Zadanie 1 Rozterki administratora

Wielkość: px
Rozpocząć pokaz od strony:

Download "Zadanie 1 Rozterki administratora"

Transkrypt

1 Zadanie 1 Rozterki administratora Każdy administrator sieci wie, jak sieć łatwo dzieli się. Dostawca Internetu przypisał sieci naszego admina adres IP w postaci czterech liczb dziesiętnych z zakresu oddzielonych kropkami z prefixem w postaci liczby dziesiętnej z zakresu Ale Szefostwo nakazało: ty adminie masz podłączyć nasze n podsieci do Internetu, a masz tylko jeden adres IP!!! Zrób coś albo poprosimy o to samo twojego następcę. Pomóż biednemu adminowi sprawdzić, czy w ogóle jest w stanie podłączyć taką masę komputerów oraz jakiej puli adresów mu zabraknie lub ile zostanie wolnych. : Pierwsza linia zawiera adres IP od dostawcy i prefix oddzielony od adresu znakiem /, druga linia liczbę n dołączanych podsieci, kolejne n linii liczbę komputerów w kolejnych dołączanych podsieciach. : Pierwsza z literą T jeśli możliwe jest dołączenie wszystkich sieci lub N w przeciwnym przypadku. W drugiej linii liczba całkowita oznaczająca liczbę wolnych adresów, które pozostały niewykorzystane (w przypadku odpowiedzi T) lub pulę adresów, których zabraknie (w przypadku odpowiedzi N). : / : N 64 OBJAŚNIENIE: Adres IP zapisywany jest w postaci dziesiętnej by można go zapamiętać. Naprawdę ma postać dwójkową. Każda liczba dziesiętna reprezentuje osiem kolejnych bitów, np.: Prefix oznacza maskę sieci i służy (w tym przypadku) do podziału sieci. Prefix mówi ile możemy wykorzystać bitów w adresie IP na zaadresowanie komputerów, np. prefix /22 mówi, że możemy wykorzystać 32-22=10 bitów na adresy. 10 bitów to 2 10 = 1024 adresy. Ale należy pamiętać, że z pierwszego i ostatniego nie możemy skorzystać (ale fizycznie istnieją!!!), czyli ostatecznie mamy = 1022 adresy do wykorzystania. Podział sieci z użyciem prefixa oznacza, że w poszczególnych podsieciach mamy pewną stałą liczbę adresów użytkowych, tzn. /24 = = 254, /28 = = 14 itp. Znając liczbę komputerów, które musimy dołączyć w danej podsieci możemy oszacować, ile zużyjemy na nią adresów. Znając liczbę podsieci i zużytych przez nie adresów możemy stwierdzić, czy adminowi uda się podzielić odpowiednio sieć. Rozpatrując przykład do zadania: 1. mamy sieć o prefixie /24, czyli do dyspozycji = 254 adresów 2. obliczamy realny rozmiar kolejnych podsieci:

2 54 komputery najbliższa podsieć, która obejmie taką liczbę komputerów to /26, bo = komputerów najbliższa podsieć, która obejmie taką liczbę komputerów to /25, bo = komputery najbliższa podsieć, która obejmie taką liczbę komputerów to /26, bo = komputerów najbliższa podsieć, która obejmie taką liczbę komputerów to /27, bo = komputerów najbliższa podsieć, która obejmie taką liczbę komputerów to /28, bo = ostatecznie sumując liczbę adresów w kolejnych podsieciach (i pamiętając, że do każdej musimy z powrotem dodać dwa adresy, których nie można użyć, ale które istnieją!!!) uzyskujemy 62(+2)+126(+2)+62(+2)+30(+2)+14(+2)=304, co przekracza dopuszczalną liczbę 254 przy zadanym prefixie /24 odpowiedź N 4. zabrakło: 304 (patrz punkt 3) 254 (liczba adresów przy prefixie /24, tj ) = 50 adresów najbliższa podsieć, która obejmie taką liczbę komputerów to /26, czyli potrzeba jeszcze 2 6 = 64 adresy (liczymy wraz z pierwszym i ostatnim adresem w podsieci pomimo, że nie mogą być one wykorzystane).

3 Zadanie 2 Mały chemik Franio, mały chemik, ma nie lada problem. W doświadczeniu, które chce wykonać ma wyraźnie powiedziane: odmierz dokładnie n miligramów materiału bardzo, ale to bardzo wybuchowego. Zbyt niska waga będzie niezły wybuch, zbyt wysoka waga jeszcze lepsza eksplozja. A Franio ma tylko wagę szalkową i dwa typy odważników: o wadze x i y miligramów. Ale przecież to nie problem Ty mu pomożesz i napiszesz program, który podpowie, ile i jakich odważników potrzeba do pomiaru. Trzy liczby n, x i y oddzielone pojedynczymi spacjami, które oznaczają odpowiednio: wagę materiału wybuchowego, którą trzeba zmierzyć, wagę jednego typu odważników i wagę drugiego typu odważników. Dwie nieujemne liczby a i b, oddzielone pojedynczą spacją, oznaczające liczbę potrzebnych odważników obu typów. Jeżeli zadanie jest niemożliwe do rozwiązania na wyjściu powinno pojawić się słowo BRAK i znak końca linii. W przypadku istnienia większej liczby możliwych rozwiązań najlepsze jest to, w którym zużyto minimalną liczbę odważników OBJAŚNIENIE: Należy pamiętać, że ważyć można na wiele sposobów, tj np.: sposób 1 sposób 2 Oczywiście sposób 2 jest rozwiązaniem 4 odważniki, a nie sześć (sposób 1).

4 Zadanie 3 Witraże hobbitów Pippin i Merry postanowili kupić Samowi prezent przepiękny witraż. Sami go zaprojektowali. Wyglądał cud... cudacznie. Hobbici, jak wiadomo, mają okrągłe okna, a witraż zaprojektowany na prostokątnej kartce składał się z wielokąta wypełnionego różnymi barwami. Oczywiście nie cały zmieściłby się na oknie, więc część po prostu nie zostanie namalowana. Rzemieślnik, który ma go stworzyć nie umie go jednak wycenić farba jest bardzo droga i ostateczna cena witrażu zależy od pola zamalowanej powierzchni. Napisz program, który pomoże obliczyć to pole. W pierwszej linii dwie liczby całkowite n i r oddzielone pojedynczą spacją, odpowiednio liczba wierzchołków łamanej i promień okna. W kolejnych n liniach dwie liczby całkowite x i i y i (oddzielone pojedynczą spacją) współrzędne wierzchołków łamanej zapisane w kolejności zgodnej z ruchem wskazówek zegara, Początek układu współrzędnych znajduję się w środku okna. Liczba zmiennoprzecinkowa oznaczająca pole zamalowanej powierzchni witrażu. Dopuszczalny błąd względny wyniku wynosi OBJAŚNIENIE: Rysunek przedstawia projekt witrażu z przykładu. Poszukiwane jest pole powierzchni zaznaczonego błękitnym kolorem fragmentu.

