Różnicowe układy cyfrowe CMOS

Wielkość: px
Rozpocząć pokaz od strony:

Download "Różnicowe układy cyfrowe CMOS"

Transkrypt

1 1 Różnicowe układy cyfrowe CMOS Różnicowe układy cyfrowe CMOS 2 CVSL (Cascode Voltage Switch Logic) Różne nazwy: CVSL - Cascode Voltage Switch Logic DVSL - Differential Cascode Voltage Switch Logic 1

2 Cascode Voltage Switch Logic (CVSL) 3 Schemat blokowy bramki CVSL R.J. Baker, "CMOS Circuit Design, Layout, and Simulation, 3rd Edition", 3 ed. Wiley-IEEE, 2010 CVSL wykorzystuje pojedyncze tranzystory pmos w układzie z przerzutnikowym sprzężeniem zwrotnym. Z dwóch bloków logicznych z nmos FETami jeden realizuje funkcję logiczną, a drugi jej zaprzeczenie. Pozwala to czasami przyśpieszyć działanie układu dlatego, że w każdej gałęzi jest tylko jeden pmos FET, i dlatego, że działa dodatnie sprzężenie zwrotne. Kiedy jeden z bloków logicznych N jest przełączany do stanu przewodzącego, przez odpowiadający mu pmos FET może płynąć znaczny prąd, co prowadzi do zwiększonego poboru mocy w stosunku do logiki AOI CMOS. W stanie ustalonym prąd nie płynie, układ nie pobiera mocy. Konieczne doprowadzenie każdego sygnału wejściowego i jego zaprzeczenia. Przykładowa bramka CVSL 4 Przykład trójwejściowej bramki w technice CVSL. 2

3 Bramki XOR / XNOR w technice CVSL 5 Rozwiązanie dwuwejściowych bramek XOR / XNOR w technice CVSL. Rozwiązanie trójwejściowych bramek XOR / XNOR w technice CVSL, użyteczne w konstrukcji sumatora. Różnicowe układy cyfrowe CMOS 6 DSL (Differential Split-Level Logic) 3

4 Differential Split-Level Logic (DSL logic) 7 Schemat blokowy bramki DSL DSL wykorzystuje ograniczenie zakresu zmian napięcia wyjściowego w przykładzie do VDD/2 dla przyśpieszenia działania. Konieczne napięcie odniesienia V ref. Wada przepływ prądu w stanie ustalonym, w tej gałęzi, której napięcie wyjściowe wynosi VDD/2. Statyczne bramki CMOS z trójstanowymi wyjściami 8 Bufor trójstanowy Kiedy stan wejścia Enable jest wysoki, bramki NAND i NOR przenoszą zanegowany stan A (VDD lub masa) do bramek tranzystorów Ml i M2. Układ złożony z Ml i M2 działa jako inwerter. Na wyjściu (Out) pojawia się stan A. Kiedy stan wejścia Enable jest niski, bramka Ml jest dołączona do potencjału masy, a bramka M2 do VDD. Ml i M2 są więc w stanach odcięcia. Mówimy, że są w stanach wysokiej impedancji, inaczej Hi-Z. 4

5 Statyczne bramki CMOS z trójstanowymi wyjściami 9 Trójstanowy bufor odwracający Układy dynamiczne CMOS 10 Stosuje się je w celu: zmniejszenia złożoności, zwiększenia szybkości działania, zmniejszenia poboru mocy w stosunku do układów statycznych. 5

6 Bramka przejściowa i węzeł pamięciowy 11 PG pass gate bramka przejściowa C s impuls zegarowy Bramka logiczna ma pewną pojemność wejściową C s związaną z tranzystorami wejściowymi i ze ścieżkami metalicznymi. Układy dynamiczne wykorzystują ładunek zgromadzony w C s dla pamiętania przez pewien czas stanu logicznego reprezentowanego przez napięcie na C S. Kiedy stan wejścia zegarowego PG jest wysoki, to poziom logiczny wejścia, czyli punktu A, jest przenoszony na wejście inwertera, do punktu B. Dla A = "0" wejście inwertera jest zwarte do masy, natomiast dla A = "1" wejście inwertera ma potencjał VDD - V Tn względem masy. Kiedy stan wejścia zegarowego PG jest niski, to bramka PG jest zamknięta i w punkcie B, na wejściu inwertera jest pamiętany stan logiczny. Wartość logiczna jest pamiętana tak długo, jak długo utrzymuje się ładunek w pojemności wejściowej inwertera. Przerzutnik dynamiczny czuły na poziom. 12 C s R.J. Baker, "CMOS Circuit Design, Layout, and Simulation, 3rd Edition", 3 ed. Wiley-IEEE, 2010 Zmiany ładunku w węźle pamięciowym, a konsekwencji potencjału tego węzła, spowodowane są prądem upływu złącza pn dren-podłoże tranzystora PG i prowadzą do utraty zapamiętanej informacji. W układach z tranzystorami o długości kanałów rzędu kilkudziesięciu nanometrów i mniejszych dodatkową przyczyną upływu jest prąd podprogowy tranzystora oraz prąd tunelowy bramki. C s 6

7 Upływ ładunku przy wykorzystaniu bramki transmisyjnej (TG) jako klucza. 13 C s C s Przy użyciu bramki transmisyjnej jako klucza zmiany ładunku w pojemności wejściowej następują wskutek prądu upływu diody dren-wyspa tranzystora pmos lub prądu drenpodłoże tranzystora nmos. Jeśli prądy te są bliskie co do bezwzględnej wartości, to niemal kompensują się i zmiany ładunku w węźle pamięciowym są wolne. Generacja nieprzekrywających się sygnałów zegarowych dla układów dynamicznych 14 Ciąg układów PG/inwerter tworzy dynamiczny rejestr przesuwny. R.J. Baker, "CMOS Circuit Design, Layout, and Simulation, 3rd Edition", 3 ed. Wiley- IEEE, 2010 Przy wysokim Φ1 aktywne są stopnie pierwszy i trzeci. Dane są przekazywane z wejścia do punktu A0 oraz z punktu A1 do A2.Przy wysokim stanie Φ1 stanie i niskim Φ2 dane nie mogą być przekazywane z A0 do A1 i z A2 do A3. Przy niskim Φ1, a wysokim Φ2 dane są przekazywane z A0 do A1 i z A2 do A3. Jeśli jednak równocześnie stany Φ1 i Φ2 byłyby wysokie, to wejście miałoby połączenie z wyjściem, a tego chcemy uniknąć w rejestrze przesuwnym. Zastosowanie inwerterów służy odtworzeniu poziomów logicznych, podobnie jak są one odtwarzane w przypadku niewielkich zakłóceń. Warunkiem poprawnej pracy rejestru jest nieprzekrywanie się sygnałów zegara: Φ1 AND Φ2 = 0 7

