(duzo, przeczytac raz i zrozumiec powinno wystarczyc. To jest proste.)
|
|
- Czesław Ryszard Jakubowski
- 9 lat temu
- Przeglądów:
Transkrypt
1 39. Typy indeksowania w hurtowniach danych. (duzo, przeczytac raz i zrozumiec powinno wystarczyc. To jest proste.) Po co inne niŝ B-Tree? Bo B-Tree w hurtowniach danych jest zbyt mało efektywny. Oprócz materializowanych perspektyw i przepisywania zapytań, do optymalizacji zapytań analitycznych stosuje się róŝnego rodzaju specjalizowane struktury indeksowe. Najczęściej stosowanymi w praktyce są: indeksy połączeniowe, indeksy bitmapowe i bitmapowe indeksy połączeniowe.
2 Indeks połączeniowy (ang. join index) łączy z sobą rekordy z róŝnych tabel posiadające tę samą wartość atrybutu połączeniowego, jest więc strukturą zawierającą zmaterializowane połączenie wielu tabel. Indeks taki posiada strukturę B drzewa zbudowanego na atrybucie połączeniowym tabeli (bądź na wielu takich atrybutach). Liście indeksu zawierają wspólne wartości atrybutu połączeniowego tabel wraz z listami adresów rekordów w kaŝdej z łączonych tabel. Slajd przedstawia strukturę indeksu połączeniowego zdefiniowanego na atrybucie sklep_id tabeli Sklepy. W tym przypadku, liście indeksu zawierają: - wskaźniki do rekordów opisujących kaŝdy ze sklepów - adresy wszystkich rekordów z tabeli SprzedaŜ opisujących sprzedaŝ danego sklepu. W przykładzie liść z wartością indeksowanego atrybutu sklep_id równą 1010 zawiera wskaźnik do rekordu w tabeli Sklepy opisującego sklep o tym numerze i listę wskaźników do rekordów tabeli SprzedaŜ opisujących sprzedaŝ w sklepie o numerze Ten przykładowy indeks przyspiesza wyszukiwanie danych na temat sprzedaŝy wskazanego sklepu.
3 Ideą indeksu bitmapowego (ang. bitmap index) jest wykorzystanie pojedynczych bitów do zapamiętania informacji o tym, Ŝe dana wartość atrybutu występuje w określonym rekordzie tabeli. Dla kaŝdej unikalnej wartości atrybutu jest przechowywana tablica bitów, zwana mapą bitową. KaŜdy bit mapy odpowiada jednemu rekordowy w tabeli R bit pierwszy odpowiada pierwszemu rekordowi w tabeli R, bit drugi drugiemu rekordowi itp. Dla mapy A = zielony bit n przyjmuje wartość jeden, jeśli wartością atrybutu A rekordu o numerze n jest zielony. W przeciwnym przypadku bit n przyjmuje wartość zero.
4 Liczba bitów mapy bitowej odpowiada liczbie rekordów tabeli R. Indeks bitmapowy jest zbiorem map bitowych dla wszystkich unikalnych wartości danego atrybutu. Indeks tego typu (w zaleŝności od implementacji) moŝe równieŝ posiadać strukturę B drzewa, w którego liściach zamiast adresów rekordów są przechowywane mapy bitowe.
5 Przykład indeksu bitmapowego dla atrybutu typ przedstawiono na slajdzie. PoniewaŜ atrybut typ moŝe przyjąć jedną z czterech wartości, tj. 'coupe', 'limuzyna', 'sedan', 'sport', więc indeks bitmapowy składa się z czterech map - po jednej mapie dla kaŝdej wartości. Przykładowo, pierwszy bit mapy bitowej opisującej samochody 'coupe' przyjmuje wartość 0. Oznacza to, Ŝe wartością atrybutu typ pierwszego rekordu nie jest 'coupe'. Drugi bit tej mapy przyjmuje wartość 1, co oznacza, Ŝe wartością atrybutu typ drugiego rekordu jest 'coupe'.
6 Bitmapowy indeks połączeniowy (ang. bitmap join index) łączy w sobie koncepcję indeksu połączeniowego i bitmapowego. Na slajdzie przedstawiono przykład koncepcji bitmapowego indeksu połączeniowego zdefiniowanego na atrybucie kategoria tabeli Produkty. PoniewaŜ atrybut ten przyjmuje dwie róŝne wartości (kosmetyki, alkohole), więc indeks będzie się składał z dwóch map bitowych. KaŜda z map będzie opisywała rekordy z tabeli SprzedaŜ. Mapa o nazwie 'kosmetyki' będzie opisywała sprzedaŝ kosmetyków, a mapa 'alkohole' - sprzedaŝ alkoholi. Pierwszy bit mapy 'kosmetyki' przyjmuje wartość 1, co oznacza, Ŝe pierwszy rekord w tabeli SprzedaŜ dotyczy kosmetyku. Drugi bit tej mapy przyjmuje równieŝ wartość 1, co równieŝ oznacza, Ŝe drugi rekord tabeli SprzedaŜ dotyczy kosmetyku. Podobnie jest w przypadku bitu 3 i 6 mapy 'kosmetyki'. Implementacyjnie, bitmapowy indeks połączeniowy posiada strukturę B-drzewa, w którego liściach znajdują się mapy bitowe opisujące łączone rekordy.
