i BDR... 4 System autonomiczny OSPF... 4 Metryka OSPF... 5 Vyatta i OSPF... 5 Komendy... 5 Wyłączenie wiadomości
Sieci komputerowe - opis przedmiotu
Sieci komputerowe - opis przedmiotu Informacje ogólne Nazwa przedmiotu Sieci komputerowe Kod przedmiotu 11.3-WK-IiED-SK-L-S14_pNadGenWRNH5 Wydział Kierunek Wydział Matematyki, Informatyki i Ekonometrii
Kierunek: technik informatyk 312[01] Semestr: II Przedmiot: Urządzenia techniki komputerowej Nauczyciel: Mirosław Ruciński
Kierunek: technik informatyk 312[01] Semestr: II Przedmiot: Urządzenia techniki komputerowej Nauczyciel: Mirosław Ruciński Temat 8.9. Wykrywanie i usuwanie awarii w sieciach komputerowych. 1. Narzędzia
Sieci komputerowe. Zajęcia 3 c.d. Warstwa transportu, protokoły UDP, ICMP
Sieci komputerowe Zajęcia 3 c.d. Warstwa transportu, protokoły UDP, ICMP Zadania warstwy transportu Zapewnienie niezawodności Dostarczanie danych do odpowiedniej aplikacji w warstwie aplikacji (multipleksacja)
MODEL WARSTWOWY PROTOKOŁY TCP/IP
MODEL WARSTWOWY PROTOKOŁY TCP/IP TCP/IP (ang. Transmission Control Protocol/Internet Protocol) protokół kontroli transmisji. Pakiet najbardziej rozpowszechnionych protokołów komunikacyjnych współczesnych
Z.Z. Technologie Zbigniew warstwy Internetu. Zakrzewski Routing Sieci TCP/IP
Technologie warstwy Internetu. Routing Protokoły routingu dynamicznego Z.Z. Technologie Zbigniew warstwy Internetu. Zakrzewski Routing Sieci TCP/IP ver. 1.0 RIPv1 RIPv1jest pierwszym protokołem ustanowionym
Sieci komputerowe W4. Warstwa sieciowa Modelu OSI
Sieci komputerowe W4 Warstwa sieciowa Modelu OSI 1 Warstwa sieciowa Odpowiada za transmisję bloków informacji poprzez sieć. Podstawową jednostką informacji w warstwie sieci jest pakiet. Określa, jaką drogą
Podstawy Transmisji Danych. Wykład IV. Protokół IPV4. Sieci WAN to połączenia pomiędzy sieciami LAN
Podstawy Transmisji Danych Wykład IV Protokół IPV4 Sieci WAN to połączenia pomiędzy sieciami LAN 1 IPv4/IPv6 TCP (Transmission Control Protocol) IP (Internet Protocol) ICMP (Internet Control Message Protocol)
Wstęp... 2 Ruting statyczny... 3 Ruting dynamiczny... 3 Metryka i odległość administracyjna... 4 RIPv1... 5 RIPv2... 5 EIGRP... 5 EIGRP komunikaty...
Wstęp... 2 Ruting statyczny... 3 Ruting dynamiczny... 3 Metryka i odległość administracyjna... 4 RIPv1... 5 RIPv2... 5 EIGRP... 5 EIGRP komunikaty... 5 EIGRP metryka... 6 EIGRP tablice... 6 EIGRP trasy...
SIECI KOMPUTEROWE wykład dla kierunku informatyka semestr 4 i 5
SIECI KOMPUTEROWE wykład dla kierunku informatyka semestr 4 i 5 dr inż. Michał Sajkowski Instytut Informatyki PP pok. 227G PON PAN, Wieniawskiego 17/19 Michal.Sajkowski@cs.put.poznan.pl tel. +48 (61) 8
Zarządzanie infrastrukturą sieciową Modele funkcjonowania sieci
W miarę rozwoju sieci komputerowych pojawiały się różne rozwiązania organizujące elementy w sieć komputerową. W celu zapewnienia kompatybilności rozwiązań różnych producentów oraz opartych na różnych platformach
Temat: Routing. 1.Informacje ogólne
Temat: Routing 1.Informacje ogólne Routing (ang.- trasowanie) jest to algorytm, dzięki któremu możliwa jest wymiana pakietów pomiędzy dwoma sieciami. Jest to o tyle istotne, ponieważ gdyby nie urządzenia
ARP Address Resolution Protocol (RFC 826)
1 ARP Address Resolution Protocol (RFC 826) aby wysyłać dane tak po sieci lokalnej, jak i pomiędzy różnymi sieciami lokalnymi konieczny jest komplet czterech adresów: adres IP nadawcy i odbiorcy oraz adres
Akademia sieci Cisco CCNA Exploration : semestr 2 : protokoły i koncepcje routingu / Rick Graziani, Allan Johnson. wyd. 1, dodr. 4.
