MOŻLIWOŚCI ROZWOJU ENERGETYKI WIATROWEJ NA TERENIE GMINY STOSZOWICE. W r o c ł a w,
|
|
- Janina Domagała
- 9 lat temu
- Przeglądów:
Transkrypt
1 MOŻLIWOŚCI ROZWOJU ENERGETYKI WIATROWEJ NA TERENIE GMINY STOSZOWICE W r o c ł a w,
2 MOŻLIWOŚCI ROZWOJU ENERGETYKI WIATROWEJ NA TERENIE GMINY STOSZOWICE WPROWADZENIE Pomiary wiatru na potrzeby energetyki wiatrowej przeprowadzono w miejscowości Budzów, na terenie gminy Stoszowice. Obliczono moc i energię wiatru, przeanalizowano statystyczno-probabilistyczny rozkład prędkości wiatru. Wszystkie uzyskane dane opisano w opracowaniu oraz zawarto w załącznikach w postaci zestawień tabelarycznych.
3 OCENA POTENCJAŁU ENERGETYCZNEGO WIATRU W P R O W A D Z E N I E Praca została wykonana w ramach projektu ENERGYREGION Efektywny rozwój rozproszonej energetyki odnawialnej w połączeniu z konwencjonalną, wdrażanym w ramach Programu dla Europy Środkowej i współfinansowanym przez Regionalny Fundusz Rozwoju Regionalnego. Podstawę merytoryczną do wykonania analizy oceny potencjału energetycznego wiatru stanowią dokumenty strategiczne takie jak: Polityka energetyczna Polski do 2030 roku oraz Strategia rozwoju energetyki odnawialnej, w których Polska zakładała zwiększenie udziału energii opartej o źródła odnawialne do 15% w 2020 roku. Energetyka wiatrowa, obok energii geotermalnej i energii wód, jest jedną z podstawowych form pozyskania energii z odnawialnych źródeł energii. Zgodnie z założeniami aż 45% energii odnawialnej ma pochodzić z instalacji wiatrowych, 29.3% z biomasy, 17.4% z biogazu a 8.1% z energetyki wodne [1]. W ramach projektu ENERGYREGION zostały przeprowadzone badania potencjału energetycznego wiatru dla małych i średnich turbin wiatrowych. W celu potwierdzenia wartości danych wietrzności, odczytanych na ogólnych mapach wietrzności, został zainstalowany maszt pomiarowy w miejscowości Piotrkowice, a pomiar był wykonywany przez okres pełnego roku. Uzyskane dane z czujników pomiarowych przetwarzane były w specjalistycznych oprogramowanych w celu wykonania szeregu analiz wietrzności i szacowanej produkcji energii elektrycznej. Celem niniejszego opracowania jest analiza zebranych parametrów wiatru w badanej lokalizacji, analiza statystyczna, identyfikacja podstawowych parametrów opisujących wiatr oraz ocena potencjalnych zasobów energetycznych wiatru. Opracowanie zawiera następujące elementy: wyniki z pomiarów prędkości wiatru pomierzone na wysokościach 28m, 38m i 48m, prędkości i kierunki wiatru przedstawione za pomocą róży wiatrów, histogramy prędkości wiatru i rozkłady Weibulla, wizualizacje 3D w terenie, zestawienia tabelaryczne wyników analiz. Strona 1
4 SUMMARY The study has been done within the project no 3CE393P3 Effective development of dispersed renewable energy in combination with conventional energy in regions ENERGYREGION financed from the European Regional Development Fund. Electrical energy is essential for economic growth and well-being of human populations. The growing concern with pollution resulting from the use of fossil fuels in-creases the pressure to use renewable energy sources to produce electricity. One of such resources is the energy obtained from wind. Location of wind farms producing electricity requires careful and combined analysis of numerous criteria such as technical requirements, as well as environmental, social and spatial constraints. The basis for the analysis of wind energy potential were strategic documents such as: "Energy Policy of Poland until 2030" and "The Strategy of Renewable Energy Sources Development", in which Poland assumes an increase the share of energy from renewable sources to 15% in Wind energy near geothermal and water energy, is one of the basic forms of energy generation from renewable energy sources. According to the assumptions 45% of renewable energy will come from wind power plants, 29.3% from biomass, 17.4% from biogas and energy 8.1% of water [1]. Wind measurement for the assessment of wind energy potential in the Budzów, the municipality of Stoszowice in Lower Silesia (SW Poland), was carried out and presented within this paper. The obtained wind characteristics were statistically analyzed using the Weibull distribution function. A region s mean wind speed and its frequency distribution have to be taken into account to calculate the amount of electricity that can be produced by wind turbines. The study contains the following elements: the results of wind speed measurements measured at height 28m, 38m and 48m above ground level (agl), speeds and wind directions - represented by wind roses, histograms of wind speeds and Weibull distribution, 3d visualization in the field, summary of the results analyzes on all measured heights. R E S U L T S A N D D I S C U S S I ON MEAN WIND SPEED AND WIND DIRECTION ANALYSIS The determination of the wind potential of the selected site was made by analyzing the wind characteristics, such as the wind speed, the prevailing direction, their duration and availability and the power density. Fig. 1 shows the results of the wind speed data analysis. As it can be seen, the windiest months were December and February with the mean wind speed reaching approximately 8.2 m/s at 48m agl, while the calmest month was August where the mean wind speed did not exceed 2.7 m/s at 28m agl. Using the data of this diagram, it has been calculated that the corresponding annual mean speed at height 48m agl was approximately 5.5 m/s, at height 38m agl 4.91 m/s and 28m agl 4.60 m/s. Strona 2
5 wind speed, m/s OCENA POTENCJAŁU ENERGETYCZNEGO WIATRU m agl 38m agl 28m agl 0 April May June July August September October November December January February March WIND DIRECTION Usually, in wind data analysis, the prediction of the wind direction is also very important, especially when planning the installation and the micrositting of a wind turbine or a wind farm. The annual wind rose based on time at height 48m, 38m and 28m agl and the corresponding percentages of time were shown in Fig m above ground level annual wind rose Wind speed (m/s) Strona 3
6 38m above ground level annual wind rose Wind speed (m/s) 28m above ground level annual wind rose Wind speed (m/s) Fig. 2. Annual wind roses Strona 4
7 Most of the time the prevailing winds in Budzów were the west-southwest (WSW). The highest percentage of time wind was blowing from a particular direction, was approx. 18%. PROBABILITY DENSITY FUNCTIONS Simple knowledge of the mean wind speed of the selected area could not be taken as sufficient for obtaining a clear view of the available wind potential. Therefore, in order to surpass the nonpredictability of the wind characteristics, a statistical analysis was considered necessary. For this reason, Weibull distribution model was applied. Fig. 3, 4 and 5 show the probability density function of the annual wind speed distribution, in which Weibull models have been fitted. Fig. 3. Weibull distribution model 48m above ground level. Strona 5
8 Fig. 4. Weibull distribution model 38m above ground level. Strona 6
9 Fig. 5. Weibull distribution model 28m above ground level. The probability density function indicates the frequency of time for which a wind speed possibly prevails at the area under investigation. It can be observed in Fig. 3, 4 and 5 that the most frequent wind speed is between 2-5 m/s WIND POWER DENSITY ANALYSIS The results of the wind speed variation and the prevailing wind directions which characterized the location under investigation were further analyzed with respect to the corresponding mean wind power density Fig. 6. Wind power is a measure of the energy available in the wind. It is a function of the cube (third power) of the wind speed. Strona 7
10 Power, W/m2 OCENA POTENCJAŁU ENERGETYCZNEGO WIATRU m agl 38m agl m agl Wind speed, m/s Fig. 6. The mean power density The resulting mean annual wind power density was estimated to be 160 W/m 2. GENERATED WIND ENERGY The energy generated by a windmill depends on the power generation as mentioned above - and how often, or how many hours the wind blows that means - the "wind speed frequency distribution" at the actual location. The results from calculating of potential energy are presented in tables below: Tab. 1. The amount of energy produced depending on the applied wind turbine Hub height Energy generates Type of wind turbine [m] [MWh] VESTAS V MW NORDEX N ,5 MW ENERCON E-66/ ,5 MW ENERCON E kw Strona 8 ZEFIR D21-P70-T18-70 kw ZEFIR D14-P30-T15-30 kw ZEFIR D10-P12-T12-12 kw ZEFIR D21-P70-T18-30 kw ZEFIR D14-P30-T15-12 kw ZEFIR D7-P5-T10-5 kw Wind characteristics have been analyzed for the Budzów, Stoszowice municipality, in this study based on a measured data source over 12-months period (April March 2014). Characteristics such as annual, monthly wind speed variations were examined and the annual wind direction variations were also investigated. The wind speed data reveal that the windy months in Budzów are from November to March, with December being the windiest month. The wind power density is approximately 160 W/m2.
