Wybrane zagadnienia ochrony przeciwporażeniowej w instalacjach elektrycznych do 1 kv

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wybrane zagadnienia ochrony przeciwporażeniowej w instalacjach elektrycznych do 1 kv"

Transkrypt

1 mgr inż. Andrzej Boczkowski Warszawa, r. Stowarzyszenie Elektryków Polskich Sekcja Instalacji i Urządzeń Elektrycznych Wybrane zagadnienia ochrony przeciwporażeniowej w instalacjach elektrycznych do 1 kv Od instalacji elektrycznych wymaga się aby były funkcjonalne, trwałe i estetyczne oraz bezpieczne w użytkowaniu. Bezpieczeństwo użytkowania instalacji elektrycznych sprowadza się do zapewnienia ochrony przed następującymi podstawowymi zagrożeniami: porażeniem prądem elektrycznym, prądami przeciążeniowymi i zwarciowymi, przepięciami łączeniowymi i pochodzącymi od wyładowań atmosferycznych, skutkami cieplnymi. Skuteczność ochrony przed wyżej wymienionymi zagrożeniami zależy od zastosowanych, w instalacjach elektrycznych, rozwiązań oraz środków technicznych. Miarą skuteczności tej ochrony jest liczba śmiertelnych wypadków porażeń prądem elektrycznym oraz liczba pożarów, będących następstwem wad lub nieprawidłowej eksploatacji instalacji elektrycznych. Z przeprowadzonych analiz wynika, że liczba śmiertelnych wypadków porażeń prądem elektrycznym w ciągu roku, przypadająca na jeden milion mieszkańców w Polsce zmniejszyła się z 9,5 w latach do 4,2 w latach z tendencją dalszego zmniejszania się w następnych latach. Jednak nadal liczba śmiertelnych wypadków porażeń prądem elektrycznym jest w Polsce 2 3-krotnie większa niż w krajach Zachodniej Europy. Liczba śmiertelnych wypadków poza statystycznym miejscem pracy, spowodowanych porażeniem prądem elektrycznym, w stosunku do ogółu śmiertelnych wypadków porażeń prądem elektrycznym wynosi w Polsce około 90 %. Wynika z tego, że niebezpieczeństwo śmiertelnych porażeń prądem elektrycznym występuje przede wszystkim w mieszkaniach i budynkach mieszkalnych oraz w gospodarstwach rolniczych i ogrodniczych. Nadal najwięcej wypadków odnotowuje się na wsi, prawie dwukrotnie większy wskaźnik śmiertelnych wypadków w stosunku do wypadków w mieście. Równie częste są przypadki powstania pożarów spowodowanych niesprawną instalacją elektryczną. Ich procentowy udział w ogólnej liczbie pożarów w budynkach, według danych za 2006 rok jest na poziomie 12 %. Zasadniczy wpływ na dużą liczbę śmiertelnych porażeń prądem elektrycznym oraz pożarów w Polsce ma na ogół zły stan techniczny instalacji elektrycznych w obiektach budowlanych, w tym w mieszkaniach i budynkach mieszkalnych oraz w gospodarstwach rolniczych i ogrodniczych, a także stosowanie niedoskonałych i niewystarczających środków ochrony przed zagrożeniami w tych instalacjach, a mianowicie: powszechne stosowanie układu sieci TN-C w instalacjach elektrycznych z przewodami o małych przekrojach (1,5 10mm 2 ) przeważnie aluminiowymi, zwiększającymi możliwość uszkodzeń mechanicznych i przerw, szczególnie w przewodach ochronnoneutralnych PEN występujących w tym układzie sieci. Stąd wynikające często przypadki pojawiania się na obudowach metalowych odbiorników napięć dotykowych wyższych od dopuszczalnych długotrwale. Również pojawianie się na przewodzie PEN napięcia niekorzystnego dla użytkowanych odbiorników, wywołanego przepływem przez ten przewód prądu wyrównawczego, spowodowanego zaistnieniem asymetrii prądowej w instalacji,

2 2 stosowanie układu sieci TT, nie zawsze gwarantującego skuteczność ochrony przeciwporażeniowej, głównie z uwagi na dość często występujące trudności w zapewnieniu wymaganych rezystancji uziemień oraz przypadki przerw w przewodach uziemiających, niestosowanie połączeń wyrównawczych dodatkowych (miejscowych), a także bardzo często połączeń wyrównawczych głównych, niestosowanie ochrony przed dotykiem pośrednim (ochrony przy uszkodzeniu) w pomieszczeniach o podłodze źle przewodzącej, przeznaczonych na stały pobyt ludzi, pomimo występowania w tych pomieszczeniach metalowych uziemionych rur i grzejników centralnego ogrzewania oraz metalowych rur wodociągowych i gazowych, niestosowanie wyłączników ochronnych różnicowoprądowych, niestosowanie ograniczników przepięć, w rozwiązaniach instalacji elektrycznych prowadzenie przewodów w sposób wykluczający ich wymienialność, stosowanie zbyt małej liczby obwodów odbiorczych oraz gniazd wtyczkowych i wypustów oświetleniowych. W Polsce, w miastach i na wsi, istnieje ponad 11 milionów mieszkań oraz ponad 2 miliony gospodarstw rolniczych i ogrodniczych. Instalacje elektryczne w tych obiektach, z wyjątkiem budowanych w ostatnich latach, nie odpowiadają wymaganiom Warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie oraz wymaganiom Polskiej Normy PN-IEC Instalacje elektryczne w obiektach budowlanych. Są to instalacje elektryczne nie w pełni sprawne, będące źródłem wyżej wymienionych zagrożeń. Istnieje w związku z tym konieczność modernizacji instalacji elektrycznych w obiektach budowlanych, w tym szczególnie w mieszkaniach i budynkach mieszkalnych oraz w gospodarstwach rolniczych i ogrodniczych. W instalacjach modernizowanych i przebudowywanych lub nowo budowanych należy zapewnić konieczność realizacji nowych, preferowanych rozwiązań, które są objęte wymaganiami Warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie oraz wymaganiami Polskich Norm, powołanych w tych Warunkach Technicznych, w tym przede wszystkim wymaganiami normy PN-IEC Instalacje elektryczne w obiektach budowlanych.

3 3 Przepisy ochrony przeciwporażeniowej, zawarte w normie PN-IEC 60364, są przede wszystkim odzwierciedleniem rozpoznania skutków przepływu prądu elektrycznego przez ciało ludzkie, dostępnych środków ochrony oraz warunków ekonomicznych. W ostatnich latach nastąpił znaczny postęp w rozpoznaniu skutków rażenia człowieka prądem. Prowadzone w tym zakresie badania na ludziach i zwierzętach były przedmiotem szczegółowych analiz oraz raportów Międzynarodowej Komisji Elektrotechnicznej (IEC). W kolejnych wydaniach raportu 479 Komisji IEC opublikowane zostały uzgodnione poglądy, dotyczące reakcji organizmu człowieka na przepływ prądu przemiennego i stałego. Skutki oddziaływania prądu przemiennego o częstotliwości 50/60 Hz na ciało ludzkie zależą od wartości prądu I, przepływającego przez ciało ludzkie oraz czasu przepływu t. Ze względu na prawdopodobieństwo występowania określonych skutków można wyróżnić następujące strefy przedstawione na rysunku nr 1: Rys. 1. AC-1 AC-2 AC-3 AC-4 Strefy skutków oddziaływania prądu przemiennego o częstotliwości 50/60 Hz na ciało ludzkie, na drodze lewa ręka - stopy zazwyczaj brak reakcji organizmu, zazwyczaj nie występują szkodliwe skutki patofizjologiczne. Linia b jest progiem samodzielnego uwolnienia człowieka od kontaktu z częścią pod napięciem, zazwyczaj nie występują uszkodzenia organiczne. Prawdopodobieństwo skurczu mięśni i trudności w oddychaniu przy przepływie prądu w czasie dłuższym niż 2 s. Odwracalne zakłócenia powstawania i przenoszenia impulsów w sercu, włącznie z migotaniem przedsionków i przejściową blokadą pracy serca, bez migotania komór serca, wzrastające wraz z wielkością prądu i czasem jego przepływu, dodatkowo, oprócz skutków charakterystycznych dla strefy AC-3, pojawia się wzrastające wraz z wartością prądu i czasem jego przepływu niebezpieczeństwo skutków patofizjologicznych, np. zatrzymanie czynności serca, zatrzymanie oddychania i ciężkie oparzenia.

4 4 Ze względu na prawdopodobieństwo wywołania migotania komór serca wyróżnia się następujące strefy: AC % przypadków migotania komór serca, AC-4.2 nie więcej niż 50 % przypadków, AC-4.3 powyżej 50 % przypadków. Przyjęto, że graniczna bezpieczna wartość prądu rażeniowego, płynącego w dłuższym czasie przez ciało ludzkie, wynosi 30 ma dla prądu przemiennego. Znajomość współczynnika prądu serca F pozwala na obliczanie prądów I d na innych drogach przepływu niż lewa ręka stopy, które stanowią to samo niebezpieczeństwo wystąpienia migotania komór serca w odniesieniu do prądu I lewa ręka - stopy, przedstawionego na rysunku nr 1. Jego wartość jest stosunkiem: gdzie: I I I F =, Id = (1) Id F prąd płynący przez ciało ludzkie na drodze lewa ręka - stopy przedstawiony na rysunku nr 1, I d prąd płynący przez ciało ludzkie na drogach przedstawionych w tablicy nr 1, wywołujący te same skutki jak prąd I, F współczynnik prądu serca, o wartościach dla różnych dróg przepływu prądu I d podanych w tablicy nr 1. Tablica 1. Współczynnik prądu serca dla różnych dróg przepływu prądu przez ciało ludzkie Droga przepływu prądu przez ciało ludzkie Współczynnik prądu serca F Lewa ręka do lewej stopy, prawej stopy lub obydwu stóp 1,0 Obydwie ręce do obydwu stóp 1,0 Lewa ręka do prawej ręki 0,4 Prawa ręka do lewej stopy, prawej stopy lub obydwu stóp 0,8 Plecy do prawej ręki 0,3 Plecy do lewej ręki 0,7 Klatka piersiowa do prawej ręki 1,3 Klatka piersiowa do lewej ręki 1,5 Pośladek do lewej ręki, prawej ręki lub obydwu rąk 0,7 Przykład: prąd 200 ma płynący przez ciało ludzkie na drodze lewa ręka do prawej ręki powoduje taki sam skutek, jak prąd 80 ma płynący na drodze lewa ręka do obydwu stóp. Skutki oddziaływania prądu stałego na ciało ludzkie zależą od wartości prądu I, przepływającego przez ciało ludzkie oraz czasu przepływu t. Ze względu na prawdopodobieństwo występowania określonych skutków można wyróżnić następujące strefy przedstawione na rysunku nr 2.

5 5 Rys. 2. Strefy skutków oddziaływania prądu stałego (prąd wznoszący) na ciało ludzkie, na drodze lewa ręka - stopy DC-1 DC-2 zazwyczaj brak reakcji organizmu, zazwyczaj nie występują szkodliwe skutki patofizjologiczne, DC-3 zazwyczaj nie występują uszkodzenia organiczne. Prawdopodobieństwo odwracalnych zakłóceń powstawania i przewodzenia impulsów w sercu, wzrastających wraz z natężeniem prądu i czasem, DC-4 prawdopodobieństwo wywołania migotania komór serca oraz wzrastające wraz z natężeniem prądu i czasem inne szkodliwe skutki patofizjologiczne, np. ciężkie oparzenia. Ze względu na prawdopodobieństwo wywołania migotania komór serca wyróżnia się następujące strefy: DC % przypadków migotania komór serca, DC-4.2 nie więcej niż 50 % przypadków, DC-4.3 powyżej 50 % przypadków. Informacje dotyczące wypadków porażeń prądem stałym oraz przeprowadzone badania wskazują, że: niebezpieczeństwo migotania komór serca jest w zasadzie związane z prądami wzdłużnymi (prąd płynący wzdłuż tułowia ciała ludzkiego, np. od ręki do stóp). Dla prądów poprzecznych (prąd płynący w poprzek tułowia ciała ludzkiego, np. od ręki do ręki) migotania komór serca mogą pojawiać się przy większych natężeniach prądu, próg migotania komór serca dla prądów opadających (prąd płynący przez ciało ludzkie, dla którego stopa stanowi biegun ujemny) jest około dwa razy wyższy, niż dla prądów wznoszących (prąd płynący przez ciało ludzkie, dla którego stopa stanowi biegun dodatni).

