Techniki bioremediacji substancji ropopochodnych i metody oceny ich efektywności
|
|
- Barbara Marciniak
- 9 lat temu
- Przeglądów:
Transkrypt
1 Inżynieria i Ochrona Środowiska 2013, t. 16, nr 4, s Łukasz PODSIADŁO*, Teresa KRZYŚKO-ŁUPICKA Uniwersytet Opolski, Wydział Przyrodniczo-Techniczny, Samodzielna Katedra Biotechnologii i Biologii Molekularnej, ul. Kardynała Kominka 6, Opole * lukasz.podsiadlo@op.pl Techniki bioremediacji substancji ropopochodnych i metody oceny ich efektywności W ostatnich latach bardzo duże znaczenie w usuwaniu ksenobiotyków mają metody biologiczne. Wiele gatunków mikroorganizmów występujących w środowisku glebowym ma zdolność do biodegradacji związków ropopochodnych. Ich rozkład jednak zwykle trwa latami. Intensyfikację tego procesu uzyskuje się głównie poprzez biostymulację i/lub wykorzystanie biopreparatów w formie wolnej biomasy lub immobilizowanej na nośnikach, takich jak alginian, akrylan czy karagen. Aktywność degradacyjna mikroorganizmów zależy od bioróżnorodności środowiska oraz parametrów fizykochemicznych, w tym dostępności związków odżywczych, temperatury, ph czy stężenia tlenu. Z tego powodu podczas bioremediacji bardzo ważnym aspektem jest monitorowanie zmian w składzie związków chemicznych oraz bioróżnorodności zanieczyszczonego środowiska. W artykule przedstawione zostały informacje na temat typów bioremediacji, wpływu czynników fizykochemicznych na efektywność rozkładu ksenobiotyków oraz metody monitorowania przemian związków chemicznych i dynamiki populacji mikroorganizmów w glebie. Słowa kluczowe: związki ropopochodne, bioremediacja, biostymulacja, bioaugmentacja, mikroorganizmy biodegradacyjne, metody identyfikacji mikroorganizmów Wprowadzenie Wysokie zapotrzebowanie na ropę i produkty pochodzące z jej przetwarzania (paliwa, oleje, smary, asfalty) przyczynia się do postępującego skażenia środowiska przyrodniczego, np. w 2002 r. zużyto w Polsce około 13 mln ton produktów naftowych, a już w 2010 r. około 27 mln ton. Poważne zagrożenie stanowią między innymi takie węglowodory, jak: alkany, cykloalkany, węglowodory aromatyczne, będące głównymi składnikami paliw. Niektóre węglowodory aromatyczne występujące w ropie (benzen, toluen, ksylen, fenol) są bardzo szkodliwe dla człowieka, gdyż wykazują toksyczne, a także kancerogenne właściwości [1]. Najwyższe skażenie produktami ropopochodnymi obserwuje się w otoczeniu rafinerii, stacji paliw, rurociągów, lotnisk, stacji naprawczych i linii kolejowych [2-5]. Ich rozkład w środowisku naturalnym trwa lata. Intensyfikację rozkładu tych substancji uzyskuje się w procesach stymulacji czynnikami fizykochemicznymi i/lub biologicznymi. Bioremediacja substancji ropopochodnych to technika łącząca osiągnięcia mikrobiologii wraz z ekologią mikroorganizmów, biochemią, genetyką i chemią [6]. Zanieczyszczenia związkami ropopochodnymi mogą być usuwane w miejscu
2 460 Ł. Podsiadło, T. Krzyśko-Łupicka skażenia (in situ) lub poprzedzone usunięciem zanieczyszczonej ziemi z jej naturalnego położenia (ex situ). Technologia in situ stosowana jest przede wszystkim przy braku możliwości usunięcia zanieczyszczonej gleby, przykładowo na obszarach awarii miejscowych pod rurociągami, na terenach przeznaczonych pod budownictwo czy po skażeniu dużego obszaru. Jest to strategia efektywna, umożliwiająca pełną likwidację zanieczyszczeń [4, 7]. Rekultywacja gruntu (przywracanie wartości użytkowych) metodą ex situ odbywa się na specjalnie przygotowanym stanowisku technologicznym. Technika ta przebiega w stosunkowo krótkim czasie, a także umożliwia łatwość kontroli procesu [7-9]. Najczęściej stosowanymi technikami w bioremediacji zanieczyszczeń jest biostymulacja oraz bioaugmentacja. Pierwsza polega na wzbogacaniu środowiska naturalnego w związki odżywcze i zapewnieniu optymalnych warunków środowiskowych (temperatura, ph, natlenienie). Bioaugmentacja polega na wprowadzaniu do środowiska wyselekcjonowanych szczepów mikroorganizmów zdolnych do rozkładu ksenobiotyków w formie pozwalającej na uzyskanie wysokiej i długotrwałej aktywności drobnoustrojów [10-12]. Jednak metody biologiczne często mogą mieć nieznany, nieprzewidywalny czy też niewymierzalny wpływ na środowisko, np. dostępność czynnika zanieczyszczającego dla populacji mikroorganizmów może być zmniejszona w wyniku jego adsorpcji do składników gleby, co może ograniczyć, a nawet wykluczyć bioremediację. Stężenie węglowodorów zawartych w produktach naftowych zasadniczo wpływa na efekt biodegradacji, a związane jest to ze stopniem toksyczności węglowodorów, np. wartość LC50 benzenu dla bakterii wynosi 100 mg/l, a chloroformu 670 mg/l. Zawartość olejów w glebie powyżej 10% oddziałuje szkodliwie na procesy rozkładu węglowodorów. Wiele węglowodorów ulega biodegradacji po okresie adaptacji drobnoustrojów, w którym wytwarzają one enzymy indukcyjne. Na proces ten ma wpływ stężenie węglowodorów jako substancji pokarmowych - zbyt niskie stężenie ogranicza wytwarzanie enzymów indukcyjnych. Podatność ksenobiotyków na biodegradację (rozkład) zależy od dostępności tych związków dla drobnoustrojów oraz od liczebności i aktywności populacji mikroorganizmów. Wydajność procesu bioremediacji zależy od warunków środowiskowych, takich jak temperatura, natlenienie, ph, potencjał redoks, dostępność składników pokarmowych i katalityczna sprawność enzymów obecnych w komórkach mikroorganizmów, bądź indukowanych, powstających wobec konkretnych substratów [13, 14]. Skuteczność i niezawodność bioremediacji można ocenić przez: określenie stopnia podatności na degradację biologiczną wszystkich zanieczyszczeń w określonym miejscu, określenie trwałości produktów degradacji zanieczyszczeń, chemiczne oznaczenie poziomu składników środowiska, poznanie specyficznych genów drobnoustrojów uczestniczących w katabolizmie zanieczyszczeń. Bioróżnorodność mikrobiologiczna może być zdefiniowana jako zespół różnych gatunków bakterii w ekosystemie oraz jako zmienność genetyczna poszczególnych gatunków. Przyjmuje się, że w 1 g gleby znajduje się 10 9 mikroorganizmów [15].
3 Techniki bioremediacji substancji ropopochodnych i metody oceny ich efektywności 461 Z powodu ogromnej różnorodności fenotypowej i genomowej drobnoustroje glebowe stanowią jedne z najtrudniejszych do opisania i scharakteryzowania. Jednocześnie należy pamiętać o tym, że pełnią one kluczową rolę m.in. w obiegu pierwiastków (N, P, S, O 2, CO 2 ) oraz rozkładzie materii organicznej i ksenobiotyków. Ropa naftowa i jej produkty wpływają na niekorzystne zmiany w bioróżnorodności środowiska glebowego, w tym zmieniają populacje bakterii uczestniczących w bioremediacji [16, 17]. Ponieważ aktywność biodegradacyjna jest cechą szczepową, niezbędna jest identyfikacja populacji drobnoustrojów w zanieczyszczonym środowisku [6]. 1. Techniki stosowane w procesach bioremediacji W bioremediacji in situ stosowane są trzy odmienne sposoby oczyszczania gruntów: bioattenuacja (zwana także bioremediacją naturalną), biostymulacja oraz bioaugmentacja [6]. Bioattenuacja to wykorzystywanie naturalnej biodegradacji, połączonej z monitorowaniem stężenia ksenobiotyków. Metoda ta stosowana jest powszechnie w Stanach Zjednoczonych do usuwania zanieczyszczeń gleby i wód podziemnych. W przypadku kiedy proces naturalnej biodegradacji zachodzi bardzo wolno lub wcale, stosowana jest biostymulacja, polegająca na stymulowaniu rozwoju autochtonicznej mikroflory poprzez wprowadzenie do środowiska związków odżywczych oraz akceptorów elektronów (tlenu), zapewniając w ten sposób odpowiedni stosunek C:N:P na poziomie 100:10:1. W warunkach naturalnych wynosi on 30:5:1 [17]. W ostatnich latach obserwuje się skupienie metod bioremediacji na wykorzystywaniu konsorcjów specyficznych mikroorganizmów (bioaugmentacja), efektywnych w oczyszczaniu gruntów skażonych związkami ropopochodnymi. W przypadku bioaugmentacji proces biodegradacji zaczyna się niezwłocznie po inokulacji, w przeciwieństwie do biostymulacji, gdzie po wzbogaceniu gleby związkami odżywczymi wymagany jest dłuższy czas związany z przystosowywaniem się mikroorganizmów do nowych warunków środowiskowych. Mikroorganizmy wykorzystywane w bioaugmentacji powinny charakteryzować się dużym potencjałem biodegradacyjnym, mobilnością (zdolnością penetracji), zdolnością do adhezji, elastycznością (odpornością na zmiany ph, stężenia metali), krótką przeżywalnością w środowisku, gdzie brak ksenobiotyków powoduje ich zamieranie, a także stanowić silną konkurencję dla autochtonicznej mikroflory. Drobnoustroje biodegradacyjne wykazują także odporność na działanie ksenobiotyków niszczących błony komórkowe poprzez: mechanizm regulacji płynności błony: WWA powodują zaburzenia struktury, wzrost przepuszczalności i płynności błony, a nawet lizę komórek, a związki hydrofilowe, np. bifenyle - pęcznienie błony, heksadekan - zwiększenie grubości błony, mechanizm adaptacji bakterii do ksenobiotyków: zmiany składu fosfolipidowych kwasów tłuszczowych, np. u P. putida, istnieje korelacja pomiędzy wzrostem nasycenia lipidów błony a tolerancją na wysokie stężenia fenolu.