5

6 Zadanie 4 Klasztor Shaolin Dwaj Mistrzowie sztuk walki, chcąc uatrakcyjnić młodym Adeptom ćwiczenia, wybudowali,,palowy park. Park składał się z n 2 pali wbitych w ziemię w równych odstępach na planie kwadratu. Lata ćwiczeń spowodowały, że pale wbite nad przekątną kwadratu uległy zniszczeniu stając się niebezpieczne. Każdy z Adeptów musiał pokonać park skacząc na jednej nodze zaczynając od lewego dolnego pala i kończąc na prawym górnym, przy czym dopuszczone są tylko skoki w prawo na najbliższy pal lub do góry na najbliższy pal, ze względów bezpieczeństwa nie przekraczające przekątnej. Napisać program obliczający ile różnych dróg mogą pokonać Adepci wykonujący ćwiczenie. UWAGA: Do obliczeń należy zastosować 32 bitowy typ całkowity dostępny w kompilatorze. Dopuszczalny jest wynik będący liczbą ujemną powstałą w wyniku obliczeń modulo. Jedna linia zawierająca dodatnią liczbę naturalną wbitych pali zakończona znakiem nowej linii. Jedna linia zawierająca ilość możliwych dróg zakończona znakiem nowej linii. 16 5

7 Zadanie 5 Złodziej Złodziejowi udało się włamać do bogatej posiadłości, pełnej cennych przedmiotów. Niestety, każdy z nich miał swoją wagę i niemożliwe było zabranie ich wszystkich, ponieważ nasz złodziej może unieść tylko określony ciężar. Napisać program, który wyznaczy przedmioty warte zabrania tak, aby wartość wyniesionego łupu była maksymalna, zaś jego waga nie przekroczyła ciężaru, który może unieść złodziej. W pierwszej linii maksymalny udźwig złodzieja n, w kolejnych liniach dwie liczby całkowite m i w oddzielone pojedynczą spacją oznaczające odpowiednio wagę i wartość kradzionych przedmiotów. Program powinien wypisać na ekranie dla każdego wybranego przez złodzieja przedmiotu po dwie liczby całkowite (oddzielone pojedynczą spacją) określające wagę i wartość tego przedmiotu, a w ostatnim wierszu łączną wagę i wartość wyniesionego przez złodzieja łupu

8 Zadanie 6 Stolarz Stolarzowi zlecono wykonanie drewnianych płotków o kształcie okręgu otaczających drzewka rosnące szpalerem wzdłuż alejki w parku. Każde drzewko ma być otoczone osobnym płotkiem i znajdować się dokładnie w jego środku. Wartość zamówienia zależy od sumarycznej długości płotków. Stolarz chciałby, oczywiście, zarobić jak najwięcej. Pomóż mu tak wytyczyć płotki, aby sumaryczna ich długość była jak największa. W pierwszej linii liczba całkowita n oznaczająca liczbę drzewek, które należy otoczyć płotkami. W kolejnej linii n liczb całkowitych z zakresu <0, 10 8 > oznaczające współrzędne drzewek (zakładamy, że rosną one w linii prostej wzdłuż alejki). Jedna liczba zmiennoprzecinkowa oznaczająca sumaryczną długość płotków. Wynik należy podać z dokładnością do dwóch miejsc po przecinku

Akademia Techniczno-Humanistyczna w Bielsku-Białej

Akademia Techniczno-Humanistyczna w Bielsku-Białej Akademia Techniczno-Humanistyczna w Bielsku-Białej Wydział Budowy Maszyn i Informatyki Laboratorium z sieci komputerowych Ćwiczenie numer: 2 Temat ćwiczenia: Maska sieci, podział sieci na podsieci. 1.

Bardziej szczegółowo

Podsieci IPv4 w przykładach. mgr inż. Krzysztof Szałajko

Podsieci IPv4 w przykładach. mgr inż. Krzysztof Szałajko Podsieci IPv4 w przykładach mgr inż. Krzysztof Szałajko I. Podział sieci IP na równe podsieci Zadanie 1: Podziel sieć o adresie IP 220.110.40.0 / 24 na 5 podsieci. Dla każdej podsieci podaj: Adres podsieci

Bardziej szczegółowo

Wydział Matematyki I Informatyki ul. Słoneczna Olsztyn

Wydział Matematyki I Informatyki ul. Słoneczna Olsztyn Klucz Napisać program sprawdzający czy dany klucz pasuje do danego zamka. Dziurka w zamku reprezentowana jest w postaci tablicy zero-jedynkowej i jest spójna. Klucz zakodowany jest jako ciąg par liczb

Bardziej szczegółowo

Jak dokonać podziału sieci metodą VLSM instrukcja krok po kroku.

Jak dokonać podziału sieci metodą VLSM instrukcja krok po kroku. Jak konać podziału sieci metodą VLSM instrukcja krok po kroku. Technika VLSM (tzw. adresacja gdzie wykorzystuje się zmienną długość masek) stosowana jest w celu pełnej optymalizacji wykorzystania przydzielanych

Bardziej szczegółowo

Zestaw 3. - Zapis liczb binarnych ze znakiem 1

Zestaw 3. - Zapis liczb binarnych ze znakiem 1 Zestaw 3. - Zapis liczb binarnych ze znakiem 1 Zapis znak - moduł (ZM) Zapis liczb w systemie Znak - moduł Znak liczby o n bitach zależy od najstarszego bitu b n 1 (tzn. cyfry o najwyższej pozycji): b

Bardziej szczegółowo

ZASADY PODZIAŁU SIECI NA PODSIECI, OBLICZANIA ADRESÓW PODSIECI, ADRESÓW HOSTÓW I ADRESU ROZGŁOSZENIOWEGO

ZASADY PODZIAŁU SIECI NA PODSIECI, OBLICZANIA ADRESÓW PODSIECI, ADRESÓW HOSTÓW I ADRESU ROZGŁOSZENIOWEGO ZASADY PODZIAŁU SIECI NA PODSIECI, OBLICZANIA ADRESÓW PODSIECI, ADRESÓW HOSTÓW I ADRESU ROZGŁOSZENIOWEGO Wybór schematu adresowania podsieci jest równoznaczny z wyborem podziału lokalnej części adresu