11 P O D S T A W Y T E O R E T Y C Z N E OCENA POTENCJAŁU ENERGETYCZNEGO WIATRU Energia pochodząca z wiatru uważana jest za tzw. energię czystą. Do jej głównych zalet należy przede wszystkim łatwy dostęp do źródła energii odnawialnej czyli wiatru, zaś do słabych stron nierównomierny dostęp do źródła energii wiatru w czasie, co spowodowane jest różną prędkością wiatru lub nawet jego brakiem w pewnych okresach roku. Mimo, że wiatr obecnie wykorzystywany jest w ułamku procenta, to możliwości rozwoju energetyki wiatrowej w Polsce są bardzo obiecujące [2]. Potwierdzają to wyniki wieloletnich badań dotyczących kierunków i prędkości wiatrów w Polsce prowadzonych przez Instytutu Meteorologii i Gospodarki Wodnej (IMGW), co przedstawia Rysunek 1. Przyjmuje się, że siłownie wiatrowe mogą powstawać na obszarach gdzie prędkości wiatru osiągają już prędkość powyżej 4,5 m/s, co jest dość powszechne w Polsce. Rysunek. 1. Strefy energetyczne wiatru w Polsce (Źródło: Na podstawie danych Ośrodka Meteorologii IMGW, Warszawa) Z powyższej mapy wynika, że na ponad 60% powierzchni Polski występują warunki odpowiednie dla rozwoju energetyki wiatrowej. Podział przeprowadzony został w oparciu o średnią prędkość wiatru a wysokości 30 m powyżej gruntu przekraczającą 4 m/s, a w rejonie wybrzeża nawet 6 m/s [2]. Wiatr w województwie dolnośląskim uwarunkowany jest charakterem ogólnej cyrkulacji atmosferycznej nad Europą Środkową oraz jej lokalną modyfikacją przez rzeźbę terenu, a także pokrycie podłoża o różnym współczynniku szorstkości. Województwo charakteryzuje się zadowalającymi warunkami wietrznymi, jednak mniej korzystnymi niż tereny Polski północnej i północno-zachodniej. W zależności od min. prędkości wiatru wystarczającej do efektywnej pracy siłowni wiatrowej potencjalnie odpowiednie warunki występują na dużych obszarach Przedgórza Zachodniosudeckiego i obszarach nizinnych. Wyniki badań wietrzności jednoznacznie wskazują, że najbardziej niekorzystnymi warunkami charakteryzują się kotliny śródgórskie [1]. Wiatr jako źródło energii jest dobrą alternatywą dla paliw kopalnych. Wiąże się to z wszechobecnością wiatru, jego szeroką dostępnością i brakiem emisji zanieczyszczeń. Turbiny wiatrowe zamieniają energię kinetyczną wiatru w energię mechaniczną, która w konsekwencji przekształcana jest w energię elektryczną. Największe budowane dziś turbiny wiatrowe osiągają moc ponad 6MW (Enercon E-126). Rozpatrywanie przepływów zachodzących w turbinie wiatrowej jest bardzo skomplikowane. Szerokie zmiany kątów natarcia strugi, turbulencje, zawirowania, zniekształcenia spowodowane opływem wieży i inne zaburzenia powodują wiele komplikacji w ich analizie. Strona 9
12 Ze względu na znaczącą zmienność mocy energii wiatru od prędkości ważne jest precyzyjne określenie potencjału energii z wiatru. W przypadku szacowania potencjału technicznego możliwych do wykorzystania określa się częstości występowania prędkości progowych wiatru: minimalnej i maksymalnej. Wyznaczają one zakres prędkości wiatru w jakich możliwa jest produkcja energii. Wartości prędkości progowych uzależnione są od konstrukcji elektrowni wiatrowych. Z reguły minimalna prędkość progowa tzw. prędkość startowa wynosi ok. 3 4 m/s, natomiast prędkość maksymalna tzw. prędkość wyłączenia ok. 25 m/s. Zaawansowane metody określania potencjału energii wiatrowej muszą uwzględniać zatem dane pomiarowe, dla których tworzy się statystyczny rozkład prędkości wiatru. L O K A L I Z A C J A M A Ł Y C H E L E K T O W N I W I A T R O W Y C H Coraz bardziej popularne w Polsce stają się małe przydomowe elektrownie wiatrowe o mocach poniżej 100 kw. Mogą one służyć jako dodatkowe źródło energii, które w pewnym stopniu uniezależnia od sieci energetycznej lokalnego dystrybutora [9]. Do lokalizacji małych elektrowni wiatrowych najlepiej nadają się tereny wiejskie o otwartych przestrzeniach. Wiele obszarów wykazuje lokalnie znacznie lepsze warunki wietrzne niż wynikałoby to z przynależności do stref wietrznych określonych przez Instytut Meteorologii i Gospodarki Wodnej (IMGW). Lepsze warunki wietrzności wynikać mogą z korzystnego ukształtowania terenu. Podstawą budowy elektrowni wiatrowej jest rzetelny audyt wietrzności. Jest to szczegółowe badanie wszystkich kluczowych elementów, które określają, czy dany obszar jest odpowiedni dla rozwoju energetyki wiatrowej. Zawiera on między innymi oszacowanie minimalnej energii, którą może wyprodukować urządzenie ustawione na maszcie o danej wysokości i w określonym miejscu. Pomiar wiatru (zalecany jest 12 miesięczny okres) odbywa się za pomocą masztu pomiarowego ustawionego na danej wysokości [8]. Schemat poniżej pokazuje, jakie przeszkody dla wiatru mogą występować i w jaki sposób ich uniknąć. Rysunek. 2. Lokalizacja różnych turbin wiatrowych (Źródło: 8) Strona 10
13 M E T O D Y K A P O M I A R Ó W OCENA POTENCJAŁU ENERGETYCZNEGO WIATRU Wiatr to poziomy ruch powietrza względem powierzchni Ziemi spowodowany różnicą ciśnienia atmosferycznego, gdzie powietrze przemieszcza się od wyższego do niższego ciśnienia. Energia kinetyczna wiatru, czyli przemieszczających się mas powietrza jest praktycznie niewyczerpalna. Prędkość wiatru, a więc i także i energia, jaką można z niego uzyskać, zmienia się dla danej lokalizacji zarówno w ciągu doby jak i w poszczególnych miesiącach i porach roku. Zasoby energii wiatru są możliwe do oszacowania na podstawie analizy cech klimatycznych i fizycznych obszaru, są to m.in.: rozkłady prawdopodobieństwa prędkości i kierunków wiatru, średnie prędkości wiatru, cechy geomorfologiczne oraz tzw. szorstkość terenu, na którą wpływ mają m.in. szata roślinna, sposób użytkowana terenu i zabudowa. Czynniki te modyfikują cyrkulację atmosferyczną i wielkość energii elektrycznej wiatru [1]. Badania warunków wietrznych na danym obszarze polegają na określeniu dwóch jego cech: kierunku i prędkości. Kierunek wiatru określa kierunek, z którego wieje wiatr. Mierzony jest od kierunku północy geograficznej i najczęściej wyrażony jest w stopniach. Prędkość wiatru to droga jaką powietrze przebywa względem urządzenia pomiarowego w jednostce czasu. Mierzona jest anemometrami i wyrażana w m/s, a prędkość wiatru mierzona jest w okresach 10 minutowych. Obszar przedmiotowej oceny obejmuje działkę geodezyjną nr 107/12 w obrębie Budzów gm. Stoszowice. Najbliższe zabudowania względem lokalizacji masztu pomiarowego położone są w odległości około 500m (Rys.3) Współrzędne geograficzne masztu pomiarowego określają następujące parametry: N = 50 34'52'' E = 16 40'03''. Rysunek. 3. Wizualizacja terenu wokół masztu pomiarowego wraz z różą wiatrów. Strona 11
14 Pomiary prędkości wiatru w miejscowości Budzów wykonano za pomocą specjalistycznego 50 metrowego masztu pomiarowego. Maszt został wyposażony w trzy czujniki prędkości i kierunku wiatru, rejestrator danych, czujnik wilgotności i temperatury, czujnik ciśnienia atmosferycznego oraz automatyczne zasilanie i sygnalizacje ostrzegawczą. Kierunki i prędkości wiatru były mierzone na trzech wysokościach: 28, 38 i 48 m n.p.t. od kwietnia 2013 do marca 2014 roku z 10 minutowym interwałem zapisu danych. Wynikiem są otrzymane surowe ciągi danych: data, godzina, średnie 10-minutowe dla prędkości i kierunków wiatru, a także wilgotności, temperatury i ciśnienia powietrza. Dane te służą do odtworzenia lokalnego klimatu wietrzności dla projektowanej farmy wiatrowej. A N A L I Z A P O T E N C J A Ł U E N E R G I I W I A T R O W E J Celem przeprowadzonych badań było uzyskanie uszczegółowionych informacji o potencjalnej energii wiatru na terenie gminy Stoszowice, z uwzględnieniem cech szorstkości podłoża. Na podstawie zebranych danych z masztu pomiarowego możliwe było: wyznaczenie dokładnych parametrów wiatru jak: kierunek oznaczający, skąd wieje wiatr, określony za pomocą róży wiatrów; prędkość wyrażana najczęściej w m/s. Analizowana seria pomiarowa prędkości wiatru obejmuje, N = pomiarów zarejestrowanych od kwietnia 2013 do marca Przebiegi zmienności średniej prędkości wiatru na wysokościach: 28, 38 i 48 m n.p.t. zostały przedstawione na rysunku poniżej: H = 38m Średnia prędkość wiatru , kwi-13 maj-13 cze-13 lip-13 sie-13 wrz-13 paź-13 lis-13 gru-13 sty-14 lut-14 mar-14 Rysunek. 4. Przebieg zmienności prędkości wiatru na wysokości 38 m n.p.t. Zauważyć można różnice pomiędzy okresami prędkości maksymalnej i minimalnej. Prędkości maksymalne obserwowane są w okresie grudzień - luty; natomiast najniższe w okresie letnim: lipiec wrzesień. Strona 12