7 40. Reguły Codda dotyczące OLAP. Multidimensional conceptual view. OLAP operates with CUBEs of data that represent multidimensional construct of data. Event though the name implies three dimensional data, the number of possible dimensions is practically unlimited. Transparency. OLAP systems should be part of an open system that supports heterogeneous data sources. Accessibility. The OLAP should present the user with a single logical schema of the data. Consistent reporting performance. Performance should not degrade as the number of dimensions in the model increases. Client/server architecture. Should be based on open, modular systems. Generic dimensionality. Not limited to 3-D and not biased toward any particular dimension. A function applied to one dimension should also be able to be applied to another. Dynamic sparse-matrix handling. Related both to the idea of nulls in relational databases and to the notion of compressing large files, a sparse matrix is one in which not every cell contains data. OLAP systems should accommodate varying storage and data-handling options. Multiuser support. OLAP systems should support more than one user at the time. Unrestricted cross-dimensional operations. Similar to rule of generic dimensionality; all dimensions are created equal, and operations across data dimensions should not restrict relationships between cells. Intuitive data manipulation. Ideally, users shouldn't have to use menus or perform complex multiple-step operations when an intuitive drag-and-drop action will do. Flexible reporting. Save a tree. Users should be able to print just what they need, and any changes to the underlying financial model should be automatically reflected in reports. Unlimited dimensional and aggregation levels. The OLAP cube can be built with unlimited dimensions, and aggregation of the contained data also does not have practical limits.
Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki
Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel Efektywność przetwarzania OLAP 1. Indeksowanie
Indeksy. Indeks typu B drzewo
Indeksy dodatkowe struktury służące przyśpieszeniu dostępu do danych o użyciu indeksu podczas realizacji poleceń decyduje SZBD niektóre systemy bazodanowe automatycznie tworzą indeksy dla kolumn o wartościach
"Kilka słów" o strojeniu poleceń SQL w kontekście Hurtowni Danych wprowadzenie. Krzysztof Jankiewicz
"Kilka słów" o strojeniu poleceń SQL w kontekście Hurtowni Danych wprowadzenie Krzysztof Jankiewicz Plan Opis schematu dla "kilku słów" Postać polecenia SQL Sposoby dostępu do tabel Indeksy B*-drzewo Indeksy
Hurtownie danych - przegląd technologii
Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel Efektywność przetwarzania OLAP 1. Indeksowanie
Zarządzanie sieciami telekomunikacyjnymi
SNMP Protocol The Simple Network Management Protocol (SNMP) is an application layer protocol that facilitates the exchange of management information between network devices. It is part of the Transmission
Plan wykładu. Hurtownie danych. Problematyka integracji danych. Cechy systemów informatycznych
1 Plan wykładu 2 Hurtownie danych Integracja danych za pomocą hurtowni danych Przetwarzanie analityczne OLAP Model wielowymiarowy Implementacje modelu wielowymiarowego ROLAP MOLAP Odświeżanie hurtowni
Hurtownie danych - przegląd technologii
Efektywność przetwarzania OLAP Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel. Indeksowanie
Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów
Rozpoznawanie twarzy metodą PCA Michał Bereta www.michalbereta.pl 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów Wiemy, że możemy porównywad klasyfikatory np. za pomocą kroswalidacji.