4 462 Ł. Podsiadło, T. Krzyśko-Łupicka Proces bioaugmentacji poprzedzony jest immobilizacją komórek na różnego rodzaju nośniki, takie jak alginian, akrylan, agaroza, karagen czy poliuretan [10]. Nośniki takie powinny być nietoksyczne dla mikroorganizmów i środowiska oraz biodegradowalne. Najwyższa przeżywalność obserwowana jest po związaniu inokulanta w sieci alginianu sodu z dodatkiem śmietanki lub śmietanki i bentonitu. Dzięki usieciowaniu w alginianie komórki są chronione przed czynnikami fizykochemicznymi gleby, a ponadto stopniowo uwalniane w miarę rozkładu alginianu. Szacuje się, że bioaugmentacja stanie się w przyszłości standardem w oczyszczaniu terenów zanieczyszczonych związkami ropopochodnymi [4, 6, 7, 10, 18]. Wśród metod usuwania zanieczyszczeń ex situ stosowane są takie metody, jak uprawa gleby (landfarming), kompostowanie, biostosy i bioreaktory. Landfarming to stosunkowo prosta technika polegająca na wykopaniu skażonego gruntu i rozłożeniu go na specjalnie przygotowanej powierzchni, po czym następuje proces stymulacji wzrostu rodzimych drobnoustrojów i biodegradacji. W przypadku kompostowania zanieczyszczoną glebę wzbogaca się np. w odpady rolnicze czy obornik, co wpływa na rozwój bogatej flory mikroorganizmów rozkładających toksyczne związki. Kolejna metoda, biostosy, stosowana jest w przypadku powierzchniowych zanieczyszczeń ropą naftową i w zasadzie jest połączeniem techniki uprawy gleby i kompostowania. Czwarta technika bioremediacji ex situ, bioreaktory, to wykorzystywanie dużych zbiorników, w których zachodzi kontrolowany proces stymulacji rozwoju i aktywności mikroorganizmów odpowiedzialnych za biodegradację docelowych związków [5, 7]. Wspomniane strategie stosowane są z powodzeniem na całym świecie. Wybór odpowiedniej technologii zależy przede wszystkim od rodzaju skażonego terenu (typu gleby), ksenobiotyków (struktury chemicznej, podatności na biodegradację) oraz aktywności mikroorganizmów. Bardzo ważnym kryterium jest również kryterium finansowe. Uprawa gleby czy kompostowanie to techniki stosunkowo tanie, podczas gdy bioreaktory to metoda wymagająca większego nakładu finansowego. 2. Czynniki fizykochemiczne wpływające na efektywność bioremediacji Sukces procesu bioremediacji zależy od ustanowienia i utrzymania odpowiednich, sprzyjających czynników fizykochemicznych. W literaturze dostępnych jest bardzo dużo prac dotyczących tego zagadnienia [13, 14]. Oprócz parametrów środowiskowych, takich jak dostępność związków odżywczych i tlenu, temperatura, ph oraz wilgotność, na efektywność degradacji ksenobiotyków ma również wpływ obecność odpowiednich mikroorganizmów oraz dostępność węglowodorów dla komórek [19, 20]. Bardzo ważnym czynnikiem wpływającym na bioremediację jest temperatura. Zależy od niej przede wszystkim szybkość reakcji fizjologicznych komórek, ale także objętość czy lepkość gleby. Mikroorganizmy różnią się między sobą termotolerancją, przy czym optimum wzrostu mikroorganizmów glebowych wynosi około
5 Techniki bioremediacji substancji ropopochodnych i metody oceny ich efektywności C [21]. Przyjmuje się, że najbardziej efektywna degradacja związków ropopochodnych w glebie zachodzi w temperaturze C, gdyż wzrasta wtedy rozpuszczalność węglowodorów alifatycznych i aromatycznych i zwiększa się tym samym ich biodostępność [13]. W niskiej temperaturze (10 C) wzrasta lepkość oleju napędowego oraz zmniejsza się szybkość parowania węglowodorów, opóźniając w ten sposób biodegradację [22]. Drugim bardzo ważnym czynnikiem mającym wpływ na bioremediację jest dostępność związków odżywczych. Szacuje się, że minimalna liczba mikroorganizmów niezbędna do efektywnej bioremediacji wynosi 10 5 komórek/g suchej masy gruntu [4]. Jej wzrost jest zależny od obecności w glebie azotu, fosforu, czasem również żelaza, występujących często w ilościach limitujących wzrost [24]. W takim przypadku należy wzbogacić glebę w brakujące pierwiastki, pamiętając jednak, że nadmierne stężenie związków odżywczych również może hamować wzrost drobnoustrojów. Najlepsze efekty biodegradacji uzyskano, stosując Ca(NO 3 ) 2. Związek ten jest względnie trudno rozpuszczalną solą, która, ulegając powolnej hydrolizie, stopniowo jest przyswajana przez mikroorganizmy. Słabsze efekty biodegradacji zaobserwowano, stosując mocznik - degradacji mocznika towarzyszą niepożądane efekty uboczne - uwolnienie jonów NH 4 + pociąga za sobą wzrost ph środowiska. Podczas skażenia węglowodorami proporcje podstawowych związków odżywczych ulegają zachwianiu wskutek zwiększenia stężenia źródła węgla. Mimo obfitości źródła węgla drobnoustroje nie są w stanie go wykorzystać, ponieważ niedostatek azotu i fosforu uniemożliwia ich prawidłowy rozwój [13]. Kolejnymi czynnikami warunkującymi powodzenie w biorekultywacji są wilgotność, ph oraz dostępność tlenu. Zapewnienie odpowiedniej wilgotności wpływa na rozpuszczalność węglowodorów, a także zmniejsza adsorpcję do powierzchni cząstek mineralnych gleby. Optymalna wilgotność gruntu powinna wynosić około 80% pojemności wodnej, a wilgotność względna nie powinna być mniejsza niż 15% [25]. Pomiary ph są bardzo ważnym kryterium w określaniu zdolności gleby do wspomagania reakcji mikrobiologicznych. Wiele znanych gatunków bakterii glebowych rozwija się przy obojętnym odczynie. Niestety, bardzo często dochodzi do nadmiernego zakwaszenia gleby np. poprzez nawożenie, kwaśne opady i reakcje biochemiczne związane z uzyskiwaniem energii z utleniania zredukowanych związków. ph gleby podczas rozkładu węglowodorów ulega obniżeniu, co może być wykorzystywane jako wskaźnik rozkładu zanieczyszczeń. W takim przypadku podejmuje się zabiegi mające na celu podniesienie ph i przyspieszenie biodegradacji. Tlen pełni rolę akceptora elektronów w procesie oddychania i jest niezbędny do efektywnego metabolizowania ksenobiotyków. Dostępność tlenu w glebie może być ograniczona, szczególnie w głębszych jej warstwach, dlatego ważne jest napowietrzanie gruntu [4, 7, 26]. Ograniczona dostępność węglowodorów dla komórek bardzo często hamuje przebieg bioremediacji, dlatego stosuje się surfaktanty (środki powierzchniowo czynne), a coraz częściej wykorzystuje się mikroorganizmy produkujące biosurfaktanty (Bacillus, Candida), zwiększające powierzchnię wymiany i zmniejszające
6 464 Ł. Podsiadło, T. Krzyśko-Łupicka adsorpcję związków organicznych do powierzchni cząstek mineralnych gleby [13, 19, 27, 28]. Syntetyczne surfaktanty są dostępne w sprzedaży, jednak wiele z nich ma ograniczone zastosowanie głównie ze względu na ich łatwą degradację przez bakterie i toksyczne działanie [6, 28]. 3. Mikrobiologiczny rozkład związków ropopochodnych W usuwaniu substancji ropopochodnych ze środowiska uczestniczy kompleks mikroorganizmów autochtonicznych, ale stanowi on zaledwie 0,01 1% ogólnej ich liczby [29]. Mikroorganizmy autochtoniczne są bardziej konkurencyjne, ponieważ przeszły naturalną selekcję. Nabyły cech degradacyjnych w wyniku ewolucji (mutacji i poziomego transferu genów), ale zwykle ich liczebność lub aktywność w środowisku jest niska. Mikroflorę wykorzystywaną w procesach biodegradacji stanowią najczęściej kultury mieszane, charakteryzujące się wyższą aktywnością biologiczną oraz niższymi wymaganiami pokarmowymi w porównaniu z aktywnością mikroorganizmów występujących pojedynczo. Jest to wynikiem synergistycznych oddziaływań występujących pomiędzy drobnoustrojami podczas wzrostu w populacjach mieszanych. Ich brak w przypadku monokultur może wpływać na obniżenie aktywności, a zarazem zdolności biodegracyjnych. Z punktu widzenia biochemicznego i genetyki molekularnej bardzo istotna jest sprawa szybkości adaptacji metabolizmu drobnoustrojów do wielu nowych substratów dostających się do środowiska. Stwarza to także możliwości konstruowania nowych szczepów do celów komercyjnych z wykorzystaniem mikroorganizmów występujących w naturze. Zdolność drobnoustrojów do biodegradacji zależy od: funkcjonowania odpowiednich systemów ich transportu do komórki, potencjału genetycznego umożliwiającego wprowadzenie tlenu do cząsteczki węglowodoru, specyficzności substratowej oksygenaz, monooksygenaz, funkcjonowania mechanizmu indukowania enzymów, takich jak dehydrogenazy, hydrolazy czy dekarboksylazy [30]. Pewne grupy mikroorganizmów są metabolicznie uniwersalne i są zdolne do degradacji szerokiego spektrum substratów. Katabolicznie uniwersalne są bakterie degradujące fenol, jak np. Pseudomonas (degraduje różne związki np. toluen, fenol, naftalen, polichlorowane bifenyle, dioksyny), Sphingomonas, Xanthomonas, Bacillus, Rhodococcus. Najwięcej uwagi poświęcono szlakowi degradacji związków aromatycznych. Stwierdzono, że większość informacji genetycznej dotyczącej tego szlaku zawarta jest w plazmidach, niezależnie replikujących się jednostkach genetycznych. Ekspresja genów plazmidowych pozwala gospodarzowi na detoksykację środowiska. Geny te mogą kodować zdolność do kompletnej degradacji takich związków, jak ksylen czy toluen lub tylko częściowej jak naftalen, który transformowany jest do salicylatów. Początkowo w biodegradacji uczestniczą w większości bakterie gramdodatnie, a z czasem w zanieczyszczonym środowisku zaczynają dominować bakterie gram-
7 Techniki bioremediacji substancji ropopochodnych i metody oceny ich efektywności 465 ujemne. Margesin i in. [29] podają, że nadmiar bakterii gramujemnych w stosunku do gramdodatnich jest charakterystyczny dla mocno zanieczyszczonych próbek gleby. Podatność węglowodorów na rozkład przez drobnoustroje zależy od masy cząsteczkowej i struktury związku chemicznego, co można przedstawić w następującym porządku: n-alkany > rozgałęzione alkany > niskocząsteczkowe węglowodory aromatyczne > cykloalkany > wielkocząsteczkowe węglowodory aromatyczne. Wraz ze wzrostem długości łańcucha węglowego zmniejsza się podatność na degradację. Najłatwiej degradowane są n-alkany C10 C24, natomiast alkany o masie cząsteczkowej powyżej 500 u nie mogą być źródłem węgla i energii dla mikroorganizmów [16]. Stopień rozkładu zależy od katalitycznej sprawności enzymów obecnych w komórkach lub indukowanych wobec konkretnych substratów. Aktywne w rozkładzie ksenobiotyków mikroorganizmy cechuje obecność takich genów, jak: alkb, cata, xyle, ndob, todc, czy bpha (tab. 1), które zlokalizowane są w większości przypadków na plazmidach, dzięki czemu mogą podlegać horyzontalnemu transferowi genów, a także być wykorzystywane jako markery w identyfikacji drobnoustrojów biodegradacyjnych. Tabela 1. Podstawowe geny kodujące enzymy biorące udział w biodegradacji związków ropopochodnych Table 1. Key genes encoding enzymes involved in the biodegradation of petroleum compounds alkb Gen Enzym Przedstawiciele Literatura hydroksylaza alkanowa Pseudomonas sp., Rhodococcus sp., Acinetobacter sp. cata dioksygenaza 2,3-katecholowa Pseudomonas sp. [35] xyle dioksygenaza 2,3-katecholowa Pseudomonas putida [4] ndob dioksygenaza naftalenowa Pseudomonas sp., P. putida, P. fluorescens, Sphingomonas paucimobilis, Xanthomonas maltophila todc dioksygenaza toluenowa Pseudomonas putida [37] bpha dioksygenaza bifenylowa Pseudomonas pseudoalcaligenes [38] [31-34] [31, 36] Mikroorganizmy wykazujące zdolność do biodegradacji węglowodorów wykorzystują je jako źródło węgla i energii. Warunkiem sprawnego przebiegu procesu jest dostępność węgla organicznego. Czynnikiem ograniczającym biodostępność substancji ropopochodnych jest ich relatywnie niska rozpuszczalność w wodzie, obniżająca się wraz ze wzrostem długości łańcucha lub liczbą pierścieni w cząsteczce. Degradacja n-alkanów związana jest z hydroksylacją przy końcowym węglu w łańcuchu, co prowadzi do wytworzenia odpowiedniego alkoholu, który następnie utleniany jest do aldehydów i kwasów tłuszczowych. Te ostatnie podlegają β-oksydacji, a powstały acetylo-coa trafia do cyklu kwasów trikarboksylowych (rys. 1) [5, 13, 16].