6 6 Na podstawie określonych wartości impedancji i rezystancji ciała ludzkiego oraz wartości prądu rażeniowego, wyznaczono wartości napięć dotykowych dopuszczalnych długotrwale w różnych warunkach środowiskowych. W warunkach środowiskowych normalnych, wartość napięcia dotykowego dopuszczalnego długotrwale U L wynosi 50 V dla prądu przemiennego i 120 V dla prądu stałego. Do środowisk o warunkach normalnych zalicza się lokale mieszkalne i biurowe, sale widowiskowe i teatralne, klasy szkolne (z wyjątkiem niektórych laboratoriów) itp. W warunkach środowiskowych o zwiększonym zagrożeniu, wartość napięcia dotykowego dopuszczalnego długotrwale U L wynosi 25 V dla prądu przemiennego i 60 V dla prądu stałego. Do środowisk o zwiększonym zagrożeniu zalicza się łazienki i natryski, sauny, pomieszczenia dla zwierząt domowych, bloki operacyjne szpitali, hydrofornie, wymiennikownie ciepła, przestrzenie ograniczone powierzchniami przewodzącymi, kanały rewizyjne, kempingi, tereny budowy i rozbiórki, tereny otwarte itp. W warunkach zwiększonego zagrożenia porażeniem prądem elektrycznym, jakie może nastąpić przy zetknięciu się ciała ludzkiego zanurzonego w wodzie z elementami znajdującymi się pod napięciem, wartość napięcia dotykowego dopuszczalnego długotrwale U L wynosi 12 V dla prądu przemiennego i 30 V dla prądu stałego. Określono również dla prądów rażeniowych przemiennych, odpowiadających krzywej C 1 na rysunku nr 1 oraz impedancji ciała ludzkiego, które nie są przekroczone dla 5% populacji, czasy utrzymywania się napięć dotykowych, przekraczających wartości napięć dotykowych dopuszczalnych długotrwale, bez powodowania zagrożenia dla ciała ludzkiego. Dane te przedstawione są na rysunku nr 3. Rys. 3. Największe dopuszczalne napięcia dotykowe U D w zależności od czasu rażenia T r

7 7 Powyższe dane stanowiły podstawę do ustalenia maksymalnych czasów samoczynnego wyłączenia zasilania w warunkach środowiskowych normalnych oraz w warunkach środowiskowych o zwiększonym zagrożeniu. Norma PN-IEC wnosi szereg nowych postanowień w zakresie ochrony przeciwporażeniowej w instalacjach elektrycznych do 1 kv. Najistotniejsze postanowienia wymieniono poniżej. 1. Warunki środowiskowe Przyjęto zasadę, że ogólne postanowienia normy dotyczą normalnych warunków środowiskowych i rozwiązań instalacji elektrycznych, natomiast w warunkach środowiskowych stwarzających zwiększone zagrożenie wprowadza się odpowiednie obostrzenia i stosuje się specjalne rozwiązania instalacji elektrycznych. Poszczególne rodzaje warunków środowiskowych zostały usystematyzowane i pooznaczane za pomocą kodu literowo-cyfrowego. Podane one są w arkuszu 3. O doborze środków ochrony przeciwporażeniowej, w praktyce decydują następujące warunki środowiskowe: BA zdolność osób, BB elektryczna rezystancja ciała ludzkiego, BC kontakt ludzi z potencjałem ziemi. Doboru środków ochrony przeciwporażeniowej dla normalnych warunków środowiskowych należy dokonywać w oparciu o arkusz 41. Natomiast obostrzenia i specjalne rozwiązania instalacji elektrycznych obejmują arkusze normy grupy 700. Obostrzenia te polegają głównie na: zakazie umieszczania urządzeń elektrycznych w odpowiednich miejscach (strefach), zakazie stosowania niektórych środków ochrony; np. barier, umieszczania poza zasięgiem ręki, izolowania stanowiska, nieuziemionych połączeń wyrównawczych miejscowych, stosowaniu urządzeń o odpowiednich stopniach ochrony, konieczności stosowania dodatkowych (miejscowych) połączeń wyrównawczych, konieczności obniżenia napięcia dotykowego dopuszczalnego długotrwale w określonych warunkach otoczenia do wartości 25 V i 12 V prądu przemiennego oraz odpowiednio 60 V i 30 V prądu stałego, konieczności stosowania urządzeń ochronnych różnicowoprądowych o znamionowym prądzie różnicowym nie większym niż 30 ma jako uzupełniającego środka ochrony przed dotykiem bezpośrednim (ochrony podstawowej), kontroli stanu izolacji (doziemienia) w układach sieci IT.

8 8 2. Napięcia Napięcia zostały podzielone na dwa zakresy w sposób podany w tablicy nr 2. Tablica 2. Zakresy napięć Napięcia prądu przemiennego Napięcia prądu stałego Układy z uziemieniami Układy izolowane lub z uziemieniami pośrednimi Układy z uziemieniami Układy izolowane lub z uziemieniami pośrednimi Faza-Ziemia Faza-Faza Faza-Faza Biegun-Ziemia Biegun-Biegun Biegun-Biegun U 50 U 50 U 50 U 120 U 120 U 120 I U 25 U 25 U 25 U 60 U 60 U 60 U 12 U 12 U 12 U 30 U 30 U 30 II 50 < U < U < U < U < U < U 1500 U - napięcie nominalne instalacji (V) Schemat podziału wyżej wymienionych napięć jest następujący: a) napięcia zakresu I: bardzo niskie napięcie SELV, bardzo niskie napięcie PELV, bardzo niskie napięcie funkcjonalne FELV. b) napięcia zakresu II: napięcie w układzie sieci TN, napięcie w układzie sieci TT, napięcie w układzie sieci IT, napięcie separowane. 3. Układy sieci Sieci napięcia zakresu II, w zależności od sposobu uziemienia dzielą się na różnego rodzaju układy sieci. Poszczególne układy sieci oznacza się z pomocą symboli literowych, przy czym: pierwsza litera oznacza związek pomiędzy układem sieci a ziemią: T: bezpośrednie połączenie jednego punktu układu sieci z ziemią. Najczęściej jest łączony z ziemią punkt neutralny, I: wszystkie części czynne, to znaczy mogące się znaleźć pod napięciem w warunkach normalnej pracy są izolowane od ziemi, lub jeden punkt układu sieci jest połączony z ziemią poprzez impedancję lub bezpiecznik iskiernikowy (uziemienie otwarte),

9 9 druga litera oznacza związek pomiędzy częściami przewodzącymi dostępnymi a ziemią: N: bezpośrednie połączenie (chodzi tu o połączenie metaliczne) podlegających ochronie części przewodzących dostępnych, z uziemionym punktem układu sieci; zazwyczaj z uziemionym punktem neutralnym, T: bezpośrednie połączenie z ziemią (chodzi tu o uziemienie) podlegających ochronie części przewodzących dostępnych, niezależnie od uziemienia punktu układu sieci; zazwyczaj uziemienia punktu neutralnego. następna litera (litery) oznacza związek pomiędzy przewodem (żyłą) neutralnym N i przewodem (żyłą) ochronnym PE: C: funkcję przewodu neutralnego i przewodu ochronnego spełnia jeden przewód, zwany przewodem ochronno-neutralnym PEN, S: funkcję przewodu neutralnego i przewodu ochronnego spełniają osobne przewody - przewód N i przewód PE, C-S: w pierwszej części sieci, licząc od strony zasilania zastosowany jest przewód ochronno-neutralny PEN, a w drugiej osobny przewód neutralny N i przewód ochronny PE. W tablicy nr 3 podano oznaczenia przewodów i zacisków urządzeń różnego przeznaczenia. Tablica 3. Oznaczenia przewodów i zacisków urządzeń Przeznaczenie Przewody prądu przemiennego Oznaczenie przewodu (żyły) zacisku urządzenia Faza 1 L 1 U Faza 2 L 2 V Faza 3 L 3 W Neutralny N N Przewody prądu stałego Biegun dodatni L + + lub C Biegun ujemny L - - lub D Środkowy M M 3. Przewód ochronny PE PE 4. Przewód ochronno-neutralny PEN PEN 5. Przewód ochronno- środkowy PEM PEM 6. Przewód ochronno-liniowy PEL PEL 7. Przewód uziemienia funkcjonalnego FE FE 8. Przewód uziemienia ochronnego PE PE 9. Przewód uziemienia ochronnofunkcjonalnego 10. Przewód połączenia wyrównawczego funkcjonalnego 11. Przewód połączenia wyrównawczego ochronnego Schematy układów sieci przedstawiono na rysunku nr 4. PE/FE FB PE PE/FE FB PE

10 10 Oznaczenia: L1; L2; L3 - przewody fazowe prądu przemiennego; N - przewód neutralny; PE - przewód ochronny lub uziemienia ochronnego; PEN - przewód ochronno-neutralny; FE - przewód uziemienia funkcjonalnego; Z - impedancja Rys. 4. Schematy stosowanych układów sieci TN (TN-C; TN-S; TN-C-S), TT oraz IT Dotychczas w kraju najczęściej stosowany był układ sieci TN-C. W układzie tym występuje przewód ochronno-neutralny PEN. Zgodnie z postanowieniami normy, w instalacjach elektrycznych ułożonych na stałe, przewód ochronno-neutralny PEN powinien mieć przekrój żyły nie mniejszy niż 10 mm 2 Cu lub 16 mm 2 Al. W związku z niewłaściwą relacją pomiędzy przekrojami przewodu PEN i przewodów fazowych L, w odniesieniu do instalacji elektrycznej w budynkach (przekrój przewodu PEN w większości przypadków może kilkakrotnie przewyższać przekroje przewodów fazowych L) oraz dążeniem do poprawy stanu bezpieczeństwa przeciwporażeniowego użytkowników, koniecznością staje się stosowanie układu sieci TN-S lub TN-C-S.

11 11 Układy te zapewniają rozdzielenie funkcji przewodu ochronno-neutralnego PEN na przewód ochronny PE i neutralny N oraz likwidują szereg niepożądanych zjawisk, takich jak: pojawienie się napięcia fazowego na obudowach metalowych odbiorników, wywołane przerwą ciągłości przewodu PEN, pojawienie się na przewodzie PEN napięcia niekorzystnego dla użytkowanych odbiorników, wywołanego przepływem przez ten przewód prądu wyrównawczego, spowodowanego zaistnieniem asymetrii prądowej w instalacji. Rozdzielenie funkcji przewodu ochronno-neutralnego PEN na przewód ochronny PE i neutralny N, w przypadku układu sieci TN-C-S, powinno następować w złączu lub w rozdzielnicy głównej budynku, a punkt rozdziału powinien być uziemiony. Zapewnia to utrzymanie potencjału ziemi na przewodzie ochronnym PE przyłączonym do części przewodzących dostępnych urządzeń elektrycznych w normalnych warunkach pracy instalacji elektrycznej. Możliwie licznie uziemiane powinny być również przewody ochronne PE i ochronno-neutralne PEN. Wielokrotne uziemianie przewodu ochronnego PE i ochronno-neutralnego PEN w układzie sieci TN, w którym stosowane jest samoczynne wyłączenie zasilania, jako ochrona przed dotykiem pośrednim (ochrona przy uszkodzeniu), powoduje: obniżenie napięcia na nieuszkodzonym przewodzie ochronnym PE lub ochronnoneutralnym PEN, połączonym z miejscem zwarcia, utworzenie drogi zastępczej prądu zwarciowego w przypadku przerwania przewodu ochronnego PE lub ochronno-neutralnego PEN, obniżenie napięcia na przewodzie ochronnym PE lub ochronno-neutralnym PEN, który został przerwany (odłączony od punktu neutralnego sieci) i który jest jednocześnie połączony z miejscem zwarcia, obniżenie napięcia, które może pojawić się na przewodzie ochronnym PE lub ochronnoneutralnym PEN podczas zwarć doziemnych w stacji zasilającej po stronie wyższego napięcia, gdy w stacji wykonano wspólne uziemienie urządzeń wysokiego i niskiego napięcia, ograniczenie asymetrii napięć podczas zwarć doziemnych. Instalacja elektryczna w budynkach powinna być realizowana w układzie sieci TN-S (przewody L1; L2; L3; N; PE). Nie wyklucza to stosowania w szczególnie uzasadnionych przypadkach układu sieci TT lub IT. Możliwe są dwa rozwiązania rozdzielnic (złącze, rozdzielnica główna) w układzie TN-C-S: z zastosowaniem czterech szyn zbiorczych, z zastosowaniem pięciu szyn zbiorczych. Rozwiązania te przedstawiono na rysunku nr 5.

12 12 Rys. 5. Rozdzielnice w układzie TN-C-S Rozdzielnica przedstawiona na rysunku nr 5a może pracować w układzie TN-C lub TN-C-S, natomiast rozdzielnica przedstawiona na rysunku nr 5b może pracować we wszystkich układach TN, a także w układach TT lub IT po odpowiednim, dla danego układu sieci, połączeniu lub rozłączeniu szyny PE z szyną N. Na rysunku nr 6 przedstawiono schemat zasilania pojedynczego budynku (indywidualnego odbiorcy) poprzez zestaw przyłączeniowo-pomiarowy, usytuowany w linii ogrodzenia zewnętrznego posesji. Zestaw ten mieści się w zamkniętej oraz zabezpieczonej przez wpływami atmosferycznymi i osobami niepowołanymi skrzynce. Składa się z dwóch modułów, z których jeden pełni funkcję zakończenia przyłącza, drugi pełni funkcję złącza końcowego. Zestaw umożliwia zainstalowanie listwy zaciskowej do połączenia przewodów przyłącza sieci zasilającej i przewodów instalacji, zabezpieczenia przedlicznikowego w postaci rozłącznika bezpiecznikowego lub wyłącznika nadprądowego selektywnego zapewniających selektywność w działaniu urządzeń zabezpieczających, licznika energii elektrycznej oraz ochrony przed przepięciami pochodzącymi od wyładowań atmosferycznych i łączeń w sieci zasilającej (ograniczniki przepięć stanowiące pierwszy stopień ochrony przeciwprzepięciowej). Bardzo ważną rolę w ekwipotencjalizacji części przewodzących jednocześnie dostępnych w budynku pełni uziemienie przewodu ochronnego PE instalacji elektrycznej. Określa ono potencjał strefy ekwipotencjalnej w budynku. Uziemienie to powinno być wykonane w budynku, a nie z dala od niego, z wykorzystaniem przede wszystkim uziomu fundamentowego. Właściwe jest w związku z tym rozwiązanie przedstawione na rysunku nr 6, na którym rozdzielenie przewodu PEN na przewody PE i N wykonano w zestawie przyłączeniowopomiarowym ZPP, usytuowanym poza budynkiem, a przewód PE przyłączono do szyny PE w rozdzielnicy tablicowej odbiorcy TRO i uziemiono poprzez główną szynę uziemiającą budynku GSU.