Jakub Pilecki Szymon Wojciechowski
Indeksy w hurtowniach danych Jakub Pilecki Szymon Wojciechowski Plan prezentacji 1. Czym są indeksy? 2. Cel stosowania indeksó w 3. Co należy indeksować? 4. Rodzaje indeksó w 5. B-drzewa (drzewa zró wnoważone)
Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis
Machine Learning for Data Science (CS4786) Lecture11 5 Random Projections & Canonical Correlation Analysis The Tall, THE FAT AND THE UGLY n X d The Tall, THE FAT AND THE UGLY d X > n X d n = n d d The
Systemy OLAP II. Krzysztof Dembczyński. Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska
Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania Semestr letni 2006/07 Plan wykładu Systemy baz
< K (2) = ( Adams, John ), P (2) = adres bloku 2 > < K (1) = ( Aaron, Ed ), P (1) = adres bloku 1 >
Typy indeksów Indeks jest zakładany na atrybucie relacji atrybucie indeksowym (ang. indexing field). Indeks zawiera wartości atrybutu indeksowego wraz ze wskaźnikami do wszystkich bloków dyskowych zawierających
Indeksy w hurtowniach danych
Indeksy w hurtowniach danych Hurtownie danych 2011 Łukasz Idkowiak Tomasz Kamiński Bibliografia Zbyszko Królikowski, Hurtownie danych. Logiczne i fizyczne struktury danych, Wydawnictwo Politechniki Poznańskiej,
Bazy danych - BD. Indeksy. Wykład przygotował: Robert Wrembel. BD wykład 7 (1)
Indeksy Wykład przygotował: Robert Wrembel BD wykład 7 (1) 1 Plan wykładu Problematyka indeksowania Podział indeksów i ich charakterystyka indeks podstawowy, zgrupowany, wtórny indeks rzadki, gęsty Indeks
Logika rozmyta typu 2
Logika rozmyta typu 2 Zbiory rozmyte Funkcja przynależności Interwałowe zbiory rozmyte Funkcje przynależności przedziałów Zastosowanie.9.5 Francuz Polak Niemiec Arytmetyka przedziałów Operacje zbiorowe
Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)
Zakopane, plan miasta: Skala ok. 1:15 000 = City map (Polish Edition) Click here if your download doesn"t start automatically Zakopane, plan miasta: Skala ok. 1:15 000 = City map (Polish Edition) Zakopane,
77. Modelowanie bazy danych rodzaje połączeń relacyjnych, pojęcie klucza obcego.
77. Modelowanie bazy danych rodzaje połączeń relacyjnych, pojęcie klucza obcego. Przy modelowaniu bazy danych możemy wyróżnić następujące typy połączeń relacyjnych: jeden do wielu, jeden do jednego, wiele
Wykaz linii kolejowych, które są wyposażone w urządzenia systemu ETCS
Wykaz kolejowych, które są wyposażone w urządzenia W tablicy znajdującej się na kolejnych stronach tego załącznika zastosowano następujące oznaczenia: - numer kolejowej według instrukcji Wykaz Id-12 (D-29).
Wykaz linii kolejowych, które są wyposażone w urzadzenia systemu ETCS
Wykaz kolejowych, które są wyposażone w urzadzenia W tablicy znajdującej się na kolejnych stronach tego załącznika zastosowano następujące oznaczenia: - numer kolejowej według instrukcji Wykaz Id-12 (D-29).
Stargard Szczecinski i okolice (Polish Edition)
Stargard Szczecinski i okolice (Polish Edition) Janusz Leszek Jurkiewicz Click here if your download doesn"t start automatically Stargard Szczecinski i okolice (Polish Edition) Janusz Leszek Jurkiewicz
Optymalizacja poleceń SQL Metody dostępu do danych
Optymalizacja poleceń SQL Metody dostępu do danych 1 Metody dostępu do danych Określają, w jaki sposób dane polecenia SQL są odczytywane z miejsca ich fizycznej lokalizacji. Dostęp do tabeli: pełne przeglądnięcie,
Hard-Margin Support Vector Machines
Hard-Margin Support Vector Machines aaacaxicbzdlssnafiyn9vbjlepk3ay2gicupasvu4iblxuaw2hjmuwn7ddjjmxm1bkcg1/fjqsvt76fo9/gazqfvn8y+pjpozw5vx8zkpvtfxmlhcwl5zxyqrm2vrg5zw3vxmsoezi4ogkr6phieky5crvvjhriqvdom9l2xxftevuwcekj3lktmhghgniauiyutvrwxtvme34a77kbvg73gtygpjsrfati1+xc8c84bvraowbf+uwnipyehcvmkjrdx46vlykhkgykm3ujjdhcyzqkxy0chur6ax5cbg+1m4bbjptjcubuz4kuhvjoql93hkin5hxtav5x6yyqopnsyuneey5ni4keqrxbar5wqaxbik00icyo/iveiyqqvjo1u4fgzj/8f9x67bzmxnurjzmijtlybwfgcdjgfdtajwgcf2dwaj7ac3g1ho1n4814n7wwjgjmf/ys8fenfycuzq==
Helena Boguta, klasa 8W, rok szkolny 2018/2019
Poniższy zbiór zadań został wykonany w ramach projektu Mazowiecki program stypendialny dla uczniów szczególnie uzdolnionych - najlepsza inwestycja w człowieka w roku szkolnym 2018/2019. Składają się na
Tychy, plan miasta: Skala 1: (Polish Edition)