Akademia sieci Cisco CCNA Exploration : semestr 2 : protokoły i koncepcje routingu / Rick Graziani, Allan Johnson. wyd. 1, dodr. 4. Warszawa, 2013 Spis treści O autorach 17 O redaktorach technicznych 17
Transport. część 3: kontrola przeciążenia. Sieci komputerowe. Wykład 8. Marcin Bieńkowski
Transport część 3: kontrola przeciążenia Sieci komputerowe Wykład 8 Marcin Bieńkowski Protokoły w Internecie warstwa aplikacji HTTP SMTP DNS NTP warstwa transportowa TCP UDP warstwa sieciowa IP warstwa
Transport. część 3: kontrola przeciążenia. Sieci komputerowe. Wykład 8. Marcin Bieńkowski
Transport część 3: kontrola przeciążenia Sieci komputerowe Wykład 8 Marcin Bieńkowski Protokoły w Internecie warstwa aplikacji HTTP SMTP DNS NTP warstwa transportowa TCP UDP warstwa sieciowa IP warstwa
Wstęp. Sieci komputerowe. Wykład 1. Marcin Bieńkowski
Wstęp Sieci komputerowe Wykład 1 Marcin Bieńkowski Cel przedmiotu Przedstawienie koncepcji leżących u podstaw sieci komputerowych na przykładzie Internetu. 2 Sieć komputerowa? Zbiór urządzeń połączonych
Wykład Nr 4. 1. Sieci bezprzewodowe 2. Monitorowanie sieci - polecenia
Sieci komputerowe Wykład Nr 4 1. Sieci bezprzewodowe 2. Monitorowanie sieci - polecenia Sieci bezprzewodowe Sieci z bezprzewodowymi punktami dostępu bazują na falach radiowych. Punkt dostępu musi mieć
Sieci komputerowe. Router. Router 2012-05-24
Sieci komputerowe - Routing 2012-05-24 Sieci komputerowe Routing dr inż. Maciej Piechowiak 1 Router centralny element rozległej sieci komputerowej, przekazuje pakiety IP (ang. forwarding) pomiędzy sieciami,
ROUTOWANIE (TRASOWANIE) DYNAMICZNE, PROTOKOŁY ROUTOWANIA
ROUTOWANIE (TRASOWANIE) DYNAMICZNE, PROTOKOŁY ROUTOWANIA Sposób obsługi routowania przez warstwę IP nazywa się mechanizmem routowania. Określenie to dotyczy przeglądania przez jądro tablicy routowania
Autorytatywne serwery DNS w technologii Anycast + IPv6 DNS NOVA. Dlaczego DNS jest tak ważny?
Autorytatywne serwery DNS w technologii Anycast + IPv6 DNS NOVA Dlaczego DNS jest tak ważny? DNS - System Nazw Domenowych to globalnie rozmieszczona usługa Internetowa. Zapewnia tłumaczenie nazw domen
Uproszczenie mechanizmów przekazywania pakietów w ruterach
LISTA ŻYCZEŃ I ZARZUTÓW DO IP Uproszczenie mechanizmów przekazywania pakietów w ruterach Mechanizmy ułatwiające zapewnienie jakości obsługi Może być stosowany do równoważenia obciążenia sieci, sterowanie
Transport. część 3: kontrola przeciążenia. Sieci komputerowe. Wykład 8. Marcin Bieńkowski
Transport część 3: kontrola przeciążenia Sieci komputerowe Wykład 8 Marcin Bieńkowski Protokoły w Internecie warstwa aplikacji HTTP warstwa transportowa SMTP TCP warstwa sieciowa warstwa łącza danych warstwa
Routowanie we współczesnym Internecie. Adam Bielański
Routowanie we współczesnym Internecie Adam Bielański Historia Prehistoria: 5.12.1969 1989 ARPANET Przepustowość łączy osiągnęła: 230.4 kb/s w 1970 Protokół 1822 Czasy historyczne: 1989 30.04.1995 NSFNet
Podstawy Informatyki. Inżynieria Ciepła, I rok. Wykład 13 Topologie sieci i urządzenia
Podstawy Informatyki Inżynieria Ciepła, I rok Wykład 13 Topologie sieci i urządzenia Topologie sieci magistrali pierścienia gwiazdy siatki Zalety: małe użycie kabla Magistrala brak dodatkowych urządzeń
Zadania z sieci Rozwiązanie
Zadania z sieci Rozwiązanie Zadanie 1. Komputery połączone są w sieci, z wykorzystaniem routera zgodnie ze schematem przedstawionym poniżej a) Jak się nazywa ten typ połączenia komputerów? (topologia sieciowa)
Zadanie programistyczne nr 2 z Sieci komputerowych
Zadanie programistyczne nr z Sieci komputerowych 1 Opis zadania Napisz program router, który będzie implementować algorytm wektora odległości i tworzyć tablice przekazywania. Twój program zostanie uruchomiony
Spis treúci. Księgarnia PWN: Rick Graziani, Allan Johnson - Akademia sieci Cisco. CCNA Exploration. Semestr 2
Księgarnia PWN: Rick Graziani, Allan Johnson - Akademia sieci Cisco. CCNA Exploration. Semestr 2 Spis treúci O autorach... 17 O redaktorach technicznych... 17 Dedykacje... 18 Podziękowania... 19 Symbole