13 13 PE PE Oznaczenia: SZ sieć zasilająca niskiego napięcia; P przyłącze; ZPP zestaw przyłączeniowo-pomiarowy; LZ listwa zaciskowa; RB rozłącznik bezpiecznikowy lub wyłącznik nadprądowy selektywny; L przewody fazowe; O ogranicznik przepięć; SU szyna uziemiająca; kwh licznik energii elektrycznej; TRO rozdzielnica tablicowa odbiorcy; wlz wewnętrzna linia zasilająca; GSU główna szyna uziemiająca budynku; IK, IW, ICO, IG instalacje odpowiednio w kolejności: kanalizacyjna, wodna, centralnego ogrzewania, gazowa; KB konstrukcja metalowa (elementy metalowe konstrukcji budynku, związane na przykład z fundamentem, ścianami); N, PEN, PE przewody odpowiednio: neutralny, ochronno-neutralny, ochronny lub połączenia wyrównawczego ochronnego Rys. 6. Schemat zasilania w energię elektryczną pojedynczego budynku (indywidualnego odbiorcy)

14 14 4. Rodzaje ochron przeciwporażeniowych Rodzaje ochron przeciwporażeniowych zestawiono w tablicy nr 4. Tablica 4. Rodzaje ochron przeciwporażeniowych Równoczesna ochrona przed dotykiem bezpośrednim i pośrednim (równoczesna ochrona podstawowa i ochrona przy uszkodzeniu) Ochrona przed dotykiem bezpośrednim (ochrona podstawowa) Ochrona przed dotykiem pośrednim (ochrona przy uszkodzeniu) Układy o napięciach nieprzekraczających wartości napięć dotykowych dopuszczalnych długotrwale w określonych warunkach otoczenia, nie wymagające ochrony przed dotykiem bezpośrednim (ochrony podstawowej) Układy o napięciach nieprzekraczających wartości napięć dotykowych dopuszczalnych długotrwale w określonych warunkach otoczenia, wymagające ochrony przed dotykiem bezpośrednim (ochrony podstawowej) Ochrona przez zastosowanie izolowania części czynnych Ochrona przy użyciu przegrody lub obudowy Ochrona przy użyciu bariery lub przeszkody Ochrona przez umieszczenie poza zasięgiem ręki bez uziemień SELV z uziemieniem PELV bez uziemień SELV z uziemieniem PELV Uzupełnienie ochrony przy użyciu urządzeń ochronnych różnicowoprądowych o znamionowym prądzie różnicowym nie większym niż 30 ma Ochrona przez zastosowanie samoczynnego wyłączenia zasilania w przypadku przekroczenia wartości napięcia dotykowego dopuszczalnego długotrwale w określonych warunkach otoczenia i zastosowanie połączeń wyrównawczych dodatkowych (miejscowych) w układzie sieci TN w układzie sieci TT w układzie sieci IT Ochrona przez zastosowanie urządzeń II klasy ochronności lub o izolacji równoważnej Ochrona przez zastosowanie izolowania stanowiska Ochrona przez zastosowanie nieuziemionych połączeń wyrównawczych miejscowych Ochrona przez zastosowanie separacji elektrycznej Z powyższych zestawień wynika, że obok znanych i stosowanych w kraju środków ochrony przeciwporażeniowej norma PN-IEC wprowadziła następujące nowe środki ochrony, a mianowicie: a) w równoczesnej ochronie przed dotykiem bezpośrednim (ochronie podstawowej) i pośrednim (ochronie przy uszkodzeniu) zastosowanie napięć zakresu I w układach bez uziemień SELV oraz w układach z uziemieniem PELV. Układy te dzielą się na napięcia o wartościach: niewymagających żadnej ochrony przed dotykiem bezpośrednim (ochrony podstawowej), wymagających ochrony przed dotykiem bezpośrednim (ochrony podstawowej). Instalacje, w których stosuje się dla potrzeb technologicznych napięcia zakresu I, a które nie spełniają warunków określonych dla układów SELV lub PELV, nazywają się układami FELV. W układach FELV należy zapewnić ochronę przed dotykiem bezpośrednim (ochronę podstawową) oraz ochronę przed dotykiem pośrednim (ochronę przy uszkodzeniu) taką, jaka jest zastosowana w obwodzie pierwotnym.

15 15 b) w ochronie przed dotykiem bezpośrednim (ochronie podstawowej) zastosowanie urządzeń ochronnych różnicowoprądowych o znamionowym prądzie różnicowym nie większym niż 30 ma. Urządzenia te nie stanowią samodzielnego środka ochrony przed dotykiem bezpośrednim (ochrony podstawowej) i należy je stosować łącznie z innymi środkami ochrony. c) w ochronie przed dotykiem pośrednim (ochronie przy uszkodzeniu) zastosowanie samoczynnego wyłączenia zasilania (w układzie sieci TN, TT, IT) wraz z zastosowaniem połączeń wyrównawczych dodatkowych (miejscowych). Ochrona przez zastosowanie samoczynnego wyłączenia zasilania jest realizowana przez: urządzenia ochronne przetężeniowe (wyłączniki z wyzwalaczami nadprądowymi lub przekaźnikami nadprądowymi, bezpieczniki z wkładkami topikowymi), urządzenia ochronne różnicowoprądowe (wyłączniki ochronne różnicowoprądowe, wyłączniki współpracujące z przekaźnikami różnicowoprądowymi). Wprowadzone są krótkie czasy wyłączenia. Powoduje to konieczność doboru urządzeń samoczynnego wyłączenia zasilania na podstawie charakterystyk czasowo-prądowych tych urządzeń. Urządzenia ochronne różnicowoprądowe można stosować we wszystkich układach sieci z wyjątkiem układu TN-C po stronie obciążenia (za urządzeniem ochronnym różnicowoprądowym). Urządzenia ochronne różnicowoprądowe spełniają jednocześnie funkcję ochrony budynku przed pożarami wywołanymi prądami doziemnymi. W tym przypadku znamionowy prąd różnicowy urządzenia nie może być większy niż 500 ma. Integralnym elementem samoczynnego wyłączenia zasilania jest zastosowanie połączeń wyrównawczych dodatkowych (miejscowych). Zastosowanie połączeń wyrównawczych ma na celu ograniczenie do wartości dopuszczalnych długotrwale w danych warunkach środowiskowych napięć występujących pomiędzy różnymi częściami przewodzącymi. d) w ochronie przed dotykiem pośrednim (ochronie przy uszkodzeniu) zastosowanie nieuziemionych połączeń wyrównawczych miejscowych. Istotą wyżej wymienionego środka jest niedopuszczenie do pojawienia się napięć dotykowych o wartościach większych niż dopuszczalne długotrwale w danym miejscu lub pomieszczeniu. Przewody nieuziemionych połączeń wyrównawczych powinny w chronionym miejscu lub pomieszczeniu łączyć ze sobą wszystkie części jednocześnie dostępne. System nieuziemionych połączeń wyrównawczych miejscowych nie powinien mieć połączenia elektrycznego z ziemią przez części przewodzące dostępne lub przez części przewodzące obce. Przy stosowaniu takich połączeń należy wprowadzić rozwiązania zapobiegające narażeniu osób, wchodzących z zewnątrz do przestrzeni objętej wyżej wymienionymi połączeniami, na znalezienie się pod różnymi potencjałami. e) w ochronie przed dotykiem pośrednim (ochronie przy uszkodzeniu) zastosowanie separacji elektrycznej. Norma PN-IEC wprowadziła nowe zasady stosowania separacji elektrycznej, a mianowicie: w obwodzie separowanym iloczyn napięcia znamionowego (w woltach) i łącznej długości oprzewodowania ( w metrach) nie może przekraczać wartości oraz łączna długość oprzewodowania nie może przekraczać 500 m,

16 16 w przypadku zasilania z obwodu separowanego więcej niż jednego urządzenia, należy zastosować izolowane, nieuziemione przewody wyrównawcze łączące części przewodzące dostępne tych urządzeń. Przypadek taki przedstawiono na rysunku nr 7. Oznaczenia: B - wyłącznik lub bezpiecznik Rys. 7. Zwarcie podwójne w obwodzie separowanym Przewody wyrównawcze w przypadku wystąpienia zwarcia podwójnego w dwóch różnych urządzeniach umożliwiają przepływ prądu I, powodującego samoczynne wyłączenie zasilania. W przypadku podwójnego zwarcia dwóch części przewodzących dostępnych z przewodami o różnej biegunowości, jak to pokazano na rysunku nr 7, urządzenie zabezpieczające powinno zapewnić samoczynne wyłączenie zasilania w czasie nie dłuższym od podanego w tablicy nr Przewody ochronne W instalacji elektrycznej przewody dzielą się na przeznaczone do: przesyłu energii elektrycznej, równoczesnego przesyłu energii elektrycznej i ochrony przeciwporażeniowej, ochrony przeciwporażeniowej, funkcjonalnych połączeń wyrównawczych i uziemień. Ogólnie rzecz biorąc, wszystkie przewody lub żyły w przewodach wielożyłowych, służące do ochrony przed porażeniem, nazywają się przewodami ochronnymi. Jednak potocznie przyjmuje się następujący podział podany w tablicy nr 5.

17 17 Tablica 5. Podział przewodów ochronnych Przewód ochronny Nazwa Oznaczenie Przeznaczenie-Funkcja PE Przyłączenie do części przewodzących dostępnych. Przewód ochronno-neutralny 1) PEN Przyłączenie do części przewodzących dostępnych i przesył energii elektrycznej przewodem neutralnym N. Przewód ochronno-środkowy PEM Przyłączenie do części przewodzących dostępnych i przesył energii elektrycznej przewodem środkowym M. Przewód ochronno-liniowy PEL Przyłączenie do części przewodzących dostępnych i przesył energii elektrycznej przewodem liniowym L. Przewód uziemienia ochronnego 2) Przewód połączenia wyrównawczego głównego Przewód połączenia wyrównawczego dodatkowego (miejscowego) Przewód połączenia wyrównawczego nieuziemionego Uziom PE PE PE PE Łączenie części przewodzących dostępnych, części przewodzących obcych, głównej szyny uziemiającej itp. z uziomem. Połączenia wyrównawcze główne, łączące z główną szyną uziemiającą: przewód ochronny, przewód ochronno-neutralny 1), części przewodzące obce, części przewodzące dostępne. Połączenia wyrównawcze dodatkowe, łączące z sobą: przewód ochronny, przewód ochronno-neutralny 1), części przewodzące dostępne, części przewodzące obce. Nieuziemione połączenia wyrównawcze miejscowe, łączące z sobą wszystkie nieuziemione części jednocześnie dostępne Nadawanie określonym częściom przewodzącym potencjału ziemi. 1) Przy napięciach prądu stałego analogiczną funkcję może spełniać uziemiony biegun napięcia, jak np. szyny jezdne w trakcji elektrycznej (przewód PEL), lub uziemiony biegun środkowy (przewód PEM). 2) Przewód uziemienia ochronno-funkcjonalnego PE/FE w przypadku równoczesnego stosowania funkcjonalnych połączeń wyrównawczych i ich uziemiania Przy doborze wymienionych w tablicy nr 5 przewodów, sposobu ich prowadzenia i łączenia, należy kierować się postanowieniami normy. Na rysunku nr 8 przedstawiono przykładowy schemat połączeń ochronnych przy pomocy różnego rodzaju przewodów.

18 18 Oznaczenia: 1- przewód ochronny PE; 2 - przewód ochronno-neutralny PEN; 3 - przewód uziemienia ochronnego PE; 4 - przewód wyrównawczy główny PE; 5 - przewód wyrównawczy dodatkowy (miejscowy) PE łączący z sobą dwie części przewodzące dostępne; 6 - przewód wyrównawczy dodatkowy (miejscowy) PE łączący z sobą część przewodzącą dostępną oraz część przewodzącą obcą; 7 - przewód wyrównawczy nieuziemiony PE; 8 - główna szyna (zacisk) uziemiająca; 9 - uziom; Z - złącze; T - transformator separacyjny; O - odbiornik w obudowie przewodzącej I klasy ochronności; C - część przewodząca obca; W - rura metalowa wodociągowa główna; B - zbrojenie lub/i konstrukcje metalowe budynku Rys. 8. Schemat połączeń ochronnych W tablicach nr 6 i 7 podano zależności pomiędzy przekrojami przewodów pełniących różnego rodzaju funkcje.

19 19 Tablica 6. Zależności pomiędzy przekrojami przewodów fazowego ochronnego uziemienia ochronnego lub ochronnofunkcjonalnego Przekrój przewodu (mm 2 ) ochronn o- neutraln ego połączenia wyrównawczego głównego połączenia wyrównawczego dodatkowego (miejscowego) połączenia wyrównawczego nieuziemionego S L S PE/0 1) S E 1); 2) S PEN S PE 3) S PE 4) S PE 5) S PE 6) 4 S L S PE/0 10 S L S PE/0 4 7) 10 Cu 16 Al 10 Cu 16 Al 6 0,5 S PE/0 6 0,5 S PE/ ,5 S PE/0 25; ,5 S PE/0 50 0,5 S L S PE/0 0,5 S L 0,5 S PE/0 8) S PE/0 (min) 0,5 S PE/0 1) Przekrój każdego przewodu ochronnego nie będącego częścią wspólnego układu przewodów lub jego osłoną nie powinien być w żadnym przypadku mniejszy niż: 2,5 mm 2 w przypadku stosowania ochrony przed mechanicznymi uszkodzeniami, 4 mm 2 w przypadku niestosowania ochrony przed mechanicznymi uszkodzeniami. 2) Przewody ułożone w ziemi muszą spełniać dodatkowo wymagania podane w tablicy nr 7. Tablica 7. Wymagania dla przewodów ułożonych w ziemi Zabezpieczone przed korozją Nie zabezpieczone przed korozją Zabezpieczone przed mechanicznym uszkodzeniem S E S PE/0 S E 25 mm 2 Cu S E 50 mm 2 Fe S L Nie zabezpieczone przed mechanicznym uszkodzeniem S E 16 mm 2 Cu S E 16 mm 2 Fe 3) Przekrój SPE należy zawsze ustalać, biorąc pod uwagę największy w danej instalacji przekrój przewodu ochronnego. 4) Dotyczy przewodu połączenia wyrównawczego dodatkowego, łączącego ze sobą dwie części przewodzące dostępne. Przekrój wyżej wymienionego przewodu nie powinien być mniejszy niż najmniejszy przekrój przewodu ochronnego, przyłączonego do części przewodzącej dostępnej. 5) Dotyczy przewodu połączenia wyrównawczego dodatkowego, łączącego część przewodzącą dostępną z częścią przewodzącą obcą. Przekrój wyżej wymienionego przewodu nie powinien być mniejszy niż połowa przekroju przewodu ochronnego, przyłączonego do części przewodzącej dostępnej. 6) Brak jest obowiązujących danych. Ze względu na pełnioną funkcję, uważa się, że przekrój tego przewodu nie powinien być mniejszy od przekroju przewodu fazowego. 7) Dotyczy współosiowej żyły przewodu (kabla). 8) Przekrój nie musi być większy od 25 mm2 Cu, lub z innego materiału, lecz o przekroju mającym taką obciążalność jak 25 mm2 Cu.