Tychy, plan miasta: Skala 1:20 000 (Polish Edition) Poland) Przedsiebiorstwo Geodezyjno-Kartograficzne (Katowice Click here if your download doesn"t start automatically Tychy, plan miasta: Skala 1:20 000
OpenPoland.net API Documentation
OpenPoland.net API Documentation Release 1.0 Michał Gryczka July 11, 2014 Contents 1 REST API tokens: 3 1.1 How to get a token............................................ 3 2 REST API : search for assets
Systemowe aspekty baz
Systemowe aspekty baz danych Deklaracja zmiennej Zmienne mogą być wejściowe i wyjściowe Zmienne w T-SQL można deklarować za pomocą @: declare @nazwisko varchar(20) Zapytanie z użyciem zmiennej: select
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition) Robert Respondowski Click here if your download doesn"t start automatically Wojewodztwo Koszalinskie:
Podstawa prawna: Art. 70 pkt 1 Ustawy o ofercie - nabycie lub zbycie znacznego pakietu akcji
Raport bieżący: 41/2018 Data: 2018-05-22 g. 08:01 Skrócona nazwa emitenta: SERINUS ENERGY plc Temat: Przekroczenie progu 5% głosów w SERINUS ENERGY plc Podstawa prawna: Art. 70 pkt 1 Ustawy o ofercie -
Instrukcja konfiguracji usługi Wirtualnej Sieci Prywatnej w systemie Mac OSX
UNIWERSYTETU BIBLIOTEKA IEGO UNIWERSYTETU IEGO Instrukcja konfiguracji usługi Wirtualnej Sieci Prywatnej w systemie Mac OSX 1. Make a new connection Open the System Preferences by going to the Apple menu
Revenue Maximization. Sept. 25, 2018
Revenue Maximization Sept. 25, 2018 Goal So Far: Ideal Auctions Dominant-Strategy Incentive Compatible (DSIC) b i = v i is a dominant strategy u i 0 x is welfare-maximizing x and p run in polynomial time
Modele danych - wykład V. Zagadnienia. 1. Wprowadzenie 2. MOLAP modele danych 3. ROLAP modele danych 4. Podsumowanie 5. Zadanie fajne WPROWADZENIE
Modele danych - wykład V Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2006 Zagadnienia 1. Wprowadzenie 2. MOLAP modele danych 3. modele danych 4. Podsumowanie 5. Zadanie fajne
Indeksowanie w bazach danych
w bazach Katedra Informatyki Stosowanej AGH 5grudnia2013 Outline 1 2 3 4 Czym jest indeks? Indeks to struktura, która ma przyspieszyć wyszukiwanie. Indeks definiowany jest dla atrybutów, które nazywamy
Modele danych - wykład V
Modele danych - wykład V Paweł Skrobanek, C-3 pok. 323 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2006 Zagadnienia 1. Wprowadzenie 2. MOLAP modele danych 3. ROLAP modele danych 4. Podsumowanie 5. Zadanie
Raport bieżący: 44/2018 Data: g. 21:03 Skrócona nazwa emitenta: SERINUS ENERGY plc
Raport bieżący: 44/2018 Data: 2018-05-23 g. 21:03 Skrócona nazwa emitenta: SERINUS ENERGY plc Temat: Zawiadomienie o zmianie udziału w ogólnej liczbie głosów w Serinus Energy plc Podstawa prawna: Inne
ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL
Read Online and Download Ebook ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL DOWNLOAD EBOOK : ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA Click link bellow and free register
SubVersion. Piotr Mikulski. SubVersion. P. Mikulski. Co to jest subversion? Zalety SubVersion. Wady SubVersion. Inne różnice SubVersion i CVS
Piotr Mikulski 2006 Subversion is a free/open-source version control system. That is, Subversion manages files and directories over time. A tree of files is placed into a central repository. The repository
UPDATE Studenci SET Rok = Rok + 1 WHERE Rodzaj_studiow =' INŻ_ST'; UPDATE Studenci SET Rok = Rok 1 WHERE Nr_albumu IN ( '111345','100678');
polecenie UPDATE służy do aktualizacji zawartości wierszy tabel lub perspektyw składnia: UPDATE { } SET { { = DEFAULT NULL}, {
Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019
Poniższy zbiór zadań został wykonany w ramach projektu Mazowiecki program stypendialny dla uczniów szczególnie uzdolnionych - najlepsza inwestycja w człowieka w roku szkolnym 2018/2019. Tresci zadań rozwiązanych
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition) Robert Respondowski Click here if your download doesn"t start automatically Wojewodztwo Koszalinskie:
Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science
Proposal of thesis topic for mgr in (MSE) programme 1 Topic: Monte Carlo Method used for a prognosis of a selected technological process 2 Supervisor: Dr in Małgorzata Langer 3 Auxiliary supervisor: 4
How to share data from SQL database table to the OPC Server? Jak udostępnić dane z tabeli bazy SQL do serwera OPC? samouczek ANT.