8 466 Ł. Podsiadło, T. Krzyśko-Łupicka Rys. 1. Biodegradacja n-alkanów Fig. 1. Biodegradation of n-alcanes Rozkład związków o strukturze aromatycznej związany jest z aktywnością genów (np. cata, ndob, todc) kodujących enzymy odpowiedzialne za hydroksylację pierścienia, jego rozszczepienie i utlenienie układu alifatycznego do intermediatów centralnych szlaków metabolicznych, a także CO 2 i H 2 O. Związki aromatyczne ulegają biodegradacji do jednego z pięciu podstawowych produktów: katecholu, kwasu protokatechowego, kwasu gentyzynowego, kwasu homokatechowego i kwasu homogentyzynowego, jak również do kilku niekonwencjonalnych związków, takich jak: kwas salicylowy, kwas antranilowy i ortoaminofenol [16, 39]. Związki aromatyczne posiadające jedną grupę hydroksylową ulegają hydroksylacji z udziałem enzymów zwanych monooksygenazami. W tym przypadku jeden atom tlenu włączany jest do pierścienia aromatycznego, natomiast drugi ulega redukcji do cząsteczki wody. W przypadku związków aromatycznych niezawierających grupy hydroksylowej hydroksylacja przebiega z udziałem dioksygenaz z włączeniem dwóch grup hydroksylowych do pierścienia (rys. 2). Oba przypadki prowadzą do powstania katecholu, który charakteryzuje się zwiększoną rozpuszczalnością i dostępnością dla mikroorganizmów [16, 40]. Rys. 2. Reakcje hydroksylacji pierścienia aromatycznego do katecholu Fig. 2. The reactions of the hydroxylation of the aromatic ring of catechol Kolejnym etapem rozkładu omawianych ksenobiotyków jest otwarcie pierścienia aromatycznego, katalizowane przez dioksygenazy intradiolowe (szlak orto)
9 Techniki bioremediacji substancji ropopochodnych i metody oceny ich efektywności 467 oraz ekstradiolowe (szlak meta). W pierwszym przypadku rozszczepiane są wiązania C-C pomiędzy dwoma hydroksylowanymi atomami węgla, co prowadzi do powstania kwasu cis,cis-mukonowego. W drugim przypadku dochodzi do rozszczepienia wiązania między hydroksylowanym a sąsiadującym, niehydroksylowanym węglem, w wyniku czego powstaje semialdehyd kwasu 2-hydroksymukonowego. Dalszy rozkład polega na utlenieniu powstałego łańcucha alifatycznego do intermediatów cyklu Krebsa, takich jak acetylo-coa, pirogronian, bursztynian (rys. 3) [5, 16, 39, 40]. Rys. 3. Biodegradacja katecholu w szlaku orto i meta Fig. 3. Biodegradation of catechol in the ortho and meta pathway 4. Monitorowanie przemian związków chemicznych i zmian populacji mikroorganizmów w glebie Bardzo ważnym aspektem określania zdolności bioremediacyjnych gleby jest monitorowanie przemian związków chemicznych oraz populacji mikroflory. Jedną z najbardziej czułych technik stosowanych w identyfikacji związków chemicznych obecnych w środowisku jest analiza GC-MS, stanowiąca połączenie wysokiej zdolności rozdzielczej chromatografii gazowej i wysokiej zdolności identyfikacyjnej spektrometrii mas [41, 42]. Wiedza dotycząca bioróżnorodności drobnoustrojów w odniesieniu do środowiska glebowego jest ograniczona. Metody identyfikacji mikroorganizmów glebowych możemy podzielić na metody mikroskopowe, biochemiczne i molekularne (tab. 2). Mikroskopia może dać podstawy tylko do wstępnej klasyfikacji, określenia kształtu i rodzaju drobnoustrojów. Metody biochemiczne pozwalają na oznaczenie profilu metabolicznego i składu biochemicznego mikroorganizmów. Najczęściej stosowane testy to hodowla na podłożach różnicujących, metody CLPP, FAME i PLFA. Bardzo duży problem stanowią tzw. bakterie niehodowlane ( unculturable bacteria). W tym przypadku bardzo pomocnym narzędziem w identyfikacji są metody mole-
10 468 Ł. Podsiadło, T. Krzyśko-Łupicka kularne, przede wszystkim techniki PCR, RFLP, hybrydyzacja DNA-DNA, FISH, DGGE, TGGE, metagenomika oraz sekwencjonowanie [15]. Tabela 2. Powszechnie stosowane metody monitorowania przemian chemicznych i biologicznych w środowisku Table 2. Commonly used methods for monitoring of chemical and biological changes in the environment Monitorowanie przemian związków chemicznych w glebie mikroskopowe biochemiczne molekularne Metoda Chromatografia gazowa i spektrometr mas (GC-MS) Metody identyfikacji mikroorganizmów glebowych: mikroskop optyczny mikroskop elektronowy transmisyjny mikroskop elektronowy skaningowy metody hodowlane CLPP FAME PLFA PCR RFLP hybrydyzacja DNA-DNA FISH DGGE/TGGE metagenomika sekwencjonowanie [43-46] Literatura [47-51] [18, 24, 50, 52] [43, 53, 54] [55, 56] [31, 44, [57] [18, 58] [57, 59] [60, 61] [44, 46, 50, 54] [62, 63] [18, 43, 46, 50, 59] 4.1. Metody biochemiczne Metoda CLPP (Community Level Physiological Profiling) ocenia potencjalną aktywność kataboliczną nie pojedynczych szczepów, ale całych zespołów zasiedlających daną niszę. Zasada oznaczenia polega na ocenie zdolności mikroorganizmów do rozkładu określonych związków organicznych lub wykorzystywania różnych źródeł węgla. Metoda ta może być z powodzeniem stosowana w badaniu różnorodności metabolicznej populacji drobnoustrojów zanieczyszczonych środowisk [16, 64, 65]. Do oceny zmian w strukturach zespołów mikroorganizmów glebowych można również zastosować analizę składu bakteryjnych i grzybowych fosfolipidowych kwasów tłuszczowych (PLFA, Phospholipid Fatty Acid Analyses) oraz metylowanych estrów kwasów tłuszczowych (FAME, Fatty Acid Methyl Ester). Wykorzystanie PLFA w mikrobiologii gleby opiera się na założeniu, że pewne kwasy czy grupy kwasów tłuszczowych są charakterystyczne dla danego gatunku, rodzaju lub grupy mikroorganizmów. Informacje uzyskane z analizy profilu PLFA, będącego sumą wszystkich wyizolowanych fosfolipidowych kwasów tłuszczowych,
11 Techniki bioremediacji substancji ropopochodnych i metody oceny ich efektywności 469 pozwalają na monitorowanie zmian zachodzących w obrębie badanych zespołów mikroorganizmów [16, 17, 64, 66] Metody molekularne Obecnie coraz częściej wykorzystuje się metody molekularne w celu identyfikacji i klasyfikacji mikroorganizmów. Najczęściej stosowana jest łańcuchowa reakcja polimerazy (PCR) wraz z jej odmianami (nested PCR, RT-PCR, Real-Time PCR, multiplex PCR). Są to techniki stosunkowo tanie i szybkie, których produkty mogą służyć w dalszych badaniach (sekwencjonowanie, RFLP, DGGE, TGGE) [15, 64, 67]. Analizę polimorfizmu długości fragmentów restrykcyjnych (RFLP, Restriction Length Fragment Polymorphism) można wykorzystać do badania zróżnicowania genomowego bakterii, poprzez porównanie wzorów DNA uzyskanych w wyniku rozdziału elektroforetycznego fragmentów pochodzących z trawienia DNA genomowego jednym lub kilkoma endonukleazami restrykcyjnymi. Metodę RFLP można także wykorzystać w analizie wybranego fragmentu genomu, na przykład konkretnych genów, łącząc ją z reakcją PCR. Najczęściej w tego typu badaniach taksonomicznych wykorzystuje się gen kodujący 16S lub 23S rrna [68-70]. W przypadku technik hybrydyzacyjnych DNA-DNA wykorzystywane są właściwości fizykochemiczne kwasów nukleinowych. W określonej temperaturze wiązania wodorowe pomiędzy cząsteczkami DNA pękają i dochodzi do denaturacji kwasu nukleinowego. Obniżenie temperatury z kolei powoduje odtworzenie dwuniciowej struktury. Im wyższe podobieństwo genetyczne dwóch badanych organizmów, tym więcej mają one wspólnych sekwencji nukleotydowych, a co za tym idzie - powstaje więcej struktur hybrydowych. Do oznaczania stopnia podobieństwa DNA-DNA stosuje się również stabilność termiczną ( T m ) tworzonych struktur hybrydowych. Heterologiczne hybrydy, ze względu na obecność niesparowanych zasad są mniej stabilne niż hybrydy homologiczne [70, 71]. Jedną z odmian metod hybrydyzacyjnych stosowanych w identyfikacji mikroorganizmów glebowych jest metoda FISH (Fluorescent in situ Hybridization). Stosowane są sondy oligonukleotydowe o znanej sekwencji, znakowane barwnikami fluorescencyjnymi (fluoresceina, rodamina), a ich obecność wykrywana jest za pomocą mikroskopu fluorescencyjnego [67, 72]. Bardzo często w mikrobiologii środowiskowej stosuje się metodę DGGE (Denaturing Gradient Gel Electrophoresis) i TGGE (Temperature Gradient Gel Electrophoresis). Produkty PCR rozdziela się elektroforetycznie w żelu poliakrylamidowym w obecności czynnika denaturującego. W pierwszym przypadku jest to wzrastające stężenie mocznika, w drugim - wzrastający gradient temperatury. Cząsteczki DNA, migrując w żelu w różnym stężeniu lub gradiencie czynnika denaturującego, zatrzymują się na różnej wysokości. W konsekwencji, ze względu na różnice w sekwencji otrzymujemy w żelu tzw. fingerprint. Zastosowanie odpowiednio dobranych starterów uniwersalnych lub specyficznych dla pewnych grup mikroorganizmów pozwala na ocenę bioróżnorodności w obrębie całego zespołu bakterii lub jego wybranych grup taksonomicznych [64, 73, 74].