15 m/s OCENA POTENCJAŁU ENERGETYCZNEGO WIATRU m n.p.t. 38m n.p.t. 28m n.p.t. 0 kwiecień maj czerwiec lipiec sierpień wrzesień październik listopad grudzień styczeń luty marzec Rysunek. 5. Średnie prędkości wiatru w poszczególnych miesiącach Siłę i kierunek wiejącego wiatru na wysokości: 28, 38 i 48m n.p.t. zaprezentowano za pomocą róży wiatrów utworzoną w specjalistycznym programie WindRose Pro firmy Enviroware i zaprezentowano na rysunkach poniżej. a) analiza siły i kierunku wiejącego wiatru na wysokości 38m - wartości roczne NNW 16.00% 14.00% N NNE NW 12.00% 10.00% NE WNW W 8.00% 6.00% 4.00% 2.00% 0.00% ENE E WSW ESE SW SE SSW S SSE Strona 13
16 Tab. 1 Częstość [%] występowania dominujących i drugorzędnych kierunków wiatru wartości roczne Kierunek wiatru S SSW SW WSW W WNW NW NNW Częstość występowania wiatru [%] Średnia prędkość wiatru [m/s] 9,18 10,08 13,14 12,68 6,56 4,92 7,13 10,59 6,14 6,42 6,79 6,06 3,38 3,41 4,11 4,76 Na podstawie rocznej róży wiatrów można odczytać, że dominującym kierunkiem wiatru jest kierunek SW i WSW i stanowi on odpowiednio 13.14% i 12.68% udziału wiatru w roku. Kierunek drugorzędny przypada na sektory od S do W oraz kierunek NNW. Obserwowane średne prędkości wiatru dla kierunków głównych (SW) są zazwyczaj nieco wyższe niż średnia dla całego roku [10], jest to odpowiednio 6,79 m/s i 4,86 m/s. W tabeli poniżej zaprezentowano procentowy udział poszczególnych przedziałów prędkości wiatru w rozbiciu na dominujące kierunki. Tab. 2 Częstość [%] poszczególnych przedziałów prędkości wiatru w rozbiciu na dominujące kierunki Zakres prędkości wiatru [m/s] SW częstość [%] WSW 0-1 0,28% 0,33% 1-2 0,55% 0,67% 2-4 2,00% 2,39% 4-6 3,15% 3,56% 6-8 2,85% 2,50% ,84% 1,63% ,09% 0,83% ,75% 0,45% ,46% 0,23% ,17% 0,09% ,01% 0,01% SUMA 13,14% 12,68% Z analizy wynika, że dominują wiatry o prędkościach w zakresie od 1m/s do 8 m/s, łączenie ponad 78%, gdzie największy udział bo aż 29,3% zawiera się w przedziale od 2 m/s do 4 m/s, oraz 22% w przedziale od 4m/s do 6 m/s. Strona 14
17 b) analiza siły i kierunku wiejącego wiatru na wysokości 38m w ciągu nocy OCENA POTENCJAŁU ENERGETYCZNEGO WIATRU NNW 16.00% 14.00% N NNE NW 12.00% 10.00% NE WNW W 8.00% 6.00% 4.00% 2.00% 0.00% ENE E WSW ESE SW SE SSW S SSE Tab. 3 Częstość [%] występowania dominujących i drugorzędnych kierunków wiatru wartości w ciągu nocy Kierunek wiatru S SSW SW WSW W WNW NW NNW Częstość występowania wiatru [%] Średnia prędkość wiatru [m/s] 8,82 13,11 15,20 14,70 7,74 5,56 8,14 8,69 5,57 6,55 6,94 6,38 3,12 3,09 3,64 4,35 Na podstawie rocznej róży wiatrów w ciągu nocy można odczytać, że dominującym kierunkiem wiatru jest SW i WSW i stanowi on odpowiednio 15.20% i 14.70% udziału wiatru w roku. Kierunek drugorzędny przypada na sektory od S do W. Strona 15
18 c) analiza siły i kierunku wiejącego wiatru na wysokości 38m w ciągu dnia NNW 16.00% 14.00% N NNE NW 12.00% 10.00% NE WNW W 8.00% 6.00% 4.00% 2.00% 0.00% ENE E WSW ESE SW SE SSW S SSE Tab. 4 Częstość [%] występowania dominujących i drugorzędnych kierunków wiatru wartości w ciągu dnia Kierunek wiatru S SSW SW WSW W WNW NW NNW Częstość występowania wiatru [%] Średnia prędkość wiatru [m/s] 9,49 7,56 11,42 11,00 5,57 4,39 6,30 12,18 6,60 6,23 6,61 5,71 3,67 3,76 4,62 5,01 Na podstawie rocznej róży wiatrów można odczytać, że dominującym kierunkiem wiatru jest kierunek NNW i stanowi on 12.18% udziału wiatru w roku. Kierunek drugorzędny przypada na sektory od S do W. Z punktu widzenia zastosowania energii do ogrzewania pomieszczeń wiatru porównano jego roczny przebieg zmienności z temperaturą i przedstawiono w zależności od mierzonej wysokości 38m n.p.t. na rysunku 6. Wyraźnie widać, że okres zapotrzebowania na energię w znacznej mierze pokrywa się z okresem wzmożonego występowania wiatru. Czyli jesienią i zimą wieje najmocniej a wtedy właśnie mamy największe zapotrzebowanie na energię. Średnia roczna prędkość wiatru osiągnęła tu 4,84m/s na wysokości 48m. Tak niska prędkość wiatru jest typowa dla instalacji małych elektrowni wiatrowych. Strona 16
19 H = 38m Średnia prędkość wiatru Temperatura [C ] kwi maj-13 cze-13 lip-13 sie-13 wrz-13 paź-13 lis-13 gru-13 sty-14 lut-14 mar Rysunek 6. Przebieg zmian temperatury i prędkości wiatru w rozważanej lokalizacji ANALIZA STATYSTYCZNA HISTOGRAMÓW PRĘDKOŚCI WIATRU Podstawowym przedmiotem analizy jest rozkład prędkości wiatru w ciągu roku. Na jego podstawie wyznacza się procentowy czas występowania wiatru o określonych prędkościach w okresie roku, a w efekcie i produkcję energii przez elektrownię wiatrową. W tym celu posłużono się histogramem. Ustalono szerokości przedziałów klas v = 0,1m/s i pogrupowano dane, dzięki czemu można było określić liczebność klas ni, czyli ilość wystąpień prędkości wiatru w każdej, i-tej klasie. Z pojęciem liczebności wiąże się częstość fi, określona jako stosunek liczebności do ilości wszystkich danych pomiarowych [3]: f i = n i N [1] Częstość fi można interpretować jako prawdopodobieństwo wystąpienia wiatru w i-tym przedziale prędkości. Jeżeli odniesiemy to do podstawowego okresu pomiarowego (oznaczany jako T), jakim jest jeden rok, to można wyznaczyć czas trwania (tt) w ciągu jednego roku wiatru o prędkości średniej vi w danym przedziale [3]: t(v = v i ) = t i = f i 8760, [h/rok] [2] Na podstawie wyżej przedstawionych wzorów możliwe jest wykreślenie rozkładu empirycznego prędkości wiatru w formie histogramu. Jest on funkcją częstości prędkości wiatru dla poszczególnych przedziałów klasowych. Empiryczną częśtość występowania średnich (10-minutowych) prędkości wiatru na poszczególnych wysokościach pomiarowych, w klasach co 0,1 m/s zamieszczono na rysunku poniżej. Strona 17
20 Częstość, fi OCENA POTENCJAŁU ENERGETYCZNEGO WIATRU Moda Średnia prędkość wiatru Prędkość, m/s Rysunek. 7. Częstość [%] roczna występowania średnich (10-minutowych) prędkości wiatru wartości roczne na wysokości 38m n.p.t. Uzyskany histogram wskazuje, iż w rozpatrywanej lokalizacji przeważający udział mają wiatry o prędkościach w zakresie od 2m/s do 5 m/s. Do charakterystyki czasowej wiatru określającej częstość występowania poszczególnych prędkości wiatru stosuje się funkcję rozkładu prawdopodobieństwa. Najczęściej stosowanym modelem jest 2-parametryczny rozkład Weibulla określony wzorem: f(v) = α α 1 β (v β ) exp ( ( v α) β ) [3] dla: v > 0 gdzie: f(v) częstość pojawiania się prędkości wiatru o wartości v, α parametr kształtu, β parametr skali. Występujący w powyższym równaniu parametr kształtu α charakteryzuje zmienność prędkości wiatru w stosunku do uśrednionej wartości prędkości wiatru za badany okres. Parametry kształtu o wielkości 2.5 lub 3.0 są charakterystyczne dla miejsc o niewielkiej zmienności średniej prędkości do wartości średniej. Niskie wartości parametru k rzędu 1.5, 1.25, 1.0 specyficzne są dla lokalizacji o dużej zmienności warunków wiatrowych w odniesieniu do wartości uśrednionych prędkości wiatru [4]. Na rysunkach 8, 9 i 10 przedstawiono rozkłady prędkości wiatru z dopasowanym rozkładem Weibulla w podziale na kierunki. Strona 18
21 Rysunek 8. Rozkład Weibulla prędkości wiatru 48m n.p.t. Strona 19
22 Rysunek 9. Rozkład Weibulla prędkości wiatru 38m n.p.t. Strona 20
23 Rysunek 10. Rozkład Weibulla prędkości wiatru 28m n.p.t. Z analizowanych danych wynika, że w całym okresie badań na różnych wysokościach wiatr osiągał najczęściej prędkość ok. 2-5 m/s. Zarejestrowane podmuchy wiatru o prędkości ponad 9 m/s miały niewielki udział w analizowanej lokalizacji. Prędkości wiatru powyżej zakresu pracy małej elektrowni wiatrowej ( >15 m/s) stanowią znikomy udział w rozkładzie prawdopodobieństwa. Strona 21