Jak udostępnić dane z tabeli bazy SQL do serwera OPC? samouczek ANT How to share data from SQL database table to the OPC Server? ANT tutorial Krok 1: Uruchom ANT Studio i dodaj do drzewka konfiguracyjnego
Indeksy. Rozdział 18. Indeksy. Struktura indeksu. Adres rekordu
Indeksy Rozdział 8 Indeksy Indeksy B-drzewo i bitmapowe, zwykłe i złoŝone, unikalne i nieunikalne, odwrócone, funkcyjne, skompresowane, bitmapowe połączeniowe. Zarządzanie indeksami. dodatkowe struktury
Systemowe aspekty baz danych
Systemowe aspekty baz danych Deklaracja zmiennej Zmienne mogą być wejściowe i wyjściowe Zmienne w T-SQL można deklarować za pomocą @: declare @nazwisko varchar(20) Zapytanie z użyciem zmiennej: select
MaPlan Sp. z O.O. Click here if your download doesn"t start automatically
Mierzeja Wislana, mapa turystyczna 1:50 000: Mikoszewo, Jantar, Stegna, Sztutowo, Katy Rybackie, Przebrno, Krynica Morska, Piaski, Frombork =... = Carte touristique (Polish Edition) MaPlan Sp. z O.O Click
INDEKSY. Biologiczne Aplikacje Baz Danych. dr inż. Anna Leśniewska
INDEKSY Biologiczne Aplikacje Baz Danych dr inż. Anna Leśniewska alesniewska@cs.put.poznan.pl INDEKSY dodatkowe struktury służące przyspieszaniu dostępu do danych, tworzone dla relacji, są jednak niezależne
Optymalizacja poleceń SQL Indeksy
Optymalizacja poleceń SQL Indeksy Indeksy Dodatkowe struktury służące przyspieszaniu dostępu do danych. Tworzone dla relacji, są jednak niezależne logicznie i fizycznie od danych relacji. O użyciu indeksu
Plan wykładu. Klucz wyszukiwania. Pojęcie indeksu BAZY DANYCH. Pojęcie indeksu - rodzaje indeksów Metody implementacji indeksów.
Plan wykładu 2 BAZY DANYCH Wykład 4: Indeksy. Pojęcie indeksu - rodzaje indeksów Metody implementacji indeksów struktury statyczne struktury dynamiczne Małgorzata Krętowska Wydział Informatyki PB Pojęcie
www.irs.gov/form990. If "Yes," complete Schedule A Schedule B, Schedule of Contributors If "Yes," complete Schedule C, Part I If "Yes," complete Schedule C, Part II If "Yes," complete Schedule C, Part
kdpw_stream Struktura komunikatu: Status komunikatu z danymi uzupełniającymi na potrzeby ARM (auth.ste ) Data utworzenia: r.
kdpw_stream Struktura komunikatu: Status komunikatu z danymi uzupełniającymi na potrzeby ARM (auth.ste.001.01) Data utworzenia: 12.09.2017 r. : Status komunikatu z danymi uzupełniającymi na potrzeby ARM
Wprowadzenie do hurtowni danych
Wprowadzenie do hurtowni danych przygotował: Paweł Kasprowski Kostka Kostka (cube) to podstawowy element hurtowni Kostka jest wielowymiarowa (od 1 do N wymiarów) Kostka składa się z: faktów wektora wartości
deep learning for NLP (5 lectures)
TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 6: Finish Transformers; Sequence- to- Sequence Modeling and AJenKon 1 Roadmap intro (1 lecture) deep learning for NLP (5
Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)
Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition) J Krupski Click here if your download doesn"t start automatically Karpacz, plan miasta 1:10 000: Panorama
TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 8: Structured PredicCon 2
TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 8: Structured PredicCon 2 1 Roadmap intro (1 lecture) deep learning for NLP (5 lectures) structured predic+on (4 lectures)
OSI Network Layer. Network Fundamentals Chapter 5. Version Cisco Systems, Inc. All rights reserved. Cisco Public 1
OSI Network Layer Network Fundamentals Chapter 5 Version 4.0 1 OSI Network Layer Network Fundamentals Rozdział 5 Version 4.0 2 Objectives Identify the role of the Network Layer, as it describes communication
SNP SNP Business Partner Data Checker. Prezentacja produktu
SNP SNP Business Partner Data Checker Prezentacja produktu Istota rozwiązania SNP SNP Business Partner Data Checker Celem produktu SNP SNP Business Partner Data Checker jest umożliwienie sprawdzania nazwy
Extraclass. Football Men. Season 2009/10 - Autumn round
Extraclass Football Men Season 2009/10 - Autumn round Invitation Dear All, On the date of 29th July starts the new season of Polish Extraclass. There will be live coverage form all the matches on Canal+
ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS.
ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS. Strona 1 1. Please give one answer. I am: Students involved in project 69% 18 Student not involved in
SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like
SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1 I SSW1.1, HFW Fry #65, Zeno #67 Benchmark: Qtr.1 like SSW1.2, HFW Fry #47, Zeno #59 Benchmark: Qtr.1 do SSW1.2, HFW Fry #5, Zeno #4 Benchmark: Qtr.1 to SSW1.2,
Modelowanie wymiarów
Wymiar Modelowanie wymiarów struktura umożliwiająca grupowanie danych z tabeli faktów implementowana jako obiekt bazy danych DIMENSION wykorzystanie DIMENSION zaawansowane przepisywanie zapytań (ang. query
Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering
Machine Learning for Data Science (CS4786) Lecture 11 Spectral Embedding + Clustering MOTIVATING EXAMPLE What can you say from this network? MOTIVATING EXAMPLE How about now? THOUGHT EXPERIMENT For each
Struktury proponowane dla unikalnych rozwiązań architektonicznych.
23 Struktury proponowane dla unikalnych rozwiązań architektonicznych.. System fundamentu zespolonego może być zastosowany jako bezpieczna podstawa dla obiektów silnie obciążonych mogących być zlokalizowanymi
ITIL 4 Certification
4 Certification ITIL 3 Certification ITIL Master scheme ITIL Expert 5 Managing across the lifecycle 5 3 SS 3 SD 3 ST 3 SO 3 CS1 4 OSA 4 PPO 4 RCV 4 SOA Ścieżka lifecycle Ścieżka Capability 3 ITIL Practitioner
MAGNESY KATALOG d e s i g n p r o d u c e d e l i v e r
MAGNESY KATALOG design produce deliver MAGNET 0,4 / 0,75MM owal, prostokąt, koło, kwadrat od 50 sztuk Flexible magnet 0.4 = strength example: able to hold one A4 sheet. 0.75 = strength example: able to
Zestawienie czasów angielskich
Zestawienie czasów angielskich Źródło: http://www.czasy-angielskie.com.pl/ Zobaczymy teraz jak zachowują się zdania w języku angielskim w poszczególnych czasach. Jedno zdanie będziecie mogli porównać w
Kostki OLAP i język MDX
Kostki OLAP i język MDX 24 kwietnia 2015 r. Opis pliku z zadaniami Wszystkie zadania na zajęciach będą przekazywane w postaci plików PDF sformatowanych jak ten. Będą się na nie składały różne rodzaje zadań,
Installation of EuroCert software for qualified electronic signature
Installation of EuroCert software for qualified electronic signature for Microsoft Windows systems Warsaw 28.08.2019 Content 1. Downloading and running the software for the e-signature... 3 a) Installer
SHP / SHP-T Standard and Basic PLUS
Range Features ErP compliant High Pressure Sodium Lamps Long life between 24,000 to 28,000 hours, T90 at 16,000 hours Strong performance with high reliability Car park, Street and Floodlighting applications
Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski
: idea Indeksowanie: Drzewo decyzyjne, przeszukiwania binarnego: F = {5, 7, 10, 12, 13, 15, 17, 30, 34, 35, 37, 40, 45, 50, 60} 30 12 40 7 15 35 50 Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski
Bazy danych. wprowadzenie teoretyczne. Piotr Prekurat 1
Bazy danych wprowadzenie teoretyczne Piotr Prekurat 1 Baza danych Jest to zbiór danych lub jakichkolwiek innych materiałów i elementów zgromadzonych według określonej systematyki lub metody. Zatem jest
wykład Organizacja plików Opracował: dr inż. Janusz DUDCZYK
wykład Organizacja plików Opracował: dr inż. Janusz DUDCZYK 1 2 3 Pamięć zewnętrzna Pamięć zewnętrzna organizacja plikowa. Pamięć operacyjna organizacja blokowa. 4 Bufory bazy danych. STRUKTURA PROSTA
Optymalizacja poleceń SQL
Optymalizacja poleceń SQL Optymalizacja kosztowa i regułowa, dyrektywa AUTOTRACE w SQL*Plus, statystyki i histogramy, metody dostępu i sortowania, indeksy typu B* drzewo, indeksy bitmapowe i funkcyjne,
Życie za granicą Studia
- Uczelnia I would like to enroll at a university. Wyrażenie chęci zapisania się na uczelnię I want to apply for course. an undergraduate a postgraduate a PhD a full-time a part-time an online I would
Sargent Opens Sonairte Farmers' Market
Sargent Opens Sonairte Farmers' Market 31 March, 2008 1V8VIZSV7EVKIRX8(1MRMWXIVSJ7XEXIEXXLI(ITEVXQIRXSJ%KVMGYPXYVI *MWLIVMIWERH*SSHTIVJSVQIHXLISJJMGMEPSTIRMRKSJXLI7SREMVXI*EVQIVW 1EVOIXMR0E]XS[R'S1IEXL
Język SQL. Rozdział 10. Perspektywy Stosowanie perspektyw, tworzenie perspektyw prostych i złożonych, perspektywy modyfikowalne i niemodyfikowalne.