20 20 Dane przedstawione w tablicy nr 6 odnoszą się do przewodów różnego przeznaczenia, wykonanych z takiego samego materiału. W przypadku stosowania przewodu o określonym przeznaczeniu z innego materiału należy tak dobrać jego przekrój, aby została zachowana odpowiednia przewodność elektryczna. W szczególnych przypadkach może zachodzić konieczność indywidualnego obliczenia przekrojów poszczególnych przewodów. Przewody ochronne, ochronno-neutralne, uziemienia ochronnego lub ochronnofunkcjonalnego oraz połączeń wyrównawczych powinny być oznaczone kombinacją kolorów zielonego i żółtego, przy zachowaniu następujących postanowień: kolor zielono-żółty może służyć tylko do oznaczenia i identyfikacji przewodów mających udział w ochronie przeciwporażeniowej, zaleca się, aby oznaczenie stosować na całej długości przewodu. Dopuszcza się stosowanie oznaczeń nie na całej długości z tym, że powinny one znajdować się we wszystkich dostępnych i widocznych miejscach, przewód ochronno-neutralny powinien być oznaczony kolorem zielono-żółtym, a na końcach kolorem niebieskim. Dopuszcza się, aby wyżej wymieniony przewód był oznaczony kolorem niebieskim, a na końcach kolorem zielono-żółtym. Przewód neutralny i środkowy powinien być oznaczony kolorem niebieskim w sposób taki jak opisany dla przewodów ochronnych. Bardzo ważne jest rozróżnienie połączeń wyrównawczych głównych od uziemień. Aby określone elementy mogły być wykorzystane jako uziomy muszą one spełniać określone wymagania i musi być zgoda właściwej jednostki na ich wykorzystanie. Dotyczy to na przykład rur wodociągowych, kabli itp. Niektóre elementy jak np. rury gazu, palnych cieczy itp. nie mogą być wykorzystywane jako uziomy. Natomiast wszystkie wyżej wymienione elementy powinny być w danym budynku połączone ze sobą poprzez główną szynę uziemiającą, celem stworzenia ekwipotencjalizacji. Aby zrealizować połączenia wyrównawcze nie wykorzystując rur gazowych jako elementów uziemienia, za wystarczające uważa się zainstalowanie wstawki izolacyjnej na wprowadzeniu rury gazowej do budynku jak to przedstawiono na rysunku nr 9.

21 21 Oznaczenia: PE - przewód ochronny lub połączenia wyrównawczego ochronnego Rys. 9. Połączenia wyrównawcze w budynku mieszkalnym - główne w piwnicy, oraz dodatkowe (miejscowe) w łazience

22 22 6. Ochrona przed dotykiem pośrednim (ochrona przy uszkodzeniu) przez zastosowanie samoczynnego wyłączenia zasilania A. Układ sieci TN Dla zapewnienia samoczynnego wyłączenia zasilania powinno być spełnione wymaganie: gdzie: Z s I a U o (2) Z s I a impedancja pętli zwarciowej, obejmującej źródło zasilania, przewód fazowy do miejsca zwarcia i przewód ochronny od miejsca zwarcia do źródła zasilania, prąd powodujący samoczynne zadziałanie urządzenia zabezpieczającego w wymaganym czasie (wyłącznika lub bezpiecznika). W zależności od zastosowanego urządzenia jest to prąd: przetężeniowy, albo różnicowy, to jest stanowiący różnicę pomiędzy prądem płynącym w przewodzie L i przewodzie N. Maksymalne dopuszczalne czasy wyżej wymienionego wyłączenia, w zależności od napięcia fazowego prądu przemiennego lub napięcia względem ziemi nietętniącego prądu stałego, podano w tablicy nr 8. Tablica 8. Maksymalne czasy wyłączenia w układzie TN Dla napięcia dotykowego dopuszczalnego długotrwale U o U L 50 V ; U L 120 V = U L 25 V ; U L 60 V = t V s s 120 0,80 0, ,40 0, ,40 0, ,20 0, ,10 0, ,10 0,02 Czasy wyłączenia podane w tablicy nr 8 dotyczą obwodów odbiorczych, z których bezpośrednio lub poprzez gniazda wtyczkowe są zasilane urządzenia I klasy ochronności ręczne lub/i przenośne, przeznaczone do ręcznego przemieszczania w czasie użytkowania. W obwodach rozdzielczych można przyjmować czas wyłączenia dłuższy, lecz nie przekraczający 5 s. Również w obwodach odbiorczych, zasilających jedynie urządzenia stacjonarne lub/i stałe, dopuszcza się czas wyłączenia dłuższy, lecz nie przekraczający 5 s. Jednak w tym przypadku, jeżeli z tej samej rozdzielnicy lub obwodu rozdzielczego, to jest wewnętrznej linii zasilającej, są również zasilane obwody odbiorcze, dla których obowiązują czasy wyłączenia podane w tablicy nr 8, powinien być spełniony przynajmniej jeden z dwóch poniżej podanych warunków: t

23 23 Warunek a) Impedancja przewodu ochronnego pomiędzy rozdzielnicą główną lub wewnętrzną linią zasilającą (wlz) i punktem, w którym przewód ochronny jest przyłączony do głównej szyny uziemiającej, nie przekracza U L Z s [Ω] (3) U o Warunek b) W rozdzielnicy (lub w wlz) powinny znajdować się połączenia wyrównawcze przyłączone do tych samych części przewodzących obcych co połączenia wyrównawcze główne, które spełniają wymagania dla połączeń wyrównawczych głównych. W przypadkach możliwości bezpośredniego zwarcia przewodu fazowego z ziemią, np. w liniach napowietrznych, napięcie pomiędzy przewodem ochronnym (ochronnoneutralnym) i przyłączonymi do niego częściami przewodzącymi dostępnymi a ziemią, nie powinno przekroczyć wartości napięcia dotykowego dopuszczalnego długotrwale U L. Przykład ten przedstawiono na rysunku nr 10. Oznaczenia: R B - wypadkowa rezystancja wszystkich połączonych równolegle uziomów; R E - najmniejsza możliwa rezystancja styku z ziemią części przewodzących obcych, nie przyłączonych do przewodu ochronnego, przez które może nastąpić zwarcie pomiędzy fazą a ziemią Rys. 10. Zwarcie z ziemią w linii elektroenergetycznej Wobec powyższego, aby nie została przekroczona, w przypadku zwarcia takiego rodzaju, wartość napięcia dotykowego dopuszczalnego długotrwale U L, powinna być spełniona zależność: Jeśli U L = 50 V, powyższy wzór przybierze postać: RB UL (4) RE Uo UL RB RE 50 (5) U o 50 W układach TN do ochrony przed porażeniem powinny być stosowane: --urządzenia ochronne przetężeniowe (nadprądowe), albo --urządzenia ochronne różnicowoprądowe.

24 24 B. Układ sieci TT Aby napięcie dotykowe nie przekraczało wartości napięcia dotykowego dopuszczalnego długotrwale U L powinno być spełnione wymaganie: gdzie: R A I a U L R A I a U L (6) całkowita rezystancja uziomu i przewodu ochronnego łączącego części przewodzące dostępne z uziomem, prąd powodujący samoczynne zadziałanie urządzenia zabezpieczającego w wymaganym czasie (wyłącznika lub bezpiecznika). W zależności od zastosowanego urządzenia jest to prąd: przetężeniowy, albo różnicowy, to jest stanowiący różnicę pomiędzy prądem płynącym w przewodzie L i przewodzie N, napięcie dotykowe dopuszczalne długotrwale. Jeżeli urządzeniem ochronnym jest zabezpieczenie przetężeniowe (nadprądowe), powinno ono być: urządzeniem o charakterystyce, zapewniającej przy przepływie prądu I a, wyłączenie w czasie nie dłuższym niż 5 s, albo urządzeniem zapewniającym przy przepływie prądu I a wyłączenie natychmiastowe. Oczywiście w aspekcie ochrony przeciwporażeniowej korzystniejsze jest wyłączenie natychmiastowe, ale można stosować również urządzenie wyłączające w czasie nie dłuższym niż5s. W układach TT do ochrony przed porażeniem powinny być stosowane: --urządzenia ochronne przetężeniowe (nadprądowe), albo --urządzenia ochronne różnicowoprądowe. Jeżeli urządzeniem ochronnym jest zabezpieczenie różnicowoprądowe, przy szeregowym zainstalowaniu tych zabezpieczeń, celem zachowania wybiórczości (selektywności) ich działania, dopuszcza się w obwodach rozdzielczych działanie ze zwłoką czasową nie większą niż 1 s. C. Układ sieci IT W układach IT powinno być spełnione wymaganie: gdzie: R A I d U L R A I d U L (7) całkowita rezystancja uziomu i przewodu ochronnego łączącego części przewodzące dostępne z uziomem, prąd pojedynczego zwarcia z ziemią, przy pomijalnej impedancji pomiędzy przewodem fazowym i częścią przewodzącą dostępną (obudową), napięcie dotykowe dopuszczalne długotrwale. Przy wyznaczaniu wartości prądu I d należy uwzględnić: --prądy upływowe, --całkowitą impedancję uziemień w układzie, to jest reaktancje pojemnościowe i rezystancje

25 25 pomiędzy przewodami fazowymi a ziemią oraz impedancję pomiędzy punktem neutralnym transformatora a ziemią (o ile ona istnieje). Zaleca się, aby pojedyncze zwarcie z ziemią było usuwane możliwie szybko. Zwarcie takie powoduje wzrost napięcia w pozostałych fazach w stosunku do ziemi o 3 i stwarza zagrożenie porażeniem w przypadku zwarcia z ziemią drugiej fazy. Przy zwarciu z ziemią drugiej fazy, które może wystąpić w zupełnie innym miejscu układu, zwarcie przekształca się w podwójne zwarcie z ziemią, podczas którego przepływający prąd osiąga dużą wartość. Warunki wyłączenia podwójnego zwarcia z ziemią zależą od sposobu uziemienia części przewodzących dostępnych, podanego na rysunku nr 11. Rys. 11. Sposoby uziemień Przy uziemieniu indywidualnym lub grupowym, warunki ochrony są analogiczne jak dla układu TT. Przy uziemieniu zbiorowym, warunki ochrony są analogiczne jak dla układu TN. Układ IT może: nie mieć przewodu neutralnego, mieć przewód neutralny. Aby nastąpiło samoczynne wyłączenie zasilania, powinny być spełnione wymagania: Z Z s ' s 3 U o dla układu IT bez przewodu neutralnego (8) 2 Ia U o dla układu IT z przewodem neutralnym 2 Ia (9) gdzie: I a Z s Z s ' prąd powodujący samoczynne zadziałanie urządzenia zabezpieczającego w wymaganym czasie (wyłącznika lub bezpiecznika), impedancja pętli zwarciowej, obejmującej przewód fazowy i przewód ochronny obwodu. impedancja pętli zwarciowej, obejmującej przewód neutralny i przewód ochronny obwodu.

26 26 Maksymalne dopuszczalne czasy wyżej wymienionego wyłączenia, w zależności od napięcia prądu przemiennego lub napięcia nietętniącego prądu stałego, podano w tablicy nr 9. Dłuższe niż podane w tablicy czasy wyłączenia, lecz nie dłuższe niż 5 s można przyjmować w przypadkach jak dla układu TN. Tablica 9. Maksymalne czasy wyłączenia w układzie IT U o /U Dla napięcia dotykowego dopuszczalnego długotrwale U L 50 V ; U L 120 V = U L 25 V ; U L 60 V = t t V s s bez przewodu neutralnego z przewodem neutralnym bez przewodu neutralnego z przewodem neutralnym 120/230 0,8 5,0 0,4 1,0 230/400 0,4 0,8 0,2 0,5 277/480 0,2 0,4 0,2 0,5 400/690 0,2 0,4 0,06 0,2 580/1000 0,1 0,2 0,02 0,08 W układach IT do ochrony przed porażeniem powinny być stosowane: urządzenia ochronne przetężeniowe (nadprądowe), albo urządzenia ochronne różnicowoprądowe, urządzenia do stałej kontroli izolacji, powodujące wyłączenie w przypadku pojedynczego zwarcia z ziemią. 7. Urządzenia ochronne różnicowoprądowe Jednym z najbardziej skutecznych środków ochrony przeciwporażeniowej jest ochrona przy zastosowaniu urządzeń ochronnych różnicowoprądowych (wyłączniki ochronne różnicowoprądowe, wyłączniki współpracujące z przekaźnikami różnicowoprądowymi). Urządzenia ochronne różnicowoprądowe pełnią następujące funkcje: ochrona przed dotykiem pośrednim (ochrona przy uszkodzeniu) przy zastosowaniu wyżej wymienionych urządzeń, jako elementów samoczynnego wyłączenia zasilania, uzupełnienie ochrony przed dotykiem bezpośrednim (ochrony podstawowej) przy zastosowaniu wyżej wymienionych urządzeń o znamionowym prądzie różnicowym nie większym niż 30 ma. ochrona budynku przed pożarami wywołanymi prądami doziemnymi przy zastosowaniu wyżej wymienionych urządzeń o znamionowym prądzie różnicowym nie większym niż 500 ma. Prąd zadziałania urządzenia ochronnego różnicowoprądowego musi zawierać się w granicach 0,5 I n I n, gdzie I n jest znamionowym prądem różnicowym. Urządzenia ochronne różnicowoprądowe można stosować we wszystkich układach sieci z wyjątkiem układu TN-C po stronie obciążenia (za urządzeniem ochronnym różnicowoprądowym). Przykładowe sposoby zainstalowania urządzeń ochronnych różnicowoprądowych w poszczególnych układach sieci przedstawiono na rysunku nr 12.

27 27 W przypadku zasilania urządzenia w I klasie ochronności, w układzie sieci TN, znajdującego się poza zasięgiem połączeń wyrównawczych, należy w obwodzie zasilającym zainstalować urządzenie ochronne różnicowoprądowe, a część przewodzącą dostępną zasilanego urządzenia przyłączyć do indywidualnego uziemienia, tworząc w ten sposób po stronie obciążenia układ sieci TT. Rezystancja uziemienia powinna być odpowiednia dla znamionowego prądu różnicowego zainstalowanego urządzenia ochronnego różnicowoprądowego. Cały układ sieci będzie wtedy układem TN-C/TT przedstawionym na rysunku nr 12b. Przykładowe zastosowanie tego układu sieci przedstawione jest na rysunku nr 23, przy zasilaniu z sieci elektroenergetycznej niskiego napięcia urządzeń elektrycznych na terenie budowy lub rozbiórki. FE FE FE FE FE Oznaczenia: L1; L2; L3; - przewody fazowe prądu przemiennego; N - przewód neutralny; PE - przewód ochronny lub uziemienia ochronnego; PEN - przewód ochronno-neutralny; FE - przewód uziemienia funkcjonalnego; I - urządzenie ochronne różnicowoprądowe; Z - impedancja Rys. 12. Sposoby zainstalowania urządzeń ochronnych różnicowoprądowych w poszczególnych układach sieci Przy szeregowym zainstalowaniu urządzeń ochronnych różnicowoprądowych, celem zachowania selektywności (wybiórczości) ich działania, urządzenia powinny spełniać jednocześnie warunki: charakterystyka czasowo-prądowa zadziałania urządzenia ochronnego różnicowoprądowego, zainstalowanego po stronie zasilania, powinna znajdować się powyżej charakterystyki czasowo-prądowej zadziałania urządzenia ochronnego różnicowoprądowego zainstalowanego po stronie obciążenia, wartość znamionowego prądu różnicowego urządzenia ochronnego różnicowoprądowego zainstalowanego po stronie zasilania powinna być równa co najmniej trzykrotnej wartości znamionowego prądu różnicowego urządzenia ochronnego różnicowoprądowego zainstalowanego po stronie obciążenia.