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI

EGZAMIN MATURALNY Z INFORMATYKI Miejsce na naklejkę z kodem szkoły dysleksja EGZAMIN MATURALNY Z INFORMATYKI MIN-R2A1P-062 POZIOM ROZSZERZONY Czas pracy 150 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera

Bardziej szczegółowo

Pole wielokąta. Wejście. Wyjście. Przykład

Pole wielokąta. Wejście. Wyjście. Przykład Pole wielokąta Liczba punktów: 60 Limit czasu: 1-3s Limit pamięci: 26MB Oblicz pole wielokąta wypukłego. Wielokąt wypukły jest to wielokąt, który dla dowolnych jego dwóch punktów zawiera również odcinek

Bardziej szczegółowo

Struktura adresu IP v4

Struktura adresu IP v4 Adresacja IP v4 E13 Struktura adresu IP v4 Adres 32 bitowy Notacja dziesiętna - każdy bajt (oktet) z osobna zostaje przekształcony do postaci dziesiętnej, liczby dziesiętne oddzielone są kropką. Zakres

Bardziej szczegółowo

Które z poniższych adresów są adresem hosta w podsieci o masce 255.255.255.248

Które z poniższych adresów są adresem hosta w podsieci o masce 255.255.255.248 Zadanie 1 wspólne Które z poniższych adresów są adresem hosta w podsieci o masce 255.255.255.248 17.61.12.31 17.61.12.93 17.61.12.144 17.61.12.33 17.61.12.56 17.61.12.15 Jak to sprawdzić? ODPOWIEDŹ. Po

Bardziej szczegółowo

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie Olimpiada O Diamentowy Indeks AGH 2017/18. Informatyka Etap III

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie Olimpiada O Diamentowy Indeks AGH 2017/18. Informatyka Etap III Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie Olimpiada O Diamentowy Indeks AGH 017/18 Informatyka Etap III Zadania po 17 punktów Zadanie 1 Dla pewnej N-cyfrowej liczby naturalnej obliczono

Bardziej szczegółowo

PODSTAWY > Figury płaskie (1) KĄTY. Kąt składa się z ramion i wierzchołka. Jego wielkość jest mierzona w stopniach:

PODSTAWY > Figury płaskie (1) KĄTY. Kąt składa się z ramion i wierzchołka. Jego wielkość jest mierzona w stopniach: PODSTAWY > Figury płaskie (1) KĄTY Kąt składa się z ramion i wierzchołka. Jego wielkość jest mierzona w stopniach: Kąt możemy opisać wpisując w łuk jego miarę (gdy jest znana). Gdy nie znamy miary kąta,

Bardziej szczegółowo

Dzielenie sieci na podsieci

Dzielenie sieci na podsieci e-damiangarbus.pl Dzielenie sieci na podsieci dla każdego Uzupełnienie do wpisu http://e-damiangarbus.pl/podzial-sieci-na-podsieci/ Dwa słowa wstępu Witaj, właśnie czytasz uzupełnienie do wpisu na temat

Bardziej szczegółowo

Samodzielnie wykonaj następujące operacje: 13 / 2 = 30 / 5 = 73 / 15 = 15 / 23 = 13 % 2 = 30 % 5 = 73 % 15 = 15 % 23 =

Samodzielnie wykonaj następujące operacje: 13 / 2 = 30 / 5 = 73 / 15 = 15 / 23 = 13 % 2 = 30 % 5 = 73 % 15 = 15 % 23 = Systemy liczbowe Dla każdej liczby naturalnej x Î N oraz liczby naturalnej p >= 2 istnieją jednoznacznie wyznaczone: liczba n Î N oraz ciąg cyfr c 0, c 1,..., c n-1 (gdzie ck Î {0, 1,..., p - 1}) taki,

Bardziej szczegółowo

2. Zmienne i stałe. Przykłady Napisz program, który wypisze na ekran wynik dzielenia 281 i 117 w postaci liczby mieszanej (tj. 2 47/117).

2. Zmienne i stałe. Przykłady Napisz program, który wypisze na ekran wynik dzielenia 281 i 117 w postaci liczby mieszanej (tj. 2 47/117). 2. Zmienne i stałe Przykłady 2.1. Napisz program, który wypisze na ekran wynik dzielenia 281 i 117 w postaci liczby mieszanej (tj. 2 47/117). 5 int a = 281; int b = 117; 7 8 cout

Bardziej szczegółowo

SIECI KOMPUTEROWE Adresowanie IP

SIECI KOMPUTEROWE  Adresowanie IP Adresowanie IP Podstawowa funkcja protokołu IP (Internet Protocol) polega na dodawaniu informacji o adresie do pakietu danych i przesyłaniu ich poprzez sieć do właściwych miejsc docelowych. Aby umożliwić

Bardziej szczegółowo

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 1 Metody numeryczne Dział matematyki Metody rozwiązywania problemów matematycznych za pomocą operacji na liczbach. Otrzymywane

Bardziej szczegółowo

Zadanie: A2 Kapitan Mambeks i gra w skoczki Plik źródłowy: A2.pas dla języka Pascal Dostępna pamięć: 64 MB A2.c dla języka C A2.

Zadanie: A2 Kapitan Mambeks i gra w skoczki Plik źródłowy: A2.pas dla języka Pascal Dostępna pamięć: 64 MB A2.c dla języka C A2. Koło Młodych Informatyków - Konkurs nr -- Zadanie: A Kapitan Mambeks i gra w skoczki Plik źródłowy: A.pas dla języka Pascal Dostępna pamięć: 6 MB A.c dla języka C A.cpp dla języka C++ Ulubionym zajęciem

Bardziej szczegółowo

Jak napisać program obliczający pola powierzchni różnych figur płaskich?

Jak napisać program obliczający pola powierzchni różnych figur płaskich? Część IX C++ Jak napisać program obliczający pola powierzchni różnych figur płaskich? Na początku, przed stworzeniem właściwego kodu programu zaprojektujemy naszą aplikację i stworzymy schemat blokowy

Bardziej szczegółowo

1. A 2. A 3. B 4. B 5. C 6. B 7. B 8. D 9. A 10. D 11. C 12. D 13. B 14. D 15. C 16. C 17. C 18. B 19. D 20. C 21. C 22. D 23. D 24. A 25.