12 470 Ł. Podsiadło, T. Krzyśko-Łupicka Kolejnym bardzo ważnym narzędziem w badaniu bioróżnorodności mikroflory glebowej jest metagenomika. Takie badania polegają na tworzeniu tzw. bibliotek genomowych mikroorganizmów wyizolowanych bezpośrednio z różnego rodzaju środowisk naturalnych. Technika ta ma szczególne zastosowanie w przypadku bakterii niehodowlanych, które, jak się szacuje, stanowią ponad 99% wszystkich bakterii w środowisku glebowym [16, 17, 75]. Opracowanie techniki sekwencjonowania przez Fredericka Sangera w 1977 roku z wykorzystaniem dideoksyrybonukleotydów (ddntp) zaowocowało przełomem w badaniach nad klasyfikacją i filogenezą bakterii. Pierwszym markerem wprowadzonym do identyfikacji organizmów prokariotycznych została cząsteczka 16S rrna [76]. Obecnie metoda Sangera została zmodyfikowana o wprowadzenie ddntp znakowanych fluorescencyjnie. Aby gen mógł być wykorzystywany w taksonomii drobnoustrojów, musi spełniać kilka podstawowych warunków. Przede wszystkim musi występować powszechnie wśród organizmów, podlegać tylko w niewielkim stopniu transferowi horyzontalnemu, występować w jednej kopii i posiadać odpowiednią długość dla zapewnienia wystarczającej ilości informacji. Dodatkowo takie sekwencje powinny być konserwatywne, a więc nieulegające znaczącym zmianom w procesie ewolucji. Największą na świecie bazą danych zawierającą sekwencje wszystkich organizmów żywych jest GenBank ( W wyszukiwaniu sekwencji homologicznych, czyli tych o wspólnym pochodzeniu najczęściej stosuje się algorytm BLAST ( który znajduje w badanych sekwencjach fragmenty o największym podobieństwie [17, 67, 77, 78]. Podsumowanie Mikroorganizmy mają bardzo duży wpływ na funkcjonowanie ekosystemów, w tym środowiska glebowego. Odpowiadają między innymi za ciągły obieg pierwiastków odżywczych oraz rozkład ksenobiotyków różnego pochodzenia. W zależności od rodzaju i wielkości zanieczyszczenia dostępnych jest kilka metod stosowanych w celu efektywnej bioremediacji. Na przełomie ostatnich lat zwiększyło się także nasze pojęcie na temat rozkładu związków ropopochodnych i ich molekularnych podstaw. W skład ropy naftowej wchodzą przede wszystkim węglowodory, takie jak alkany, cykloalkany, węglowodory aromatyczne, czy wielopierścieniowe węglowodory aromatyczne (WWA). Naturalna biodegradacja związków ropopochodnych w glebie zwykle trwa bardzo długo. Intensyfikację procesu biodegradacji ksenobiotyków uzyskuje się głównie na drodze biostymulacji i bioaugmentacji [17]. Bioaugmentacja wykorzystywana jest, gdy mamy do czynienia z ograniczoną liczbą i jakością rodzimej populacji drobnoustrojów. Wprowadzenie do zanieczyszczonego środowiska wyselekcjonowanych szczepów mikroorganizmów w formie biopreparatów intensyfikuje i ukierunkowuje rozkład zanieczyszczeń [5, 10, 79, 80]. W Polsce prowadzone są prace badawcze i wdrażane technologie bioremediacji zaolejonej
13 Techniki bioremediacji substancji ropopochodnych i metody oceny ich efektywności 471 gleby. Niestety działania te nie są wystarczająco dofinansowane, dlatego istnieje pilna potrzeba współpracy uczelni akademickich z podmiotami gospodarczymi w celu zachowania równowagi pomiędzy postępującym rozwojem przemysłu a nieskażoną przyrodą. W obecnych czasach dysponujemy licznymi technikami laboratoryjnymi w celu identyfikacji mikroorganizmów oraz określania ich cech fenotypowych i genomowych. Metody fenotypowe to przede wszystkim badanie aktywności enzymów, warunków wzrostu, profilu wykorzystania substratów, analiza struktury ściany komórkowej czy składu kwasów tłuszczowych [70, 81]. Jedną z niedogodności przy analizie fenotypu jest to, że pełna informacja zawarta w genomie badanego organizmu nigdy nie ulega ekspresji, ponieważ jest ona związana bezpośrednio z warunkami środowiskowymi (np. warunkami wzrostu w laboratorium). Kwasy nukleinowe stanowią doskonałe narzędzie do badań, ponieważ występują u wszystkich organizmów żywych. Z tego powodu w identyfikacji mikroorganizmów coraz częściej wykorzystywane są metody biologii molekularnej, takie jak łańcuchowa reakcja polimerazy (PCR), określanie zawartości zasad G+C w DNA, hybrydyzacja czy sekwencjonowanie [1, 71, 82]. Literatura [1] Molina M.C., Gonzalez N., Bautista L.F., Sanz R., Simarro R., Sanchez I., Sanz J. L., Isolation and genetic identification of PAH degrading bacteria from a microbial consortium, Biodegradation 2009, 20, [2] Liu W., Wang X., Wu L., Chen M., Tu C., Luo Y., Christie P., Isolation, identification and characterization of Bacillus amyloliquefaciens BZ-6, a bacterial isolate for enhancing oil recovery from oily sludge, Chemosphere 2012, 87, [3] Mittal A., Singh P., Isolation of hydrocarbon degrading bacteria from soils contaminated with crude oil spills, Indian J. Exp. Biol. 2009, 47, [4] Nowak J., Bioremediacja gleb z ropy i jej produktów, Biotechnologia 2008, 80, [5] Van Hamme J.D., Singh A., Ward O.P., Recent advances in petroleum microbiology, Microbiol. Mol. Biol. Rev. 2003, 67, 4:503, [6] Mrozik A., Piotrowska-Seget Z., Łabużek S., Bacteria in bioremediation of hydrocarbon-contaminated environments, Post. Microbiol. 2005, 44, 3, [7] Vidali M., Bioremediation. An overview, Pure Appl. Chem. 2001, 73, [8] Moldes A.B., Paradelo R., Rubinos D., Devesa-Rey R., Cruz J.M., Barral M.T., Ex situ treatment of hydrocarbon-contaminated soil using biosurfactants from Lactobacillus pentosus, J. Agric. Food. Chem. 2011, 59, 17, [9] Singleton D.R., Jones M.D., Richardson S.D., Aitken M.D., Pyrosequence analyses of bacterial communities during simulated in situ bioremediation of polycyclic aromatic hydrocarboncontaminated soil, Appl. Microbiol. Biotechnol [10] Gentry T.J., Rensing C., Pepper I.L., New approaches for bioaugmentation as a remediation technology, Crit. Rev. Environ. Sci. Technol. 2004, 34, [11] Janbandhu A., Fulekar M.H., Biodegradation of phenanthrene using adapted microbial consortium isolated from petrochemical contaminated environment, J. Haz. Mat. 2011, 187, 1-3, [12] Mikeskova H., Novotny C., Svobodova K., Interspecific interactions in mixed microbial cultures in a biodegradation perspective, Appl. Microbiol. Biotechnol. 2012, 95,
14 472 Ł. Podsiadło, T. Krzyśko-Łupicka [13] Das N., Chandran P., Microbial degradation of petroleum hydrocarbon contaminants: An overview, Biotech. Res. Inter. 2011, Article ID [14] Mearns A.J., Cleaning oiled shores: putting bioremediation to the test, Spill Sci. Technol. B. 1997, 4, 4, [15] Stefanis C., Alexopoulos A., Voidarou C., Vavias S., Bezirtzoglou E., Principal methods for isolation and identification of soil microbial communities, Folia Microbiol. 2012, DOI /s [16] Chikere C.B., Okpokwasili G.C., Chikere B.O., Monitoring of microbial hydrocarbon remediation in the soil, 3 Biotech. 2011, 1, [17] Paliwal V., Puranik S., Purohit H.J., Integrated perspective for effective bioremediation, Appl. Biochem. Biotechnol. 2012, 166, [18] Alisi C., Musella R., Tasso F., Ubaldi C., Manzo S., Cremisini C., Sprocati A.R., Bioremediation of diesel oil in a co-contaminated soil by bioaugmentation with a microbial formula tailored with native strains selected for heavy metals resistance, Sci. Total. Environ. 2009, 407, [19] Boopathy R. Factors limiting bioremediation technologies, Bioresource Technol. 2000, 74, [20] Brusseau M.L., The impact of physical, chemical and biological factors on biodegradation, Proceedings of the International Conference on Biotechnology for Soil Remediation: Scientific Bases and Practical Applications, ed. R. Serra, C.I.P.A. S.R.L., Milan, Italy 1998, [21] Paul E.A., Clark F.E., Soil Microbiology and Biochemistry, Second edition, Academic Press, USA, [22] Atlas R.M., Effects of temperature and crude oil composition on petroleum biodegradation, J. App. Microbiol. 1975, 30, 3, [23] Cooney J.J., The Fate of Petroleum Pollutants in Fresh Water Ecosystems, [in:] Petroleum Microbiology, ed. R.M. Atlas, Macmillan, New York, NY, USA 1984, [24] Insam H., Goberna M., Use of Biolog for the community level physiological profiling (CLPP) of environmental samples, Mol. Microb. Ecol. Manual. 2004, 4, [25] Morgan P., Watkinson J.W., Microbiological methods for the cleanup of soil and ground water contaminated with halogenated organic compounds, FEMS Microbiol. Lett. 1989, 63, 4, [26] Varma A., Oelmuller R., Advanced Techniques in Soil Microbiology, Springer, Germany, [27] Kanaly R.A., Harayama S., Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria, J. Bacteriol. 2000, 182, [28] Pacwa-Płociniczak M., Płaza G.A., Piotrowska-Seget Z., Cameotra S.S., Environmental applications of biosurfactants: recent advances, Int. J. Mol. Sci. 2011, 18, 12, 1, [29] Margesin R., Hammerle M., Tscherko D., Microbial activity and community composition durning bioremediation of diesel-oil-contaminated soil: effects of hydrocarbon concentration, fetilizers and incubation time, Microbial Ecol. 2007, 53, [30] Kwapisz E., Problemy biodegradacji ropy naftowej, I Krajowy Kongres Biotechnologii, 14 sekcja: Biotechnologia w ochronie środowiska, Wrocław, , [31] Panicker G., Mojib N., Aislabie J., Detection, expression and quantitation of the biodegradative genes in Antarctic microorganisms using PCR, A. Van Leeuw. J. Microb. 2010, 97, [32] Phillips C.J., Paul E.A., Prosser J.I. Quantitative analysis of ammonia oxidizing bacteria using competitive PCR, FEMS Microbiol. Ecol. 2000, 32, [33] Ratajczak A., Geidorfer W., Hillen W., Alkane hydroxylase from Acinetobacter sp. strain ADP-1 is encoded by alkm and belongs to a new family of bacterial integralmembrane hydrocarbon hydroxylases, Appl. Environ. Microbiol. 1998, 64,