8 Generacja nieprzekrywających się sygnałów zegarowych dla układów dynamicznych 15 NAND1 X NAND2 Y Używany przerzutnik zawiera elementy opóźniające, a wartość opóźnienia Δ jest sumą opóźnień bramki NAND i ciągu inwerterów dołączonych do jej wyjścia. Narastający od zera impuls zegarowy powoduje opadanie potencjału w punkcie X. Sprzężenie zwrotne z punktu X do wejścia NAND2 powoduje, że potencjał Y może narastać dopiero z opóźnieniem Δ po opadnięciu potencjału w punkcie X. Można zwiększyć opóźnienie przez zastosowanie większej ilości inwerterów lub innych układów opóźniających. Taktowany dynamiczny przerzutnik master-slave 16 Master Slave Przy niskim stanie sygnału zegarowego Φ1 tranzystory M2 i M3 przewodzą i bramka master działa jako inwerter stanu wejścia D zapisując odwrócony stan D w pojemności C N1 dołączonej do wyjścia N1. Tranzystory M6 i M7 nie przewodzą bramka slave jest w stanie wyskiej impedancji i pojemność C Q dołączona do wyjścia Q pamięta poprzedni stan. Przy wysokim stanie sygnału zegarowego Φ1 tranzystory M2 i M3 nie przewodzą i pojemność C N1 pamięta stan zapisany w fazie niskiej wartości Φ1. Tranzystory M6 i M7 przewodzą bramka slave działa jako inwerter stanu wejścia N1 zapisując odpowiedni stan w pojemności C Q. R.J. Baker, "CMOS Circuit Design, Layout, and Simulation, 3rd Edition", 3 ed. Wiley-IEEE, 2010 Sygnały zegarowe mogą być generowane przez zwykły przerzutnik RS. Nie jest wymagana długa zwłoka Δ. (A clocked CMOS latch. The clock signals can be generated with an RS latch so that the edges occur essentially at the same moment in time.) 8

9 Niewielka złożoność konstrukcyjna układów dynamicznych 17 Master Slave Dynamiczny przerzutnik D master-slave 8 tranzystorów. R.J. Baker, "CMOS Circuit Design, Layout, and Simulation, 3rd Edition", 3 ed. Wiley-IEEE, 2010 Konstrukcja AOI zawierająca stosunkowo niewiele tranzystorów statycznego przerzutnika D master-slave z bramkami transmisyjnymi, 16 tranzystorów. Układy cyfrowe PE (Precharge Evaluate) 18 F = A0 A1 A2 Konstrukcja PE trójwejściowej bramki NAND Wykonywanie operacji logicznych przebiega w dwóch fazach. W fazie pierwszej "precharge" stan Φ1 jest niski- pojemność C out, dołączona do wyjścia "Out", jest ładowana do wysokiego stanu, to jest do napięcia VDD, przez przewodzący pmos FET M5. nmos FET M1 jest odcięty, co zapobiega rozładowywaniu C out. W fazie drugiej "evaluate" stan Φ1 jest wysoki. pmos FET M5 jest odcięty, a nmos FET M1 przewodzi, co pozwala wykonać zaprojektowane działanie logiczne na zmiennych wejściowych A0...An. Jeśli na wyjściu, w wyniku, ma być stan niski, to C out jest rozładowywana przez tranzystory z kanałami n. Jesli ma być stan wysoki, to nmos FETy nie rozładowują C out bo są odcięte. Wada - poprawny wynik w postaci stanu niskiego pojawia się na wyjściu tylko w jednej części cyklu zegarowego Φ1. Wada - stan wysoki na wyjściu na jest pamiętany tylko do chwili gdy C out rozładuje się wskutek prądów upływu. 9

10 Model tranzystora MOS dla bardzo zgrubnego szacowania czasu przełączania nmos FET Model W zakresie nasycenia, gdy V GS > V Tn 19 R n I Dsat W KPn L V DS > V GS V Tn > 0 V ( V V ) GS 2 2 Tn Przyjmujemy, że klucz jest zwarty gdy na bramce tranzystora jest stan wysoki. Rezystancję włączonego tranzystora bardzo zgrubnie przybliżamy jako: R n L KP W n ( V V ) DD Tn Pojemność dołączoną do drenu bardzo zgrubnie przybliżamy jako: C C + C + C D gdzie: GDn connect in β = μ C n n ox W W = KPn L L ε 2ε SiO 0 Cox = tox Ten model jest bardzo niedokładny. Obliczone czasy przełączania wymagają weryfikacji przy pomocy symulacji. C GDn pojemność GD przełączanego tranzystora, C connect pojemność związana z połączeniem następnego stopnia, C in pojemność wejściowa następnego stopnia. Przykładowa bramka dynamiczna precharge-evaluate 20 Przykładowa funkcja logiczna: F = A1 + A2 + A3 A4 Bramka dynamiczna PE Bramka statyczna AOI realizująca tę samą funkcję Bramka dynamiczna wykorzystuje mniej tranzystorów, tylko nmos FETy + nmos FET evaluate + pmos FET precharge. Uwaga: układ wymaga zegara Φ1. Nie jest więc pewne, że cały układ zrealizowany jako dynamiczny PE będzie miał mniej tranzystorów niż zrealizowany jako statyczny AOI. - Sprawdź zanim zatwierdzisz konstrukcję. 10

11 A Glitch problem of Precharge-Evaluate Logic Gates 21 Domino Logic free of a glitch problem 22 11

12 Domino Logic free of a glitch problem 23 NP Logic (Zipper Logic) free of a glitch problem 24 12

Różnicowe układy cyfrowe CMOS

Różnicowe układy cyfrowe CMOS 1 Różnicowe układy cyfrowe CMOS Różnicowe układy cyfrowe CMOS 2 CVSL (Cascode Voltage Switch Logic) Różne nazwy: CVSL - Cascode Voltage Switch Logic DVSL - Differential Cascode Voltage Switch Logic 1 Cascode

Bardziej szczegółowo

Logiczne układy bistabilne przerzutniki.

Logiczne układy bistabilne przerzutniki. Przerzutniki spełniają rolę elementów pamięciowych: -przy pewnej kombinacji stanów na pewnych wejściach, niezależnie od stanów innych wejść, stany wyjściowe oraz nie ulegają zmianie; -przy innej określonej

Bardziej szczegółowo

Podstawy Elektroniki dla Tele-Informatyki. Tranzystory unipolarne MOS

Podstawy Elektroniki dla Tele-Informatyki. Tranzystory unipolarne MOS AGH Katedra Elektroniki Podstawy Elektroniki dla Tele-Informatyki Tranzystory unipolarne MOS Ćwiczenie 4 2014 r. 1. Wstęp. Celem ćwiczenia jest zapoznanie się z działaniem i zastosowaniami tranzystora

Bardziej szczegółowo

Pamięci RAM i ROM. R. J. Baker, "CMOS Circuit Design, Layout, and Simulation", Wiley-IEEE Press, 2 wyd. 2007

Pamięci RAM i ROM. R. J. Baker, CMOS Circuit Design, Layout, and Simulation, Wiley-IEEE Press, 2 wyd. 2007 Pamięci RAM i ROM R. J. Baker, "CMOS Circuit Design, Layout, and Simulation", Wiley-IEEE Press, 2 wyd. 2007 Tranzystor MOS z długim kanałem kwadratowa aproksymacja charakterystyk 2 W triodowym, gdy W zakresie

Bardziej szczegółowo

Ogólny schemat inwertera MOS

Ogólny schemat inwertera MOS Ogólny schemat inwertera MOS Obciążenie V i Sterowanie Katedra Mikroelektroniki i Technik Informatycznych (DMS), Politechnika Łódzka (TUL) 1 Rodzaje cyfrowych układów scalonych MOS Układy cyfrowe MOS PMOS