24 MOC WIATRU Prędkość wiatru ma podstawowy wpływ na jego moc ponieważ jest wyrażana w trzeciej potędze. Dwa razy większa prędkość wiatru to 8 razy większa jego moc. Potencjał teoretyczny oszacowano przy założeniu stuprocentowej sprawności przetworzenia energii kinetycznej wiatru w energię elektryczną. Moc wiatru traktowanego jako gaz o gęstości ρ przepływający przez powierzchnię A z prędkością v jest określona zależnością [3]: P = ρ v śr 3 A 2 [4] gdzie: P moc energii wiatrowej, [W], ρ gęstość powietrza, kg/m 3, vśr prędkość wiatru, m/s, A powierzchnia, przez którą przepływa strumień powietrza, m 2. Do obliczeniach przyjęto gęstość powietrza równą 1,2225 kg/m 3, która występuje przy normalnym ciśnieniu atmosferycznym (1013 hpa) i temperaturze powietrza 15ºC. Jako powierzchnie, przez którą przypływa strumień powietrza określono jako 1m 2 oraz średnioroczną prędkość wiatru uzyskaną z pomiarów. gdzie: Moc jednostkową wiatru w i-tym przedziale prędkości jest określona zależnością: P i moc jednostkowa wiatru, [W/m 2 ]. P i = ρ v i 3 2 = 0,6125 v 1 3 [5] Wykorzystując powyższe wyniki obliczeń z równania [3] oszacowano czas trwania wiatru w poszczególnych przedziałach jego prędkości v1 i v2 według formuły: gdzie: f(v) rozkład Weibulla, T liczba godzin w roku (8760h). v 2 t 12 = T f(v)dv,, [Wh] [6] v 1 Wyniki obliczeń przedstawia tabela 5. Strona 22
25 Tab. 5. Wyniki obliczeń w zależności na wysokości anemometru 38m n.p.t. Przedział prędkości wiatru Moc jednostkowa wiatru (teoretyczna) Moc jednostkowa wiatru częstość (na podstawie rozkładu Weibulla) dvi Pwi Pewi fi [m/s] [W/m2] [W/m2] [-] 0 0 0,0000 0, ,61 0,0647 0, ,89 0,7084 0, ,50 2,5443 0, ,12 5,6289 0, ,41 9,3708 0, ,03 12,8502 0, ,66 15,2442 0, ,96 16,1175 0, ,60 15,4880 0, ,25 13,7128 0, ,57 11,2984 0, ,24 8,7284 0, ,92 6,3594 0, ,27 4,3902 0, ,97 2,8827 0, ,68 1,8059 0, ,07 1,0823 0, ,81 0,6219 0, ,56 0,3433 0, ,00 0,1823 0, ,79 0,0933 0, ,59 0,0461 0, ,08 0,0220 0, ,92 0,0101 0, ,78 0,0045 0, Strona 23
26 Moc, W/m2 OCENA POTENCJAŁU ENERGETYCZNEGO WIATRU m n.p.t 38m n.p.t m n.p.t Prędkość, m/s Rysunek. 11. Moc wiatru na wysokości anemometrów Z przeprowadzonych obliczeń (tab.5) wynika, iż w analizowanej lokalizacji w ciągu jednego roku przez powierzchnię 1m 2 przepływa odpowiednio od wysokości strumień wiatru o mocy: 130 W/m 2. Dominują wiatry o prędkościach w zakresie od 1m/s do 6 m/s. Czas trwania wiatru w tym przedziale wynosi 6603 godziny rocznie, co stanowi 75% czasu w roku. SZACOWANIE WIELKOŚCI PRODUKCJI ENERGII ELEKTRYCZNEJ Otrzymany rozkład gęstości prawdopodobieństwa Weibulla, stanowi podstawę do wyboru typu elektrowni wiatrowej i określenia jej wydajności energetycznej. Na podstawie charakterystyki elektrowni, czyli zależności mocy elektrowni od prędkości wiatru podawanej przez producenta wykonano obliczenia wydajności energetycznej [2]. Dane producenta zawierają informacje o prędkości startu elektrowni wiatrowej, tj. prędkość, przy której zostaje ona włączona do pracy. Wynosi ona zwykle od 2,5 m/s dla małych konstrukcji do około 4,5 m/s dla większych mocy. Wyłączenie elektrowni występuje zazwyczaj przy prędkości wiatru 25 m/s. Dla elektrowni małych mocy prędkość wyłączenia może być większa, np. 30 m/s. Małe elektrownie wiatrowe to obiekty z turbinami o średnicy mniejszej niż 15 m mocy poniżej 50 kw. Jednak większość małych turbin wiatrowych ma średnicę około 7 metrów i moce w zakresie od 1 kw do 10 kw. Bardzo małe elektrownie wiatrowe to urządzenia z turbinami o mocy 1 kw lub mniejszej z średnicą wirnika mniejszą niż 2 m. Średnie turbiny wiatrowe to obiekty mające średnicę wirnika (15-30) metrów i moc (50-250) kw. Dysponując obliczonymi wcześniej danymi i charakterystykami elektrowni wiatrowych obliczono wartość mocy ( Pewi) dla prędkości wiatru ( vi) kolejnych przedziałów klasowych (tab.6). Następnie obliczono energię techniczną (Eewi, Etch ) wyprodukowaną przez elektrownię w ciągu jednego roku w kolejnym i-tym przedziale klasowym: E ewi = P ewi t i = P ewi f i T, [Wh] [7] Strona 24
27 Lub korzystając bezpośrednio z zależności: E ewi = T v2 [P v1 tch(v)f(v)]dw [8] F tch gdzie: E ewi potencjał energii wiatrowej technicznie możliwe do pozyskania [kw h], P tch moc siłowni wiatrowej przy prędkości wiatru v, wg krzywej mocy [kw], F tch powierzchnia wirnika [m 2 ]; v1 prędkość startowa [m/s] (zgodnie z krzywymi mocy), v2 prędkość wyłączenia [m/s] (zgodnie z krzywymi mocy). Całkowita energia wytworzona w ciągu roku przez elektrownię jest sumą energii składowych ze wszystkich przedziałów: k E ew = E ewi, [Wh] [9] i=1 Potencjał energii wiatrowej możliwy techniczne do wykorzystania określono dokonując wyboru dostępnych na ryku urządzeń. Dla celów obliczeniowych wybrano następujące siłownie wiatrowe: - VESTAS V o mocy 3 MW - NORDEX N o mocy 2,5 MW - ENERCON E-66/ o mocy1,5 MW - ENERCON E o mocy 80 kw - ZEFIR D21-P70-T18 o mocy 70 kw - ZEFIR D14-P30-T15 o mocy 30 kw - ZEFIR D10-P12-T12 o mocy 12 kw - ZEFIR D10-P12-T12 o mocy 5 kw Obliczenia przeprowadzono przy założeniu, że wysokość prowadzonych pomiarów prędkości wiatru jest taka sama oraz różna niż wysokości zawieszenia osi wirnika elektrowni. Na podstawie danych producenta określono moc elektrowni (Pewi) dla prędkości wiatru (vi) z kolejnych przedziałów klasowych. Na tej podstawie, korzystają z obliczonego już wcześniej czasu trwania wiatru w poszczególnych przedziałach prędkości, wyznaczono energię Ewi wyprodukowaną przez elektrownię w ciągu jednego roku w każdym przedziale (dvi). Suma wszystkich energii cząstkowych według wzoru ( Ewi) daje energię roczną. Rezultaty obliczeń zamieszczono w tabeli 6. Z rezultatów obliczeń wynika, iż elektrownia o mocy 3 MW wyprodukuje w ciągu roku, przy danych warunkach wiatrowych na wysokości 119m n.p.t ,7 MWh energii. Szczegółowe wyniki obliczeń zestawiono w tabeli 6 poniżej oraz zaprezentowano na rysunkach 13 i 14. Strona 25
28 Tab. 6. Wyniki obliczeń na wysokości zawieszenia osi wirnika 119m n.p.t. Przedział Moc elektrowni Energia w prędkości wiatru wiatrowej przedziale i dvi Pewi Ewi [m/s] [kw] [MWh/rok] 0 0,00 0,00 1 0,00 0,00 2 0,00 0, ,3 36, ,5 123, ,1 237, ,6 376, ,4 540, ,2 721, ,0 906, ,4 1047, ,0 1071, ,0 980, ,0 846, ,0 711, ,0 585, ,0 470, ,0 367, ,0 279, ,0 206, ,0 148, ,0 104, ,0 71, ,0 47, ,0 30, ,0 12,1 SUMA 9 922,7 Strona 26 Rysunek. 12. Rozkład Weibulla na wysokości zawieszenia osi wirnika 119m n.p.t.
29 Rysunek. 13. Róża energii na wysokości zawieszenia osi wirnika 119m n.p.t. Rysunek. 14. Średnia prędkość wiatru na wysokości zawieszenia osi wirnika 119m n.p.t. Strona 27
30 Tab. 7. Ilość wyprodukowanej energii w zależności od zastosowanej turbiny wiatrowej Typ turbiny wiatrowej Wysokość osi wirnika [m] Ilość wyprodukowanej energii [MWh] VESTAS V MW NORDEX N ,5 MW ENERCON E-66/ ,5 MW ENERCON E kw ZEFIR D21-P70-T18-70 kw ZEFIR D14-P30-T15-30 kw ZEFIR D10-P12-T12-12 kw ZEFIR D21-P70-T18-30 kw ZEFIR D14-P30-T15-12 kw ZEFIR D7-P5-T10-5 kw Z rezultatów obliczeń wynika, iż elektrownia o mocy 70 kw wyprodukuje w ciągu roku, przy danych warunkach wiatrowych, na wysokości osi wirnika 48m n.p.t MWh energii, natomiast elektrownia o mocy 5 kw jest w stanie wyprodukować około 12 MWh energii na wysokości osi wirnika 28m n.p.t. Strona 28
31 ZASTOSOWANIE MAŁYCH I ŚREDNICH TURBIN WIATROWYCH OCENA POTENCJAŁU ENERGETYCZNEGO WIATRU Małe elektrownie wiatrowe znajdują szerokie zastosowanie do zasilania samodzielnych systemów telekomunikacyjnych i nawigacyjnych, gospodarstw oraz domów letniskowych, pompowni, oświetlenia wolnostojących obiektów oraz wielu innych systemów znajdujących się w znacznej odległości od sieci energetycznej. Małe elektrownie wiatrowe często współpracują w systemach hybrydowych z modułami fotowoltaicznymi. Taka kombinacja to niezawodne i optymalne rozwiązanie zaspokajające zapotrzebowanie na energię [8]. Rysunek 17. Różne zastosowania małych elektrowni wiatrowych (Źródło: 8) POTENCJAŁ ENERGETYCZNY WIATRU NA RÓŻNYCH WYSOKOŚCIACH W przypadku gdy elektrownia będzie na wyższym lub niższym maszcie, należy dokonać ekstrapolacji otrzymanych wyników prędkości wiatru według wzorów [2]: lub: v 2 = ( h α 2 ) v 1 h 1 E 2 = ( h 3α 2 ) E 1 h 1 [12] [13] gdzie: v 1 prędkość wiatru na wysokości h 1, E1 energia na wysokości h 1, α wykładnik o wartości zależnej od szorstkości terenu, wyznaczany doświadczalnie lub dobierany w przybliżeniu z tablic. We wzorze tym istotna rolę odgrywa tzw. szorstkość terenu. Strona 29