15 Techniki bioremediacji substancji ropopochodnych i metody oceny ich efektywności 473 [34] Whyte L.G., Hawari J., Zhou E., Bourbonniere L., Inniss W.E., Greer C.W., Biodegradation of variable-chain-length alkanes at low temperatures by a psychrotrophic Rhodococcus sp., Appl. Environ. Microbiol. 1998, 64, [35] Mesarch M.B., Nakatsu C.H., Nies L., Development of catechol 2,3-dioxygenase-specific primers for monitoring bioremediation by competitive quantitative PCR, Appl. Environ. Microbiol. 2000, 66, [36] Hamann C., Hegemann J., Hildebrandt A., Detection of polycyclic aromatic hydrocarbon degradation genes in different soil bacteria by polymerase chain reaction and DNA hybridization, FEMS Microbiol. Lett. 1999, 173, [37] Zylstra G.J., Gibson D.T., Toluene degradation by Pseudomonas putida F1. Nucleotide sequence of the todc1c2bade genes and their expression in Escherichia coli, J. Biol. Chem. 1989, 264, [38] Furukawa K., Arimura N., Purification and properties of 2,3-dihydroxybiphenyl dioxygenase from polychlorinated biphenyl-degrading Pseudomonas pseudoalcaligenes and Pseudomonas aeruginosa carrying the cloned bphc gene, J. Bacteriol. 1987, 169, [39] Greń I., Guzik U., Wojcieszyńska D., Łabużek S., Molekularne podstawy rozkładu ksenobiotycznych związków aromatycznych, Biotechnologia 2008, 2, 81, [40] Vignesh R., Badhul Haq M.A., Srinivasan M., Biodegradation prospective of microbes, Int. J. Environ. Sci. 2011, 2, 2, [41] Peck A.M., Analytical methods for the determination of persistent ingredients of personal care products in environmental matrices, Anal. Bioanal. Chem. 2006, 386, [42] Richardson S.D., Environmental mass spectrometry: emerging contaminants and current issues, Anal. Chem. 2008, 80, [43] Gojgic-Cvijovic G.D., Milic J.S., Solevic T.M., Beskoski V.P., Ilic M.V., Djokic L.S., Narancic T.M., Vrvic M.M., Biodegradation of petroleum sludge and petroleum polluted soil by a bacterial consortium: a laboratory study, Biodegradation 2012, 23, [44] Jin H.M., Kim J.M., Lee H.J., Madsen E.L., Jeon C.O., Alteromonas as a key agent of polycyclic aromatic hydrocarbon biodegradation in crude oil-contaminated coastal sediment, Environ. Sci. Technol. 2012, 46, [45] Liang Y., Van Nostrand J.D., Wang J., Zhang X., Zhou J., Li G., Microarray-based functional gene analysis of soil microbial communities during ozonation and biodegradation of crude oil, Chemosphere 2009, 75, [46] Zhang Z., Inoue C., Li. G., Coordination in phenanthrene biodegradation: pyruvate as microbial demarcation, Bull. Environ. Contam. Toxicol. 2010, 85, [47] Hill G.T., Mitkowski N.A., Aldrich-Wolfe L., Emele L.R., Jurkonie D.D., Ficke A., Maldonado- -Ramirez S., Lynch S.T., Nelson E.B., Methods for assessing the composition and diversity of soil microbial communities, Appl. Soil Ecol. 2000, 15, [48] Makut M.D., Ishaya P., Bacterial species associated with soils contaminated with used petroleum products in Keffi town, Nigeria, Afr. J. Microbiol. Res. 2010, 4, 16, [49] Olga P., Petar K., Jelena M., Srdjan R., Screening method for detection of hydrocarbonoxidizing bacteria in oil-contaminated water and soil specimens, J. Microbiol. Meth. 2008, 74, [50] Sprocati A.R., Alisi C., Tasso F., Marconi P., Sciullo A., Pinto V., Chiavarini S., Ubaldi C., Cremisini C., Effectiveness of a microbial formula, as a bioaugmentation agent, tailored for bioremediation of diesel oil and heavy metal co-contaminated soil, Process Biochemistry 2012, 47, [51] Tabacchioni S., Chiarini L., Bevivino A., Cantale C., Dalmastri C., Bias caused by using different isolation media for assessing genetic diversity of a natural microbial population, Microb. Ecol. 2000, 40, [52] Kirk J.L., Beaudette L.A., Hart M., Moutoglis P., Klironomos J.N., Lee H., Trevors J.T., Methods of studying soil microbial diversity, J. Microbiol. Methods 2004, 58,
16 474 Ł. Podsiadło, T. Krzyśko-Łupicka [53] Fang C., Radosevich M., Fuhrmann J.J., Characterization of rhizosphere microbial community in five similar grass species using FAME and Biolog analyses, Soil. Biol. Biochem. 2001, 33, [54] Kozdrój J., van Elsas J.D., Structural diversity of microbial communities in arable soils of a heavily industrialized area determined by PCR-DGGE fingerprinting and FAME profiling, Appl. Soil Ecol. 2001, 17, [55] Pratt B., Riesen R., Johnston C.G., PLFA analyses of microbial communities associated with PAH-contaminated riverbank sediment, Microb. Ecol. 2012, 64, 3, [56] Wang P., Wang H., Wu L., Di H., He Y., Xu J., Influence of black carbon addition on phenanthrene dissipation and microbial community structure in soil, Environ. Pollut. 2012, 161, [57] Mavrodi D.V., Kovalenko N.P., Sokolov S.L., Parfenyuk V.G., Kosheleva I.A., Boronin A.M., Identification of the key genes of naphthalene catabolism in soil DNA, Microbiology 2003, 72, 5, [58] Osborn A.M., Moore E.R.B., Timmis K.N., An evaluation of terminal-restriction fragment length polymorphisms (T-RFLP) analysis for the study of microbial community structure and dynamics, Environ. Microbiol. 2000, 2, [59] von der Weid I., Marques J.M., Cunha C.D., Lippi R.K., dos Santos S.C.C., Rosado A.S., Lins U., Seldin L., Identification and biodegradation potential of a novel strain of Dietzia cinnamea isolated from a petroleum-contaminated tropical soil, Syst. Appl. Microb. 2007, 30, [60] Yusof N., Hassan M.A., Yee P.L., Tabatabaei M., Othman M.R., Mori M., Wakisaka M., Sakai K., Shirai Y., Nitrification of high-strength ammonium landfill leachate with microbial community analysis using fluorescence in situ hybridization (FISH), Waste Manag. Re. 2011, 29, 6, [61] Zhang D.C., Mörtelmaier C., Margesin R., Characterization of the bacterial archaeal diversity in hydrocarbon-contaminated soil, Sci. Total. Environ. 2012, 1, [62] Cheema S., Bassas-Galia M., Sarma P.M., Lal B., Arias S., Exploiting metagenomic diversity for novel polyhydroxyalkanoate synthases: production of a terpolymer poly(3-hydroxybutyrate- -co-3-hydroxyhexanoate-co-3-hydroxyoctanoate) with a recombinant Pseudomonas putida strain, Bioresource Technol. 2012, 103, 1, [63] Glogauer A., Martini V.P., Faoro H., Couto G.H., Müller-Santos M., Monteiro R.A., Mitchell D.A., de Souza E.M., Pedrosa F.O., Krieger N., Identification and characterization of a new true lipase isolated through metagenomic approach, Microb. Cell. Fact. 2011, 15, 10, 54. [64] Frąc M., Jezierska-Tys S., Różnorodność mikroorganizmów środowiska glebowego, Post. Mikrobiol. 2010, 40, 1, [65] Söderberg K.H., Probanza A., Jumpponenc B.E., The microbial community in the rhizosphere determined by community-level physiological profiles (CLPP) and direct soil- and CFU-PLFA techniques, Appl. Soil. Ecol. 2004, 25, [66] Frostegard A., Tunlid A., Baath E., Use and misuse of PLFA measurements in soils, Soil Biol. Biochem. 2010, 1-5. [67] Raszka A., Ziembińska A., Wiechetek A., Metody i techniki biologii molekularnej w biotechnologii środowiskowej, Środowisko, Czas. Tech. 2009, 2. [68] Kur J., Lewandowski K., Krawczyk B., Samet A., Metody genotypowania bakterii z rodzaju Acinetobacter, Post. Mikrobiol. 2000, 39, [69] Li W., Raoult D., Fournier P-E., Bacterial strain typing in the genomic era, FEMS Microbiol. Rev. 2009, 33, [70] Vandamme P., Pot B., Gillis M., de Vos P., Kersters K., Swings J., Polyphasic taxonomy, a consensus approach to bacterial systematic, Microbiol. Rev. 1996, 60, [71] Rosselló-Mora R., Amann R., The species concept for prokaryotes, FEMS Microbiol. Rev. 2001, 25,
17 Techniki bioremediacji substancji ropopochodnych i metody oceny ich efektywności 475 [72] Christensen H., Hansen M., Sørensen J., Counting and size classification of active soil bacteria by fluorescence in situ hybridization with an rrna oligonucleotide probe, Appl. Environ. Microbiol. 1999, 65, [73] Singh B.K., Munro S., Reid E., Ord B., Potts J.M., Paterson E., Millard P., Investigating microbial community structure in soils by physiological, biochemical molecular methods, Eur. J. Soil. Sci. 2006, 57, [74] Van Elsas J.D., Boersma F.G.H., A review of molecular methods to study the microbiota of soil and the mycosphere, Eur. J. Soil. Biol. 2011, 47, [75] Handelsman J., Metagenomics: application of genomics to uncultured microorganisms, Microbiol. BioI. Rev. 2004, 68, [76] Woese C. R., Fox G. E., Phylogenetic structure of the prokaryotic domain: the primary kingdoms, P. Natl. Acad. Sci. USA 1997, 74, [77] Li W., Raoult D., Fournier P-E., Bacterial strain typing in the genomic era, FEMS Microbiol. Rev. 2009, 33, [78] Slonczewski J.L., Foster J.W., Microbiology - An Evolving Science, W.W. NORTON, London [79] Ebrahimi M., Sarikhani M.R., Fallah R., Assessment of biodegradation efficiency of some isolated bacteria from oilcontaminated sites in solid and liquid media containing oil-compounds, Inter. Res. J. App. B. Sci. 2012, 3, 1, [80] Szpala K., Krzyśko-Łupicka T., Konfederat T., Sposób oczyszczania gruntów zanieczyszczonych związkami organicznymi. Biuletyn Urzędu Patentowego 17 Patent , [81] Goodfellow M., O Donnell A. G., Roots of bacterial systematics, [w:] Handbook of Bacterial Systematics, Eds. M. Goodfellow, A.G. O Donnell. Academic Press, San Diego [82] Atzel B., Szoboszlay S., Mikuska Z., Kriszt B., Comparison of phenotypic and genotypic methods for the detection of environmental isolates of Pseudomonas aeruginosa, Int. J. Hyg. Environ. Health 2008, 211, Techniques of Petroleum Compounds Bioremediation and Methods of Assessment of their Effectiveness In the recent years the demand for petroleum and products associated with its processing, which contributes to the progressive contamination of the environment, has greatly increased. Crude oil consists primarily of hydrocarbons, such as alkanes, cycloalkanes, aromatic hydrocarbons, and polycyclic aromatic hydrocarbons (PAHs). Bioremediation is a technique that combines achievements of microbiology and microbial ecology, biochemistry, genetics and chemistry. Xenobiotics may be removed in the place of contamination (in situ) or preceded by the transfer of contaminated soil from its natural area (ex situ). Many species of microorganisms found in the soil are capable of biodegradation of petroleum compounds. However, the natural biodegradation of petroleum compounds in soil usually takes a long time. The intensification of this process is achieved primarily by biostimulation and/or bioaugmentation. The first method is based on environmental enrichment in nutrients and ensuring optimal environmental conditions (temperature, ph, oxygen concentration). Bioaugmentation relies on the introduction into the environment selected strains of microorganisms capable of degrading xenobiotics in free cells form or immobilized biomass on carriers, such as alginate, acrylate, or carrageenan. Microbial degradation activity depends on biodiversity and physicochemical parameters, including the availability of nutrients, temperature, ph, and oxygen concentration. For this reason, during the bioremediation, a very important aspect is to monitor the changes in the chemical composition of the contaminated environment and the soil biodiversity. Nowadays, we have many laboratory techniques to identify microorganisms. Phenotypic methods include e.g. fatty acid analysis, cell wall structure, the enzyme activity or substrate utilization profile. One of the disadvantages in the analysis of the phenotype is that the full information contained in the genome is never expressed, because it is directly related to the
18 476 Ł. Podsiadło, T. Krzyśko-Łupicka environmental conditions (e.g. growth conditions in the laboratory). Nucleic acid is an excellent tool to study because it is characteristic of all living organisms. For this reason, the molecular biology methods are increasingly used for the identification of microorganisms (such as PCR, hybridization, sequencing, metagenomics). The article presents information about the types of bioremediation, the impact of physical and chemical factors on the efficiency of the xenobiotics decay and methods of monitoring of chemical transformations and dynamics of microorganisms populations in the soil. Keywords: petroleum compounds, bioremediation, biostimulation, bioaugmentation, biodegradation, microbial biodegradation, microbial identification methods
Zanieczyszczenia organiczne takie jak WWA czy pestycydy są dużym zagrożeniem zarówno dla środowiska jak i zdrowia i życia człowieka.