Bardziej szczegółowo

Cyfrowe układy kombinacyjne. 5 grudnia 2013 Wojciech Kucewicz 2

Cyfrowe układy kombinacyjne. 5 grudnia 2013 Wojciech Kucewicz 2 Cyfrowe układy kombinacyjne 5 grudnia 2013 Wojciech Kucewicz 2 Cyfrowe układy kombinacyjne X1 X2 X3 Xn Y1 Y2 Y3 Yn Układy kombinacyjne charakteryzuje funkcja, która każdemu stanowi wejściowemu X i X jednoznacznie

Bardziej szczegółowo

Inwerter logiczny. Ilustracja 1: Układ do symulacji inwertera (Inverter.sch)

Inwerter logiczny. Ilustracja 1: Układ do symulacji inwertera (Inverter.sch) DSCH2 to program do edycji i symulacji układów logicznych. DSCH2 jest wykorzystywany do sprawdzenia architektury układu logicznego przed rozpoczęciem projektowania fizycznego. DSCH2 zapewnia ergonomiczne

Bardziej szczegółowo

Układy cyfrowe w technologii CMOS

Układy cyfrowe w technologii CMOS Projektowanie układów VLSI Układy cyfrowe w technologii MOS ramki bramki podstawowe bramki złożone rysowanie topografii bramka transmisyjna Przerzutniki z bramkami transmisyjnymi z bramkami zwykłymi dr

Bardziej szczegółowo

Ogólny schemat inwertera MOS

Ogólny schemat inwertera MOS Ogólny schemat inwertera MOS Obciążenie V i V o Sterowanie Rodzaje cyfrowych układów scalonych MOS Układy cyfrowe MOS PMOS NMOS MOS BiMOS z obciążeniem zubożanym z obciążeniem wzbogacanym statyczne dynamiczne

Bardziej szczegółowo

Podstawy Elektroniki dla Informatyki. Tranzystory unipolarne MOS

Podstawy Elektroniki dla Informatyki. Tranzystory unipolarne MOS AGH Katedra Elektroniki Podstawy Elektroniki dla Informatyki Tranzystory unipolarne MOS Ćwiczenie 3 2014 r. 1 1. Wstęp. Celem ćwiczenia jest zapoznanie się z działaniem i zastosowaniami tranzystora unipolarnego

Bardziej szczegółowo

Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych Laboratorium Przyrządów Półprzewodnikowych. Ćwiczenie 4

Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych Laboratorium Przyrządów Półprzewodnikowych. Ćwiczenie 4 Ćwiczenie 4 Cel ćwiczenia Celem ćwiczenia jest poznanie charakterystyk statycznych układów scalonych CMOS oraz ich własności dynamicznych podczas procesu przełączania. Wiadomości podstawowe. Budowa i działanie

Bardziej szczegółowo

BADANIE PRZERZUTNIKÓW ASTABILNEGO, MONOSTABILNEGO I BISTABILNEGO

BADANIE PRZERZUTNIKÓW ASTABILNEGO, MONOSTABILNEGO I BISTABILNEGO Ćwiczenie 11 BADANIE PRZERZUTNIKÓW ASTABILNEGO, MONOSTABILNEGO I BISTABILNEGO 11.1 Cel ćwiczenia Celem ćwiczenia jest poznanie rodzajów, budowy i właściwości przerzutników astabilnych, monostabilnych oraz

Bardziej szczegółowo

płytka montażowa z tranzystorami i rezystorami, pokazana na rysunku 1. płytka montażowa do badania przerzutnika astabilnego U CC T 2 masa

płytka montażowa z tranzystorami i rezystorami, pokazana na rysunku 1. płytka montażowa do badania przerzutnika astabilnego U CC T 2 masa Tranzystor jako klucz elektroniczny - Ćwiczenie. Cel ćwiczenia Zapoznanie się z podstawowymi układami pracy tranzystora bipolarnego jako klucza elektronicznego. Bramki logiczne realizowane w technice RTL

Bardziej szczegółowo

Podstawy elektroniki cz. 2 Wykład 2

Podstawy elektroniki cz. 2 Wykład 2 Podstawy elektroniki cz. 2 Wykład 2 Elementarne prawa Trzy elementarne prawa 2 Prawo Ohma Stosunek natężenia prądu płynącego przez przewodnik do napięcia pomiędzy jego końcami jest stały R U I 3 Prawo

Bardziej szczegółowo

Ćwiczenie 24 Temat: Układy bramek logicznych pomiar napięcia i prądu. Cel ćwiczenia

Ćwiczenie 24 Temat: Układy bramek logicznych pomiar napięcia i prądu. Cel ćwiczenia Ćwiczenie 24 Temat: Układy bramek logicznych pomiar napięcia i prądu. Cel ćwiczenia Poznanie własności i zasad działania różnych bramek logicznych. Zmierzenie napięcia wejściowego i wyjściowego bramek

Bardziej szczegółowo

Wprowadzenie do techniki Cyfrowej i Mikroelektroniki

Wprowadzenie do techniki Cyfrowej i Mikroelektroniki Wprowadzenie do techniki Cyfrowej i Mikroelektroniki Małgorzata Napieralska Katedra Mikroelektroniki i Technik Informatycznych tel. 26-55 mnapier@dmcs.p.lodz.pl Literatura W. Marciniak Przyrządy półprzewodnikowe

Bardziej szczegółowo

Ćw. 8 Bramki logiczne

Ćw. 8 Bramki logiczne Ćw. 8 Bramki logiczne 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi bramkami logicznymi, poznanie ich rodzajów oraz najwaŝniejszych parametrów opisujących ich własności elektryczne.

Bardziej szczegółowo

Ćwiczenie 6. Przerzutniki bistabilne (Flip-Flop) Cel

Ćwiczenie 6. Przerzutniki bistabilne (Flip-Flop) Cel Ćwiczenie 6 Przerzutniki bistabilne (Flip-Flop) Cel Poznanie zasady działania i charakterystycznych właściwości różnych typów przerzutników bistabilnych. Wstęp teoretyczny. Przerzutniki Flip-flop (FF),

Bardziej szczegółowo

Technika Cyfrowa 2 wykład 4: FPGA odsłona druga technologie i rodziny układów logicznych

Technika Cyfrowa 2 wykład 4: FPGA odsłona druga technologie i rodziny układów logicznych Technika Cyfrowa 2 wykład 4: FPGA odsłona druga technologie i rodziny układów logicznych Dr inż. Jacek Mazurkiewicz Katedra Informatyki Technicznej e-mail: Jacek.Mazurkiewicz@pwr.edu.pl Elementy poważniejsze

Bardziej szczegółowo

Komparator napięcia. Komparator a wzmacniacz operacyjny. Vwe1. Vwy. Vwe2

Komparator napięcia. Komparator a wzmacniacz operacyjny. Vwe1. Vwy. Vwe2 PUAV Wykład 11 Komparator a wzmacniacz operacyjny Vwe1 Vwe2 + Vwy Komparator a wzmacniacz operacyjny Vwe1 Vwe2 + Vwy Wzmacniacz operacyjny ( ) V wy = k u V we2 V we1 Komparator a wzmacniacz operacyjny

Bardziej szczegółowo

Badanie działania bramki NAND wykonanej w technologii TTL oraz układów zbudowanych w oparciu o tę bramkę.