1. A 2. A 3. B 4. B 5. C 6. B 7. B 8. D 9. A 10. D 11. C 12. D 13. B 14. D 15. C 16. C 17. C 18. B 19. D 20. C 21. C 22. D 23. D 24. A 25. 1. A 2. A 3. B 4. B 5. C 6. B 7. B 8. D 9. A 10. D 11. C 12. D 13. B 14. D 15. C 16. C 17. C 18. B 19. D 20. C 21. C 22. D 23. D 24. A 25. A Najłatwiejszym sposobem jest rozpatrzenie wszystkich odpowiedzi

Bardziej szczegółowo

Pomorski Czarodziej 2016 Zadania. Kategoria B

Pomorski Czarodziej 2016 Zadania. Kategoria B Pomorski Czarodziej 2016 Zadania. Kategoria B Poniżej znajduje się 5 zadań. Za poprawne rozwiązanie każdego z nich możesz otrzymać 10 punktów. Jeżeli otrzymasz za zadanie maksymalną liczbę punktów, możesz

Bardziej szczegółowo

Warstwa sieciowa (technika VLSM)

Warstwa sieciowa (technika VLSM) Warstwa sieciowa (technika VLSM) Zadania 1. Mając do dyspozycji sieć o adresie 10.10.1.0/24 zaproponuj podział dostępnej puli adresowej na następujące podsieci liczące: 10 hostów 13 hostów 44 hosty 102

Bardziej szczegółowo

Sprawozdanie z zajęć laboratoryjnych: Technologie sieciowe 1

Sprawozdanie z zajęć laboratoryjnych: Technologie sieciowe 1 Łukasz Przywarty 171018 Data utworzenia: 10.04.2010r. Prowadzący: dr inż. Marcin Markowski Sprawozdanie z zajęć laboratoryjnych: Technologie sieciowe 1 Temat: Zadanie domowe, rozdział 6 - Adresowanie sieci

Bardziej szczegółowo

Podział sieci na podsieci wytłumaczenie

Podział sieci na podsieci wytłumaczenie Podział sieci na podsieci wytłumaczenie Witam wszystkich z mojej grupy pozdrawiam wszystkich z drugiej grupy. Tematem tego postu jest podział sieci na daną ilość podsieci oraz wyznaczenie zakresów IP tychże

Bardziej szczegółowo

Zestaw zadań konkursowych XVII Regionalnego Konkursu Informatycznego

Zestaw zadań konkursowych XVII Regionalnego Konkursu Informatycznego Zestaw zadań konkursowych XVII Regionalnego Konkursu Informatycznego Instytut Informatyki UwB 1.04.2017 r. Uwaga: Wersje źródłowe i skompilowane programy mają być umieszczone na Pulpicie w katalogu o nazwie

Bardziej szczegółowo

Kurs ZDAJ MATURĘ Z MATEMATYKI - MODUŁ 11 Teoria planimetria

Kurs ZDAJ MATURĘ Z MATEMATYKI - MODUŁ 11 Teoria planimetria 1 Pomimo, że ten dział, to typowa geometria wydawałoby się trudny dział to paradoksalnie troszkę tu odpoczniemy, jeśli chodzi o teorię. Dlaczego? Otóż jak zapewne doskonale wiesz, na maturze otrzymasz

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 2019

LUBELSKA PRÓBA PRZED MATURĄ 2019 1 MATEMATYKA - poziom podstawowy klasa 1 MAJ 2019 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 16 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.

Bardziej szczegółowo

Akademia Techniczno-Humanistyczna w Bielsku-Białej

Akademia Techniczno-Humanistyczna w Bielsku-Białej Akademia Techniczno-Humanistyczna w Bielsku-Białej Wydział Budowy Maszyn i Informatyki Laboratorium z sieci komputerowych Ćwiczenie numer: 1 Temat ćwiczenia: Adresacja w sieciach komputerowych podstawowe

Bardziej szczegółowo

Wielkości liczbowe. Wykład z Podstaw Informatyki dla I roku BO. Piotr Mika

Wielkości liczbowe. Wykład z Podstaw Informatyki dla I roku BO. Piotr Mika Wielkości liczbowe Wykład z Podstaw Informatyki dla I roku BO Piotr Mika Wprowadzenie, liczby naturalne Komputer to podstawowe narzędzie do wykonywania obliczeń Jeden bajt reprezentuje 0 oraz liczby naturalne

Bardziej szczegółowo

Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum

Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum I. POTĘGI I PIERWIASTKI oblicza wartości potęg o wykładnikach całkowitych liczb różnych od zera zapisuje liczbę

Bardziej szczegółowo

Pomorski Czarodziej 2016 Zadania. Kategoria C

Pomorski Czarodziej 2016 Zadania. Kategoria C Pomorski Czarodziej 2016 Zadania. Kategoria C Poniżej znajduje się 5 zadań. Za poprawne rozwiązanie każdego z nich możesz otrzymać 10 punktów. Jeżeli otrzymasz za zadanie maksymalną liczbę punktów, możesz

Bardziej szczegółowo

Smerfonizator. Dane wyjściowe Minimalna liczba uruchomień Smerfonizatora

Smerfonizator. Dane wyjściowe Minimalna liczba uruchomień Smerfonizatora Smerfonizator Wioska Smerfów w niebezpieczeństwie!!! Gargamel zbliża się wielkimi krokami. Na szczęście Papa Smerf skonstruował Smerfonizator. Jest to bardzo pożyteczne urządzenie. Emituje bardzo wąską

Bardziej szczegółowo

~ A ~ 1. Dany jest trójkąt prostokątny o bokach długości 12, 16 i 20. Zmniejszamy długość każdego boku o 8. Wtedy:

~ A ~ 1. Dany jest trójkąt prostokątny o bokach długości 12, 16 i 20. Zmniejszamy długość każdego boku o 8. Wtedy: GIM-. Dany jest trójkąt prostokątny o bokach długości 2, 6 i 20. Zmniejszamy długość każdego boku o 8. Wtedy: I. Powstanie trójkąt o polu równym połowie pola trójkąta pierwotnego II. Pole nowego trójkąta

Bardziej szczegółowo

Wielkości liczbowe. Wykład z Podstaw Informatyki. Piotr Mika

Wielkości liczbowe. Wykład z Podstaw Informatyki. Piotr Mika Wielkości liczbowe Wykład z Podstaw Informatyki Piotr Mika Wprowadzenie, liczby naturalne Komputer to podstawowe narzędzie do wykonywania obliczeń Jeden bajt reprezentuje oraz liczby naturalne od do 255

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2018/2019

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2018/2019 Etap wojewódzki 15 lutego 2019 r. Godzina 11.00 Kod ucznia Instrukcja dla ucznia Zanim przystąpisz do rozwiązywania arkusza, przepisz na tę stronę Kod ucznia z karty kodowej. 1. Sprawdź, czy zestaw zawiera

Bardziej szczegółowo

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY VI

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY VI MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY VI WYMAGANIA EDUKACYJNE NA OCENĘ DOPUSZCZAJĄCĄ DLA KLASY VI : 1. zamieni ułamek zwykły na dziesiętny dowolnym sposobem 2. porówna ułamek zwykły i dziesiętny 3.