Projekt współfinansowany ze środków Narodowego Centrum Nauki (NCN) oraz Narodowego Centrum Badań i Rozwoju (NCBIR) w ramach projektu (TANGO1/266740/NCBR/2015) Mgr Dariusz Włóka Autor jest stypendystą programu
Tytuł prezentacji. Możliwość wykorzystania biowęgla w rekultywacji gleb zanieczyszczonych. metalami ciężkimi
Agnieszka Medyńska-Juraszek, Irmina Ćwieląg-Piasecka 1, Piotr Chohura 2 1 Instytut Nauk o Glebie i Ochrony Środowiska, Uniwersytet Przyrodniczy we Wrocławiu ul. Grunwaldzka 53, 50-357 Wrocław 2 Katedra
Przemiana materii i energii - Biologia.net.pl
Ogół przemian biochemicznych, które zachodzą w komórce składają się na jej metabolizm. Wyróżnia się dwa antagonistyczne procesy metabolizmu: anabolizm i katabolizm. Szlak metaboliczny w komórce, to szereg
Wykład 13 Bioremediacja środowiska naturalnego
Dystrybucja składników wycieku ropy naftowej z uszkodzonego zbiornika Technologie bioremediacji gleby Strategia Strategie bioremediacji gleby i wód Biostymulacja Mechanizm Przykład -dodawanie składników
OPIS PRZEDMIOTÓW REALIZOWANYCH W KATEDRZE MIKROBIOLOGII ŚRODOWISKOWEJ
OPIS PRZEDMIOTÓW REALIZOWANYCH W KATEDRZE MIKROBIOLOGII ŚRODOWISKOWEJ STUDIA STACJONARNE PIERWSZEGO STOPNIA - INŻYNIERSKIE Mikrobiologia Rola mikrobiologii. Świat mikroorganizmów: wirusy, bakterie, archebakterie,
Zanieczyszczenia naftowe w gruncie. pod redakcją Jana Surygały
Zanieczyszczenia naftowe w gruncie pod redakcją Jana Surygały Oficyna Wydawnicza Politechniki Wrocławskiej Wrocław 2000 Zanieczyszczenia naftowe w gruncie pod redakcją Jana Surygały Oficyna Wydawnicza
SKUTKI SUSZY W GLEBIE
SKUTKI SUSZY W GLEBIE Zakrzów, 20 lutego 2019 r. dr hab. inż. Marek Ryczek, prof. UR atmosferyczna glebowa (rolnicza) hydrologiczna rośliny wilgotność gleba zwięzłość struktura gruzełkowata zasolenie mikroorganizmy
ul. ILJI MIECZNIKOWA 1, 02-096 WARSZAWA e-mail: magdapop@biol.uw.edu.pl RAPORT
d r h a b. M a g d a l e n a P o p ow s k a, p r o f. U W U N I W E R S Y T E T W AR S Z AW S K I W Y D Z I AŁ B I O L O G I I ul. ILJI MIECZNIKOWA 1, 02-096 WARSZAWA TEL: (+22) 55-41-420, FAX: (+22) 55-41-402
Techniki molekularne w mikrobiologii SYLABUS A. Informacje ogólne
Techniki molekularne w mikrobiologii A. Informacje ogólne Elementy sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Rodzaj Rok studiów
Procesy biotransformacji
Biohydrometalurgia jest to dział techniki zajmujący się otrzymywaniem metali przy użyciu mikroorganizmów i wody. Ma ona charakter interdyscyplinarny obejmujący wiedzę z zakresu biochemii, geomikrobiologii,
BIOTECHNOLOGIA OGÓLNA
BIOTECHNOLOGIA OGÓLNA 1. Wprowadzenie do biotechnologii. Rys historyczny. Zakres i znaczenie nowoczesnej biotechnologii. Opracowanie procesu biotechnologicznego. 7. Produkcja biomasy. Białko mikrobiologiczne.
BIOCHEMICZNE ZAPOTRZEBOWANIE TLENU
BIOCHEMICZNE ZAPOTRZEBOWANIE TLENU W procesach samooczyszczania wód zanieczyszczonych związkami organicznymi zachodzą procesy utleniania materii organicznej przy współudziale mikroorganizmów tlenowych.
Zastosowanie metody RAPD do różnicowania szczepów bakteryjnych
Zastosowanie metody RAPD do różnicowania szczepów bakteryjnych Wstęp teoretyczny Technika RAPD (ang. Random Amplification of Polymorphic DNA) opiera się na prostej reakcji PCR, przeprowadzanej na genomowym
Inżynieria Środowiska II stopnia (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) dr hab. Lidia Dąbek, prof. PŚk.
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
Plan dydaktyczny z chemii klasa: 2TRA 1 godzina tygodniowo- zakres podstawowy. Dział Zakres treści
Anna Kulaszewicz Plan dydaktyczny z chemii klasa: 2TRA 1 godzina tygodniowo- zakres podstawowy lp. Dział Temat Zakres treści 1 Zapoznanie z przedmiotowym systemem oceniania i wymaganiami edukacyjnymi z
Exemplis discimus. Uczymy się na przykładach
UNIWERSYTET KARDYNAŁA STEFANA WYSZYŃSKIEGO w WARSZAWIE WYDZIAŁ BIOLOGII i NAUK o ŚRODOWISKU ul. Wóycickiego 1/3, 01-938 Warszawa, tel. (48 22) 569 68 37 www.wbns.uksw.edu.pl Exemplis discimus Uczymy się
środowiskowych Henryk Różycki
Fizjologiczny (metaboliczny) fingerprinting wykorzystanie systemu BIOLOG do identyfikacji bakterii oraz do charakterystyki mieszanych zespołów drobnoustrojów środowiskowych Henryk Różycki Zasada fingerprintingu
Potencjał metanowy wybranych substratów
Nowatorska produkcja energii w biogazowni poprzez utylizację pomiotu drobiowego z zamianą substratu roślinnego na algi Potencjał metanowy wybranych substratów Monika Suchowska-Kisielewicz, Zofia Sadecka
OFERTA TEMATÓW PROJEKTÓW DYPLOMOWYCH (MAGISTERSKICH) do zrealizowania w Katedrze INŻYNIERII CHEMICZNEJ I PROCESOWEJ
OFERTA TEMATÓW PROJEKTÓW DYPLOMOWYCH (MAGISTERSKICH) do zrealizowania w Katedrze INŻYNIERII CHEMICZNEJ I PROCESOWEJ Badania kinetyki utleniania wybranych grup związków organicznych podczas procesów oczyszczania
Zastosowanie biopreparatów w procesie oczyszczania ścieków
1 Zastosowanie biopreparatów w procesie oczyszczania ścieków Patrycja Malucha Kierownik Działu Technologii Wody i Ścieków ENERGOPOMIAR Sp. z o.o., Zakład Chemii i Diagnostyki Wiadomości ogóle o dotyczące
BIOTECHNOLOGIA OGÓLNA
BIOTECHNOLOGIA OGÓLNA 1. 2. 3. 4. 5. Ogólne podstawy biologicznych metod oczyszczania ścieków. Ścieki i ich rodzaje. Stosowane metody analityczne. Substancje biogenne w ściekach. Tlenowe procesy przemiany
P A M I Ę T N I K P U Ł A W S K I ZESZYT 140 2005
P A M I Ę T N I K P U Ł A W S K I ZESZYT 140 2005 1 MARIA J. KRÓL, 2 JERZY WIELBO, 3 JULITA ZIELEWICZ-DUKOWSKA 1 Zakład Mikrobiologii Rolniczej Instytut Uprawy Nawożenia i Gleboznawstwa Państwowy Instytut
Repetytorium z wybranych zagadnień z chemii
Repetytorium z wybranych zagadnień z chemii Mol jest to liczebność materii występująca, gdy liczba cząstek (elementów) układu jest równa liczbie atomów zawartych w masie 12 g węgla 12 C (równa liczbie
Metody badania polimorfizmu/mutacji DNA. Aleksandra Sałagacka Pracownia Diagnostyki Molekularnej i Farmakogenomiki Uniwersytet Medyczny w Łodzi
Metody badania polimorfizmu/mutacji DNA Aleksandra Sałagacka Pracownia Diagnostyki Molekularnej i Farmakogenomiki Uniwersytet Medyczny w Łodzi Mutacja Mutacja (łac. mutatio zmiana) - zmiana materialnego
TECHNOLOGIE OCHRONY ŚRODOWISKA (studia I stopnia) Mogilniki oraz problemy związane z ich likwidacją prof. dr hab. inż.
Pestycydy i problemy związane z ich produkcja i stosowaniem - problemy i zagrożenia związane z występowaniem pozostałości pestycydów w środowisku; Mogilniki oraz problemy związane z ich likwidacją - problem
Nowoczesne systemy ekspresji genów
Nowoczesne systemy ekspresji genów Ekspresja genów w organizmach żywych GEN - pojęcia podstawowe promotor sekwencja kodująca RNA terminator gen Gen - odcinek DNA zawierający zakodowaną informację wystarczającą
ul. ILJI MIECZNIKOWA 1, WARSZAWA RAPORT
d r h a b. M a g d a l e n a P o p ow s k a, p r o f. U W U N I W E R S Y T E T W AR S Z AW S K I W Y D Z I AŁ B I O L O G I I ul. ILJI MIECZNIKOWA 1, 02-096 WARSZAWA TEL: (+22) 55-41-420, FAX: (+22) 55-41-402
Laboratorium Pomorskiego Parku Naukowo-Technologicznego Gdynia.
Laboratorium Pomorskiego Parku Naukowo-Technologicznego Gdynia www.ppnt.pl/laboratorium Laboratorium jest częścią modułu biotechnologicznego Pomorskiego Parku Naukowo Technologicznego Gdynia. poprzez:
Techniki biologii molekularnej Kod przedmiotu
Techniki biologii molekularnej - opis przedmiotu Informacje ogólne Nazwa przedmiotu Techniki biologii molekularnej Kod przedmiotu 13.9-WB-BMD-TBM-W-S14_pNadGenI2Q8V Wydział Kierunek Wydział Nauk Biologicznych
FITOREMEDIACJA. Jest to proces polegający na wprowadzeniu roślin do określonego ekosystemu w celu asymilacji zanieczyszczeń poprzez korzenie i liście.