Badanie działania bramki NAND wykonanej w technologii TTL oraz układów zbudowanych w oparciu o tę bramkę. WFiIS LABORATORIUM Z ELEKTRONIKI Imię i nazwisko: 1. 2. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA CEL ĆWICZENIA Badanie działania

Bardziej szczegółowo

Projekt Układów Logicznych

Projekt Układów Logicznych Politechnika Opolska Wydział Elektrotechniki i Automatyki Kierunek: Informatyka Opole, dn. 21 maja 2005 Projekt Układów Logicznych Temat: Bramki logiczne CMOS Autor: Dawid Najgiebauer Informatyka, sem.

Bardziej szczegółowo

PL 183356 B1 H03K 17/687 G05F 1/44. Fig. 1 (19) PL (11) 183356 (12) OPIS PATENTOWY (13) B1. Siemens Aktiengesellschaft, Monachium, DE

PL 183356 B1 H03K 17/687 G05F 1/44. Fig. 1 (19) PL (11) 183356 (12) OPIS PATENTOWY (13) B1. Siemens Aktiengesellschaft, Monachium, DE RZECZPOSPOLITA POLSKA Urząd Patentowy Rzeczypospolitej Polskiej (12) OPIS PATENTOWY (21) Numer zgłoszenia: 320932 (22) Data zgłoszenia: 03.07.1997 (19) PL (11) 183356 (13) B1 (51 ) IntCl7 H02J 1/04 H03K

Bardziej szczegółowo

LABORATORIUM z przedmiotu ALGORYTMY I PROJEKTOWANIE UKŁADÓW VLSI

LABORATORIUM z przedmiotu ALGORYTMY I PROJEKTOWANIE UKŁADÓW VLSI LABORATORIUM z przedmiotu ALGORYTMY I PROJEKTOWANIE UKŁADÓW VLSI 1. PRZEBIEG ĆWICZEŃ LABORATORYJNYCH Nauka edytora topografii MAGIC na przykładzie inwertera NOT w technologii CMOS Powiązanie topografii

Bardziej szczegółowo

dwójkę liczącą Licznikiem Podział liczników:

dwójkę liczącą Licznikiem Podział liczników: 1. Dwójka licząca Przerzutnik typu D łatwo jest przekształcić w przerzutnik typu T i zrealizować dzielnik modulo 2 - tzw. dwójkę liczącą. W tym celu wystarczy połączyć wyjście zanegowane Q z wejściem D.

Bardziej szczegółowo

Politechnika Wrocławska Wydział Elektroniki, Katedra K-4. Klucze analogowe. Wrocław 2017

Politechnika Wrocławska Wydział Elektroniki, Katedra K-4. Klucze analogowe. Wrocław 2017 Poliechnika Wrocławska Klucze analogowe Wrocław 2017 Poliechnika Wrocławska Pojęcia podsawowe Podsawą realizacji układów impulsowych oraz cyfrowych jes wykorzysanie wielkosygnałowej pacy elemenów akywnych,

Bardziej szczegółowo

UKŁADY CYFROWE. Układ kombinacyjny

UKŁADY CYFROWE. Układ kombinacyjny UKŁADY CYFROWE Układ kombinacyjny Układów kombinacyjnych są bramki. Jedną z cech układów kombinacyjnych jest możliwość przedstawienia ich działania (opisu) w postaci tabeli prawdy. Tabela prawdy podaje

Bardziej szczegółowo

Wstęp do Techniki Cyfrowej... Synchroniczne układy sekwencyjne

Wstęp do Techniki Cyfrowej... Synchroniczne układy sekwencyjne Wstęp do Techniki Cyfrowej... Synchroniczne układy sekwencyjne Schemat ogólny X Y Układ kombinacyjny S Z Pamięć Zegar Działanie układu Zmiany wartości wektora S możliwe tylko w dyskretnych chwilach czasowych

Bardziej szczegółowo

PL B1. POLITECHNIKA WARSZAWSKA, Warszawa, PL BUP 04/11. KRZYSZTOF GOŁOFIT, Lublin, PL WUP 06/14

PL B1. POLITECHNIKA WARSZAWSKA, Warszawa, PL BUP 04/11. KRZYSZTOF GOŁOFIT, Lublin, PL WUP 06/14 PL 217071 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 217071 (13) B1 (21) Numer zgłoszenia: 388756 (51) Int.Cl. H03K 3/023 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia:

Bardziej szczegółowo

Podstawy układów mikroelektronicznych

Podstawy układów mikroelektronicznych Podstawy układów mikroelektronicznych wykład dla kierunku Technologie Kosmiczne i Satelitarne Część 2. Podstawy działania układów cyfrowych. dr inż. Waldemar Jendernalik Katedra Systemów Mikroelektronicznych,

Bardziej szczegółowo

ELEMENTY UKŁADÓW ENERGOELEKTRONICZNYCH

ELEMENTY UKŁADÓW ENERGOELEKTRONICZNYCH Politechnika Warszawska Wydział Elektryczny ELEMENTY UKŁADÓW ENERGOELEKTRONICZNYCH Piotr Grzejszczak Mieczysław Nowak P W Instytut Sterowania i Elektroniki Przemysłowej 2015 Wiadomości ogólne Tranzystor

Bardziej szczegółowo

Układy TTL i CMOS. Trochę logiki

Układy TTL i CMOS. Trochę logiki Układy TTL i CMOS O liczbie elementów użytych do budowy jakiegoś urządzenia elektronicznego, a więc i o możliwości obniżenia jego ceny, decyduje dzisiaj liczba zastosowanych w nim układów scalonych. Najstarszą

Bardziej szczegółowo

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE. Wydział Informatyki, Elektroniki i Telekomunikacji LABORATORIUM.

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE. Wydział Informatyki, Elektroniki i Telekomunikacji LABORATORIUM. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE Wydział Informatyki, Elektroniki i Telekomunikacji Katedra Elektroniki LABORATORIUM Elektronika LICZNIKI ELWIS Rev.1.0 1. Wprowadzenie Celem

Bardziej szczegółowo

WSTĘP. Budowa bramki NAND TTL, ch-ka przełączania, schemat wewnętrzny, działanie 2

WSTĘP. Budowa bramki NAND TTL, ch-ka przełączania, schemat wewnętrzny, działanie 2 WSTĘP O liczbie elementów użytych do budowy jakiegoś urządzenia elektronicznego, a więc i o możliwości obniżenia jego ceny, decyduje dzisiaj liczba zastosowanych w nim układów scalonych. Najstarszą rodziną

Bardziej szczegółowo

Pamięci RAM i ROM. R. J. Baker, "CMOS Circuit Design, Layout, and Simulation", Wiley-IEEE Press, 2 wyd. 2007

Pamięci RAM i ROM. R. J. Baker, CMOS Circuit Design, Layout, and Simulation, Wiley-IEEE Press, 2 wyd. 2007 Pamięci RAM i ROM R. J. Baker, "CMOS Circuit Design, Layout, and Simulation", Wiley-IEEE Press, 2 wyd. 2007 Tranzystor MOS z długim kanałem kwadratowa aproksymacja charakterystyk 2 W triodowym, gdy W zakresie

Bardziej szczegółowo

Tranzystory polowe FET(JFET), MOSFET

Tranzystory polowe FET(JFET), MOSFET Tranzystory polowe FET(JFET), MOSFET Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Publikacja współfinansowana

Bardziej szczegółowo

11.Zasady projektowania komórek standardowych

11.Zasady projektowania komórek standardowych LABORATORIUM PODSTAW MIKROELEKTRONIKI 39 11.Zasady projektowania komórek standardowych 11.1.Projektowanie komórek standardowych Formę komórki standardowej powinny mieć wszystkie projekty od inwertera do

Bardziej szczegółowo

PL B1. Akademia Górniczo-Hutnicza im. St. Staszica,Kraków,PL BUP 19/03

PL B1. Akademia Górniczo-Hutnicza im. St. Staszica,Kraków,PL BUP 19/03 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 198698 (13) B1 (21) Numer zgłoszenia: 352734 (51) Int.Cl. H05B 6/06 (2006.01) H02M 1/08 (2007.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data

Bardziej szczegółowo

Pamięci RAM i ROM. Pamięć RAM 2. R. J. Baker, "CMOS Circuit Design, Layout, and Simulation", Wiley-IEEE Press, 2 wyd (C mbit.