Bardziej szczegółowo

Podstawowe typy zmiennych

Podstawowe typy zmiennych Podstawowe typy zmiennych Typ Rozmiar w bajtach Minimalny zakres char 1 Kod ASCII znaku (liczba 0..255) int 1 4-2147483648 2147483647 long long 1 8-2 63...2 63-1 float 4-3,4*10 38 3,4*10 38 (do 6 cyfr

Bardziej szczegółowo

Pracownia Komputerowa wykład IV

Pracownia Komputerowa wykład IV Pracownia Komputerowa wykład IV dr Magdalena Posiadała-Zezula http://www.fuw.edu.pl/~mposiada/pk16 1 Reprezentacje liczb i znaków! Liczby:! Reprezentacja naturalna nieujemne liczby całkowite naturalny

Bardziej szczegółowo

Arytmetyka liczb binarnych

Arytmetyka liczb binarnych Wartość dwójkowej liczby stałoprzecinkowej Wartość dziesiętna stałoprzecinkowej liczby binarnej Arytmetyka liczb binarnych b n-1...b 1 b 0,b -1 b -2...b -m = b n-1 2 n-1 +... + b 1 2 1 + b 0 2 0 + b -1

Bardziej szczegółowo

1. Sieć komputerowa - grupa komputerów lub innych urządzeń połączonych ze sobą w celu wymiany danych lub współdzielenia różnych zasobów.

1. Sieć komputerowa - grupa komputerów lub innych urządzeń połączonych ze sobą w celu wymiany danych lub współdzielenia różnych zasobów. Sieci komputerowe 1. Sieć komputerowa - grupa komputerów lub innych urządzeń połączonych ze sobą w celu wymiany danych lub współdzielenia różnych zasobów. 2. Podział sieci ze względu na rozległość: - sieć

Bardziej szczegółowo

Twoim zadaniem jest przeliczenie temperatury podanej w skali Celsiusza na pozostałe trzy skale.

Twoim zadaniem jest przeliczenie temperatury podanej w skali Celsiusza na pozostałe trzy skale. Zadanie 1 W Polsce stosuje się skale Celsiusza do wyznaczenia temperatury powietrza. W niektórych krajach lub zagadnieniach naukowych używa się również skali Kelvina, skali Fahrenheita lub skali Rankine'a.

Bardziej szczegółowo

Jarosław Wróblewski Matematyka Elementarna, zima 2015/16

Jarosław Wróblewski Matematyka Elementarna, zima 2015/16 Na ćwiczeniach 6.0.205 omawiamy test kwalifikacyjny. Uwaga: Przyjmujemy, że 0 nie jest liczbą naturalną, tzn. liczby naturalne są to liczby całkowite dodatnie.. Sformułować uogólnione cechy podzielności

Bardziej szczegółowo

FUNKCJA KWADRATOWA. Zad 1 Przedstaw funkcję kwadratową w postaci ogólnej. Postać ogólna funkcji kwadratowej to: y = ax + bx + c;(

FUNKCJA KWADRATOWA. Zad 1 Przedstaw funkcję kwadratową w postaci ogólnej. Postać ogólna funkcji kwadratowej to: y = ax + bx + c;( Zad Przedstaw funkcję kwadratową w postaci ogólnej Przykład y = ( x ) + 5 (postać kanoniczna) FUNKCJA KWADRATOWA Postać ogólna funkcji kwadratowej to: y = ax + bx + c;( a 0) Aby ją uzyskać pozbywamy się

Bardziej szczegółowo

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. UZUPEŁNIA ZESPÓŁ NADZORUJĄCY KOD UCZNIA PESEL miejsce na naklejkę EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA Instrukcja

Bardziej szczegółowo

Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE

Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE Wymagania konieczne K dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je

Bardziej szczegółowo

ZESPÓŁ SZKÓŁ W OBRZYCKU

ZESPÓŁ SZKÓŁ W OBRZYCKU Matematyka na czasie Program nauczania matematyki w gimnazjum ZGODNY Z PODSTAWĄ PROGRAMOWĄ I z dn. 23 grudnia 2008 r. Autorzy: Agnieszka Kamińska, Dorota Ponczek ZESPÓŁ SZKÓŁ W OBRZYCKU Wymagania edukacyjne

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 2017 klasa 2 (pp)

LUBELSKA PRÓBA PRZED MATURĄ 2017 klasa 2 (pp) Kod ucznia Nazwisko i imię ucznia M A T E M A T Y K A klasa -(pp) MAJ 07 Czas pracy: 70 minut Instrukcja dla zdającego. Sprawdź, czy arkusz zawiera 4 stron (zadania -4). Ewentualny brak zgłoś przewodniczącemu

Bardziej szczegółowo

Zadanie 1. Suma silni (11 pkt)

Zadanie 1. Suma silni (11 pkt) 2 Egzamin maturalny z informatyki Zadanie 1. Suma silni (11 pkt) Pojęcie silni dla liczb naturalnych większych od zera definiuje się następująco: 1 dla n = 1 n! = ( n 1! ) n dla n> 1 Rozpatrzmy funkcję

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY

WOJEWÓDZKI KONKURS MATEMATYCZNY Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW W ROKU SZKOLNYM 08/09.0.09 R.. Test konkursowy zawiera zadania. Są to zadania zamknięte i otwarte. Na ich

Bardziej szczegółowo

III POWIATOWY KONKURS MATEMATYCZNY DLA KLAS CZWARTYCH CO DWIE GŁOWY TO NIE JEDNA 2013 R.