32 Tab. 23. Charakterystyka klas szorstkości terenu, wysokości wiatru gradientowego HG oraz wartości wykładnika potęgowego α w zależności od współczynnika szorstkości K [1] Klasa Opis terenu szorstkości Współczynnik szorstkości K Wykładnik potęgowy α 0 0,005 0, ,007 0, ,010 0, ,015 0, ,025 0, ,350 0,350 Teren płaski otwarty, na którym wysokość nierówności jest mniejsza od 0,5 m Teren płaski otwarty lub nieznacznie pofalowany. Mogą występować pojedyncze zabudowania lub drzewa w dużych odległościach od siebie Teren płaski lub pofalowany z otwartymi dużymi przestrzeniami. Mogą występować grupy drzew lub niska zabudowa w znacznej odległości od siebie Teren z przeszkodami, tj. tereny zalesione, przedmieścia większych miast oraz małe miasta, tereny przemysłowe luźno zabudowane Teren z licznymi przeszkodami w niedużej odległości od siebie, tj. skupiska drzew, budynków w odległości min. 300 m od miejsca obserwacji. Teren z licznymi dużymi przeszkodami położonymi blisko siebie, obszary leśne, centra dużych miast Rysunek 18. Graficzna interpretacja szorstkości terenu do wyboru wartości współczynnika α we wzorze Suttona (Źródlo:5) Strona 30
33 Zwiększenie wysokości posadowienia wirnika w terenach o wysokiej szorstkości jest bardziej korzystne niż w terenach o niskiej szorstkości. Ale w terenach o wyższej szorstkości występują większe zawirowania strug powietrza. OCENA EFEKTYWNOŚCI EKOLOGICZNEJ Korzyści o charakterze ekologicznym wynikają przede wszystkim z przeciwdziałania degradacji środowiska, wywoływanej wykorzystaniem energetyki konwencjonalnej. Wśród nich wyszczególnia się [6]: - przeciwdziałanie pogorszeniu jakości powietrza poprzez wyeliminowanie, na etapie produkcji energii, emisji zanieczyszczeń gazowych (SO2, NOx, CO2) i pyłów do atmosfery, - przeciwdziałanie pogorszeniu jakości wód oraz gleby z powodu bezodpadowej i bezściekowej produkcji energii, - wyeliminowanie strat w obiegu wody i ingerencji w położenie zwierciadła wód podziemnych, - przeciwdziałanie zmianom klimatu w wyniku redukcji emisji gazów cieplarnianych do atmosfery (zgodnie z polityką UE), - wyeliminowanie ryzyka poważnej awarii, powodującej znaczące straty w środowisku. Efekt ekologiczny można zatem opisać jako ilość zanieczyszczeń, które nie zostały wprowadzone do środowiska poprzez eksploatację nowych urządzeń, będących przedmiotem inwestycji. Ocena efektywności ekologicznej została obliczona jako wielkość emisji unikniętej w odniesienie do jednego roku [6]. Wyraża to wzór: e = E i W e,i [15] gdzie: E i ilość wyprodukowanej energii MWh, W e,i wskaźnik emisji kg/mwh. Tab. 27. Wskaźniki emisji: dla dwutlenku węgla oraz pozostałych zanieczyszczeń (emisja równoważna pyły, SO2, NO2) Rodzaj paliwa lub nośnika energii zastąpionego przez energię odnawialną Wskaźnik emisji CO2 kg/mwh Wskaźnik emisji równoważnej We (pyły, SO2, NO2) kg/mwh Węgiel brunatny 400 3,56 Węgiel kamienny 342 3,56 Drewno (biomasa) 20 2,83 Olej opałowy 270 3,26 Gaz ziemny 205 0,42 Energia elektryczna wytw. w skojarzeniu 333 4,92 Ciepło z elektrociepł ,64 Źródło: [6] Strona 31
34 W przypadku projektów z zakresu budowy elektrowni wodnych i wiatrowych jako rodzaj eliminowanego paliwa/nośnika energii należy przyjąć energię elektryczną wytwarzaną w skojarzeniu [6]. Korzyścią ekologiczną wyprodukowania 1 kwh energii elektrycznej z elektrowni wiatrowej, w stosunku do tradycyjnie wyprodukowanej w elektrowni węglowej, jest uniknięcie emisji do atmosfery następujących zanieczyszczeń: 5,5 g SO2, 4,2 g NOx, 700 g CO2, 49 g pyłów i żużlu. Na podstawie wzoru [18] obliczono efekt ekologiczny dla danej lokalizacji w rozbiciu na emisję CO2 i pozostałe zanieczyszczenia (NO2, SO2 i pyły) [6]. Zależnie od przyjętej turbiny wiatrowej i wysokości do dalszej analizy spodziewać się można redukcji emisji do atmosfery zanieczyszczeń w ilości: Tab. 28. Prognozowane efekty ekologiczne - 119m n.p.t. Rodzaj turbiny VESTAS V MW NORDEX N ,5 MW ENERCON E-66/ ,5 MW ENERCON E kw CO2 [kg/mwh] pyły, SO2, NO , , , , , , ,80 652,39 PODSUMOWANIE Wyznaczanie potencjału energetycznego wiatru wymaga długookresowych pomiarów i szczegółowych analiz danych klimatologicznych. Na nizinnym obszarze Dolnego Śląska prognozowane prędkości wiatru wynoszą ok m/s dla wysokości 80 m n.p.t. i ok. 6.0 m/s dla wysokości 120 m n.p.t. Na podstawie przeprowadzonej analizy wietrzności w miejscowości Budzów otrzymano następujące wartości prędkości wiatru (z uwzględnieniem klasy szorstkości): na wysokości 48 m n.p.t.: 5,52 m/s, na wysokości 38 m n.p.t. 4,91 m/s oraz na wysokości 28m n.p.t.: 4,57 m/s. Na podstawie rocznej róży wiatrów odczytano, że dominującym kierunkiem wiatru jest kierunek WSW (zachodni południowy zachód) i stanowi on 18.36% na wysokości 48m n.p.t. udziału wiatru w roku. Obserwowane średnie prędkości wiatru dla kierunków głównych są zazwyczaj nieco wyższe niż średnia dla całego roku, jest to odpowiednio 7,64m/s i 5,52m/s na wysokości 48m n.p.t; 6,50m/s i 4,91m/s na wysokości 38m n.p.t. oraz 5,93m/s i 4,57m/s na wysokości 28m n.p.t. Kierunki drugorzędne przypadały na sektory od S do W oraz kierunek NNW. Rozpatrując prędkości wiatru w ciągu roku zaznacza się ich dość znaczne zróżnicowanie. Najwyższe prędkości obserwowane są w miesiącach zimowych, najniższe w letnich, są to wartości od 2,62 do 3,28 m/s (sierpień) do ponad 6,77-8,24 m/s (grudzień). Prędkości wiatru powyżej zakresu pracy małej elektrowni wiatrowej ( >15 m/s) stanowią niewielki udział w rozkładzie gęstości. Wartości średnich prędkości wiatru na mierzonych wysokościach jak i wartości gęstości prawdopodobieństwa dla bardzo niskich prędkości wiatru pozwalają sądzić, że elektrownia wiatrowa zainstalowana w Budzowie będzie posiadała około 25-35% wykorzystania mocy zainstalowanej, gdyż mała elektrownia wiatrowa rozpoczyna produkcję energii elektrycznej przy prędkościach wiatru większych niż (2,9 3,0) m/s. Uwzględniając topografię terenu, długość okresów ciszy (z rozkładu Weibulla) oraz odnosząc wyniki średniej wartości prędkości wiatru do własności wybranych turbin wiatrowych, stwierdzono że na terenie miejscowości Budzów występują dogodne warunki dla rozwoju małych i średnich turbin wiatrowych ale i także panują korzystne warunki dla turbin wiatrowych o większych mocach. Strona 32
35 LITERATURA [1] Aktualizacja Studium Przestrzennych Uwarunkowań Rozwoju Energetyki Wiatrowej w Województwie Dolnośląskim, WBU, Wrocław 2014 [2] Duraczyński M., Badania i analiza energii wiatru dla potrzeb energetyki w Polsce Południowo Wschodniej. Praca doktorska AGH w Krakowie, Kraków, 2013 [3] OCENA ZASOBÓW ENERGII WIATRU NA POTRZEBY MAŁEJ ENERGETYKI WIATROWEJ Piotr Michalak - Katedra Systemów Energetycznych i Urządzeń Ochrony Środowiska, Akademia Górniczo-Hutnicza w Krakowie ( Elektrotechnika i Elektronika, Tom 28, zeszyt 1-2, 2009) [4] MAŁE (PRZYDOMOWE) ELEKTROWNIE WIATROWE, Nowy Sącz, 2012 [5] [6] Metodologia wyliczania efektu ekologicznego dla działania 7.2 Poprawa jakości powietrza i zwiększenie wykorzystania odnawialnych źródeł energii, [7] Wind Energy AGH. Energetyka Wiatrowa. [Online] [8] [9] Odnawialne Źródła Energii, Praktyczny program z zakresu OZE - innowacja dla szkół ponadgimnazjalnych, Koszalin, 2013 Strona 33
MOŻLIWOŚCI ROZWOJU ENERGETYKI WIATROWEJ NA TERENIE GMINY PRUSICE. W r o c ł a w,
MOŻLIWOŚCI ROZWOJU ENERGETYKI WIATROWEJ NA TERENIE GMINY PRUSICE W r o c ł a w, yj MOŻLIWOŚCI ROZWOJU ENERGETYKI WIATROWEJ NA TERENIE GMINY PRUSICE WPROWADZENIE Pomiary wiatru na potrzeby energetyki wiatrowej
POTENCJAŁ PRODUKCJI ENERGII ELEKTRYCZNEJ PRZEZ TURBINĘ WIATROWĄ W ZALEŻNOŚCI OD LOKALIZACJI I WARUNKÓW WIETRZNOŚCI
POTENCJAŁ PRODUKCJI ENERGII ELEKTRYCZNEJ PRZEZ TURBINĘ WIATROWĄ W ZALEŻNOŚCI OD LOKALIZACJI I WARUNKÓW WIETRZNOŚCI THE POTENTIAL OF THE ELECTRICITY PRODUCTION BY WIND TURBINE DEPENDING ON LOCATION AND
Wpływ wybranych czynników na inwestycje w energetyce wiatrowej
Wpływ wybranych czynników na inwestycje w energetyce wiatrowej Autor: Katarzyna Stanisz ( Czysta Energia listopada 2007) Elektroenergetyka wiatrowa swój dynamiczny rozwój na świecie zawdzięcza polityce
SPITSBERGEN HORNSUND
Polska Stacja Polarna Instytut Geofizyki Polska Akademia Nauk Polish Polar Station Institute of Geophysics Polish Academy of Sciences BIULETYN METEOROLOGICZNY METEOROLOGICAL BULLETIN SPITSBERGEN HORNSUND
PRODUKCJA ENERGII ELEKTRYCZNEJ W ELEKTROWNI WIATROWEJ W ZALEŻNOŚCI OD POTENCJAŁU WIATRU NA RÓZNYCH WYSOKOŚCIACH
PRODUKCJA ENERGII ELEKTRYCZNEJ W ELEKTROWNI WIATROWEJ W ZALEŻNOŚCI OD POTENCJAŁU WIATRU NA RÓZNYCH WYSOKOŚCIACH Wojciech RADZIEWICZ Streszczenie: Prędkość wiatru ma kluczowe znaczenie dla podejmowania
SPITSBERGEN HORNSUND
Polska Stacja Polarna Instytut Geofizyki Polska Akademia Nauk Polish Polar Station Institute of Geophysics Polish Academy of Sciences BIULETYN METEOROLOGICZNY METEOROLOGICAL BULLETIN SPITSBERGEN HORNSUND