Pamięci RAM i ROM. Pamięć RAM 2. R. J. Baker, CMOS Circuit Design, Layout, and Simulation, Wiley-IEEE Press, 2 wyd (C mbit. Pamięci RAM i ROM R. J. Baker, "CMOS Circuit Design, Layout, and Simulation", Wiley-IEEE Press, 2 wyd. 2007 Pamięć RAM 2 (C mbit ) C col_array DRAM cell circuit Schematic of DRAM 4 4 array-section B. El-Kareh,

Bardziej szczegółowo

Synteza układów kombinacyjnych

Synteza układów kombinacyjnych Sławomir Kulesza Technika cyfrowa Synteza układów kombinacyjnych Wykład dla studentów III roku Informatyki Wersja 4.0, 23/10/2014 Bramki logiczne Bramki logiczne to podstawowe elementy logiczne realizujące

Bardziej szczegółowo

Temat: Pamięci. Programowalne struktury logiczne.

Temat: Pamięci. Programowalne struktury logiczne. Temat: Pamięci. Programowalne struktury logiczne. 1. Pamięci są układami służącymi do przechowywania informacji w postaci ciągu słów bitowych. Wykonuje się jako układy o bardzo dużym stopniu scalenia w

Bardziej szczegółowo

LABORATORIUM. Technika Cyfrowa. Badanie Bramek Logicznych

LABORATORIUM. Technika Cyfrowa. Badanie Bramek Logicznych WYDZIAŁ ELEKTRYCZNY Katedra Inżynierii Systemów, Sygnałów i Elektroniki LABORATORIUM Technika Cyfrowa Badanie Bramek Logicznych Opracował: mgr inż. Andrzej Biedka 1 BADANIE FUNKCJI LOGICZNYCH 1.1 Korzystając

Bardziej szczegółowo

Zbudować 2wejściową bramkę (narysować schemat): a) NANDCMOS, b) NORCMOS, napisać jej tabelkę prawdy i wyjaśnić działanie przy pomocy charakterystyk

Zbudować 2wejściową bramkę (narysować schemat): a) NANDCMOS, b) NORCMOS, napisać jej tabelkę prawdy i wyjaśnić działanie przy pomocy charakterystyk Zbudować 2wejściową bramkę (narysować schemat): a) NANDCMOS, b) NORCMOS, napisać jej tabelkę prawdy i wyjaśnić działanie przy pomocy charakterystyk przejściowych użytych tranzystorów. NOR CMOS Skale integracji

Bardziej szczegółowo

Cyfrowe układy sekwencyjne. 5 grudnia 2013 Wojciech Kucewicz 2

Cyfrowe układy sekwencyjne. 5 grudnia 2013 Wojciech Kucewicz 2 Cyfrowe układy sekwencyjne 5 grudnia 2013 Wojciech Kucewicz 2 Układy sekwencyjne Układy sekwencyjne to takie układy logiczne, których stan wyjść zależy nie tylko od aktualnego stanu wejść, lecz również

Bardziej szczegółowo

Podział układów cyfrowych. rkijanka

Podział układów cyfrowych. rkijanka Podział układów cyfrowych rkijanka W zależności od przyjętego kryterium możemy wyróżnić kilka sposobów podziału układów cyfrowych. Poniżej podam dwa z nich związane ze sposobem funkcjonowania układów cyfrowych

Bardziej szczegółowo

PRZERZUTNIKI: 1. Należą do grupy bloków sekwencyjnych, 2. podstawowe układy pamiętające

PRZERZUTNIKI: 1. Należą do grupy bloków sekwencyjnych, 2. podstawowe układy pamiętające PRZERZUTNIKI: 1. Należą do grupy bloków sekwencyjnych, 2. podstawowe układy pamiętające Zapamiętywanie wartości wybranych zmiennych binarnych, jak również sekwencji tych wartości odbywa się w układach

Bardziej szczegółowo

Proste układy sekwencyjne

Proste układy sekwencyjne Proste układy sekwencyjne Układy sekwencyjne to takie w których niektóre wejścia są sterowany przez wyjściaukładu( zawierają sprzężenie zwrotne ). Układy sekwencyjne muszą zawierać elementy pamiętające

Bardziej szczegółowo

1 Dana jest funkcja logiczna f(x 3, x 2, x 1, x 0 )= (1, 3, 5, 7, 12, 13, 15 (4, 6, 9))*.

1 Dana jest funkcja logiczna f(x 3, x 2, x 1, x 0 )= (1, 3, 5, 7, 12, 13, 15 (4, 6, 9))*. EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 0/0 Odpowiedzi do zadań dla grupy elektronicznej na zawody II stopnia (okręgowe) Dana jest funkcja logiczna f(x 3, x,

Bardziej szczegółowo

Wzmacniacze prądu stałego

Wzmacniacze prądu stałego PUAV Wykład 13 Wzmacniacze prądu stałego Idea Problem: wzmacniacz prądu stałego (lub sygnałów o bardzo małej częstotliwości, rzędu ułamków Hz) zrealizowany konwencjonalnie wprowadza błąd wynikający z wejściowego

Bardziej szczegółowo

Ćwiczenie ZINTEGROWANE SYSTEMY CYFROWE. Pakiet edukacyjny DefSim Personal. Analiza prądowa IDDQ

Ćwiczenie ZINTEGROWANE SYSTEMY CYFROWE. Pakiet edukacyjny DefSim Personal. Analiza prądowa IDDQ Ćwiczenie 2 ZINTEGROWANE SYSTEMY CYFROWE Pakiet edukacyjny DefSim Personal Analiza prądowa IDDQ K A T E D R A M I K R O E L E K T R O N I K I I T E C H N I K I N F O R M A T Y C Z N Y C H Politechnika

Bardziej szczegółowo

(12) OPIS PATENTOWY (19) PL (11) (13) B1

(12) OPIS PATENTOWY (19) PL (11) (13) B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 171947 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21)Numer zgłoszenia: 301401 (2)Data zgłoszenia: 08.12.1993 (5 1) IntCl6 H03F 3/72 H03K 5/04

Bardziej szczegółowo

LEKCJA. TEMAT: Funktory logiczne.