III POWIATOWY KONKURS MATEMATYCZNY DLA KLAS CZWARTYCH CO DWIE GŁOWY TO NIE JEDNA 2013 R. III POWIATOWY KONKURS MATEMATYCZNY DLA KLAS CZWARTYCH CO DWIE GŁOWY TO NIE JEDNA 2013 R. CZĘŚĆ I 7 KONKURENCJI ( CZAS 45 MINUT) DO ZDOBYCIA 25 PUNKTÓW KWADRAT MAGICZNY (3 pkt) INTRUZ (4 pkt) PIRAMIDA (3

Bardziej szczegółowo

Wymagania na poszczególne oceny w klasie I gimnazjum do programu nauczania MATEMATYKA NA CZASIE

Wymagania na poszczególne oceny w klasie I gimnazjum do programu nauczania MATEMATYKA NA CZASIE Wymagania na poszczególne oceny w klasie I gimnazjum do programu nauczania MATEMATYKA NA CZASIE I.LICZBY - zaznacza na osi liczbowej punkty odpowiadające liczbom całkowitym, wymiernym(np. 1 2, 2 1 1 ),

Bardziej szczegółowo

ZADANIE 1. Rozwiązanie:

ZADANIE 1. Rozwiązanie: EUROELEKTR Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 200/20 Rozwiązania zadań dla grupy teleinformatycznej na zawody II. stopnia ZNIE ramka logiczna w technologii MOS składa

Bardziej szczegółowo

POZIOM PODSTAWOWY - GR 1 Czas pracy 170 minut

POZIOM PODSTAWOWY - GR 1 Czas pracy 170 minut POZIOM PODSTAWOWY - GR 1 Czas pracy 170 minut Klasa Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron.. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.. W zadaniach

Bardziej szczegółowo

CIĄGI wiadomości podstawowe

CIĄGI wiadomości podstawowe 1 CIĄGI wiadomości podstawowe Jak głosi definicja ciąg liczbowy to funkcja, której dziedziną są liczby naturalne dodatnie (w zadaniach oznacza się to najczęściej n 1) a wartościami tej funkcji są wszystkie

Bardziej szczegółowo

Matematyka test dla uczniów klas piątych

Matematyka test dla uczniów klas piątych Matematyka test dla uczniów klas piątych szkół podstawowych w roku szkolnym 2010/2011 Etap szkolny (60 minut) Dysleksja [suma punktów] Imię i nazwisko... kl.5... Asia postanowiła sprawdzić, ile czasu poświęca

Bardziej szczegółowo

Skrypt 16. Ciągi: Opracowanie L6

Skrypt 16. Ciągi: Opracowanie L6 Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 16 Ciągi: 1. Ciągi liczbowe.

Bardziej szczegółowo

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH Etap Wojewódzki

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH Etap Wojewódzki Kod ucznia - - Dzień Miesiąc Rok pieczątka WKK DATA URODZENIA UCZNIA KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH Etap Wojewódzki Drogi Uczniu Witaj na III etapie konkursu matematycznego. Przeczytaj

Bardziej szczegółowo

OGÓLNE KRYTERIA OCENIANIA DLA KLASY IV

OGÓLNE KRYTERIA OCENIANIA DLA KLASY IV OGÓLNE KRYTERIA OCENIANIA DLA KLASY IV LICZBY NATURALNE - umie dodawać i odejmować pamięciowo w zakresie 100 bez przekraczania progu dziesiątkowego, - zna tabliczkę mnożenia i dzielenia w zakresie 100,

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 2019

LUBELSKA PRÓBA PRZED MATURĄ 2019 1 MATEMATYKA - poziom podstawowy klasa 1 MAJ 2019 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 16 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.

Bardziej szczegółowo

2 Arytmetyka. d r 2 r + d r 1 2 r 1...d d 0 2 0,

2 Arytmetyka. d r 2 r + d r 1 2 r 1...d d 0 2 0, 2 Arytmetyka Niech b = d r d r 1 d 1 d 0 będzie zapisem liczby w systemie dwójkowym Zamiana zapisu liczby b na system dziesiętny odbywa się poprzez wykonanie dodawania d r 2 r + d r 1 2 r 1 d 1 2 1 + d

Bardziej szczegółowo

Podstawy Informatyki. Inżynieria Ciepła, I rok. Wykład 5 Liczby w komputerze

Podstawy Informatyki. Inżynieria Ciepła, I rok. Wykład 5 Liczby w komputerze Podstawy Informatyki Inżynieria Ciepła, I rok Wykład 5 Liczby w komputerze Jednostki informacji Bit (ang. bit) (Shannon, 948) Najmniejsza ilość informacji potrzebna do określenia, który z dwóch równie

Bardziej szczegółowo

Systemy zapisu liczb.

Systemy zapisu liczb. Systemy zapisu liczb. Cele kształcenia: Zapoznanie z systemami zapisu liczb: dziesiętny, dwójkowy, ósemkowy, szesnastkowy. Zdobycie umiejętności wykonywania działań na liczbach w różnych systemach. Zagadnienia:

Bardziej szczegółowo

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2013/2014

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2013/2014 Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2013/2014 KOD UCZNI Etap: Data: Czas pracy: szkolny 13 listopada 2013 r. 120 minut Informacje dla

Bardziej szczegółowo

Wprowadzenie do informatyki - ć wiczenia

Wprowadzenie do informatyki - ć wiczenia Stałoprzecinkowy zapis liczb wymiernych dr inż. Izabela Szczęch WSNHiD Ćwiczenia z wprowadzenia do informatyki Reprezentacja liczb wymiernych Stałoprzecinkowa bez znaku ze znakiem Zmiennoprzecinkowa pojedynczej

Bardziej szczegółowo

Model sieci OSI, protokoły sieciowe, adresy IP

Model sieci OSI, protokoły sieciowe, adresy IP Model sieci OSI, protokoły sieciowe, adresy IP Podstawę działania internetu stanowi zestaw protokołów komunikacyjnych TCP/IP. Wiele z używanych obecnie protokołów zostało opartych na czterowarstwowym modelu

Bardziej szczegółowo

LABORATORIUM Systemy teletransmisji i transmisja danych

LABORATORIUM Systemy teletransmisji i transmisja danych LABORATORIUM Systemy teletransmisji i transmisja danych INSTRUKCJA NR:3 TEMAT: Podstawy adresowania IP w protokole TCP/IP 1 Cel ćwiczenia: WyŜsza Szkoła Technik Komputerowych i Telekomunikacji Zapoznanie

Bardziej szczegółowo

Aby lepiej zrozumieć działanie adresów przedstawmy uproszczony schemat pakietów IP podróżujących w sieci.

