Przedmiotowy system oceniania z matematyki

Wielkość: px
Rozpocząć pokaz od strony:

Download "Przedmiotowy system oceniania z matematyki"

Transkrypt

1 Przedmiotowy system oceniania z matematyki 1. Każdy uczeń jest oceniany zgodnie z zasadami sprawiedliwości. 2. Ocenianiu podlegają wszystkie wymienione formy aktywności ucznia. 3. Każdy uczeń powinien otrzymać w ciągu semestru minimum 9 ocen. 4. Prace klasowe, testy, krótkie sprawdziany, kartkówki i odpowiedzi ustne są obowiązkowe. 5. Najpóźniej jeden tydzień przed zapowiedzianą pracą pisemną uczeń zostaje poinformowany o terminie tej pracy. Nauczyciel wpisuje termin ołówkiem do dziennika. 6. Uczeń, który nie pisał pracy kontrolnej, ma obowiązek zaliczyć dany materiał w wybranej prze nauczyciela formie w terminie uzgodnionym z uczniem, jeśli nieobecność wynosiła więcej niż trzy dni. Krótsza nieobecność ucznia upoważnia do pisania przez niego pracy kontrolnej na pierwszej lekcji, na której będzie obecny. 7. Uczeń może poprawić ocenę z pracy klasowej w ciągu tygodnia od dnia oddania sprawdzonych prac. Poprawia ją poza lekcjami. 8. Prace klasowe, testy, kartkówki są oceniane według następujących kryteriów: 100% - 91% i zadania dodatkowe wykraczające poza podstawę programową- celujący 100% - 91% - bardzo dobry 90% - 76% - dobry 75% - 51% - dostateczny 50% - 39% - dopuszczający 38% - 0% - niedostateczny Strona 1 z 29

2 9. Uczeń ściągający na pracach klasowych, testach, sprawdzianach, kartkówkach otrzymuje ocenę niedostateczną bez możliwości jej poprawy. 10. Na początku lekcji uczeń może być poproszony do odpowiedzi ustnej (do tablicy), w czasie której, sprawdzana jest praca domowa i wiadomości z trzech ostatnich lekcji lub tylko odpowiedź z trzech ostatnich lekcji. 11. Uczeń może być poproszony o udzielenie odpowiedzi z ławki (jeżeli uczeń zna odpowiedź otrzymuje +, 4 plusy - 4, 5 plusów - 5, jeżeli nie zna odpowiedzi otrzymuje daszek, kolejna zła odpowiedź to ocena niedostateczna). Jeżeli uczeń otrzyma mniejszą ilość plusów i wyrazi zgodę na wystawienie tej oceny to otrzymuje za 2 plusy 2, za 3 plusy Uczeń może otrzymać + za zadanie dodatkowe (4 plusy 4, 5 plusów 5, 6 plusów 6). Jeżeli uczeń otrzyma mniejszą ilość plusów i wyrazi zgodę na wystawienie tej oceny to otrzymuje za 2 plusy 2, za 3 plusy Na początku lekcji cała klasa lub kilku uczniów może napisać niezapowiedzianą kartkówkę obejmującą materiał, z co najwyżej trzech ostatnich lekcji. 14. Poprawa prac klasowych i testów odbywać się będzie na zajęciach pozalekcyjnych w wyznaczonym terminie. 15. Uczeń ma prawo do trzech nieprzygotowań w semestrze. W przypadku kolejnego zgłoszenia uczeń otrzymuje ocenę niedostateczną. 16. Nieprzygotowanie do zajęć nie dotyczy zapowiedzianych prac klasowych, testów, są one obowiązkowe. 17. Nieprzygotowanie do zajęć musi być zgłoszone nauczycielowi zaraz po wejściu do klasy, a nie w czasie trwania zajęć lekcyjnych. 18. Uczeń ściągający pracę domową od kolegów otrzymuje ocenę niedostateczną za niesamodzielne wykonanie tej pracy. Strona 2 z 29