LEKCJA. TEMAT: Funktory logiczne. TEMAT: Funktory logiczne. LEKCJA 1. Bramką logiczną (funktorem) nazywa się układ elektroniczny realizujący funkcje logiczne jednej lub wielu zmiennych. Sygnały wejściowe i wyjściowe bramki przyjmują wartość

Bardziej szczegółowo

Wzmacniacze napięciowe z tranzystorami komplementarnymi CMOS

Wzmacniacze napięciowe z tranzystorami komplementarnymi CMOS Wzmacniacze napięciowe z tranzystorami komplementarnymi CMOS Cel ćwiczenia: Praktyczne wykorzystanie wiadomości do projektowania wzmacniacza z tranzystorami CMOS Badanie wpływu parametrów geometrycznych

Bardziej szczegółowo

Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych pokój:

Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych pokój: Podstawy Elektroniki Prowadzący: Prof. dr hab. Zbigniew Lisik Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych pokój: 116 e-mail: zbigniew.lisik@p.lodz.pl Program: wykład - 15h laboratorium

Bardziej szczegółowo

3. Funktory CMOS cz.1

3. Funktory CMOS cz.1 3. Funktory CMOS cz.1 Druga charakterystyczna rodzina układów cyfrowych to układy CMOS. W jej ramach występuje zbliżony asortyment funktorów i przerzutników jak dla układów TTL (wejście standardowe i wejście

Bardziej szczegółowo

Układy akwizycji danych. Komparatory napięcia Przykłady układów

Układy akwizycji danych. Komparatory napięcia Przykłady układów Układy akwizycji danych Komparatory napięcia Przykłady układów Komparatory napięcia 2 Po co komparator napięcia? 3 Po co komparator napięcia? Układy pomiarowe, automatyki 3 Po co komparator napięcia? Układy

Bardziej szczegółowo

Podstawowe elementy układów cyfrowych układy sekwencyjne Rafał Walkowiak Wersja

Podstawowe elementy układów cyfrowych układy sekwencyjne Rafał Walkowiak Wersja Podstawowe elementy układów cyfrowych układy sekwencyjne Rafał Walkowiak Wersja 0.1 29.10.2013 Przypomnienie - podział układów cyfrowych Układy kombinacyjne pozbawione właściwości pamiętania stanów, realizujące

Bardziej szczegółowo

LABORATORIUM PROJEKTOWANIA UKŁADÓW VLSI

LABORATORIUM PROJEKTOWANIA UKŁADÓW VLSI Wydział EAIiE LABORATORIUM PROJEKTOWANIA UKŁADÓW VLSI Temat projektu OŚMIOWEJŚCIOWA KOMÓRKA UKŁADU PAL Z ZASTOSOWANIEM NA PRZYKŁADZIE MULTIPLEKSERA Autorzy Tomasz Radziszewski Zdzisław Rapacz Rok akademicki

Bardziej szczegółowo

Przerzutnik ma pewną liczbę wejść i z reguły dwa wyjścia.

Przerzutnik ma pewną liczbę wejść i z reguły dwa wyjścia. Kilka informacji o przerzutnikach Jaki układ elektroniczny nazywa się przerzutnikiem? Przerzutnikiem bistabilnym jest nazywany układ elektroniczny, charakteryzujący się istnieniem dwóch stanów wyróżnionych

Bardziej szczegółowo

1. Poznanie właściwości i zasady działania rejestrów przesuwnych. 2. Poznanie właściwości i zasady działania liczników pierścieniowych.

1. Poznanie właściwości i zasady działania rejestrów przesuwnych. 2. Poznanie właściwości i zasady działania liczników pierścieniowych. Ćwiczenie 9 Rejestry przesuwne i liczniki pierścieniowe. Cel. Poznanie właściwości i zasady działania rejestrów przesuwnych.. Poznanie właściwości i zasady działania liczników pierścieniowych. Wprowadzenie.

Bardziej szczegółowo

Vgs. Vds Vds Vds. Vgs

Vgs. Vds Vds Vds. Vgs Ćwiczenie 18 Temat: Wzmacniacz JFET i MOSFET w układzie ze wspólnym źródłem. Cel ćwiczenia: Wzmacniacz JFET w układzie ze wspólnym źródłem. Zapoznanie się z konfiguracją polaryzowania tranzystora JFET.

Bardziej szczegółowo

Parametry układów cyfrowych

Parametry układów cyfrowych Sławomir Kulesza Technika cyfrowa Parametry układów cyfrowych Wykład dla studentów III roku Informatyki Wersja 3.1, 25/10/2012 Rodziny bramek logicznych Tranzystory bipolarne Tranzystory unipolarne Porównanie

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego nr 10

Instrukcja do ćwiczenia laboratoryjnego nr 10 Instrukcja do ćwiczenia laboratoryjnego nr 10 Temat: Charakterystyki i parametry tranzystorów MIS Cel ćwiczenia. Celem ćwiczenia jest poznanie charakterystyk statycznych i parametrów tranzystorów MOS oraz

Bardziej szczegółowo

Wzmacniacze napięciowe z tranzystorami komplementarnymi CMOS

Wzmacniacze napięciowe z tranzystorami komplementarnymi CMOS Wzmacniacze napięciowe z tranzystorami komplementarnymi CMOS Cel ćwiczenia: Praktyczne wykorzystanie wiadomości do projektowania wzmacniacza z tranzystorami CMOS Badanie wpływu parametrów geometrycznych

Bardziej szczegółowo

CYFROWE UKŁADY SCALONE STOSOWANE W AUTOMATYCE

CYFROWE UKŁADY SCALONE STOSOWANE W AUTOMATYCE Pracownia Automatyki Katedry Tworzyw Drzewnych Ćwiczenie 5 str. 1/16 ĆWICZENIE 5 CYFROWE UKŁADY SCALONE STOSOWANE W AUTOMATYCE 1.CEL ĆWICZENIA: zapoznanie się z podstawowymi elementami cyfrowymi oraz z

Bardziej szczegółowo

Laboratorium Przyrządów Półprzewodnikowych test kompetencji zagadnienia

Laboratorium Przyrządów Półprzewodnikowych test kompetencji zagadnienia Wrocław, 21.03.2017 r. Laboratorium Przyrządów Półprzewodnikowych test kompetencji zagadnienia Podczas testu kompetencji studenci powinni wykazać się znajomością zagadnień określonych w kartach kursów

Bardziej szczegółowo

Wzmacniacz operacyjny

Wzmacniacz operacyjny parametry i zastosowania Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego (klasyka: Fairchild ua702) 1965 Wzmacniacze

Bardziej szczegółowo

Generatory impulsowe przerzutniki

Generatory impulsowe przerzutniki Generatory impulsowe przerzutniki Wrocław 2015 Przerzutniki Przerzutniki stosuje się do przechowywania małych ilości danych, do których musi być zapewniony ciągły dostęp. Ze względu na łatwy odczyt i zapis,

Bardziej szczegółowo

Sprawdzenie poprawności podstawowych bramek logicznych: NOT, NAND, NOR

Sprawdzenie poprawności podstawowych bramek logicznych: NOT, NAND, NOR Laboratorium Podstaw Techniki Cyfrowej dr Marek Siłuszyk mgr Arkadiusz Wysokiński Ćwiczenie 01 PTC Sprawdzenie poprawności podstawowych bramek logicznych: NOT, NAND, NOR opr. tech. Mirosław Maś Uniwersytet

Bardziej szczegółowo

WSTĘP DO ELEKTRONIKI

WSTĘP DO ELEKTRONIKI WSTĘP DO ELEKTRONIKI Część VI Sprzężenie zwrotne Wzmacniacz operacyjny Wzmacniacz operacyjny w układach z ujemnym i dodatnim sprzężeniem zwrotnym Janusz Brzychczyk IF UJ Sprzężenie zwrotne Sprzężeniem

Bardziej szczegółowo

Bramki logiczne. 2. Cele ćwiczenia Badanie charakterystyk przejściowych inwertera. tranzystorowego, bramki 7400 i bramki 74132.