Potencjał OZE na obszarach wiejskich
Potencjał OZE na obszarach wiejskich Monitoring warunków pogodowych Z dużą rozdzielczością czasową zbierane są dane o pionowym profilu prędkości i kierunku wiatru, temperaturze, wilgotności, nasłonecznieniu
MMB Drives 40 Elektrownie wiatrowe
Elektrownie wiatrowe MMB Drives Zbigniew Krzemiński, Prezes Zarządu Elektrownie wiatrowe produkowane przez MMB Drives zostały tak zaprojektowane, aby osiągać wysoki poziom produkcji energii elektrycznej
SPITSBERGEN HORNSUND
Polska Stacja Polarna Instytut Geofizyki Polska Akademia Nauk Polish Polar Station Institute of Geophysics Polish Academy of Sciences BIULETYN METEOROLOGICZNY METEOROLOGICAL BULLETIN SPITSBERGEN HORNSUND
Ocena ekonomiczna inwestycji w małe elektrownie wiatrowe
I Forum Małych Elektrowni Wiatrowych Warszawa, 23 marca 2011 Ocena ekonomiczna inwestycji w małe elektrownie wiatrowe Katarzyna Michałowska-Knap Instytut Energetyki Odnawialnej kmichalowska@ieo.pl Opłacalność
Mała energetyka wiatrowa
Energetyka Prosumencka-Korzyści dla Podlasia" Białystok, 8/04/2014 Mała energetyka wiatrowa Katarzyna Michałowska-Knap Instytut Energetyki Odnawialnej ; kmichalowska@ieo.pl Moc zainstalowana (kolor niebieski)
MMB Drives 40 Elektrownie wiatrowe
Elektrownie wiatrowe MMB Drives Zbigniew Krzemiński, Prezes Zarządu Elektrownie wiatrowe produkowane przez MMB Drives zostały tak zaprojektowane, aby osiągać wysoki poziom produkcji energii elektrycznej
ROK Uniwersytecki Biuletyn Meteorologiczny. Borucino. Nr 44 (93) ISSN X
Uniwersytecki Biuletyn Meteorologiczny Borucino ROK 213 KATEDRA METEOROLOGII I KLIMATOLOGII Instytut Geografii, Uniwersytet Gdański Nr 44 (93) ISSN 281-884X Od Redakcji: Opracowanie i publikację warunków
SPITSBERGEN HORNSUND
Polska Stacja Polarna Instytut Geofizyki Polska Akademia Nauk Polish Polar Station Institute of Geophysics Polish Academy of Sciences BIULETYN METEOROLOGICZNY METEOROLOGICAL BULLETIN SPITSBERGEN HORNSUND
SPITSBERGEN HORNSUND
Polska Stacja Polarna Instytut Geofizyki Polska Akademia Nauk Polish Polar Station Institute of Geophysics Polish Academy of Sciences BIULETYN METEOROLOGICZNY METEOROLOGICAL BULLETIN SPITSBERGEN HORNSUND
SPITSBERGEN HORNSUND
Polska Stacja Polarna Instytut Geofizyki Polska Akademia Nauk Polish Polar Station Institute of Geophysics Polish Academy of Sciences BIULETYN METEOROLOGICZNY METEOROLOGICAL BULLETIN SPITSBERGEN HORNSUND
SPITSBERGEN HORNSUND
Polska Stacja Polarna Instytut Geofizyki Polska Akademia Nauk Polish Polar Station Institute of Geophysics Polish Academy of Sciences BIULETYN METEOROLOGICZNY METEOROLOGICAL BULLETIN SPITSBERGEN HORNSUND
Reporting on dissemination activities carried out within the frame of the DESIRE project (WP8)
Reporting on dissemination activities carried out within the frame of the DESIRE project (WP8) Name, Affiliation Krzysztof Wojdyga, Marcin Lec, Rafal Laskowski Warsaw University of technology E-mail krzysztof.wojdyga@is.pw.edu.pl
Ile można pozyskać prądu z wiatraka na własnej posesji? Cz. II
Ile można pozyskać prądu z wiatraka na własnej posesji? Cz. II Autorzy: Michał Mrozowski, Piotr Wlazło - WIATROMETR.PL, Gdynia ("Czysta Energia" - nr 6/2014) Czy w miejscu mojego zamieszkania wiatr wieje
SPITSBERGEN HORNSUND
Polska Stacja Polarna Instytut Geofizyki Polska Akademia Nauk Polish Polar Station Institute of Geophysics Polish Academy of Sciences BIULETYN METEOROLOGICZNY METEOROLOGICAL BULLETIN SPITSBERGEN HORNSUND
SPITSBERGEN HORNSUND
Polska Stacja Polarna Instytut Geofizyki Polska Akademia Nauk Polish Polar Station Institute of Geophysics Polish Academy of Sciences BIULETYN METEOROLOGICZNY METEOROLOGICAL BULLETIN SPITSBERGEN HORNSUND
SPITSBERGEN HORNSUND
Polska Stacja Polarna Instytut Geofizyki Polska Akademia Nauk Polish Polar Station Institute of Geophysics Polish Academy of Sciences BIULETYN METEOROLOGICZNY METEOROLOGICAL BULLETIN SPITSBERGEN HORNSUND
Wrocław Efektywny rozwój rozproszonej energetyki odnawialnej w połączeniu z konwencjonalną w regionach
Wrocław 18.02.2013 POLTEGOR-INSTYTUT 1950 Ochrona środowiska Rekultywacja terenów po wydobywczych węgla brunatnego, badania wody, chronione ujęcia wodne, utylizacja odpadów organicznych, identyfikacja
SPITSBERGEN HORNSUND
Polska Stacja Polarna Instytut Geofizyki Polska Akademia Nauk Polish Polar Station Institute of Geophysics Polish Academy of Sciences BIULETYN METEOROLOGICZNY METEOROLOGICAL BULLETIN SPITSBERGEN HORNSUND
WSPÓŁCZYNNIK WYKORZYSTANIA MOCY I PRODUKTYWNOŚĆ RÓŻNYCH MODELI TURBIN WIATROWYCH DOSTĘPNYCH NA POLSKIM RYNKU
WSPÓŁCZYNNIK WYKORZYSTANIA MOCY I PRODUKTYWNOŚĆ RÓŻNYCH MODELI TURBIN WIATROWYCH DOSTĘPNYCH NA POLSKIM RYNKU Warszawa, 8 listopada 2017 r. Autorzy: Paweł Stąporek Marceli Tauzowski Strona 1 Cel analizy
Rozwój mikroenergetyki wiatrowej. dr inż. Wojciech Radziewicz Politechnika Opolska Wydział Elektrotechniki, Automatyki i Informatyki
Rozwój mikroenergetyki wiatrowej dr inż. Wojciech Radziewicz Politechnika Opolska Wydział Elektrotechniki, Automatyki i Informatyki Wprowadzenie Wzrost mocy zainstalowanej w elektrowniach wiatrowych na
Metody prognozowania produktywności i ich wpływ na wyniki prognozowania. Kamil Beker
Metody prognozowania produktywności i ich wpływ na wyniki prognozowania Kamil Beker Szacowanie zasobów wiatru Faza developmentu Faza eksploatacji Pomiary wiatru Optymalizacja farmy wiatrowej Analiza produktywności
SPITSBERGEN HORNSUND
Polska Stacja Polarna Instytut Geofizyki Polska Akademia Nauk Polish Polar Station Institute of Geophysics Polish Academy of Sciences BIULETYN METEOROLOGICZNY METEOROLOGICAL BULLETIN SPITSBERGEN HORNSUND
SPITSBERGEN HORNSUND
Polska Stacja Polarna Instytut Geofizyki Polska Akademia Nauk Polish Polar Station Institute of Geophysics Polish Academy of Sciences BIULETYN METEOROLOGICZNY METEOROLOGICAL BULLETIN SPITSBERGEN HORNSUND
Alternatywne źródła energii. Elektrownie wiatrowe
Alternatywne źródła energii Elektrownie wiatrowe Elektrownia wiatrowa zespół urządzeń produkujących energię elektryczną wykorzystujących do tego turbiny wiatrowe. Energia elektryczna uzyskana z wiatru
SPITSBERGEN HORNSUND
Polska Stacja Polarna Instytut Geofizyki Polska Akademia Nauk Polish Polar Station Institute of Geophysics Polish Academy of Sciences BIULETYN METEOROLOGICZNY METEOROLOGICAL BULLETIN SPITSBERGEN HORNSUND
SPITSBERGEN HORNSUND
Polska Stacja Polarna Instytut Geofizyki Polska Akademia Nauk Polish Polar Station Institute of Geophysics Polish Academy of Sciences BIULETYN METEOROLOGICZNY METEOROLOGICAL BULLETIN SPITSBERGEN HORNSUND
Elektroenergetyka polska wybrane zagadnienia
Polskie Towarzystwo Fizyczne Oddział Katowicki Konwersatorium Elektroenergetyka polska wybrane zagadnienia Maksymilian Przygrodzki Katowice, 18.03.2015 r Zakres tematyczny System elektroenergetyczny Zapotrzebowanie
SPITSBERGEN HORNSUND
Polska Stacja Polarna Instytut Geofizyki Polska Akademia Nauk Polish Polar Station Institute of Geophysics Polish Academy of Sciences BIULETYN METEOROLOGICZNY METEOROLOGICAL BULLETIN SPITSBERGEN HORNSUND
SPITSBERGEN HORNSUND
Polska Stacja Polarna Instytut Geofizyki Polska Akademia Nauk Polish Polar Station Institute of Geophysics Polish Academy of Sciences BIULETYN METEOROLOGICZNY METEOROLOGICAL BULLETIN SPITSBERGEN HORNSUND
SPITSBERGEN HORNSUND
Polska Stacja Polarna Instytut Geofizyki Polska Akademia Nauk Polish Polar Station Institute of Geophysics Polish Academy of Sciences BIULETYN METEOROLOGICZNY METEOROLOGICAL BULLETIN SPITSBERGEN HORNSUND
- 1 / 7- Ponadto w opracowanej ekspertyzie mogą być zawarte są informacje na temat:
na wykonanie standardowej ekspertyzy dotyczącej oceny zasobów 1 SIŁOWNIA Ekspertyza standardowa dotyczy jednej potencjalnej lokalizacji i jednego typu generatora Wykonywana jest na podstawie 10-letniej
SPITSBERGEN HORNSUND
Polska Stacja Polarna Instytut Geofizyki Polska Akademia Nauk Polish Polar Station Institute of Geophysics Polish Academy of Sciences BIULETYN METEOROLOGICZNY METEOROLOGICAL BULLETIN SPITSBERGEN HORNSUND
SPITSBERGEN HORNSUND
Polska Stacja Polarna Instytut Geofizyki Polska Akademia Nauk Polish Polar Station Institute of Geophysics Polish Academy of Sciences BIULETYN METEOROLOGICZNY METEOROLOGICAL BULLETIN SPITSBERGEN HORNSUND
Wiatr w śmigła, czyli właściwy wybór lokalizacji dla elektrowni wiatrowych.