28 28 Preferowany jest system ochrony grupowej, zapewniający właściwą ochronę przed porażeniem prądem elektrycznym i pożarami wywołanymi prądami doziemnymi, a jednocześnie gwarantujący niezawodność zasilania elektrycznego. System ten przedstawiony jest na rysunku nr 13. W skład ochrony grupowej wchodzą co najmniej dwa urządzenia ochronne różnicowoprądowe: po stronie zasilania urządzenie ochronne różnicowoprądowe selektywne (s), po stronie obciążenia (obwody odbiorcze) urządzenie ochronne różnicowoprądowe bezzwłoczne lub krótkozwłoczne. Obwód rozdzielczy t 1s Obwody odbiorcze (działanie bezzwłoczne lub krótkozwłoczne) Oznaczenia: t - zwłoka czasu zadziałania; S - symbol urządzeń ochronnych różnicowoprądowych selektywnych; I - urządzenie ochronne różnicowoprądowe Rys. 13. System ochrony grupowej przy zastosowaniu w obwodach urządzeń ochronnych różnicowoprądowych selektywnych (s) oraz bezzwłocznych lub krótkozwłocznych W zależności od kształtu przebiegu prądu w czasie powodującego zadziałanie, urządzenia ochronne różnicowoprądowe dzielą się na: urządzenia, których działanie jest zapewnione przy prądach różnicowych przemiennych sinusoidalnych oznaczone symbolem: lub literowo AC, urządzenia, których działanie jest zapewnione przy prądach różnicowych przemiennych sinusoidalnych i pulsujących stałych oznaczone symbolem: lub literowo A, urządzenia, których działanie jest zapewnione przy prądach różnicowych przemiennych sinusoidalnych i pulsujących stałych oraz przy prądach wyprostowanych, oznaczone symbolem: lub literowo B. Wahania napięć, przepięcia atmosferyczne lub łączeniowe mogą, przez różne pojemności w sieci, spowodować przepływ prądów upływowych, które z kolei mogą być przyczyną zadziałania urządzeń ochronnych różnicowoprądowych. Zjawisko to może wystąpić w odbiornikach z dużymi powierzchniami elementów lub dużą liczbą kondensatorów przeciwzakłóceniowych. Do odbiorników tych można zaliczyć wielkopowierzchniowe elementy grzejne, oprawy świetlówkowe, komputery, układy rentgenowskie itp. Dla uniknięcia błędnych zadziałań należy w wyżej wymienionych przypadkach stosować urządzenia ochronne różnicowoprądowe z podwyższoną wytrzymałością na prąd udarowy, oznaczone symbolami: lub lub, lub krótkozwłoczny. Wyłączniki ochronne różnicowoprądowe muszą być chronione przed skutkami zwarcia. Na tabliczce znamionowej wyłącznika podawana jest jego wytrzymałość zwarciowa oraz maksymalna wartość prądu znamionowego wkładki bezpiecznikowej zabezpieczającej ten wyłącznik. Umieszczony na tabliczce znamionowej symbol oznacza, że

6. URZĄDZENIA OCHRONNE RÓŻNICOWOPRĄDOWE

6. URZĄDZENIA OCHRONNE RÓŻNICOWOPRĄDOWE 6. URZĄDZENIA OCHRONNE RÓŻNICOWOPRĄDOWE Jednym z najbardziej skutecznych środków ochrony przeciwporażeniowej jest ochrona przy zastosowaniu urządzeń ochronnych różnicowoprądowych (wyłączniki ochronne różnicowoprądowe,

Bardziej szczegółowo

Przedmowa do wydania czwartego Wyjaśnienia ogólne Charakterystyka normy PN-HD (IEC 60364)... 15

Przedmowa do wydania czwartego Wyjaśnienia ogólne Charakterystyka normy PN-HD (IEC 60364)... 15 Spis treści 5 SPIS TREŚCI Spis treści Przedmowa do wydania czwartego... 11 1. Wyjaśnienia ogólne... 13 Spis treści 2. Charakterystyka normy PN-HD 60364 (IEC 60364)... 15 2.1. Układ normy PN-HD 60364 Instalacje

Bardziej szczegółowo

WERSJA SKRÓCONA ZABEZPIECZENIA W INSTALACJACH ELEKTRYCZNYCH

WERSJA SKRÓCONA ZABEZPIECZENIA W INSTALACJACH ELEKTRYCZNYCH ZABEZPIECZENIA W INSTALACJACH ELEKTRYCZNYCH Przy korzystaniu z instalacji elektrycznych jesteśmy narażeni między innymi na niżej wymienione zagrożenia pochodzące od zakłóceń: przepływ prądu przeciążeniowego,

Bardziej szczegółowo

Napięcia. charakterystyka instalacji. Porażenie prądem elektrycznym 1. DEFINICJE

Napięcia. charakterystyka instalacji. Porażenie prądem elektrycznym 1. DEFINICJE 1. DEFINICJE charakterystyka instalacji instalacja elektryczna (w obiekcie budowlanym) - zespół współpracujących ze sobą elementów elektrycznych o skoordynowanych parametrach technicznych, przeznaczonych

Bardziej szczegółowo

Andrzej Boczkowski. Wymagania techniczne dla instalacji elektrycznych niskiego napięcia w budynkach. Vademecum

Andrzej Boczkowski. Wymagania techniczne dla instalacji elektrycznych niskiego napięcia w budynkach. Vademecum Andrzej Boczkowski Wymagania techniczne dla instalacji elektrycznych niskiego napięcia w budynkach Vademecum Tytuł serii Vademecum elektro.info Recenzenci: mgr inż. Julian Wiatr inż. Jarosław Klukojć

Bardziej szczegółowo

Środek ochrony Izolacja podstawowa części. Przegrody lub obudowy Przeszkody. Umieszczenie poza zasięgiem ręki

Środek ochrony Izolacja podstawowa części. Przegrody lub obudowy Przeszkody. Umieszczenie poza zasięgiem ręki Rodzaje i środki ochrony przeciwporażeniowej Rodzaj ochrony Ochrona podstawowa Ochrona przy uszkodzeniu (dodatkowa) Ochrona przez zastosowanie bardzo niskiego napięcia Ochrona uzupełniająca Środek ochrony

Bardziej szczegółowo

Ochrona przed porażeniem prądem elektrycznym

Ochrona przed porażeniem prądem elektrycznym Ochrona przed porażeniem prądem elektrycznym Porażenie prądem- przepływ przez ciało człowieka prądu elektrycznego 1. Działanie prądu - bezpośrednie- gdy następuje włączenie ciała w obwód elektryczny -

Bardziej szczegółowo

Lekcja 50. Ochrona przez zastosowanie urządzeń II klasy ochronności

Lekcja 50. Ochrona przez zastosowanie urządzeń II klasy ochronności Lekcja 50. Ochrona przez zastosowanie urządzeń II klasy ochronności Ochrona przed dotykiem pośrednim w urządzeniach elektrycznych niskiego napięcia może być osiągnięta przez zastosowanie urządzeń II klasy

Bardziej szczegółowo

4. OCHRONA PRZECIWPORAŻENIOWA W URZĄDZENIACH I INSTALACJACH

4. OCHRONA PRZECIWPORAŻENIOWA W URZĄDZENIACH I INSTALACJACH 4. OCHRONA PRZECIWPORAŻENIOWA W URZĄDZENIACH I INSTALACJACH Każde urządzenie elektryczne powinno być tak skonstruowane, by nie stwarzało zagrożenia porażenia prądem dla obsługującego czy użytkownika. Cechę

Bardziej szczegółowo

Instytut Elektrotechniki i Automatyki Okrętowej. Część 11 Ochrona przeciwporażeniowa

Instytut Elektrotechniki i Automatyki Okrętowej. Część 11 Ochrona przeciwporażeniowa Część 11 Ochrona przeciwporażeniowa Impedancja ciała człowieka Impedancja skóry zależy od: stanu naskórka i stopnia jego zawilgocenia, napięcia rażeniowego, czasu trwania rażenia, powierzchni dotyku i

Bardziej szczegółowo

Andrzej Boczkowski. Wymagania techniczne dla instalacji elektrycznych niskiego napięcia w budynkach. Vademecum

Andrzej Boczkowski. Wymagania techniczne dla instalacji elektrycznych niskiego napięcia w budynkach. Vademecum Andrzej Boczkowski Wymagania techniczne dla instalacji elektrycznych niskiego napięcia w budynkach Vademecum Tytuł serii Vademecum elektro.info Recenzenci: mgr inż. Julian Wiatr inż. Jarosław Klukojć

Bardziej szczegółowo

mgr inż. Andrzej Boczkowski Warszawa, r. Stowarzyszenie Elektryków Polskich Sekcja Instalacji i Urządzeń Elektrycznych

mgr inż. Andrzej Boczkowski Warszawa, r. Stowarzyszenie Elektryków Polskich Sekcja Instalacji i Urządzeń Elektrycznych mgr inż. Andrzej Boczkowski Warszawa,.05.013 r. Stowarzyszenie Elektryków Polskich Sekcja Instalacji i Urządzeń Elektrycznych Zespoły ruchome lub przewoźne Pojęcie zespół oznacza pojazd i/lub ruchomą lub

Bardziej szczegółowo

Ochrona instalacji elektrycznych niskiego napięcia przed skutkami doziemień w sieciach wysokiego napięcia

Ochrona instalacji elektrycznych niskiego napięcia przed skutkami doziemień w sieciach wysokiego napięcia mgr inż. Andrzej Boczkowski Stowarzyszenie Elektryków Polskich Sekcja Instalacji i Urządzeń Elektrycznych Warszawa 10.01.2012 r. Ochrona instalacji elektrycznych niskiego napięcia przed skutkami doziemień

Bardziej szczegółowo

NORMY I PRZEPISY PRAWNE Ochrona przeciwprzepięciowa

NORMY I PRZEPISY PRAWNE Ochrona przeciwprzepięciowa NORMY I PRZEPISY PRAWNE Ochrona przeciwprzepięciowa Opracował: Andrzej Nowak Bibliografia: http://www.ciop.pl/ 1. Kategorie ochrony Wymagania ogólne dotyczące ochrony instalacji elektrycznych przed przepięciami

Bardziej szczegółowo

Zasady bezpiecznej obsługi urządzeń elektrycznych. Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego.

Zasady bezpiecznej obsługi urządzeń elektrycznych. Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego. Zasady bezpiecznej obsługi urządzeń elektrycznych Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego. Podstawowe zasady: Naprawy i konserwacje mogą być wykonywane

Bardziej szczegółowo

Problemy wymiarowania i koordynacji zabezpieczeń w instalacjach elektrycznych

Problemy wymiarowania i koordynacji zabezpieczeń w instalacjach elektrycznych mgr inż. Andrzej Boczkowski Stowarzyszenie Elektryków Polskich Sekcja Instalacji i Urządzeń Elektrycznych Warszawa, 02.03.2005 r Problemy wymiarowania i koordynacji zabezpieczeń w instalacjach elektrycznych

Bardziej szczegółowo

Instalacje elektryczne w obiektach budowlanych. Wybrane wymagania dla instalacji modernizowanych lub nowo budowanych

Instalacje elektryczne w obiektach budowlanych. Wybrane wymagania dla instalacji modernizowanych lub nowo budowanych mgr inż. Andrzej Boczkowski Warszawa, 2.02.2008 r. Stowarzyszenie Elektryków Polskich Sekcja Instalacji i Urządzeń Elektrycznych Instalacje elektryczne w obiektach budowlanych. Wybrane wymagania dla instalacji

Bardziej szczegółowo

Układy sieci elektroenergetycznych. Podstawowe pojęcia i określenia stosowane w odniesieniu do sieci, urządzeń elektrycznych oraz środków ochrony

Układy sieci elektroenergetycznych. Podstawowe pojęcia i określenia stosowane w odniesieniu do sieci, urządzeń elektrycznych oraz środków ochrony Układy sieci elektroenergetycznych. Podstawowe pojęcia i określenia stosowane w odniesieniu do sieci, urządzeń elektrycznych oraz środków ochrony przeciwporażeniowej. 1) część czynna - żyła przewodu lub

Bardziej szczegółowo

Energia elektryczna w środowisku pracy

Energia elektryczna w środowisku pracy Wyższa Szkoła Ekologii i Zarządzania Wydział Zarządzania Studia Podyplomowe ERGONOMIA, BEZPIECZEŃSTWO I HIGIENA PRACY Dyscyplina: Energia elektryczna w środowisku pracy M a t e r i a ł y ź r ó d ł o w

Bardziej szczegółowo

Zasady bezpiecznej eksploatacji urządzeń elektrycznych. Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej.