Bramki logiczne. 2. Cele ćwiczenia Badanie charakterystyk przejściowych inwertera. tranzystorowego, bramki 7400 i bramki 74132. Bramki logiczne 1. Czas trwania: 3h 2. Cele ćwiczenia Badanie charakterystyk przejściowych inwertera. tranzystorowego, bramki 7400 i bramki 74132. 3. Wymagana znajomość pojęć stany logiczne Hi, Lo, stan

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA FILIA W PILE LABORATORIUM ELEKTRONIKI I TEORII OBWODÓW. grupa: A

POLITECHNIKA POZNAŃSKA FILIA W PILE LABORATORIUM ELEKTRONIKI I TEORII OBWODÓW. grupa: A POLTECHNKA POZNAŃSKA FLA W PLE LABORATORM ELEKTRONK TEOR OBWODÓW numer ćwiczenia: 4 data wykonania ćwiczenia: 07.11.2002 data oddania sprawozdania: 28.11.202 OCENA: tytuł ćwiczenia: Przerzutnik Schmitta

Bardziej szczegółowo

Komputerowa symulacja bramek w technice TTL i CMOS

Komputerowa symulacja bramek w technice TTL i CMOS ZESPÓŁ LABORATORIÓW TELEMATYKI TRANSPORTU ZAKŁAD TELEKOMUNIKACJI W TRANSPORCIE WYDZIAŁ TRANSPORTU POLITECHNIKI WARSZAWSKIEJ LABORATORIUM ELEKTRONIKI INSTRUKCJA DO ĆWICZENIA NR 27 Komputerowa symulacja

Bardziej szczegółowo

Elementy struktur cyfrowych. Magistrale, układy iterowane w przestrzeni i w czasie, wprowadzanie i wyprowadzanie danych.

Elementy struktur cyfrowych. Magistrale, układy iterowane w przestrzeni i w czasie, wprowadzanie i wyprowadzanie danych. Elementy struktur cyfrowych Magistrale, układy iterowane w przestrzeni i w czasie, wprowadzanie i wyprowadzanie danych. Magistrale W układzie bank rejestrów do przechowywania danych. Wybór źródła danych

Bardziej szczegółowo

Elementy elektroniczne Wykłady 7: Tranzystory polowe

Elementy elektroniczne Wykłady 7: Tranzystory polowe Elementy elektroniczne Wykłady 7: Tranzystory polowe Podział Tranzystor polowy (FET) Złączowy (JFET) Z izolowaną bramką (GFET) ze złączem m-s (MFET) ze złączem PN (PNFET) Typu MO (MOFET, HEXFET) cienkowarstwowy

Bardziej szczegółowo

Zapoznanie się z podstawowymi strukturami funktorów logicznych realizowanymi w technice RTL (Resistor Transistor Logic) oraz zasadą ich działania.

Zapoznanie się z podstawowymi strukturami funktorów logicznych realizowanymi w technice RTL (Resistor Transistor Logic) oraz zasadą ich działania. adanie funktorów logicznych RTL - Ćwiczenie. Cel ćwiczenia Zapoznanie się z podstawowymi strukturami funktorów logicznych realizowanymi w technice RTL (Resistor Transistor Logic) oraz zasadą ich działania..

Bardziej szczegółowo

ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI

ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 1 ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 15.1. CEL ĆWICZENIA Celem ćwiczenia jest poznanie podstawowych właściwości wzmacniaczy mocy małej częstotliwości oraz przyswojenie umiejętności

Bardziej szczegółowo

Zabezpieczenie akumulatora Li-Poly

Zabezpieczenie akumulatora Li-Poly Zabezpieczenie akumulatora Li-Poly rev. 2, 02.02.2011 Adam Pyka Wrocław 2011 1 Wstęp Akumulatory litowo-polimerowe (Li-Po) ze względu na korzystny stosunek pojemności do masy, mały współczynnik samorozładowania

Bardziej szczegółowo

Podstawy Elektroniki dla Teleinformatyki. Generator relaksacyjny

Podstawy Elektroniki dla Teleinformatyki. Generator relaksacyjny AGH Katedra Elektroniki Podstawy Elektroniki dla Teleinformatyki 2014 r. Generator relaksacyjny Ćwiczenie 6 1. Wstęp Celem ćwiczenia jest zapoznanie się, poprzez badania symulacyjne, z działaniem generatorów

Bardziej szczegółowo

Technika Mikroprocesorowa

Technika Mikroprocesorowa Technika Mikroprocesorowa Dariusz Makowski Katedra Mikroelektroniki i Technik Informatycznych tel. 631 2648 dmakow@dmcs.pl http://neo.dmcs.p.lodz.pl/tm 1 System mikroprocesorowy? (1) Magistrala adresowa

Bardziej szczegółowo

Ćwiczenie 4. Parametry statyczne tranzystorów polowych JFET i MOSFET

Ćwiczenie 4. Parametry statyczne tranzystorów polowych JFET i MOSFET Ćwiczenie 4 Parametry statyczne tranzystorów polowych JFET i MOSFET Cel ćwiczenia Podstawowym celem ćwiczenia jest poznanie charakterystyk statycznych tranzystorów polowych złączowych oraz z izolowaną

Bardziej szczegółowo

Podstawowe bramki logiczne

Podstawowe bramki logiczne Temat i plan wykładu Podstawowe bramki logiczne 1. Elementarne funkcje logiczne, symbole 2. Struktura bramek bipolarnych, CMOS i BiCMOS 3. Parametry bramek 4. Rodziny układów cyfrowych 5. Elastyczność

Bardziej szczegółowo

Tranzystory polowe. Podział. Tranzystor PNFET (JFET) Kanał N. Kanał P. Drain. Gate. Gate. Source. Tranzystor polowy (FET) Z izolowaną bramką (IGFET)

Tranzystory polowe. Podział. Tranzystor PNFET (JFET) Kanał N. Kanał P. Drain. Gate. Gate. Source. Tranzystor polowy (FET) Z izolowaną bramką (IGFET) Tranzystory polowe Podział Tranzystor polowy (FET) Złączowy (JFET) Z izolowaną bramką (IFET) ze złączem ms (MFET) ze złączem PN (PNFET) Typu MO (MOFET, HEXFET) cienkowarstwowy (TFT) z kanałem zuobożanym

Bardziej szczegółowo

A-6. Wzmacniacze operacyjne w układach nieliniowych (diody)

A-6. Wzmacniacze operacyjne w układach nieliniowych (diody) A-6. Wzmacniacze operacyjne w układach nieliniowych (diody) I. Zakres ćwiczenia 1. Zastosowanie diod i wzmacniacza operacyjnego µa741 w następujących układach nieliniowych: a) generator funkcyjny b) wzmacniacz

Bardziej szczegółowo

Bramki TTL i CMOS 7400, 74S00, 74HC00, 74HCT00, 7403, 74132

Bramki TTL i CMOS 7400, 74S00, 74HC00, 74HCT00, 7403, 74132 Skład zespołu: 1. 2. 3. 4. KTEDR ELEKTRONIKI G Wydział EIiE LBORTORIUM TECNIKI CYFROWEJ Data wykonania: Suma punktów: Grupa Ocena 1 Bramki TTL i CMOS 7400, 74S00, 74C00, 74CT00, 7403, 74132 I. Konspekt

Bardziej szczegółowo

Budowa. Metoda wytwarzania

Budowa. Metoda wytwarzania Budowa Tranzystor JFET (zwany też PNFET) zbudowany jest z płytki z jednego typu półprzewodnika (p lub n), która stanowi tzw. kanał. Na jego końcach znajdują się styki źródła (ang. source - S) i drenu (ang.