Język SQL. Rozdział 10. Perspektywy Stosowanie perspektyw, tworzenie perspektyw prostych i złożonych, perspektywy modyfikowalne i niemodyfikowalne. 1 Perspektywa Perspektywa (ang. view) jest strukturą
Miedzy legenda a historia: Szlakiem piastowskim z Poznania do Gniezna (Biblioteka Kroniki Wielkopolski) (Polish Edition)
Miedzy legenda a historia: Szlakiem piastowskim z Poznania do Gniezna (Biblioteka Kroniki Wielkopolski) (Polish Edition) Piotr Maluskiewicz Click here if your download doesn"t start automatically Miedzy
OSI Network Layer. Network Fundamentals Chapter 5. ITE PC v4.0 Chapter Cisco Systems, Inc. All rights reserved.
OSI Network Layer Network Fundamentals Chapter 5 1 Network Layer Identify the role of the Network Layer, as it describes communication from one end device to another end device Examine the most common
STAŁE TRASY LOTNICTWA WOJSKOWEGO (MRT) MILITARY ROUTES (MRT)
AIP VFR POLAND VFR ENR 2.4-1 VFR ENR 2.4 STAŁE TRASY LOTNICTWA WOJSKOWEGO (MRT) MILITARY ROUTES (MRT) 1. INFORMACJE OGÓLNE 1. GENERAL 1.1 Konkretne przebiegi tras MRT wyznaczane są według punktów sieci
Country fact sheet. Noise in Europe overview of policy-related data. Poland
Country fact sheet Noise in Europe 2015 overview of policy-related data Poland April 2016 The Environmental Noise Directive (END) requires EU Member States to assess exposure to noise from key transport
Zaawansowane systemy baz danych - ZSBD. Hurtownie danych 1. Problematyka hurtowni danych. Wykład przygotował: Robert Wrembel. ZSBD wykład 12 (1)
Hurtownie danych 1 Problematyka hurtowni danych Wykład przygotował: Robert Wrembel ZSBD wykład 12 (1) 1 Plan wykładu Problematyka integracji danych Integracja danych za pomocą hurtowni danych Przetwarzanie
Strona główna > Produkty > Systemy regulacji > System regulacji EASYLAB - LABCONTROL > Program konfiguracyjny > Typ EasyConnect.
Typ EasyConnect FOR THE COMMISSIONING AND DIAGNOSIS OF EASYLAB COMPONENTS, FSE, AND FMS Software for the configuration and diagnosis of controllers Type TCU3, adapter modules TAM, automatic sash device
Wymagania na podstawie Podstawy programowej kształcenia ogólnego dla szkoły podstawowej język obcy oraz polecanego podręcznika New Exam Challanges 4 *, wyd. Pearson Cele z podstawy programowej: rozumienie
THE ADMISSION APPLICATION TO PRIVATE PRIMARY SCHOOL. PART I. Personal information about a child and his/her parents (guardians) Child s name...
THE ADMISSION APPLICATION TO PRIVATE PRIMARY SCHOOL PART I. Personal information about a child and his/her parents (guardians) Child s name... Child s surname........ Date and place of birth..... Citizenship.....
& portable system. Keep the frame, change the graphics, change position. Create a new stand!