Zasady bezpiecznej eksploatacji urządzeń elektrycznych. Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej. Zasady bezpiecznej eksploatacji urządzeń elektrycznych Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej. Podstawowe zasady: Naprawy i konserwacje mogą być wykonywane

Bardziej szczegółowo

Andrzej Boczkowski. Wymagania techniczne dla instalacji elektrycznych niskiego napięcia w budynkach. Vademecum

Andrzej Boczkowski. Wymagania techniczne dla instalacji elektrycznych niskiego napięcia w budynkach. Vademecum Andrzej Boczkowski Wymagania techniczne dla instalacji elektrycznych niskiego napięcia w budynkach Vademecum Tytuł serii Vademecum elektro.info Recenzenci: mgr inż. Julian Wiatr inż. Jarosław Klukojć

Bardziej szczegółowo

Lekcja Układy sieci niskiego napięcia

Lekcja Układy sieci niskiego napięcia Lekcja Układy sieci niskiego napięcia Obwody instalacji elektrycznych niskiego napięcia mogą być wykonane w różnych układach sieciowych. Mogą się różnić one systemem ochrony przeciwporażeniowej, sposobem

Bardziej szczegółowo

PROTOKÓŁ SPRAWDZEŃ ODBIORCZYCH/OKRESOWYCH INSTALACJI ELEKTRYCZNYCH

PROTOKÓŁ SPRAWDZEŃ ODBIORCZYCH/OKRESOWYCH INSTALACJI ELEKTRYCZNYCH Wzory protokółów z przeprowadzonych sprawdzeń instalacji elektrycznych PROTOKÓŁ SPRAWDZEŃ ODBIORCZYCH/OKRESOWYCH INSTALACJI 1. OBIEKT BADANY (nazwa, adres) ELEKTRYCZNYCH...... 2. CZŁONKOWIE KOMISJI (imię,

Bardziej szczegółowo

2. ZAWARTOŚĆ OPRACOWANIA. 1) Strona tytułowa. 2) Zawartość opracowania. 3) Oświadczenie - klauzula. 4) Spis rysunków. 5) Zakres opracowania

2. ZAWARTOŚĆ OPRACOWANIA. 1) Strona tytułowa. 2) Zawartość opracowania. 3) Oświadczenie - klauzula. 4) Spis rysunków. 5) Zakres opracowania 2. ZAWARTOŚĆ OPRACOWANIA 1) Strona tytułowa 2) Zawartość opracowania 3) Oświadczenie - klauzula 4) Spis rysunków 5) Zakres opracowania 6) Opis techniczny 7) Rysunki wg spisu 3. OŚWIADCZENIE - K L A U Z

Bardziej szczegółowo

WYMAGANIA TECHNICZNE DLA INSTALACJI ELEKTRYCZNYCH NISKIEGO NAPIĘCIA W BUDYNKACH

WYMAGANIA TECHNICZNE DLA INSTALACJI ELEKTRYCZNYCH NISKIEGO NAPIĘCIA W BUDYNKACH WYMAGANIA TECHNICZNE DLA INSTALACJI ELEKTRYCZNYCH NISKIEGO NAPIĘCIA W BUDYNKACH WYMAGANIA TECHNICZNE DLA INSTALACJI ELEKTRYCZNYCH NISKIEGO NAPIĘCIA W BUDYNKACH mgr inż. Andrzej Boczkowski Wydawnictwo

Bardziej szczegółowo

Temat: Dobór przekroju przewodów ze względu na wytrzymałość mechaniczną, obciążalność prądową i dopuszczalny spadek napięcia.

Temat: Dobór przekroju przewodów ze względu na wytrzymałość mechaniczną, obciążalność prądową i dopuszczalny spadek napięcia. Temat: Dobór przekroju przewodów ze względu na wytrzymałość mechaniczną, obciążalność prądową i dopuszczalny spadek napięcia. Dobór przekroju przewodów ze względu na obciążalność prądową długotrwałą wykonuje

Bardziej szczegółowo

Zasady wykonania instalacji elektrycznych do zasilania urządzeń teleinformatycznych Zasilanie Serwerowni Szkolnych i Punktów Dystrybucyjnych 1

Zasady wykonania instalacji elektrycznych do zasilania urządzeń teleinformatycznych Zasilanie Serwerowni Szkolnych i Punktów Dystrybucyjnych 1 Zasady wykonania instalacji elektrycznych do zasilania urządzeń teleinformatycznych Zasilanie Serwerowni Szkolnych i Punktów Dystrybucyjnych 1 Zasilanie urządzeń teletechnicznych to system usług technicznych

Bardziej szczegółowo

Ochrona przeciwporażeniowa w instalacjach elektrycznych niskiego napięcia

Ochrona przeciwporażeniowa w instalacjach elektrycznych niskiego napięcia mgr inż. Andrzej Boczkowski 14.09.2009 r. Stowarzyszenie Elektryków Polskich Sekcja Instalacji i Urządzeń Elektrycznych Ochrona przeciwporażeniowa w instalacjach elektrycznych niskiego napięcia 1. Ważniejsze

Bardziej szczegółowo

ZABDOWA WYŁĄCZNIKA PRZECIWPOŻAROWEGO. Katowice, marzec 2019 r.

ZABDOWA WYŁĄCZNIKA PRZECIWPOŻAROWEGO. Katowice, marzec 2019 r. Dokumentacja: Inwestor: PROJEKT TECHNICZNY INSTALACJI ELEKTRYCZNEJ ul. Świdnicka 35A 40-711 KATOWICE Miejski Ośrodek Pomocy Społecznej w Katowicach ul. Jagiellońska 17, 40-032 Katowice ZABDOWA WYŁĄCZNIKA

Bardziej szczegółowo

Miejscowość:... Data:...

Miejscowość:... Data:... PROTOKÓŁ BADAŃ ODBIORCZYCH INSTALACJI ELEKTRYCZNYCH 1. OBIEKT BADANY (nazwa, adres)...... 2. CZŁONKOWIE KOMISJI (imię, nazwisko, stanowisko) 1.... 2.... 3.... 4.... 5.... 3. BADANIA ODBIORCZE WYKONANO

Bardziej szczegółowo

- opracowanie tablicy rozdzielczej w budynku 400 / 230 V, - opracowanie instalacji oświetleniowej i gniazd wtykowych,

- opracowanie tablicy rozdzielczej w budynku 400 / 230 V, - opracowanie instalacji oświetleniowej i gniazd wtykowych, - 2-1. Podstawa opracowania. Podstawa opracowania: - zlecenie inwestora, - projekt techniczny branŝy budowlanej, - wizja lokalna i uzgodnienia - obowiązujące przepisy i normy. 2. Zakres opracowania. Projekt

Bardziej szczegółowo

Opis techniczny. 1. Przepisy i normy. 2. Zakres opracowania. 3. Zasilanie.

Opis techniczny. 1. Przepisy i normy. 2. Zakres opracowania. 3. Zasilanie. Opis techniczny 1. Przepisy i normy. Projekt został opracowany zgodnie z Prawem Budowlanym, Polskimi Normami PN, Przepisami Budowy Urządzeń Elektrycznych PBUE, oraz warunkami technicznymi wykonania i odbioru

Bardziej szczegółowo

Lekcja Zabezpieczenia przewodów i kabli

Lekcja Zabezpieczenia przewodów i kabli Lekcja 23-24. Zabezpieczenia przewodów i kabli Przepływ prądów przekraczających zarówno obciążalnośd prądową przewodów jak i prąd znamionowy odbiorników i urządzeo elektrycznych, a także pogorszenie się

Bardziej szczegółowo

OCHRONA PRZECIWPORAŻENIOWA ORAZ DOBÓR PRZEWODÓW I ICH ZABEZPIECZEŃ W INSTALACJACH ELEKTRYCZNYCH NISKIEGO NAPIĘCIA

OCHRONA PRZECIWPORAŻENIOWA ORAZ DOBÓR PRZEWODÓW I ICH ZABEZPIECZEŃ W INSTALACJACH ELEKTRYCZNYCH NISKIEGO NAPIĘCIA SERIA: ZESZYTY DLA ELEKTRYKÓW NR 8 Julian Wiatr Andrzej Boczkowski Marcin Orzechowski OCHRONA PRZECIWPORAŻENIOWA ORAZ DOBÓR PRZEWODÓW I ICH ZABEZPIECZEŃ W INSTALACJACH ELEKTRYCZNYCH NISKIEGO NAPIĘCIA Recenzenci:

Bardziej szczegółowo

Spis zawartości opracowania: II. UPRAWNIENIA, ZAŚWIADCZENIE. 3 II. OPIS TECHNICZNY 9 III. CZĘŚĆ RYSUNKOWA.13

Spis zawartości opracowania: II. UPRAWNIENIA, ZAŚWIADCZENIE. 3 II. OPIS TECHNICZNY 9 III. CZĘŚĆ RYSUNKOWA.13 Spis zawartości opracowania: II. UPRAWNIENIA, ZAŚWIADCZENIE. 3 II. OPIS TECHNICZNY 9 III. CZĘŚĆ RYSUNKOWA.13 2 S t r o n a I. UPRAWNIENIA BUDOWLANE, ZAŚWIADCZENIA 3 S t r o n a 4 S t r o n a 5 S t r o

Bardziej szczegółowo

Aktualne przepisy w zakresie ochrony przed porażeniem prądem elektrycznym przy urządzeniach i instalacjach do 1 kv

Aktualne przepisy w zakresie ochrony przed porażeniem prądem elektrycznym przy urządzeniach i instalacjach do 1 kv Aktualne przepisy w zakresie ochrony przed porażeniem prądem elektrycznym przy urządzeniach i instalacjach do 1 kv Norma PN-IEC 60364-4-41 Ochrona dla zapewnienia bezpieczeostwa 41 OCHRONA PRZECIWPORAŻENIOWA

Bardziej szczegółowo

II RYSUNKI 2.1 Rys.1...Schemat ideowy TK 2.2 Rys.2...Instalacje wewnętrzne III UPRAWNIENIA I OŚWIADCZENIE PROJEKTANTA

II RYSUNKI 2.1 Rys.1...Schemat ideowy TK 2.2 Rys.2...Instalacje wewnętrzne III UPRAWNIENIA I OŚWIADCZENIE PROJEKTANTA Zawartość opracowania I OPIS TECHNICZNY 1.1 Przedmiot i zakres opracowania 1.2 Podstawa opracowania 1.3 Dane energetyczne 1.4 Układ pomiarowy 1.5 Tablica rozdzielcza i linia zasilająca 1.6 Instalacje oświetlenia

Bardziej szczegółowo

PROJEKT WYKONAWCZY ZASILANIA W ENERGIĘ ELEKTRYCZNĄ CENTRAL WENTYLACYJNYCH ARCHIWUM

PROJEKT WYKONAWCZY ZASILANIA W ENERGIĘ ELEKTRYCZNĄ CENTRAL WENTYLACYJNYCH ARCHIWUM PROJEKT WYKONAWCZY ZASILANIA W ENERGIĘ ELEKTRYCZNĄ CENTRAL WENTYLACYJNYCH ARCHIWUM Adres: 15-888 Białystok, ul. K.S. Wyszyńskiego 1 Obiekt: Część niska archiwum i pomieszczenia biurowe parteru Inwestor:

Bardziej szczegółowo

ZAWARTOŚĆ DOKUMENTACJI

ZAWARTOŚĆ DOKUMENTACJI ZAWARTOŚĆ DOKUMENTACJI 1. OPIS TECHNICZNY... 3 1.1 Temat projektu... 3 1.2 Zakres projektu... 3 1.3 Podstawa opracowania projektu... 3 1.4 Wskaźniki techniczne dla jednego domku wczasowego... 3 1.5 Uwagi

Bardziej szczegółowo

ZMIANA SPOSOBU UśYTKOWANIA BUDYNKU PO BYŁEJ SIEDZIBIE URZĘDU GMINY, NA CELE ZWIĄZANE Z DZIAŁALNOŚCIĄ W ZAKRESIE KULTURY w m. BEJSCE.

ZMIANA SPOSOBU UśYTKOWANIA BUDYNKU PO BYŁEJ SIEDZIBIE URZĘDU GMINY, NA CELE ZWIĄZANE Z DZIAŁALNOŚCIĄ W ZAKRESIE KULTURY w m. BEJSCE. ZMIANA SPOSOBU UśYTKOWANIA BUDYNKU PO BYŁEJ SIEDZIBIE URZĘDU GMINY, NA CELE ZWIĄZANE Z DZIAŁALNOŚCIĄ W ZAKRESIE KULTURY w m. BEJSCE dz nr 1288 INWESTOR : GMINA BEJSCE 28-512 Bejsce PROJEKT BUDOWLANY INSTALACJI

Bardziej szczegółowo

4.1. Kontrola metrologiczna przyrządów pomiarowych 4.2. Dokładność i zasady wykonywania pomiarów 4.3. Pomiary rezystancji przewodów i uzwojeń P

4.1. Kontrola metrologiczna przyrządów pomiarowych 4.2. Dokładność i zasady wykonywania pomiarów 4.3. Pomiary rezystancji przewodów i uzwojeń P Wstęp 1. Zasady wykonywania sprawdzeń urządzeń i instalacji elektrycznych niskiego napięcia 1.1. Zasady ogólne 1.2. Wymagane kwalifikacje osób wykonujących sprawdzenia, w tym prace kontrolno-pomiarowe

Bardziej szczegółowo

Temat: Łączenie tablicy mieszkaniowej w układzie TN-S

Temat: Łączenie tablicy mieszkaniowej w układzie TN-S Zajęcia nr Temat: Łączenie tablicy mieszkaniowej w układzie TN-S Sieć TN-S jest siecią z przewodami fazowymi L1, L2 i L3, przewodem neutralnym N i przewodem ochronnym PE oraz uziemionym punktem zerowym.

Bardziej szczegółowo

Instalacje elektryczne / Henryk Markiewicz. - wyd Warszawa, Spis treści. Przedmowa do wydania ósmego 11

Instalacje elektryczne / Henryk Markiewicz. - wyd Warszawa, Spis treści. Przedmowa do wydania ósmego 11 Instalacje elektryczne / Henryk Markiewicz. - wyd. 8. - Warszawa, 2010 Spis treści Przedmowa do wydania ósmego 11 1. Klasyfikacja instalacji, urządzeń elektrycznych i środowiska oraz niektóre wymagania

Bardziej szczegółowo

Ochrona przeciwporażeniowa w instalacjach elektrycznych niskiego napięcia

Ochrona przeciwporażeniowa w instalacjach elektrycznych niskiego napięcia mgr inż. Andrzej Boczkowski 7.05.2013 r. Stowarzyszenie Elektryków Polskich Sekcja Instalacji i Urządzeń Elektrycznych Ochrona przeciwporażeniowa w instalacjach elektrycznych niskiego napięcia 1. Ważniejsze

Bardziej szczegółowo

Ochrona przed pora eniem elektrycznym Ochrona podstawowa - ochrona przed dotykiem bezpo rednim

Ochrona przed pora eniem elektrycznym Ochrona podstawowa - ochrona przed dotykiem bezpo rednim Ochrona przed porażeniem elektrycznym Ochrona przed porażeniem elektrycznym jest częścią kompleksowej ochrony zapewniającej bezpieczeństwo przeciwporażeniowe ludzi, zwierząt domowych i dobytku, obejmującej:

Bardziej szczegółowo

OPIS TECHNICZNY. 2. Podstawa opracowania - zlecenie inwestora - podkłady architektoniczne, sanitarne - obowiązujące przepisy i normy

OPIS TECHNICZNY. 2. Podstawa opracowania - zlecenie inwestora - podkłady architektoniczne, sanitarne - obowiązujące przepisy i normy OPIS TECHNICZNY 1. Przedmiot opracowania Przedmiotem opracowania jest projekt techniczny rozbudowy wewnętrznej instalacji elektrycznej w kotłowni w Budynku Państwowej Wyższej Szkoły Zawodowej w Głogowie.