FITOREMEDIACJA Jest to proces polegający na wprowadzeniu roślin do określonego ekosystemu w celu asymilacji zanieczyszczeń poprzez korzenie i liście. Proces ten jest wykorzystywany do usuwania takich ksenobiotyków
Rola oczyszczalni ścieków w w eliminowaniu ciekach
Rola oczyszczalni ścieków w w eliminowaniu SCCP i MCCP w odprowadzanychściekach ciekach Ministerstwo Gospodarki, Warszawa, 18.11.2011 Jan Suschka Przypomnienie w aspekcie obecności ci SCCP/MCCP w ściekach
KARTA PRZEDMIOTU. (pieczęć wydziału) Z1-PU7 WYDANIE N1 Strona 8 z 9
Załącznik Nr 5 do Zarz. Nr 33/11/12 KARTA PRZEDMIOTU (pieczęć wydziału) Z1-PU7 WYDANIE N1 Strona 8 z 9 1. Nazwa przedmiotu: Mikrobiologia ogólna 2. Kod przedmiotu: 3. Karta przedmiotu ważna od roku akademickiego:
AtriGran szybko i bezpiecznie podnosi ph gleby. AtriGran błyskawicznie udostępnia wapń. AtriGran usprawnia pobieranie makroskładników z gleby
AtriGran szybko i bezpiecznie podnosi ph gleby Produkt wytworzony z surowca pochodzącego z młodego, unikatowego w Europie złoża do produkcji wapna nawozowego. Porowatość surowca dająca ogromną powierzchnię
BIOSYNTEZA ACYLAZY PENICYLINOWEJ. Ćwiczenia z Mikrobiologii Przemysłowej 2011
BIOSYNTEZA ACYLAZY PENICYLINOWEJ Ćwiczenia z Mikrobiologii Przemysłowej 2011 Acylaza penicylinowa Enzym hydrolizuje wiązanie amidowe w penicylinach Reakcja przebiega wg schematu: acylaza Reszta: fenyloacetylowa
Genetyka i biologia eksperymentalna studia I stopnia 2017/18/19/20
Genetyka i biologia eksperymentalna studia I stopnia 2017/18/19/20 002 SEMESTR 1 Biofizyka Biophysics 2 E 30 20 10 Chemia ogólna i analityczna General and analytical chemistry 6 E 90 30 60 Matematyka Mathematics
Adsorpcja wybranych jonów metali ciężkich na biowęglu pochodzącym z komunalnych osadów ściekowych
Adsorpcja wybranych jonów metali ciężkich na biowęglu pochodzącym z komunalnych osadów ściekowych mgr Ewelina Ślęzak Opiekun pomocniczy: dr Joanna Poluszyńska Opiekun: prof. dr hab. inż. Piotr Wieczorek
WYKRYWANIE ZANIECZYSZCZEŃ WODY POWIERZA I GLEBY
WYKRYWANIE ZANIECZYSZCZEŃ WODY POWIERZA I GLEBY Instrukcja przygotowana w Pracowni Dydaktyki Chemii Zakładu Fizykochemii Roztworów. 1. Zanieczyszczenie wody. Polska nie należy do krajów posiadających znaczne
ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 396
ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 396 wydany przez POLSKIE CENTRUM AKREDYTACJI 01-382 Warszawa, ul. Szczotkarska 42 Wydanie nr 14 Data wydania: 17 sierpnia 2016 r. Nazwa i adres MIEJSKIE
Hybrydyzacja kwasów nukleinowych
Hybrydyzacja kwasów nukleinowych Jaka jest lokalizacja tego genu na chromosomie? Jakie jest jego sąsiedztwo? Hybrydyzacja - powstawanie stabilnych struktur dwuniciowych z cząsteczek jednoniciowych o komplementarnych
Genetyka i biologia eksperymentalna studia I stopnia 2017/18/19
003 Uchwała RW Nr 136/2018 z dnia 24 maja 2018 r. zmiana w ofercie przedmiotów do wyboru dla II roku 2018/19 (zmiana Uchwały RW Nr 130/2017 z dnia 25 maja 2017 r.) Genetyka i biologia eksperymentalna studia
CERTYFIKOWANE MATERIAŁY ODNIESIENIA - WWA I PCB W GLEBIE I TKANCE KORMORANA
CERTYFIKOWANE MATERIAŁY ODNIESIENIA - WWA I PCB W GLEBIE I TKANCE KORMORANA Bogusław Buszewski Renata Gadzała-Kopciuch Anna Kiełbasa Tomasz Kowalkowski Iwona Krzemień-Konieczka WWA w glebie Przyspieszona
BIODEGRADACJA WYBRANYCH PRODUKTÓW NAFTOWYCH W ZMIENNYCH WARUNKACH TEMPERATURY I PH ŚRODOWISKA. Małgorzata Hawrot-Paw **
Acta Sci. Pol., Formatio Circumiectus 9 (4) 2010, 17 23 BIODEGRADACJA WYBRANYCH PRODUKTÓW NAFTOWYCH W ZMIENNYCH WARUNKACH TEMPERATURY I PH ŚRODOWISKA Małgorzata Hawrot-Paw ** Zachodniopomorski Uniwersytet
Jaki koń jest nie każdy widzi - genomika populacji polskich ras koni
Jaki koń jest nie każdy widzi - genomika populacji polskich ras koni Gurgul A., Jasielczuk I., Semik-Gurgul E., Pawlina-Tyszko K., Szmatoła T., Bugno-Poniewierska M. Instytut Zootechniki PIB Zakład Biologii
Hybrydyzacja kwasów nukleinowych
Hybrydyzacja kwasów nukleinowych Jaka jest lokalizacja genu na chromosomie? Jakie jest jego sąsiedztwo? Hybrydyzacja - powstawanie stabilnych struktur dwuniciowych z cząsteczek jednoniciowych o komplementarnych
Opracowała: mgr inż. Ewelina Nowak
Materiały dydaktyczne na zajęcia wyrównawcze z chemii dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Opracowała: mgr
Wykorzystaniem biowęgla jako podłoża w produkcji szklarniowej ogórka i pomidora
Agnieszka Medyńska-Juraszek, Irmina Ćwieląg-Piasecka, Magdalena Dębicka 1, Piotr Chohura, Cecylia Uklańska Pusz 2 1 Instytut Nauk o Glebie i Ochrony Środowiska, Uniwersytet Przyrodniczy we Wrocławiu ul.
Genetyka i biologia eksperymentalna studia I stopnia 2018/19/20/21
Genetyka i biologia eksperymentalna studia I stopnia 2018/19/20/21 003 Uchwała RW Nr 141/2018 z dnia 28 czerwca 2018 r. NAZWA PRZEDMIOTU pkt ECTS E/Z suma godz wykł. konw. sem. ćw. lab. ćw. ter. SEMESTR
VIII Krajowa Konferencja Bioindykacyjna
Kraków, 18-20.04.2018 VIII Krajowa Konferencja Bioindykacyjna Wpływ wybranych wtórnych metabolitów roślinnych na ekotoksyczność oraz potencjał biodegradacyjny gleby zanieczyszczonej herbicydem z grupy
Podstawowe pojęcia i prawa chemiczne
Podstawowe pojęcia i prawa chemiczne Pierwiastki, nazewnictwo i symbole. Budowa atomu, izotopy. Przemiany promieniotwórcze, okres półtrwania. Układ okresowy. Właściwości pierwiastków a ich położenie w
OCZYSZCZANIE ŚCIEKÓW PRZEMYSŁOWYCH O DUŻEJ ZAWARTOŚCI OLEJÓW NA ZŁOŻU BIOLOGICZNYM
ścieki przemysłowe, złoże biologiczne Katarzyna RUCKA, Małgorzata BALBIERZ* OCZYSZCZANIE ŚCIEKÓW PRZEMYSŁOWYCH O DUŻEJ ZAWARTOŚCI OLEJÓW NA ZŁOŻU BIOLOGICZNYM Przedstawiono wyniki laboratoryjnych badań
TECHNIKI SEPARACYJNE ĆWICZENIE. Temat: Problemy identyfikacji lotnych kwasów tłuszczowych przy zastosowaniu układu GC-MS (SCAN, SIM, indeksy retencji)
TECHNIKI SEPARACYJNE ĆWICZENIE Temat: Problemy identyfikacji lotnych kwasów tłuszczowych przy zastosowaniu układu GC-MS (SCAN, SIM, indeksy retencji) Prowadzący: mgr inż. Anna Banel 1 1. Charakterystyka
WYKORZYSTANIE BATERII BIOTESTÓW W OCENIE TOKSYCZNOŚCI GLEBY ZANIECZYSZCZONEJ BENZYNĄ PO PRZEPROWADZENIU REMEDIACJI
Wojciech Kępka, Jacek Antonkiewicz, Agnieszka Baran Uniwersytet Rolniczy im. H. Kołłątaja w Krakowie WYKORZYSTANIE BATERII BIOTESTÓW W OCENIE TOKSYCZNOŚCI GLEBY ZANIECZYSZCZONEJ BENZYNĄ PO PRZEPROWADZENIU
Zastosowanie metod molekularnych w badaniach bioremediacji substancji ropopochodnych
NAFTA-GAZ, ROK LXIX, Nr 11 / 2013 Joanna Brzeszcz, Piotr Kapusta, Anna Turkiewicz Instytut Nafty i Gazu Zastosowanie metod molekularnych w badaniach bioremediacji substancji ropopochodnych Zastosowanie
Biowęgiel w remediacji zanieczyszczeń w środowisku gruntowo-wodnym
Biowęgiel w remediacji zanieczyszczeń w środowisku gruntowo-wodnym Prof. dr hab. inż. Małgorzata Kacprzak Instytut Inżynierii Środowiska Politechnika Częstochowska Strategie oczyszczania (remediacji) środowiska
Osad nadmierny Jak się go pozbyć?
Osad nadmierny Jak się go pozbyć? AquaSlat Ltd. Rozwiązanie problemu Osad nadmierny jest niewygodnym problemem dla zarządów oczyszczalni i społeczeństwa. Jak dotąd nie sprecyzowano powszechnie akceptowalnej
Nasze innowacje REMEDIACJA ŚRODOWISKA WODNO- GRUNTOWEGO
Nasze innowacje REMEDIACJA ŚRODOWISKA WODNO- GRUNTOWEGO KILKA SŁÓW O NAS Ponad 25 lat doświadczenia Interdyscyplinarna działalność w zakresie ochrony środowiska: Remediacja biologiczna i chemiczna; Niwelowanie
Bliskie spotkania z biologią METABOLIZM. dr hab. Joanna Moraczewska, prof. UKW. Instytut Biologii Eksperymetalnej, Zakład Biochemii i Biologii Komórki
Bliskie spotkania z biologią METABOLIZM dr hab. Joanna Moraczewska, prof. UKW Instytut Biologii Eksperymetalnej, Zakład Biochemii i Biologii Komórki Metabolizm całokształt przemian biochemicznych i towarzyszących
Conception of reuse of the waste from onshore and offshore in the aspect of
Conception of reuse of the waste from onshore and offshore in the aspect of environmental protection" Koncepcja zagospodarowania odpadów wiertniczych powstających podczas wierceń lądowych i morskich w
SYLABUS. Wydział Biologiczno - Rolniczy. Katedra Biotechnologii i Mikrobiologii
SYLABUS 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Mikrobiologia Kod przedmiotu/ modułu* Wydział (nazwa jednostki prowadzącej kierunek) Nazwa jednostki realizującej przedmiot
Proceedings of ECOpole DOI: /proc (2) ;6(2)
Proceedings of ECOpole DOI: 10.2429/proc.2012.6(2)065 2012;6(2) Tomasz CIESIELCZUK 1 and Teresa KRZYŚKO-ŁUPICKA 2 KINETICS OF DEGRADATION OF MINERAL OIL AND DIESEL FUEL IN SOIL CONTAMINATED WITH PETROLEUM
Transformacja pośrednia składa się z trzech etapów:
Transformacja pośrednia składa się z trzech etapów: 1. Otrzymanie pożądanego odcinka DNA z materiału genetycznego dawcy 2. Wprowadzenie obcego DNA do wektora 3. Wprowadzenie wektora, niosącego w sobie
ZRÓŻNICOW ANIE GENETYCZNE SZCZEPÓW DROŻDŻY FERM ENTUJĄCYCH KSYLOZĘ
ŻYW NO ŚĆ 3(20)Supl 1999 JOANNA CHMIELEWSKA, JOANNA KAWA-RYGIELSKA ZRÓŻNICOW ANIE GENETYCZNE SZCZEPÓW DROŻDŻY FERM ENTUJĄCYCH KSYLOZĘ S t r e s z c z e n i e W pracy podjęto próbę wykorzystania metody
Badanie oddziaływania polihistydynowych cyklopeptydów z jonami Cu 2+ i Zn 2+ w aspekcie projektowania mimetyków SOD
Wydział Farmaceutyczny z Oddziałem Analityki Medycznej Badanie oddziaływania polihistydynowych cyklopeptydów z jonami Cu 2+ i Zn 2+ w aspekcie projektowania mimetyków SOD Aleksandra Kotynia PRACA DOKTORSKA
Biowęgiel jako materiał pomocniczny w procesie kompostowania i wermikompstowania
Biowęgiel jako materiał pomocniczny w procesie kompostowania i wermikompstowania dr inż. Krystyna Malińska Wydział Infrastruktury i Środowiska Politechnika Częstochowska Rola biowęgla w kompostowaniu 1.