Bardziej szczegółowo

Tranzystory. 1. Tranzystory bipolarne 2. Tranzystory unipolarne. unipolarne. bipolarny

Tranzystory. 1. Tranzystory bipolarne 2. Tranzystory unipolarne. unipolarne. bipolarny POLTEHNKA AŁOSTOKA Tranzystory WYDZAŁ ELEKTYZNY 1. Tranzystory bipolarne 2. Tranzystory unipolarne bipolarny unipolarne Trójkońcówkowy (czterokońcówkowy) półprzewodnikowy element elektroniczny, posiadający

Bardziej szczegółowo

2 Dana jest funkcja logiczna w następującej postaci: f(a,b,c,d) = Σ(0,2,5,8,10,13): a) zminimalizuj tę funkcję korzystając z tablic Karnaugh,

2 Dana jest funkcja logiczna w następującej postaci: f(a,b,c,d) = Σ(0,2,5,8,10,13): a) zminimalizuj tę funkcję korzystając z tablic Karnaugh, EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2010/2011 Zadania dla grupy elektronicznej na zawody II. stopnia (okręgowe) 1 Na rysunku przedstawiono przebieg prądu

Bardziej szczegółowo

1. Definicja i przeznaczenie przerzutnika monostabilnego.

1. Definicja i przeznaczenie przerzutnika monostabilnego. 1. Definicja i przeznaczenie przerzutnika monostabilnego. Przerzutniki monostabline w odróżnieniu od przerzutników bistabilnych zapamiętują stan na z góry założony, ustalony przez konstruktora układu,

Bardziej szczegółowo

U 2 B 1 C 1 =10nF. C 2 =10nF

U 2 B 1 C 1 =10nF. C 2 =10nF Dynamiczne badanie przerzutników - Ćwiczenie 3. el ćwiczenia Zapoznanie się z budową i działaniem przerzutnika astabilnego (multiwibratora) wykonanego w technice TTL oraz zapoznanie się z działaniem przerzutnika

Bardziej szczegółowo

Plan wykładu. Architektura systemów komputerowych. Cezary Bolek

Plan wykładu. Architektura systemów komputerowych. Cezary Bolek Architektura systemów komputerowych Poziom układów logicznych. Układy sekwencyjne Cezary Bolek Katedra Informatyki Plan wykładu Układy sekwencyjne Synchroniczność, asynchroniczność Zatrzaski Przerzutniki

Bardziej szczegółowo

Podstawowe elementy układów cyfrowych układy sekwencyjne. Rafał Walkowiak

Podstawowe elementy układów cyfrowych układy sekwencyjne. Rafał Walkowiak Podstawowe elementy układów cyfrowych układy sekwencyjne Rafał Walkowiak 3.12.2015 Przypomnienie - podział układów cyfrowych Układy kombinacyjne pozbawione właściwości pamiętania stanów, realizujące funkcje

Bardziej szczegółowo

Materiały używane w elektronice

Materiały używane w elektronice Materiały używane w elektronice Typ Rezystywność [Wm] Izolatory (dielektryki) Over 10 5 półprzewodniki 10-5 10 5 przewodniki poniżej 10-5 nadprzewodniki (poniżej 20K) poniżej 10-15 Model pasm energetycznych

Bardziej szczegółowo

Bramki Instrukcja do laboratorium AGH w Krakowie Katedra Elektroniki Ernest Jamro Aktualizacja:

Bramki Instrukcja do laboratorium AGH w Krakowie Katedra Elektroniki Ernest Jamro Aktualizacja: Technika Cyfrowa i Układy Programowalne Bramki Instrukcja do laboratorium AGH w Krakowie Katedra Elektroniki Ernest Jamro Aktualizacja: 21-10-2016 1. Podłączenie układu Podłącz wyprowadzenia płytki z układem

Bardziej szczegółowo

Instrukcja nr 6. Wzmacniacz operacyjny i jego aplikacje. AGH Zespół Mikroelektroniki Układy Elektroniczne J. Ostrowski, P. Dorosz Lab 6.

Instrukcja nr 6. Wzmacniacz operacyjny i jego aplikacje. AGH Zespół Mikroelektroniki Układy Elektroniczne J. Ostrowski, P. Dorosz Lab 6. Instrukcja nr 6 Wzmacniacz operacyjny i jego aplikacje AGH Zespół Mikroelektroniki Układy Elektroniczne J. Ostrowski, P. Dorosz Lab 6.1 Wzmacniacz operacyjny Wzmacniaczem operacyjnym nazywamy różnicowy

Bardziej szczegółowo

Modelowanie diod półprzewodnikowych

Modelowanie diod półprzewodnikowych Modelowanie diod półprzewodnikowych Programie PSPICE wbudowane są modele wielu elementów półprzewodnikowych takich jak diody, tranzystory bipolarne, tranzystory dipolowe złączowe, tranzystory MOSFET, tranzystory

Bardziej szczegółowo

Temat i cel wykładu. Tranzystory

Temat i cel wykładu. Tranzystory POLTECHNKA BAŁOSTOCKA Temat i cel wykładu WYDZAŁ ELEKTRYCZNY Tranzystory Celem wykładu jest przedstawienie: konstrukcji i działania tranzystora bipolarnego, punktu i zakresów pracy tranzystora, konfiguracji

Bardziej szczegółowo

Komputerowa symulacja bramek w technice TTL i CMOS

Komputerowa symulacja bramek w technice TTL i CMOS ZESPÓŁ LABORATORIÓW TELEMATYKI TRANSPORTU ZAKŁAD TELEKOMUNIKACJI W TRANSPORCIE WYDZIAŁ TRANSPORTU POLITECHNIKI WARSZAWSKIEJ LABORATORIUM ELEKTRONIKI INSTRUKCJA DO ĆWICZENIA NR 27 Komputerowa symulacja

Bardziej szczegółowo

Część 3. Przegląd przyrządów półprzewodnikowych mocy. Łukasz Starzak, Przyrządy i układy mocy, studia niestacjonarne, lato 2018/19 51

Część 3. Przegląd przyrządów półprzewodnikowych mocy. Łukasz Starzak, Przyrządy i układy mocy, studia niestacjonarne, lato 2018/19 51 Część 3 Przegląd przyrządów półprzewodnikowych mocy Łukasz Starzak, Przyrządy i układy mocy, studia niestacjonarne, lato 2018/19 51 Budowa przyrządów półprzewodnikowych Struktura składa się z warstw Warstwa

Bardziej szczegółowo

Ćwiczenie 26. Temat: Układ z bramkami NAND i bramki AOI..

Ćwiczenie 26. Temat: Układ z bramkami NAND i bramki AOI.. Temat: Układ z bramkami NAND i bramki AOI.. Ćwiczenie 26 Cel ćwiczenia Zapoznanie się ze sposobami konstruowania z bramek NAND różnych bramek logicznych. Konstruowanie bramek NOT, AND i OR z bramek NAND.

Bardziej szczegółowo