Bardziej szczegółowo

OCHRONA PRZED PORAŻENIEM PRĄDEM ELEKTRYCZNYM. POMIARY OCHRONNE

OCHRONA PRZED PORAŻENIEM PRĄDEM ELEKTRYCZNYM. POMIARY OCHRONNE OCHRONA PRZED PORAŻENIEM PRĄDEM ELEKTRYCZNYM. POMIARY OCHRONNE Standard ten zawiera minimum wymagań, jakie należy spełnić dla zapewnienia ochrony przed porażeniem prądem elektrycznym na budowach. Określa

Bardziej szczegółowo

09.08 ROZDZIELNICE BUDOWLANE (RB), PRZEWODY ZASILAJĄCE I KABLE STANDARD BHP

09.08 ROZDZIELNICE BUDOWLANE (RB), PRZEWODY ZASILAJĄCE I KABLE STANDARD BHP ROZDZIELNICE BUDOWLANE (RB), PRZEWODY ZASILAJĄCE I KABLE Standard ten zawiera minimum wymagań, jakie należy spełnić dla zapewnienia bezpieczeństwa podczas eksploatacji na budowie rozdzielnic budowlanych,

Bardziej szczegółowo

Katalog Techniczny - Aparatura Modułowa Redline (uzupełnienie do drukowanej wersji Aparatura modułowa i rozdzielnice instalacyjne )

Katalog Techniczny - Aparatura Modułowa Redline (uzupełnienie do drukowanej wersji Aparatura modułowa i rozdzielnice instalacyjne ) Katalog Techniczny - Aparatura Modułowa Redline (uzupełnienie do drukowanej wersji Aparatura modułowa i rozdzielnice instalacyjne ) WYŁĄCZNIKI NADPRĄDOWE (tabela konfiguracyjna) Charakterystyki wyzwalania

Bardziej szczegółowo

Opis tech.i schematy Przepompownia P - roboty elektryczne- Projekt przyłącza kablowego n.n. do przepompowni ścieków OPIS TECHNICZNY

Opis tech.i schematy Przepompownia P - roboty elektryczne- Projekt przyłącza kablowego n.n. do przepompowni ścieków OPIS TECHNICZNY OPIS TECHNICZNY I. Wstęp 1. Przedmiot opracowania Przedmiotem opracowania jest projekt budowlany przyłącza kablowego n.n. do przepompowni ścieków w Więcborku, ul. Pomorska dz. 295/3. Wskaźniki elektroenergetyczne:

Bardziej szczegółowo

Ochrona przed porażeniem prądem elektrycznym Pomiary ochronne

Ochrona przed porażeniem prądem elektrycznym Pomiary ochronne W przypadku pytań lub wątpliwości skontaktuj się z najbliższym specjalistą BHP lub wejdź na: www.skanska.pl/bhp, one.skanska/bhp Ochrona przed porażeniem prądem elektrycznym Pomiary ochronne 4.3 Standard

Bardziej szczegółowo

ZASILANIE ODBIORCÓW UKŁADY SIECIOWE. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

ZASILANIE ODBIORCÓW UKŁADY SIECIOWE. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego ZASILANIE ODBIORCÓW UKŁADY SIECIOWE Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Układ sieciowy = konfiguracja sieci elektroenergetycznej. Układ

Bardziej szczegółowo

SEMINARIUM CZŁONKÓW KOŁA 43 SEP WROCŁAW 15.01.2014 r. PROWADZĄCY ANTONI KUCHAREWICZ

SEMINARIUM CZŁONKÓW KOŁA 43 SEP WROCŁAW 15.01.2014 r. PROWADZĄCY ANTONI KUCHAREWICZ SEMINARIUM CZŁONKÓW KOŁA 43 SEP WROCŁAW 15.01.2014 r. PROWADZĄCY ANTONI KUCHAREWICZ REFERAT: Aspekty praktyczne przy elektrycznych pomiarach ochronnych instalacji Przepisy normujące wykonywanie odbiorczych

Bardziej szczegółowo

2. ZASILANIE ELEKTRYCZNE KOTŁOWNI

2. ZASILANIE ELEKTRYCZNE KOTŁOWNI 2. ZASILANIE ELEKTRYCZNE KOTŁOWNI WYTYCZNE PROJEKTOWE www.immergas.com.pl 12 ZASILANIE ELEKTRYCZNE KOTŁOWNI 2. ZASILANIE ELEKTRYCZNE KOTŁOWNI NOWOCZESNE SYSTEMY GRZEWCZE Ogólnie Instalacje elektryczne

Bardziej szczegółowo

1. Przedmiot opracowania. 2. Zakres opracowania. 3. Rozdział energii elektrycznej. 4. Instalacje oświetleniowe

1. Przedmiot opracowania. 2. Zakres opracowania. 3. Rozdział energii elektrycznej. 4. Instalacje oświetleniowe 1. Przedmiot opracowania Przedmiotem opracowania jest cześć elektryczna Projektu budowlanego rozbudowy Szkoły Podstawowej w Jaszkowej Dolnej. 2. Zakres opracowania Opracowanie obejmuje instalacje: instalacji

Bardziej szczegółowo

BEZPIECZEŃSTWO UŻYTKOWANIA INSTALACJI ELEKTRYCZNYCH W BUDYNKACH MIESZKALNYCH I INWENTARSKICH

BEZPIECZEŃSTWO UŻYTKOWANIA INSTALACJI ELEKTRYCZNYCH W BUDYNKACH MIESZKALNYCH I INWENTARSKICH Katedra Energetyki Rolniczej Uniwersytet Rolniczy w Krakowie Problemy Inżynierii Rolniczej nr 3/2008 BEZPIECZEŃSTWO UŻYTKOWANIA INSTALACJI ELEKTRYCZNYCH W BUDYNKACH MIESZKALNYCH I INWENTARSKICH Streszczenie

Bardziej szczegółowo

SPKSO ul. Sierakowskiego 13, Warszawa ELEKTRYCZNA PROJEKT BUDOWLANO WYKONAWCZY

SPKSO ul. Sierakowskiego 13, Warszawa ELEKTRYCZNA PROJEKT BUDOWLANO WYKONAWCZY NAZWA: MODERNIZACJA DZIAŁU FARMACJI SPKSO przy ul. Sierakowskiego 13 w Warszawie INWESTOR: BRANŻA: FAZA: SPKSO ul. Sierakowskiego 13, Warszawa ELEKTRYCZNA PROJEKT BUDOWLANO WYKONAWCZY TOM II JEDNOSTKA

Bardziej szczegółowo

INSTALACJA ELEKTRYCZNA PODSTAWOWA

INSTALACJA ELEKTRYCZNA PODSTAWOWA INSTALACJA ELEKTRYCZNA PODSTAWOWA 1. Temat. Tematem niniejszego opracowania jest projekt techniczny zasilania oraz instalacji elektrycznej wewnętrznej pomieszczeń na potrzeby remontu kompleksowego szatni

Bardziej szczegółowo

2. Ochrona przeciwporażeniowa

2. Ochrona przeciwporażeniowa Ćwiczenie 5 ZABEZPIECZENIA PRZECIWPORAŻENIOWE Celem ćwiczenia jest poznanie środków ochrony od porażeń prądem elektrycznym. Ćwiczenie polega na sprawdzeniu działania różnych środków ochrony przed dotykiem

Bardziej szczegółowo

Autor: prof. dr inż. Tytko Ryszard

Autor: prof. dr inż. Tytko Ryszard Autor: prof. dr inż. Tytko Ryszard Oznaczenia przewodów i zacisków Oznakowanie przewodów i zacisków urządzeń stosuje się w celu: zapewnienia bezpieczeństwa użytkowania; uzyskania łatwej identyfikacji;

Bardziej szczegółowo

Ochrona przeciwporażeniowa

Ochrona przeciwporażeniowa Ochrona przeciwporażeniowa Ochroną przeciwporażeniową nazywa się cykl działań mających na celu zwiększenie bezpieczeństwa człowieka podczas pracy z urządzeniami zasilanymi elektrycznie. Działania te dzielimy

Bardziej szczegółowo

zaproponować materiały innej marki, posiadające te same charakterystyki. Ale taka propozycja wymaga zatwierdzenia przez Inżyniera. 1.2 Sprzęt, Narzędz

zaproponować materiały innej marki, posiadające te same charakterystyki. Ale taka propozycja wymaga zatwierdzenia przez Inżyniera. 1.2 Sprzęt, Narzędz 1. WYMAGANIA WYKONANIA INSTALACJI ELEKTRYCZNYCH I TELETECHNICZNYCH ST zostały sporządzone zgodnie z obowiązującymi standardami, normami obligatoryjnymi, warunkami technicznymi wykonania i odbioru robót

Bardziej szczegółowo

efekt Branża elektryczna Ustka, styczeń 2014 r.

efekt Branża elektryczna Ustka, styczeń 2014 r. Branża elektryczna Ustka, styczeń 2014 r. 1 SPIS ZAWARTOŚCI 1, Opis techniczny 2. Rysunki szt. 4 1/E Plan sytuacyjny skala 1:500 2/E Instalacje elektryczne -rzut przyziemia 3/E Instalacje elektryczne -rzut

Bardziej szczegółowo

BADANIE IZOLOWANEGO STANOWISKA

BADANIE IZOLOWANEGO STANOWISKA Ćwiczenie S 22 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się ze sposobem ochrony przeciwporażeniowej przed dotykiem pośrednim (ochrony dodatkowej) opartym na izolowaniu stanowiska, a przede wszystkim

Bardziej szczegółowo

Spis treści: Od wydawcy 1. Wprowadzenie 2. Przyłączanie instalacji elektrycznej do sieci elektroenergetycznej

Spis treści: Od wydawcy 1. Wprowadzenie 2. Przyłączanie instalacji elektrycznej do sieci elektroenergetycznej Spis treści: Od wydawcy 1. Wprowadzenie 2. Przyłączanie instalacji elektrycznej do sieci elektroenergetycznej 3. Systemy i rozwiązania instalacji elektrycznych w budynkach 3.1. Zasady ogólne 3.2. Połączenia

Bardziej szczegółowo

ZAWARTOŚĆ OPRACOWANIA

ZAWARTOŚĆ OPRACOWANIA ZAWARTOŚĆ OPRACOWANIA 1. PODSTAWA OPRACOWANIA 12 2. ZAKRES OPRACOWANIA 12 3. CHARAKTERYSTYKA TECHNICZNA 12 4. OPIS ROZWIĄZAŃ TECHNICZNYCH 13 5. POMIAR I RORODZIAŁ ENERGII 13 6. TABLICA TP 13 7. INSTALACJA

Bardziej szczegółowo

Tytuł normy (zakres powołania)

Tytuł normy (zakres powołania) 4. WYKAZ NORM POWOŁANYCH W ZAKRESIE INSTALACJI ELEKTRYCZNYCH I OCHRONY ODGROMOWEJ Minister Infrastruktury w Rozporządzeniu z dnia 10 grudnia 2010 roku (Dz. U. nr 239 z 2010 r., poz. 1597) określił nowy

Bardziej szczegółowo

BRAŻA ELEKTRYCZNA- PRZYŁĄCZ ENERGETYCZNY

BRAŻA ELEKTRYCZNA- PRZYŁĄCZ ENERGETYCZNY ZAPROJEKTOWANIE ROZBUDOWY I PRZEBUDOWY BUDYNKU ZESPOŁU SZKÓŁ W GNOJNICY DOLNEJ O SALĘ GIMNASTYCZNĄ I PRZEDSZKOLE. Adres inwestycji: dz. nr ew. 3032 w Gnojnicy Dolnej Inwestor: GMINA ROPCZYCE, ul. Krisego

Bardziej szczegółowo

15. UKŁADY POŁĄCZEŃ PRZEKŁADNIKÓW PRĄDOWYCH I NAPIĘCIOWYCH

15. UKŁADY POŁĄCZEŃ PRZEKŁADNIKÓW PRĄDOWYCH I NAPIĘCIOWYCH 15. UKŁDY POŁĄCZEŃ PRZEKŁDNIKÓW PRĄDOWYCH I NPIĘCIOWYCH 15.1. Cel i zakres ćwiczenia Celem ćwiczenia jest zapoznanie się z najczęściej spotykanymi układami połączeń przekładników prądowych i napięciowych

Bardziej szczegółowo

Kryteria doboru wyłącznika różnicowoprądowego

Kryteria doboru wyłącznika różnicowoprądowego Kryteria doboru wyłącznika różnicowoprądowego Stosowanie wyłączników różnicowo-prądowych w falownikach SUNNY BOY, SUNNY MINI CENTRAL i SUNNY TRIPOWER Zawartość dokumentu Przy instalacji falowników często

Bardziej szczegółowo

INSTALACJE ELEKTRYCZNE - OPIS TECHNICZNY

INSTALACJE ELEKTRYCZNE - OPIS TECHNICZNY INSTALACJE ELEKTRYCZNE - OPIS TECHNICZNY 1. Dane ogólne a. obiekt: Instytut Łączności budynek C b. adres Wrocław ul. Swojczycka 38 c. temat: przebudowa części budynku C d. stadium: projekt budowlany e.