Wiatr w śmigła, czyli właściwy wybór lokalizacji dla elektrowni wiatrowych. W związku ze sporym zainteresowaniem czytelników warunkami wietrznymi w Polsce postaram się przedstawić ten jak bardzo nurtujący
SPITSBERGEN HORNSUND
Polska Stacja Polarna Instytut Geofizyki Polska Akademia Nauk Polish Polar Station Institute of Geophysics Polish Academy of Sciences BIULETYN METEOROLOGICZNY METEOROLOGICAL BULLETIN SPITSBERGEN HORNSUND
Wpływ instrumentów wsparcia na opłacalność małej elektrowni wiatrowej
II Forum Małych Elektrowni Wiatrowych Warszawa, 13 marca 2012 Wpływ instrumentów wsparcia na opłacalność małej elektrowni wiatrowej Katarzyna Michałowska-Knap Instytut Energetyki Odnawialnej kmichalowska@ieo.pl
INSTRUKCJA LABORATORYJNA NR 4-EW ELEKTROWNIA WIATROWA
LABORATORIUM ODNAWIALNYCH ŹRÓDEŁ ENERGII Katedra Aparatury i Maszynoznawstwa Chemicznego Wydział Chemiczny Politechniki Gdańskiej INSTRUKCJA LABORATORYJNA NR 4-EW ELEKTROWNIA WIATROWA ELEKTROWNIA WIATROWA
PORÓWNANIE MAŁYCH ELEKTROWNI WIATROWYCH ZNAJDUJĄCYCH SIĘ NA TERENIE POLITECHNIKI BIAŁOSTOCKIEJ
Maszyny Elektryczne - Zeszyty Problemowe Nr 2/2018 (118) 101 Paweł Kamiński, Adam Kuźma Politechnika Białostocka, Białystok PORÓWNANIE MAŁYCH ELEKTROWNI WIATROWYCH ZNAJDUJĄCYCH SIĘ NA TERENIE POLITECHNIKI
SPITSBERGEN HORNSUND
Polska Stacja Polarna Instytut Geofizyki Polska Akademia Nauk Polish Polar Station Institute of Geophysics Polish Academy of Sciences BIULETYN METEOROLOGICZNY METEOROLOGICAL BULLETIN SPITSBERGEN HORNSUND
SPITSBERGEN HORNSUND
Polska Stacja Polarna Instytut Geofizyki Polska Akademia Nauk Polish Polar Station Institute of Geophysics Polish Academy of Sciences BIULETYN METEOROLOGICZNY METEOROLOGICAL BULLETIN SPITSBERGEN HORNSUND
SPITSBERGEN HORNSUND
Polska Stacja Polarna Instytut Geofizyki Polska Akademia Nauk Polish Polar Station Institute of Geophysics Polish Academy of Sciences BIULETYN METEOROLOGICZNY METEOROLOGICAL BULLETIN SPITSBERGEN HORNSUND
SPITSBERGEN HORNSUND
Polska Stacja Polarna Instytut Geofizyki Polska Akademia Nauk Polish Polar Station Institute of Geophysics Polish Academy of Sciences BIULETYN METEOROLOGICZNY METEOROLOGICAL BULLETIN SPITSBERGEN HORNSUND
METODYKA BADAŃ MAŁYCH SIŁOWNI WIATROWYCH
Inżynieria Rolnicza 2(100)/2008 METODYKA BADAŃ MAŁYCH SIŁOWNI WIATROWYCH Krzysztof Nalepa, Maciej Neugebauer, Piotr Sołowiej Katedra Elektrotechniki i Energetyki, Uniwersytet Warmińsko-Mazurski w Olsztynie
SPITSBERGEN HORNSUND
Polska Stacja Polarna Instytut Geofizyki Polska Akademia Nauk Polish Polar Station Institute of Geophysics Polish Academy of Sciences BIULETYN METEOROLOGICZNY METEOROLOGICAL BULLETIN SPITSBERGEN HORNSUND
SPITSBERGEN HORNSUND
Polska Stacja Polarna Instytut Geofizyki Polska Akademia Nauk Polish Polar Station Institute of Geophysics Polish Academy of Sciences BIULETYN METEOROLOGICZNY METEOROLOGICAL BULLETIN SPITSBERGEN HORNSUND
SPITSBERGEN HORNSUND
Polska Stacja Polarna Instytut Geofizyki Polska Akademia Nauk Polish Polar Station Institute of Geophysics Polish Academy of Sciences BIULETYN METEOROLOGICZNY METEOROLOGICAL BULLETIN SPITSBERGEN HORNSUND
Potencjał inwestycyjny w polskim sektorze budownictwa energetycznego sięga 30 mld euro
Kwiecień 2013 Katarzyna Bednarz Potencjał inwestycyjny w polskim sektorze budownictwa energetycznego sięga 30 mld euro Jedną z najważniejszych cech polskiego sektora energetycznego jest struktura produkcji
Wprowadzenie. Małgorzata KLENIEWSKA. nawet już przy stosunkowo niewielkim stężeniu tego gazu w powietrzu atmosferycznym.
Małgorzata KLENIEWSKA Katedra Inżynierii Wodnej i Rekultywacji Środowiska SGGW Zakład Meteorologii i Klimatologii Department of Hydraulic Engineering and Environmental Restoration WAU Division of Meteorology
Uniwersytecki Biuletyn Meteorologiczny
Uniwersytecki Biuletyn Meteorologiczny Borucino-Kościerzyna-Ostrzyce KATEDRA METEOROLOGII I KLIMATOLOGII Instytut Geografii, Uniwersytet Gdański Nr 43 (92) STYCZEŃ 2014 ISSN 2081-884X Od Redakcji: Opracowanie
CHARAKTERYSTYKA PORÓWNAWCZA PRZEBIEGU ELEMENTÓW METEOROLOGICZNYCH NA STACJACH W BORUCINIE i OSTRZYCACH (Złota Góra) - CZERWIEC 2010 r.
CHARAKTERYSTYKA PORÓWNAWCZA PRZEBIEGU ELEMENTÓW METEOROLOGICZNYCH NA STACJACH W BORUCINIE i OSTRZYCACH (Złota Góra) - CZERWIEC 2010 r. Element Wskaźnik Ostrzyce Borucino Temperatura powietrza [ C] Temperatura
Uniwersytecki Biuletyn Meteorologiczny
Uniwersytecki Biuletyn Meteorologiczny Borucino-Kościerzyna-Ostrzyce KATEDRA METEOROLOGII I KLIMATOLOGII Instytut Geografii, Uniwersytet Gdański Nr 45 (94) MARZEC 214 ISSN 281-884X Od Redakcji: Opracowanie
Uniwersytecki Biuletyn Meteorologiczny
Uniwersytecki Biuletyn Meteorologiczny Borucino-Kościerzyna-Ostrzyce KATEDRA METEOROLOGII I KLIMATOLOGII Instytut Geografii, Uniwersytet Gdański Nr 47 (96) MAJ 2014 ISSN 2081-884X Od Redakcji: Opracowanie
MAŁE TURBINY WIATROWE Cz. 1 KOMEL. Instytut Napędów i Maszyn Elektrycznych. Artur Polak
MAŁE TURBINY WIATROWE Cz. 1 Artur Polak Instytut Napędów i Maszyn Elektrycznych KOMEL MAŁE TURBINY WIATROWE Mała energetyka wiatrowa oparta jest na elektrowniach wiatrowych, których powierzchnia koła wiatrowego
Wpływ czynników atmosferycznych na zmienność zużycia energii elektrycznej Influence of Weather on the Variability of the Electricity Consumption
Wpływ czynników atmosferycznych na zmienność zużycia energii elektrycznej Influence of Weather on the Variability of the Electricity Consumption Wojciech Zalewski Politechnika Białostocka, Wydział Zarządzania,
LABORATORIUM Z PROEKOLOGICZNYCH ŹRÓDEŁ ENERGII ODNAWIALNEJ
VIII-EW ELEKTROWNIA WIATROWA LABORATORIUM Z PROEKOLOGICZNYCH ŹRÓDEŁ ENERGII ODNAWIALNEJ Katedra Aparatury i Maszynoznawstwa Chemicznego Instrukcja ćwiczenia nr 8. EW 1 8 EW WYZNACZENIE ZAKRESU PRACY I
Uniwersytecki Biuletyn Meteorologiczny
Uniwersytecki Biuletyn Meteorologiczny Borucino-Kościerzyna-Ostrzyce KATEDRA METEOROLOGII I KLIMATOLOGII Instytut Geografii, Uniwersytet Gdaoski Nr 1 (50) Lipiec 2010 ISSN 2081-884X Od Redakcji: Opracowanie
Porównanie elektrowni wiatrowych w szacowanej produkcji energii elektrycznej oraz dopasowaniu do danych warunków wiatrowych
Porównanie elektrowni wiatrowych w szacowanej produkcji energii elektrycznej oraz dopasowaniu do danych warunków wiatrowych Zdzisław Kusto Politechnika Gdańska GWSA ZAŁOŻENIE WYJŚCIOWE: OSZACOWANIE ROCZNEJ
SPITSBERGEN HORNSUND
Polska Stacja Polarna Instytut Geofizyki Polska Akademia Nauk Polish Polar Station Institute of Geophysics Polish Academy of Sciences BIULETYN METEOROLOGICZNY METEOROLOGICAL BULLETIN SPITSBERGEN HORNSUND
Wydział Inżynierii Środowiska i Energetyki, Politechnika Śląska Faculty of Energy and Environmental Engineering, Silesian University of Technology
Przegląd Naukowy Inżynieria i Kształtowanie Środowiska nr 70, 2015: 391 399 (Prz. Nauk. Inż. Kszt. Środ. 70, 2015) Scientific Review Engineering and Environmental Sciences No 70, 2015: 391 399 (Sci. Rev.
Rycina II.20. Energia wiatru - potencjał techniczny na wysokości 40m n.p.t.
Atlas zasobów energii odnawialnej w województwie śląskim Rycina II.2. Energia wiatru - potencjał techniczny na wysokości 4m n.p.t. kłobucki częstochowski lubliniecki myszkowski zawierciański tarnogórski
Uniwersytecki Biuletyn Meteorologiczny
Uniwersytecki Biuletyn Meteorologiczny Borucino-Kościerzyna-Ostrzyce KATEDRA METEOROLOGII I KLIMATOLOGII Instytut Geografii, Uniwersytet Gdański Nr 19 (68) STYCZEŃ 2012 ISSN 2081-884X Od Redakcji: Opracowanie
WPŁYW PRODUKCJI ENERGII ELEKTRYCZNEJ W ŹRÓDŁACH OPALANYCH WĘGLEM BRUNATNYM NA STABILIZACJĘ CENY ENERGII DLA ODBIORCÓW KOŃCOWYCH
Górnictwo i Geoinżynieria Rok 35 Zeszyt 3 2011 Andrzej Patrycy* WPŁYW PRODUKCJI ENERGII ELEKTRYCZNEJ W ŹRÓDŁACH OPALANYCH WĘGLEM BRUNATNYM NA STABILIZACJĘ CENY ENERGII DLA ODBIORCÓW KOŃCOWYCH 1. Węgiel
ODNAWIALNE I NIEODNAWIALNE ŹRÓDŁA ENERGII. Filip Żwawiak
ODNAWIALNE I NIEODNAWIALNE ŹRÓDŁA ENERGII Filip Żwawiak WARTO WIEDZIEĆ 1. Co to jest energetyka? 2. Jakie są konwencjonalne (nieodnawialne) źródła energii? 3. Jak dzielimy alternatywne (odnawialne ) źródła
Uniwersytecki Biuletyn Meteorologiczny
Uniwersytecki Biuletyn Meteorologiczny Borucino-Kościerzyna-Ostrzyce KATEDRA METEOROLOGII I KLIMATOLOGII Instytut Geografii, Uniwersytet Gdański Nr 37 (86) CZERWIEC 2013 ISSN 2081-884X Od Redakcji: Opracowanie
ENERGIA WIATRU. Dr inŝ. Barbara Juraszka
ENERGIA WIATRU. Dr inŝ. Barbara Juraszka Prognozy rozwoju energetyki wiatrowej Cele wyznacza przyjęta w 2001 r. przez Sejm RP "Strategia rozwoju energetyki odnawialnej". Określa ona cel ilościowy w postaci
ENERGIA Z WIATRU CZY TO MA SENS?