Aby lepiej zrozumieć działanie adresów przedstawmy uproszczony schemat pakietów IP podróżujących w sieci. Struktura komunikatów sieciowych Każdy pakiet posiada nagłówki kolejnych protokołów oraz dane w których mogą być zagnieżdżone nagłówki oraz dane protokołów wyższego poziomu. Każdy protokół ma inne zadanie

Bardziej szczegółowo

Systemy liczbowe. 1. Przedstawić w postaci sumy wag poszczególnych cyfr liczbę rzeczywistą R = (10).

Systemy liczbowe. 1. Przedstawić w postaci sumy wag poszczególnych cyfr liczbę rzeczywistą R = (10). Wprowadzenie do inżynierii przetwarzania informacji. Ćwiczenie 1. Systemy liczbowe Cel dydaktyczny: Poznanie zasad reprezentacji liczb w systemach pozycyjnych o różnych podstawach. Kodowanie liczb dziesiętnych

Bardziej szczegółowo

Pracownia Komputerowa wykład V

Pracownia Komputerowa wykład V Pracownia Komputerowa wykład V dr Magdalena Posiadała-Zezula http://www.fuw.edu.pl/~mposiada/pk16 1 Reprezentacje liczb i znaków! Liczby:! Reprezentacja naturalna nieujemne liczby całkowite naturalny system

Bardziej szczegółowo

Arytmetyka komputera. Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka. Opracował: Kamil Kowalski klasa III TI

Arytmetyka komputera. Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka. Opracował: Kamil Kowalski klasa III TI Arytmetyka komputera Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka Opracował: Kamil Kowalski klasa III TI Spis treści 1. Jednostki informacyjne 2. Systemy liczbowe 2.1. System

Bardziej szczegółowo

ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska. 2 3x. 2. Sformułuj odpowiedź.

ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska. 2 3x. 2. Sformułuj odpowiedź. ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska Zad.1. (5 pkt) Sprawdź, czy funkcja określona wzorem x( x 1)( x ) x 3x dla x 1 i x dla x 1 f ( x) 1 3 dla

Bardziej szczegółowo

GSP075 Pakiet. KArty pracy. MateMatyka

GSP075 Pakiet. KArty pracy. MateMatyka GSP075 klasa Pakiet 5 KArty pracy MateMatyka Instrukcja matematyka Uważnie czytaj teksty zadań i polecenia. Rozwiązania wpisuj długopisem lub piórem. Nie używaj długopisu w kolorze czerwonym. W zadaniach,

Bardziej szczegółowo

15. Rozstrzygnąć, czy dwie narysowane figury są swoimi lustrzanymi odbiciami.

15. Rozstrzygnąć, czy dwie narysowane figury są swoimi lustrzanymi odbiciami. KLASA V Ocenę niedostateczną otrzymuje uczeń, który nie spełnia wymagań koniecznych na ocenę dopuszczającą. Wykazuje rażący brak wiadomości i umiejętności, które uniemożliwiają mu świadome uczestnictwo

Bardziej szczegółowo

Pracownia Komputerowa wykład VI

Pracownia Komputerowa wykład VI Pracownia Komputerowa wykład VI dr Magdalena Posiadała-Zezula http://www.fuw.edu.pl/~mposiada 1 Przypomnienie 125 (10) =? (2) Liczby całkowite : Operacja modulo % reszta z dzielenia: 125%2=62 reszta 1

Bardziej szczegółowo

Wymagania programowe uporządkowane według poziomów wymagań na pierwszy semestr MATEMATYKA 2001 KLASA 5

Wymagania programowe uporządkowane według poziomów wymagań na pierwszy semestr MATEMATYKA 2001 KLASA 5 Wymagania programowe uporządkowane według poziomów wymagań na pierwszy semestr MATEMATYKA 2001 KLASA 5 Ocenę dopuszczającą otrzymuje uczeń, który potrafi: 1. Dodać pisemnie dwie czterocyfrowe liczby naturalne.

Bardziej szczegółowo

ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY:

ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY: ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY: KLASA II GIMNAZJUM Wymagania konieczne K dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je zatem opanować

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA 8 DZIAŁ 1. LICZBY I DZIAŁANIA

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA 8 DZIAŁ 1. LICZBY I DZIAŁANIA WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA 8 DZIAŁ 1. LICZBY I DZIAŁANIA zna znaki używane do zapisu liczb w systemie rzymskim; zna zasady zapisu liczb w systemie rzymskim; umie zapisać

Bardziej szczegółowo

Zadanie: BOW Gra w kręgle

Zadanie: BOW Gra w kręgle Zadanie: BOW Gra w kręgle polish BOI 0, dzień. Dostępna pamięć: 6 MB. 30.04.0 Bajtazar jest miłośnikiem gry w kręgle, a także statystyki. Swego czasu spisywał on wyniki gier w kręgle. Niestety, niektóre

Bardziej szczegółowo

KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ

KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ TREŚCI KSZTAŁCENIA WYMAGANIA PODSTAWOWE WYMAGANIA PONADPODSTAWOWE Liczby wymierne i

Bardziej szczegółowo

Próbny egzamin maturalny z matematyki Poziom podstawowy. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA

Próbny egzamin maturalny z matematyki Poziom podstawowy. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL We współpracy PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz egzaminacyjny zawiera

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki Rozwiązania i punktacja

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki Rozwiązania i punktacja Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki Rozwiązania i punktacja ZADANIA ZAMKNIĘTE W zadaniach od 1. do 10. wybierz i zaznacz na karcie odpowiedzi jedną poprawną odpowiedź.

Bardziej szczegółowo

Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 1

Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 1 Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 1 Wyróżniono następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające

Bardziej szczegółowo

Kod ucznia... Powodzenia!

Kod ucznia... Powodzenia! Kod ucznia.... MAŁOPOLSKI KONKURS MATEMATYCZNY dla uczniów dotychczasowych gimnazjów i klas dotychczasowych gimnazjów prowadzonych w szkołach innego typu województwa małopolskiego Rok szkolny 017/018 ETAP

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH Marzena Zbrożyna DOPUSZCZAJĄCY: Uczeń potrafi: odczytać informacje z tabeli odczytać informacje z diagramu

Bardziej szczegółowo

Ćwiczenie Wyznaczanie tras sumarycznych dla adresów IPv4 i IPv6

Ćwiczenie Wyznaczanie tras sumarycznych dla adresów IPv4 i IPv6 Ćwiczenie Wyznaczanie tras sumarycznych dla adresów IPv4 i IPv6 Topologia Tabela adresów Podsieć Adres IPv4 Adres IPv6 HQ LAN1 192.168.64.0/23 2001:DB8:ACAD:E::/64 HQ LAN2 192.168.66.0/23 2001:DB8:ACAD:F::/64

Bardziej szczegółowo

Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON.

Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON. Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON. Zadanie 6. Dane są punkty A=(5; 2); B=(1; -3); C=(-2; -8). Oblicz odległość punktu A od prostej l przechodzącej

Bardziej szczegółowo

1. Napisz program, który wyświetli Twoje dane jako napis Witaj, Imię Nazwisko. 2. Napisz program, który wyświetli wizytówkę postaci:

1. Napisz program, który wyświetli Twoje dane jako napis Witaj, Imię Nazwisko. 2. Napisz program, który wyświetli wizytówkę postaci: 1. Napisz program, który wyświetli Twoje dane jako napis Witaj, Imię Nazwisko. 2. Napisz program, który wyświetli wizytówkę postaci: * Jan Kowalski * * ul. Zana 31 * 3. Zadeklaruj zmienne przechowujące

Bardziej szczegółowo

II WOJEWÓDZKI KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH

II WOJEWÓDZKI KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH II WOJEWÓDZKI KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ ODSTAWOWYCH ETA I - SZKOLNY 14 listopada 2017 r. Godz.10:00 Kod pracy ucznia Suma punktów Czas pracy: 90 minut Liczba punktów możliwych do uzyskania:

Bardziej szczegółowo

Zadanie 1. Algorytmika ćwiczenia

Zadanie 1. Algorytmika ćwiczenia Zadanie 1 Algorytmika ćwiczenia Zadanie 2 Zadanie 3 Zadanie 4 Zadanie 5 Zadanie 6 Zadanie 7 Wiązka zadań Ułamki dwójkowe W systemach pozycyjnych o podstawie innej niż 10 można zapisywać nie tylko liczby

Bardziej szczegółowo

1. Algorytmy przeszukiwania. Przeszukiwanie wszerz i w głąb.

1. Algorytmy przeszukiwania. Przeszukiwanie wszerz i w głąb. 1. Algorytmy przeszukiwania. Przeszukiwanie wszerz i w głąb. Algorytmy przeszukiwania w głąb i wszerz są najczęściej stosowanymi algorytmami przeszukiwania. Wykorzystuje się je do zbadania istnienia połączenie

Bardziej szczegółowo

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Publikacja jest dystrybuowana bezpłatnie Program Operacyjny Kapitał Ludzki Priorytet 9 Działanie 9.1 Poddziałanie

Bardziej szczegółowo

Sieć komputerowa Adresy sprzętowe Adresy logiczne System adresacji IP (wersja IPv4)

Sieć komputerowa Adresy sprzętowe Adresy logiczne System adresacji IP (wersja IPv4) Sieć komputerowa Siecią komputerową nazywamy system (tele)informatyczny łączący dwa lub więcej komputerów w celu wymiany danych między nimi. Sieć może być zbudowana z wykorzystaniem urządzeń takich jak

Bardziej szczegółowo

KRZYŻÓWKA 2. 11. Może być np. równoboczny lub rozwartokątny. Jego pole to a b HASŁO:

KRZYŻÓWKA 2. 11. Może być np. równoboczny lub rozwartokątny. Jego pole to a b HASŁO: KRZYŻÓWKA.Wyznaczają ją dwa punkty.. Jego pole to π r² 3. Jego pole to a a 4.Figura przestrzenna, której podstawą jest dowolny wielokąt, a ściany boczne są trójkątami o wspólnym wierzchołku. 5.Prosta mająca

Bardziej szczegółowo

I. Podstawy języka C powtórka

I. Podstawy języka C powtórka I. Podstawy języka C powtórka Zadanie 1. Utwórz zmienne a = 730 (typu int), b = 106 (typu long long), c = 123.45 (typu double) Wypisz następujące komunikaty: Dane sa liczby: a = 730, b = 106 i c = 123.45.

Bardziej szczegółowo

CO DWIE GŁOWY TO NIE JEDNA

CO DWIE GŁOWY TO NIE JEDNA PRZYKŁADOWE ZADANIA DO POWIATOWEGO KONKURSU MATEMATYCZNEGO CO DWIE GŁOWY TO NIE JEDNA KOD. INTRUZ W każdym czterowyrazowym zestawie ukrył się wyraz INTRUZ, który nie pasuje do pozostałych. Znajdźcie go

Bardziej szczegółowo

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH pieczątka WKK Kod ucznia - - Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP WOJEWÓDZKI Drogi Uczniu, witaj na III etapie konkursu matematycznego. Przeczytaj

Bardziej szczegółowo

Konkurs dla gimnazjalistów Etap II 14 lutego 2013 roku

Konkurs dla gimnazjalistów Etap II 14 lutego 2013 roku Konkurs dla gimnazjalistów Etap II 4 lutego 0 roku Instrukcja dla ucznia. W zadaniach o numerach od. do 5. są podane cztery warianty odpowiedzi: A, B, C, D. Dokładnie jedna z nich jest poprawna. Poprawne

Bardziej szczegółowo

Ćwiczenie 1. Metody określania niepewności pomiaru

Ćwiczenie 1. Metody określania niepewności pomiaru Grzegorz Wielgoszewski Data wykonania ćwiczenia: Nr albumu 134651 7 października 01 Proszę podać obie daty. Grupa SO 7:30 Data sporządzenia sprawozdania: Stanowisko 13 3 listopada 01 Proszę pamiętać o

Bardziej szczegółowo

Wydział Matematyki I Informatyki ul. Słoneczna Olsztyn

Wydział Matematyki I Informatyki ul. Słoneczna Olsztyn 0-70 Olsztyn CIASTO Babcia Chytruska obchodzi wkrótce imieniny. Upiekła ciasto w kształcie prostopadłościanu o wymiarach cm. Spodziewa się, że odwiedzi ją gości. Ponieważ babcia Chytruska nie lubi się

Bardziej szczegółowo

Pracownia Komputerowa wyk ad VI

Pracownia Komputerowa wyk ad VI Pracownia Komputerowa wyk ad VI dr Magdalena Posiada a-zezula Magdalena.Posiadala@fuw.edu.pl http://www.fuw.edu.pl/~mposiada Magdalena.Posiadala@fuw.edu.pl 1 Przypomnienie 125 (10) =? (2) Liczby ca kowite

Bardziej szczegółowo