Bardziej szczegółowo

1. Jako ochrona przed skutkami przepięć łączeniowych, powodowanych głównie załączeniami i wyłączeniami określonych odbiorników, mogą być stosowane:

1. Jako ochrona przed skutkami przepięć łączeniowych, powodowanych głównie załączeniami i wyłączeniami określonych odbiorników, mogą być stosowane: Temat: Środki i sposoby ochrony przed skutkami przepięć. Stosowane środki ochrony przeciwprzepięciowej mogą być przeznaczone do ochrony przed skutkami przepięć tylko określonego pochodzenia lub mogą mieć

Bardziej szczegółowo

2.1. Uprawnienia projektanta

2.1. Uprawnienia projektanta 2.1. Uprawnienia projektanta 3 4 2.2. Uprawnienia sprawdzającego 5 6 7 3. Spis zawartości projektu 1.Strona tytułowa 2.Oświadczenie projektanta, uprawnienia str. 2-6 3.Spis zawartości projektu str. 7 4.Podstawa

Bardziej szczegółowo

Przegląd i kontrola instalacji elektrycznych i instalacji (urządzeń) piorunochronnych w budynku

Przegląd i kontrola instalacji elektrycznych i instalacji (urządzeń) piorunochronnych w budynku Mgr inż. Andrzej Boczkowski 7.05.2013 r. Stowarzyszenie Elektryków Polskich Sekcja Instalacji i Urządzeń Elektrycznych Przegląd i kontrola instalacji elektrycznych i instalacji (urządzeń) piorunochronnych

Bardziej szczegółowo

PROJEKT TECHNICZNO - WYKONAWCZY

PROJEKT TECHNICZNO - WYKONAWCZY PROJEKT TECHNICZNO - WYKONAWCZY Przedmiot opracowania: Projekt przystosowania instalacji elektrycznej budynku wielorodzinnego przy ul. Lwowska 27 w Tarnowie dla potrzeb zainstalowania w mieszkaniach kuchenek

Bardziej szczegółowo

PROJEKT WYKONAWCZY. instalacji elektrycznych wewnętrznych remontu i modernizacji istniejącej

PROJEKT WYKONAWCZY. instalacji elektrycznych wewnętrznych remontu i modernizacji istniejącej egz. nr 1 instalacji elektrycznych wewnętrznych remontu i modernizacji istniejącej nr działek 186/3, 34/35, 188/4, 188/2, 188/5 obręb -01231 INWESTOR: Gdańska Galeria Miejska ul. Piwna 27/29 80-831 Gdańsk

Bardziej szczegółowo

PROJEKT BUDOWLANY. Adaptacja pomieszczenia sali chorych na pomieszczenie izolatki

PROJEKT BUDOWLANY. Adaptacja pomieszczenia sali chorych na pomieszczenie izolatki PROJEKT BUDOWLANY Obiekt: Projekt: Inwestor: Branża: Zakład Pielęgnacyjno - Opiekuńczy 72-600 Świnoujście, Żeromskiego 21 Obręb 1, Działka 79 Adaptacja pomieszczenia sali chorych na pomieszczenie izolatki

Bardziej szczegółowo

INSTALATORSTWO ELEKTRYCZNE HUBERT LOCH Ul. Cmentarna 9a, 46-042 Szczedrzyk Tel. 077 4655117 METRYKA PROJEKTU

INSTALATORSTWO ELEKTRYCZNE HUBERT LOCH Ul. Cmentarna 9a, 46-042 Szczedrzyk Tel. 077 4655117 METRYKA PROJEKTU INSTALATORSTWO ELEKTRYCZNE HUBERT LOCH Ul. Cmentarna 9a, 46-042 Szczedrzyk Tel. 077 4655117 METRYKA PROJEKTU TEMAT, OBIEKT Projekt techniczny instalacji elektrycznych wewnętrznych biblioteki wiejskiej

Bardziej szczegółowo

WSPÓŁCZESNE INSTALACJE MIESZKANIOWE

WSPÓŁCZESNE INSTALACJE MIESZKANIOWE WSPÓŁCZESNE INSTALACJE MIESZKANIOWE Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Stan techniczny instalacji mieszkaniowych w Polsce Okres technicznej

Bardziej szczegółowo

mgr inż. Fryderyk Łasak Kraków, oś. Bohaterów Września 61A/23 tel/fax , kom ,

mgr inż. Fryderyk Łasak Kraków, oś. Bohaterów Września 61A/23 tel/fax , kom , mgr inż. Fryderyk Łasak 31-621 Kraków, oś. Bohaterów Września 61A/23 tel/fax 0-12-6811541, kom 0-503 750306, e-mail flasak@tlen.pl Zasady i wymagania dotyczące ochrony przeciwporażeniowej w oparciu o normę

Bardziej szczegółowo

Wymagania edukacyjne: Instalacje elektryczne. Klasa: 2Tb TECHNIK ELEKTRYK. Ilość godzin: 2. Wykonała: Beata Sedivy

Wymagania edukacyjne: Instalacje elektryczne. Klasa: 2Tb TECHNIK ELEKTRYK. Ilość godzin: 2. Wykonała: Beata Sedivy Wymagania edukacyjne: Instalacje elektryczne Klasa: 2Tb TECHNIK ELEKTRYK Ilość godzin: 2 Wykonała: Beata Sedivy Ocena Ocenę niedostateczną Ocenę dopuszczającą Wymagania edukacyjne wobec ucznia: Nie uczęszcza

Bardziej szczegółowo

inż. Stanisław Ball nr upr. 73/93 U_w Katowice Mgr Inż. Piotr Duda nr upr. SLK/0764/PWE/0 SLK/IE/3400/05

inż. Stanisław Ball nr upr. 73/93 U_w Katowice Mgr Inż. Piotr Duda nr upr. SLK/0764/PWE/0 SLK/IE/3400/05 STRONA TYTUŁOWA I Projektant Sprawdzający inż. Stanisław Ball nr upr. 73/93 U_w Katowice Mgr Inż. Piotr Duda nr upr. SLK/0764/PWE/0 SLK/IE/3400/05 STRONA TYTUŁOWA II KARTA UZGONIEŃ FORMALNO PRAWNYCH 1.

Bardziej szczegółowo

Wydział Elektryczny Katedra Elektroenergetyki, Fotoniki i Techniki Świetlnej

Wydział Elektryczny Katedra Elektroenergetyki, Fotoniki i Techniki Świetlnej Wydział Elektryczny Katedra Elektroenergetyki, Fotoniki i Techniki Świetlnej Instrukcja do zajęć laboratoryjnych z przedmiotu: BUDOWA ORAZ EKSPLOATACJA INSTALACJI I URZĄDZEŃ ELEKTRYCZNYCH KOD: ES1C710213

Bardziej szczegółowo

Aktualizacja wykazu norm przywołanych w Rozporządzeniu MIiB z 14 listopada 2017r.

Aktualizacja wykazu norm przywołanych w Rozporządzeniu MIiB z 14 listopada 2017r. Aktualizacja wykazu norm przywołanych w Rozporządzeniu MIiB z 14 listopada 2017r. W dniu 14 listopada 2017r. Minister Infrastruktury i Budownictwa podpisał Rozporządzenie zmieniające rozporządzenie I w

Bardziej szczegółowo

INSTALACJE ELEKTRYCZNE

INSTALACJE ELEKTRYCZNE INSTALACJE ELEKTRYCZNE 1. WIADOMOŚCI WWTĘPNW Instalacje elektryczne powinny być funkcjonalne. Znaczy to, że instalacja powinna umożliwiać poprawne korzystanie z urządzeń elektrycznych w wybranym miejscu,

Bardziej szczegółowo

Poznanie budowy, sposobu włączania i zastosowania oraz sprawdzenie działania wyłącznika różnicowoprądowego i silnikowego.

Poznanie budowy, sposobu włączania i zastosowania oraz sprawdzenie działania wyłącznika różnicowoprądowego i silnikowego. Cel ćwiczenia Badanie wyłączników samoczynnych str. 1 Poznanie budowy, sposobu włączania i zastosowania oraz sprawdzenie działania wyłącznika różnicowoprądowego i silnikowego. I. WIADOMOŚCI TEORETYCZNE

Bardziej szczegółowo

INSTALACJE ELEKRTRYCZNE

INSTALACJE ELEKRTRYCZNE INSTALACJE ELEKRTRYCZNE Spis treści 1. OPIS TECHNICZY...2 1.1. PRZEDMIOT OPRACOWANIA....2 1.2. PODSTAWA OPRACOWANIA....2 2. ZASILANIE...2 3. ROZDZIELNICE...2 4. INSTALACJE WEWNĘTRZNE...3 5. STEROWANIE

Bardziej szczegółowo

Ochrona przeciwporażeniowa 1

Ochrona przeciwporażeniowa 1 Ochrona przeciwporażeniowa 1 1. OCHRONA PRZED DOTYKIEM BEZPOŚREDNIM (OCHRONA PODSTAWOWA) ma za zadanie chronić ludzi i zwierzęta przed zagrożeniami wynikającymi z dotyku części urządzeń bodących pod napięciem.

Bardziej szczegółowo

Rozdzielnice budowlane (RB), przewody zasilające i kable

Rozdzielnice budowlane (RB), przewody zasilające i kable W przypadku pytań lub wątpliwości skontaktuj się z najbliższym specjalistą BHP lub wejdź na: www.skanska.pl/bhp, one.skanska/bhp Rozdzielnice budowlane (RB), przewody zasilające i kable 9.8 Standard pracy

Bardziej szczegółowo

02. Trasy WLZ i główna szyna wyrównawcza - piwnice. 04. Oświetlenie i gn. 230V administracyjne piwnice

02. Trasy WLZ i główna szyna wyrównawcza - piwnice. 04. Oświetlenie i gn. 230V administracyjne piwnice SPIS ZAWARTOŚĆ OPRACOWANIA 1. Opis techniczny 2. Obliczenia techniczne 3. Plan sytuacyjny 4. Rysunki: 01. Schemat tablicy głównej TG/TL 02. Trasy WLZ i główna szyna wyrównawcza - piwnice 03. Trasy WLZ

Bardziej szczegółowo

1) Napięcie znamionowe 2) Znamionowy prąd różnicowy zadziałania 3) Prąd znamionowy ciągły 4) Częstotliwość znamionowa 5) Obciążalność zwarciowa

1) Napięcie znamionowe 2) Znamionowy prąd różnicowy zadziałania 3) Prąd znamionowy ciągły 4) Częstotliwość znamionowa 5) Obciążalność zwarciowa Parametry wyłączników RCD 1. Sklasyfikowane parametry wyłączników różnicowoprądowych: 1) Napięcie znamionowe Napięcie znamionowe ((U n) wyłączników różnicowoprądowych jest związane z: a) napięciem znamionowym

Bardziej szczegółowo

BHP.pl. Utworzono : 04 grudzieĺ Model : KaBe Egzamin kwalifikacyjny elektryka w pytaniach i odpowiedziach. Producent : KaBe, Krosno

BHP.pl. Utworzono : 04 grudzieĺ Model : KaBe Egzamin kwalifikacyjny elektryka w pytaniach i odpowiedziach. Producent : KaBe, Krosno Model : KaBe Egzamin kwalifikacyjny elektryka w pytaniach i odpowiedziach Producent : KaBe, Krosno Książka jest przeznaczona dla osób przygotowujących się do egzaminu kwalifikacyjnego w zakresie eksploatacji

Bardziej szczegółowo

Część elektryczna ZAWARTOŚĆ OPRACOWANIA

Część elektryczna ZAWARTOŚĆ OPRACOWANIA CZĘŚĆ ELEKTRYCZNA ZAWARTOŚĆ OPRACOWANIA Opis techniczny...3 1. Temat Opracowania...3 2. Podstawa Opracowania...3 3. Stan istniejący...3 4. Roboty projektowane...3 4.1. Zakres opracowania...3 4.2. Rozbudowa

Bardziej szczegółowo

ZAWARTOŚĆ PROJEKTU ZAWARTOŚĆ PROJEKTU...2

ZAWARTOŚĆ PROJEKTU ZAWARTOŚĆ PROJEKTU...2 ZAWARTOŚĆ PROJEKTU ZAWARTOŚĆ PROJEKTU...2 1. OPIS TECHNICZNY...3 1.1 Temat projektu...3 1.2 Zakres projektu...3 1.3 Podstawa prawna opracowania projektu...3 1.4 Wskaźniki techniczne...3 1.5 Przyłącze 0,4kV...3

Bardziej szczegółowo

PROJEKT BUDOWLANY BRANŻA ELEKTRYCZNA.

PROJEKT BUDOWLANY BRANŻA ELEKTRYCZNA. PROJEKT BDOWLANY BRANŻA ELEKTRYCZNA. Inwestor: rząd Gminy Oświęcim ul. Zamkowa 12 32-600 Oświęcim Oświadczam, że niniejszy projekt budowlany został wykonany zgodnie z obowiązującymi przepisami, normami

Bardziej szczegółowo

Spis treści I. Spis rysunków...3 II.Opis techniczny...4 1. Podstawa opracowania...4 2. Zakres opracowania...4 3. Zasilanie...5 4. Rozdzielnie...6 5. Wewnętrzne linie zasilające...6 6. Instalacje administracyjne...7

Bardziej szczegółowo

Rozbudowa budynku przychodni dobudowa windy. Branża elektryczna

Rozbudowa budynku przychodni dobudowa windy. Branża elektryczna Klimas PRZEDSIĘBIORSTWO BUDOWLANO PROJEKTOWE R Y S Z A R D K L I M A S Inwestycja: Rozbudowa budynku przychodni dobudowa windy Krotoszyn, 15 marzec 2016 r. Kategoria obiektów budowlanych: XI Lokalizacja:

Bardziej szczegółowo

SPIS ZAWARTOŚCI PROJEKTU CZĘŚĆ OPISOWA CZĘŚĆ GRAFICZNA

SPIS ZAWARTOŚCI PROJEKTU CZĘŚĆ OPISOWA CZĘŚĆ GRAFICZNA str. 2 SPIS ZAWARTOŚCI PROJEKTU CZĘŚĆ OPISOWA 1. OPIS TECHNICZNY 1.1. WPROWADZENIE 1.2. CHARAKTERYSTYKA OBIEKTU 1.3. PODSTAWA OPRACOWANIA 2. ZASILANIE BUDYNKU 3. INSTALACJE WEWNETRZNE W BUDYNKU 3.1. ZASILANIE

Bardziej szczegółowo

- 1 - Spis zawartości

- 1 - Spis zawartości - 1 - Spis zawartości 1. Strona tytułowa 2. Spis zawartości 3. Opis techniczny 4. Obliczenia techniczne 5. Rysunki: - schemat zasilania instalacji zasilającej urządzenia komputerowe - rys. nr 1/8 - schemat

Bardziej szczegółowo

INSTALACJE ELEKTRYCZNE

INSTALACJE ELEKTRYCZNE INSTALACJE ELEKTRYCZNE Wrocław 2013 Podział IE - zestaw połączonych ze sobą i zharmonizowanych w działaniu urządzeń i aparatów, umożliwiających funkcjonowanie maszyn, urządzeń, systemów i układów zasilanych

Bardziej szczegółowo