ENERGIA Z WIATRU CZY TO MA SENS? UWARUNKOWANIA W WOJEWÓDZTWIE DOLNOŚLĄSKIM Kamila Lesiw-Głowacka WOJEWÓDZKIE BIURO URBANISTYCZNE WE WROCŁAWIU Obecnie: INSTYTUT ROZWOJU TERYTORIALNEGO WARSZTATY W RAMACH
Generacja źródeł wiatrowych cz.2
Generacja źródeł wiatrowych cz.2 Autor: Adam Klepacki, ENERGOPROJEKT -KATOWICE S.A. Średnioroczne prawdopodobieństwa wystąpienia poszczególnych obciążeń źródeł wiatrowych w Niemczech dla siedmiu lat kształtują
- ODNAWIALNE ŹRÓDŁA ENERGII
Poziom i struktura wykorzystania odnawialnych źródeł energii w Polsce i Unii Europejskiej z uwzględnieniem aspektów ekologicznych i ekonomicznych ogrzewania domu jednorodzinnego Prof. dr hab. inż. Mariusz
INWESTOR. Opracowali: mgr inż. Ireneusz Nowicki
Analiza migotania cienia dla budowy dwóch elektrowni wiatrowych wraz z infrastrukturą techniczną lokalizowanych w miejscowości Galewice, gmina Galewice INWESTOR Opracowali: mgr inż. Ireneusz Nowicki MARZEC
Perspektywy rozwoju OZE w Polsce
Perspektywy rozwoju OZE w Polsce Beata Wiszniewska Polska Izba Gospodarcza Energetyki Odnawialnej i Rozproszonej Warszawa, 15 października 2015r. Polityka klimatyczno-energetyczna Unii Europejskiej Pakiet
Dlaczego Projekt Integracji?
Integracja obszaru wytwarzania w Grupie Kapitałowej ENEA pozwoli na stworzenie silnego podmiotu wytwórczego na krajowym rynku energii, a tym samym korzystnie wpłynie na ekonomiczną sytuację Grupy. Wzrost
Uniwersytecki Biuletyn Meteorologiczny
Uniwersytecki Biuletyn Meteorologiczny Borucino-Kościerzyna-Ostrzyce KATEDRA METEOROLOGII I KLIMATOLOGII Instytut Geografii, Uniwersytet Gdański Nr 44 (93) LUTY 2014 ISSN 2081-884X Od Redakcji: Opracowanie
Laboratorium z Konwersji Energii. Silnik Wiatrowy
Laboratorium z Konwersji Energii Silnik Wiatrowy 1.0.WSTĘP Silnik wiatrowy to silnik wirnikowy zamieniający energię kinetyczną wiatru na pracę mechaniczną łopat wirnika, dzięki której wytwarzana jest energia
Sprawozdanie z badań jakości powietrza wykonanych ambulansem pomiarowym w Tarnowskich Górach w dzielnicy Osada Jana w dniach
WOJEWÓDZKI INSPEKTORAT OCHRONY ŚRODOWISKA W KATOWICACH DELEGATURA W CZĘSTOCHOWIE ul. Rząsawska 24/28 tel. (34) 369 41 20, (34) 364-35-12 42-200 Częstochowa tel./fax (34) 360-42-80 e-mail: czestochowa@katowice.wios.gov.pl
Projekt założeń do planu zaopatrzenia w ciepło, energię elektryczną i paliwa gazowe gminy miejskiej Mielec Piotr Stańczuk
Projekt założeń do planu zaopatrzenia w ciepło, energię elektryczną i paliwa gazowe gminy miejskiej Mielec Piotr Stańczuk Małopolska Agencja Energii i Środowiska sp. z o.o. ul. Łukasiewicza 1, 31 429 Kraków
DYLEMATY POLSKIEJ ENERGETYKI W XXI WIEKU. Prof. dr hab. Maciej Nowicki
DYLEMATY POLSKIEJ ENERGETYKI W XXI WIEKU Prof. dr hab. Maciej Nowicki 1 POLSKI SYSTEM ENERGETYCZNY NA ROZDROŻU 40% mocy w elektrowniach ma więcej niż 40 lat - konieczność ich wyłączenia z eksploatacji
Energetyczna ocena efektywności pracy elektrociepłowni gazowo-parowej z organicznym układem binarnym
tom XLI(2011), nr 1, 59 64 Władysław Nowak AleksandraBorsukiewicz-Gozdur Roksana Mazurek Zachodniopomorski Uniwersytet Technologiczny Wydział Inżynierii Mechanicznej i Mechatroniki Katedra Techniki Cieplnej
SPITSBERGEN HORNSUND
Polska Stacja Polarna Instytut Geofizyki Polska Akademia Nauk Polish Polar Station Institute of Geophysics Polish Academy of Sciences BIULETYN METEOROLOGICZNY METEOROLOGICAL BULLETIN SPITSBERGEN HORNSUND
Uniwersytecki Biuletyn Meteorologiczny
Uniwersytecki Biuletyn Meteorologiczny Borucino-Kościerzyna-Ostrzyce KATEDRA METEOROLOGII I KLIMATOLOGII Instytut Geografii, Uniwersytet Gdaoski Nr 4 (53) PAŹDZIERNIK 2010 ISSN 2081-884X Od Redakcji: Opracowanie
FORECASTING THE DISTRIBUTION OF AMOUNT OF UNEMPLOYED BY THE REGIONS
FOLIA UNIVERSITATIS AGRICULTURAE STETINENSIS Folia Univ. Agric. Stetin. 007, Oeconomica 54 (47), 73 80 Mateusz GOC PROGNOZOWANIE ROZKŁADÓW LICZBY BEZROBOTNYCH WEDŁUG MIAST I POWIATÓW FORECASTING THE DISTRIBUTION
Wyniki pomiarów jakości powietrza prowadzonych metodą pasywną w Kolonowskiem w 2014 roku
WOJEWÓDZKI INSPEKTORAT OCHRONY ŚRODOWISKA W OPOLU Wyniki pomiarów jakości powietrza prowadzonych metodą pasywną w Kolonowskiem w 2014 roku Opole, luty 2015 r. 1. Podstawy formalne Niniejsze opracowanie
PARAMETRY, WŁAŚCIWOŚCI I FUNKCJE NIEZAWODNOŚCIOWE NAPOWIETRZNYCH LINII DYSTRYBUCYJNYCH 110 KV
Elektroenergetyczne linie napowietrzne i kablowe wysokich i najwyższych napięć PARAMETRY, WŁAŚCIWOŚCI I FUNKCJE NIEZAWODNOŚCIOWE NAPOWIETRZNYCH LINII DYSTRYBUCYJNYCH 110 KV Wisła, 18-19 października 2017
Działanie 4.1,, Odnawialne źródła energii (typ projektu: Infrastruktura do produkcji i dystrybucji energii ze źródeł odnawialnych)
załącznik do Uchwały nr 26/X/2016 Komitetu Monitorującego Regionalny Program Operacyjny Województwa Mazowieckiego na lata 2014-2020 z dnia 21 marca 2016 roku KRYTERIA DOSTĘPU Działanie 4.1,, Odnawialne
Materiały pomocnicze do laboratorium z przedmiotu Metody i Narzędzia Symulacji Komputerowej
Materiały pomocnicze do laboratorium z przedmiotu Metody i Narzędzia Symulacji Komputerowej w Systemach Technicznych Symulacja prosta dyszy pomiarowej Bendemanna Opracował: dr inż. Andrzej J. Zmysłowski
Referat pracy dyplomowej. Hybrydowy system ogrzewania ciepłej wody użytkowej oparty na odnawialnych źródłach energii
Referat pracy dyplomowej Temat pracy dyplomowej: Hybrydowy system ogrzewania ciepłej wody użytkowej oparty na odnawialnych źródłach energii Godło autora Denver I. Wprowadzenie Zanieczyszczenie środowiska
POLSKA AKADEMIA NAUK INSTYTUT GOSPODARKI SUROWCAMI MINERALNYMI I ENERGIĄ
POLSKA AKADEMIA NAUK INSTYTUT GOSPODARKI SUROWCAMI MINERALNYMI I ENERGIĄ WYKORZYSTANIE ENERGII WIATRU DO PRODUKCJI ENERGII ELEKTRYCZNEJ W KAMIENICY ŚLĄSKIEJ Studium Celowości ZAŁĄCZNIK NR 5 Kraków, marzec
Babiogórski Park Narodowy.
Babiogórski Park Narodowy. Lokalizacja punktów pomiarowych i wyniki badań. Na terenie Babiogórskiego Parku Narodowego zlokalizowano 3 punkty pomiarowe. Pomiary prowadzono od stycznia do grudnia 2005 roku.
Bilans potrzeb grzewczych
AKTUALIZACJA PROJEKTU ZAŁOŻEŃ DO PLANU ZAOPATRZENIA W CIEPŁO, ENERGIĘ ELEKTRYCZNĄ I PALIWA GAZOWE DLA GMINY OPALENICA Część 04 Bilans potrzeb grzewczych W 854.04 2/9 SPIS TREŚCI 4.1 Bilans potrzeb grzewczych
Uniwersytecki Biuletyn Meteorologiczny
Uniwersytecki Biuletyn Meteorologiczny Borucino-Kościerzyna-Ostrzyce KATEDRA METEOROLOGII I KLIMATOLOGII Instytut Geografii, Uniwersytet Gdaoski Nr 10 (59) KWIECIEO 2010 ISSN 2081-884X Od Redakcji: Opracowanie
SPRAWOZDANIE Z MONITORINGU JAKOŚCI POWIETRZA W 2009 ROKU
WOJEWÓDZKI INSPEKTORAT OCHRONY ŚRODOWISKA W RZESZOWIE DELEGATURA W JAŚLE SPRAWOZDANIE Z MONITORINGU JAKOŚCI POWIETRZA W 2009 ROKU Stanowisko pomiarowe: ŻYDOWSKIE Jasło, luty 2010 r. 1. Położenie i najbliższe
G S O P S O P D O A D R A K R I K NI N SK S O K E O M
PLAN GOSPODARKI NISKOEMISYJNEJ MIASTA CHOJNICE na lata 2015 2020 2020 17.10.2015 2015-10-07 1 Spis treści 1. Wstęp 2. Założenia polityki energetycznej na szczeblu międzynarodowym i krajowym 3. Charakterystyka
WSKAŹNIKI EMISYJNOŚCI CO 2, SO 2, NO x, CO i TSP DLA ENERGII ELEKTRYCZNEJ
WSKAŹNIKI EMISYJNOŚCI CO 2, SO 2, NO x, CO i TSP DLA ENERGII ELEKTRYCZNEJ na podstawie informacji zawartych w Krajowej bazie o emisjach gazów cieplarnianych i innych substancji za 2015 rok luty 2017 SPIS
Nowoczesna produkcja ciepła w kogeneracji. Opracował: Józef Cieśla PGNiG Termika Energetyka Przemysłowa
Nowoczesna produkcja ciepła w kogeneracji Opracował: Józef Cieśla PGNiG Termika Energetyka Przemysłowa Wprowadzenie Wytwarzanie podstawowych nośników energii takich jak ciepło i energia elektryczna może
Identyfikacja źródeł emisji pyłu przy pomocy radioaktywnego izotopu ołowiu 210 Pb
Identyfikacja źródeł emisji pyłu przy pomocy radioaktywnego izotopu ołowiu 210 Pb Grant KBN nr 3 T09D 025 29 Metoda oceny udziału dużych źródeł energetycznych w poziomie stężeń pyłu z wykorzystaniem naturalnych