-EASY FRAMESmodular & portable system -EASY FRAMESmodular & portable system by Keep the frame, change the graphics, change position. Create a new stand! koncepcja the concept EASY FRAMES to system, który
Blow-Up: Photographs in the Time of Tumult; Black and White Photography Festival Zakopane Warszawa 2002 / Powiekszenie: Fotografie w czasach zgielku
Blow-Up: Photographs in the Time of Tumult; Black and White Photography Festival Zakopane Warszawa 2002 / Powiekszenie: Fotografie w czasach zgielku Juliusz and Maciej Zalewski eds. and A. D. Coleman et
Angielski bezpłatne ćwiczenia - gramatyka i słownictwo. Ćwiczenie 4
Angielski bezpłatne ćwiczenia - gramatyka i słownictwo. Ćwiczenie 4 Przetłumacz na język angielski.klucz znajdziesz w drugiej części ćwiczenia. 1. to be angry with somebody gniewać się na kogoś Czy gniewasz
TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction
TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 9: Inference in Structured Prediction 1 intro (1 lecture) Roadmap deep learning for NLP (5 lectures) structured prediction
WYŁĄCZNIK CZASOWY OUTDOOR TIMER
003-582 PL WYŁĄCZNIK CZASOWY Instrukcja obsługi (Tłumaczenie oryginalnej instrukcji) Ważny! Przed użyciem uważnie przeczytaj instrukcję obsługi! Zachowaj ją na przyszłość. EN OUTDOOR TIMER Operating instructions
SNP Business Partner Data Checker. Prezentacja produktu
SNP Business Partner Data Checker Prezentacja produktu Istota rozwiązania SNP Business Partner Data Checker Celem produktu SNP Business Partner Data Checker jest umożliwienie sprawdzania nazwy oraz danych
www.irs.gov/form990. If "Yes," complete Schedule A Schedule B, Schedule of Contributors If "Yes," complete Schedule C, Part I If "Yes," complete Schedule C, Part II If "Yes," complete Schedule C, Part
Uchwały podjęte przez Nadzwyczajne WZA w dniu 28 października 2014 roku
Serwisy Zamknięte GPW https://4brokernet.gpw.pl/4bn_prd/index.php/pl/,danainfo=.alpedp9hu2vjr19nr43r8... Strona 1 z 3 2014-10-28 Serwisy Zamknięte GPW ktg@eurosystem.com.pl ktg@eurosystem.com.pl (Emitenci)
Marzec: food, advertising, shopping and services, verb patterns, adjectives and prepositions, complaints - writing
Wymagania na podstawie Podstawy programowej kształcenia ogólnego dla szkoły podstawowej język obcy oraz polecanego podręcznika New Matura Success Intermediate * Cele z podstawy programowej: rozumienie
Indeksy. Wprowadzenie. Indeksy jednopoziomowe indeks podstawowy indeks zgrupowany indeks wtórny. Indeksy wielopoziomowe
1 Plan rozdziału 2 Indeksy Indeksy jednopoziomowe indeks podstawowy indeks zgrupowany indeks wtórny Indeksy wielopoziomowe Indeksy typu B-drzewo B-drzewo B+ drzewo B* drzewo Wprowadzenie 3 Indeks podstawowy
Standardized Test Practice
Standardized Test Practice 1. Which of the following is the length of a three-dimensional diagonal of the figure shown? a. 4.69 units b. 13.27 units c. 13.93 units 3 d. 16.25 units 8 2. Which of the following
Procedury wyzwalane. (c) Instytut Informatyki Politechniki Poznańskiej 1
Procedury wyzwalane procedury wyzwalane, cel stosowania, typy wyzwalaczy, wyzwalacze na poleceniach DML i DDL, wyzwalacze typu INSTEAD OF, przykłady zastosowania, zarządzanie wyzwalaczami 1 Procedury wyzwalane
POLITYKA PRYWATNOŚCI / PRIVACY POLICY
POLITYKA PRYWATNOŚCI / PRIVACY POLICY TeleTrade DJ International Consulting Ltd Sierpień 2013 2011-2014 TeleTrade-DJ International Consulting Ltd. 1 Polityka Prywatności Privacy Policy Niniejsza Polityka
17-18 września 2016 Spółka Limited w UK. Jako Wehikuł Inwestycyjny. Marek Niedźwiedź. InvestCamp 2016 PL
17-18 września 2016 Spółka Limited w UK Jako Wehikuł Inwestycyjny InvestCamp 2016 PL Marek Niedźwiedź A G E N D A Dlaczego Spółka Ltd? Stabilność Bezpieczeństwo Narzędzia 1. Stabilność brytyjskiego systemu
strukturalny język zapytań używany do tworzenia i modyfikowania baz danych oraz do umieszczania i pobierania danych z baz danych
SQL SQL (ang. Structured Query Language): strukturalny język zapytań używany do tworzenia strukturalny język zapytań używany do tworzenia i modyfikowania baz danych oraz do umieszczania i pobierania danych
DO MONTAŻU POTRZEBNE SĄ DWIE OSOBY! INSTALLATION REQUIRES TWO PEOPLE!
1 HAPPY ANIMALS B09 INSTRUKCJA MONTAŻU ASSEMBLY INSTRUCTIONS Akcesoria / Fittings K1 M M1 ZM1 Z T G1 17 szt. / pcs 13 szt. / pcs B1 13 szt. / pcs W4 13 szt. / pcs W6 14 szt. / pcs U1 1 szt. / pcs U N1
HAPPY ANIMALS L01 HAPPY ANIMALS L03 HAPPY ANIMALS L05 HAPPY ANIMALS L07
HAPPY ANIMALS L0 HAPPY ANIMALS L0 HAPPY ANIMALS L0 HAPPY ANIMALS L07 INSTRUKCJA MONTAŻU ASSEMBLY INSTRUCTIONS Akcesoria / Fittings K ZW W8 W7 Ø x 6 szt. / pcs Ø7 x 70 Narzędzia / Tools DO MONTAŻU POTRZEBNE