5. REEMISJA ZWIĄZKÓW RTĘCI W CZASIE UNIESZKODLIWIANIA OSADÓW ŚCIEKOWYCH
1. Prognozowanie procesów migracji zanieczyszczeń zawartych w odciekach wyeksploatowanych składowisk odpadów komunalnych : Kompleksowe zarządzanie gospodarką odpadami Kazimierz Szymański, Robert Sidełko,
1. Biotechnologia i inżynieria genetyczna zagadnienia wstępne 13
Spis treści Przedmowa 11 1. Biotechnologia i inżynieria genetyczna zagadnienia wstępne 13 1.1. Wprowadzenie 13 1.2. Biotechnologia żywności znaczenie gospodarcze i społeczne 13 1.3. Produkty modyfikowane
Inżynieria Genetyczna ćw. 3
Materiały do ćwiczeń z przedmiotu Genetyka z inżynierią genetyczną D - blok Inżynieria Genetyczna ćw. 3 Instytut Genetyki i Biotechnologii, Wydział Biologii, Uniwersytet Warszawski, rok akad. 2018/2019
Instrukcja do ćwiczeń laboratoryjnych
UNIWERSYTET GDAŃSKI WYDZIAŁ CHEMII Pracownia studencka Katedra Analizy Środowiska Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 4 i 5 OCENA EKOTOKSYCZNOŚCI TEORIA Chemia zanieczyszczeń środowiska
efekty kształcenia grupa zajęć** K7_K03 K7_W05 K7_U02 K7_W05 A Z K7_K02 K7_W05 K7_U02 A Z K7_U03 K7_U04 K7_W01
WYDZIAŁ: KIERUNEK: poziom kształcenia: profil: forma studiów: PLAN STUDIÓW Wydział Chemiczny Zielone Technologie i Monitoring / Green Technologies and Monitoring II stopnia ogólnoakademicki stacjonarne
Warszawa, dnia 3 sierpnia 2016 r. Poz. 1173
Warszawa, dnia 3 sierpnia 2016 r. Poz. 1173 ROZPORZĄDZENIE MINISTRA ŚRODOWISKA 1) z dnia 18 lipca 2016 r. w sprawie określenia wzorów wniosków oraz zgłoszeń związanych z zamkniętym użyciem mikroorganizmów
MECHANIZM PRZEMIAN CHEMICZNYCH W PROCESIE BIODEGRADACJI SUBSTANCJI TŁUSZCZOWYCH
Fizykochemiczne Problemy Mineralurgii, 31 (1997), 241 246 Teresa SUDOŁ *, Teresa FARBISZEWSKA *, Jadwiga FARBISZEWSKA-BAJER ** MECHANIZM PRZEMIAN CHEMICZNYCH W PROCESIE BIODEGRADACJI SUBSTANCJI TŁUSZCZOWYCH
Nauka Przyroda Technologie
Nauka Przyroda Technologie ISSN 1897-7820 http://www.npt.up-poznan.net Dział: Rolnictwo Copyright Wydawnictwo Uniwersytetu Przyrodniczego w Poznaniu 2010 Tom 4 Zeszyt 6 ŻANETA SWĘDZIOŁ, AGNIESZKA MROZIK
Rozkład materiału z biologii dla klasy III AD. 7 godz / tyg rok szkolny 2016/17
Rozkład materiału z biologii dla klasy III AD zakres rozszerzony LO 7 godz / tyg rok szkolny 2016/17 Biologia na czasie 2 zakres rozszerzony nr dopuszczenia 564/2/2012 Biologia na czasie 3 zakres rozszerzony
Zastosowanie analizy genów markerowych do badań zakwitów toksycznych cyjanobakterii w jeziorach
AUTOREFERAT ROZPRAWY DOKTORSKIEJ Aleksandra Bukowska Zakład Ekologii Mikroorganizmów i Biotechnologii Środowiskowej, Instytut Botaniki, Wydział Biologii, Uniwersytet Warszawski Zastosowanie analizy genów
Zakład Technologii Wody, Ścieków i Odpadów
Zakład Technologii Wody, Ścieków i Odpadów Katedra Inżynierii Sanitarnej. Wydział Budownictwa i Architektury Semestr zimowy 2017/18 harmonogram zajęć przedmiotów z formą zajęć laboratoryjnych Chemia Budowlana
Kryteria oceniania z chemii kl VII
Kryteria oceniania z chemii kl VII Ocena dopuszczająca -stosuje zasady BHP w pracowni -nazywa sprzęt laboratoryjny i szkło oraz określa ich przeznaczenie -opisuje właściwości substancji używanych na co
Biosurfaktanty drobnoustrojowe; produkcja i zastosowanie emulgatora wytwarzanego przez grzyb strzępkowy Curvularia lunata
Biosurfaktanty drobnoustrojowe; produkcja i zastosowanie emulgatora wytwarzanego przez grzyb strzępkowy Curvularia lunata Katarzyna Paraszkiewicz, Jerzy Długoński Katedra Mikrobiologii Przemysłowej i Biotechnologii,
Wpływ biowęgla na ograniczanie emisji amoniaku podczas kompostowania pomiotu kurzego
Wpływ biowęgla na ograniczanie emisji amoniaku podczas kompostowania pomiotu kurzego Krystyna Malińska - Politechnika Częstochowska Damian Janczak, Wojciech Czekała, Andrzej Lewicki, Jacek Dach - Uniwersytet
Zagospodarowanie pofermentu z biogazowni rolniczej
Zagospodarowanie pofermentu z biogazowni rolniczej ERANET: SE Bioemethane. Small but efficient Cost and Energy Efficient Biomethane Production. Biogazownie mogą być zarówno źródłem energii odnawialnej
Rola normalizacji w ochronie wód. Jeremi Naumczyk Marzec, 2018
Rola normalizacji w ochronie wód Jeremi Naumczyk Marzec, 2018 Cel normalizacji Opracowywanie i publikowanie norm dotyczących procedur badania wód Procedury podane w normach są w przepisach prawnych (rozporządzenia
ĆWICZENIE NR 3 BADANIE MIKROBIOLOGICZNEGO UTLENIENIA AMONIAKU DO AZOTYNÓW ZA POMOCĄ BAKTERII NITROSOMONAS sp.
ĆWICZENIE NR 3 BADANIE MIKROBIOLOGICZNEGO UTLENIENIA AMONIAKU DO AZOTYNÓW ZA POMOCĄ BAKTERII NITROSOMONAS sp. Uwaga: Ze względu na laboratoryjny charakter zajęć oraz kontakt z materiałem biologicznym,
Eco-Tabs. Nowa technologia w bioremediacji silnie zeutrofizowanych zbiorników wodnych
TM Eco-Tabs Nowa technologia w bioremediacji silnie zeutrofizowanych zbiorników wodnych Prof. dr hab. Ryszard J. Chróst Zakład Ekologii Mikroorganizmów UW Przyczyny i skutki eutrofizacji wód podlegające
Rok akademicki: 2014/2015 Kod: EIB-2-206-BN-s Punkty ECTS: 3. Kierunek: Inżynieria Biomedyczna Specjalność: Bionanotechnologie
Nazwa modułu: Genetyka molekularna Rok akademicki: 2014/2015 Kod: EIB-2-206-BN-s Punkty ECTS: 3 Wydział: Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Kierunek: Inżynieria Biomedyczna
Ćwiczenia 1 Wirtualne Klonowanie Prowadzący: mgr inż. Joanna Tymeck-Mulik i mgr Lidia Gaffke. Część teoretyczna:
Uniwersytet Gdański, Wydział Biologii Katedra Biologii Molekularnej Przedmiot: Biologia Molekularna z Biotechnologią Biologia II rok ===============================================================================================
WYMAGANIA PROGRAMOWE Z CHEMII DLA KLASY II. Ocena Semestr I Semestr II
WYMAGANIA PROGRAMOWE Z CHEMII DLA KLASY II Ocena Semestr I Semestr II Wymagania konieczne( ocena dopuszczająca ) - zna treść prawa zachowania masy i prawa stałości składu związku chemicznego - potrafi
uczeń opanował wszystkie wymagania podstawowe i ponadpodstawowe
1 Agnieszka Wróbel nauczyciel biologii i chemii Plan pracy dydaktycznej na chemii w klasach pierwszych w roku szkolnym 2015/2016 Poziom wymagań Ocena Opis wymagań podstawowe niedostateczna uczeń nie opanował
Wybrane techniki badania białek -proteomika funkcjonalna
Wybrane techniki badania białek -proteomika funkcjonalna Proteomika: umożliwia badanie zestawu wszystkich (lub prawie wszystkich) białek komórkowych Zalety analizy proteomu np. w porównaniu z analizą trankryptomu:
prof. dr hab. Tadeusz Filipek, dr Monika Skowrońska Uniwersytet Przyrodniczy w Lublinie
prof. dr hab. Tadeusz Filipek, dr Monika Skowrońska Uniwersytet Przyrodniczy w Lublinie 1 Prognozowany wzrost: produkcji zbóż, światowej populacji ludności, zużycia nawozów i areałów rolniczych [adapted
ZAKRES: AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 1214
ZAKRES: AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 1214 wydany przez POLSKIE CENTRUM AKREDYTACJI 01-382 Warszawa, ul. Szczotkarska 42 Wydanie nr 10 Data wydania: 11 maja 2018 r. Nazwa i adres AB 1214 MIEJSKIE
ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 646
ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 646 wydany przez POLSKIE CENTRUM AKREDYTACJI 01-382 Warszawa ul. Szczotkarska 42 Wydanie nr 12 Data wydania: 27 maja 2015 r. Nazwa i adres: AB 646 Kod identyfikacji
ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 868
ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 868 wydany przez POLSKIE CENTRUM AKREDYTACJI 01-382 Warszawa, ul. Szczotkarska 42 Wydanie nr 3 Data wydania: 21 lipca 2009 r. Nazwa i adres organizacji
Pochodne węglowodorów, w cząsteczkach których jeden atom H jest zastąpiony grupą hydroksylową (- OH ).
Cz. XXII - Alkohole monohydroksylowe Pochodne węglowodorów, w cząsteczkach których jeden atom jest zastąpiony grupą hydroksylową (- ). 1. Klasyfikacja alkoholi monohydroksylowych i rodzaje izomerii, rzędowość
1) Grupa: Ekofizjologia Mikroorganizmów Jeziornych
1) Grupa: Ekofizjologia Mikroorganizmów Jeziornych Koordynator: Prof. dr hab. Ryszard J. Chróst tel. +4822 554 14 13; e-mail: chrost@biol.uw.edu.pl; rjchrost@me.com 2) Członkowie grupy Dr. Iwona Jasser
TYPY REAKCJI CHEMICZNYCH
1 REAKCJA CHEMICZNA: TYPY REAKCJI CHEMICZNYCH REAKCJĄ CHEMICZNĄ NAZYWAMY PROCES, W WYNIKU KTÓREGO Z JEDNYCH SUBSTANCJI POWSTAJĄ NOWE (PRODUKTY) O INNYCH WŁAŚCIWOŚCIACH NIŻ SUBSTANCJE WYJŚCIOWE (SUBSTRATY)
Prezentacja Pracowni Ekologii Drobnoustrojów w Katedry Mikrobiologii UJCM
Prezentacja Pracowni Ekologii Drobnoustrojów w Katedry Mikrobiologii UJCM Informacja o Katedrze Rozwój j naukowy młodej kadry naukowców w w kontekście priorytetów badawczych: W 2009 roku 1 pracownik Katedry
Biotechnologia interdyscyplinarna dziedzina nauki i techniki, zajmująca się zmianą materii żywej i poprzez wykorzystanie
Biotechnologia interdyscyplinarna dziedzina nauki i techniki, zajmująca się zmianą materii żywej i poprzez wykorzystanie organizmów żywych, ich części, bądź pochodzących od nich produktów, a także modeli
FIZYKOCHEMICZNE METODY ANALIZY W CHEMII ŚRODOWISKA
FIZYKOCHEMICZNE METODY ANALIZY W CHEMII ŚRODOWISKA CZĘŚĆ II ĆWICZENIA LABORATORYJNE Z OCHRONY WÓD I GLEB PRACA ZBIOROWA pod redakcją Przemysława Kosobuckiego i Bogusława Buszewskiego Toruń 2016 Autorami
Autor. Patrycja Malucha ENERGOPOMIAR Sp. z o.o. Zakład Chemii i Diagnostyki
Autor Patrycja Malucha ENERGOPOMIAR Sp. z o.o. Zakład Chemii i Diagnostyki Biopreparaty to produkty ze specjalnie wyselekcjonowanymi mikroorganizmami, głównie bakteriami i grzybami. W ochronie środowiska
Hodowlą nazywamy masę drobnoustrojów wyrosłych na podłożu o dowolnej konsystencji.
Wzrost mikroorganizmów rozumieć można jako: 1. Wzrost masy i rozmiarów pojedynczego osobnika, tj. komórki 2. Wzrost biomasy i liczebności komórek w środowisku, tj. wzrost liczebności populacji Hodowlą
Ekologia wód śródlądowych - W. Lampert, U. Sommer. Spis treści
Ekologia wód śródlądowych - W. Lampert, U. Sommer Spis treści Od tłumacza Przedmowa do pierwszego wydania Przedmowa do drugiego wydania Od Autorów do wydania polskiego 1.Ekologia i ewolucja 1.1.Dobór naturalny