3 20. O ocenie semestralnej i rocznej decydują w pierwszej kolejności oceny z: prac klasowych, testów, kartkówek, odpowiedzi ustnych, prac domowych, aktywności, zadań dodatkowych. 21. Pisemne prace uczniów są gromadzone przez nauczyciela. Mają do nich wgląd zarówno uczniowie jak i rodzice. Uczniowie otrzymują testy do wglądu na lekcji, zaś rodzice na indywidualnych konsultacjach i na wywiadówkach. 22. Rodzice będą na bieżąco informowani o ocenach z matematyki poprzez: - swoje dzieci, które mają obowiązek pokazania rodzicom ocen, które znajdować się będą w zeszytach przedmiotowych - podczas spotkań indywidualnych z rodzicami - podczas wywiadówek. Przewiduję w tym roku szkolnym: - prace klasowe - co najmniej 6 kartkówek - co najmniej dwie odpowiedzi ustne - co najmniej dwa razy sprawdzenie pracy domowej - odpowiedź z ławki (z trzech ostatnich lekcji) - ocena z próbnego testu kompetencji (klasa III) - ocena z testu wiadomości po klasie VI - oceny za aktywność - projekty edukacyjne - pracę na lekcji samodzielną lub w zespole - oceny za zadanie dodatkowe. Strona 3 z 29

4 Powyższy przedmiotowy system oceniania jest zgodny z Wewnątrzszkolnym Systemem Oceniania Publicznego Gimnazjum w Słubicach. Klasa I W rezultacie kształcenia matematycznego uczeń potrafi: Umiejętności konieczne i podstawowe Osiągnięcia ponadprzedmiotowe KONIECZNE PODSTAWOWE ROZSZERZAJĄCE DOPEŁNIAJĄCE WYKRACZAJĄCE czytać teksty w stylu matematycznym wykorzystywać słownictwo wprowadzane przy okazji nowych treści tworzyć teksty w stylu matematycznym prowadzić rozumowania matematyczne sprawnie posługiwać się językiem matematycznym stosować poznane wiadomości w sytuacjach nietypowych rozwiązywać zadania o podwyższonym stopniu trudności Strona 4 z 29

5 1. Zbieranie, porządkowanie i prezentowanie danych odczytywać informacje przedstawione w tabelach odczytywać informacje przedstawione na diagramach przedstawiać dane w tabelach przedstawiać dane na diagramach interpretować informacje przedstawione w tabelach interpretować informacje przedstawione na diagramach porównywać informacje przedstawione na dwóch diagramach 2. Liczby naturalne budować liczby o podanych cyfrach zapisywać liczby cyframi i słowami porządkować liczby naturalne odczytać liczby zapisane za pomocą znaków rzymskich budować liczby o podanych cyfrach budować liczby, których cyfry spełniają określone warunki zapisać liczby za pomocą znaków rzymskich budować liczby o podanych własnościach 3. Cechy podzielności wskazywać wielokrotności podanych liczb wskazywać dzielniki podanych liczb stosować cechy podzielności liczb przez 2, 5, 10, 100 rozpoznawać liczby pierwsze i złożone stosować cechę podzielności liczb przez 4 stosować cechy podzielności liczb przez 3, 9 rozkładać liczby na czynniki pierwsze stosować cechy podzielności liczb przez 6, 15 itp. 4. Działania na liczbach naturalnych dodawać i odejmować w pamięci liczby naturalne mnożyć i dzielić w pamięci liczby naturalne stosować porównywanie różnicowe stosować porównywanie ilorazowe stosować reguły kolejności wykonywania działań obliczać wartości wyrażeń arytmetycznych, stosując prawa działań i reguły wykonywania działań 5. Algorytmy działań pisemnych dodawać liczby naturalne sposobem pisemnym odejmować liczby naturalne sposobem pisemnym mnożyć liczby naturalne sposobem pisemnym dzielić liczby naturalne sposobem pisemnym opisywać sytuację za pomocą wyrażeń arytmetycznych sprawdzać, czy otrzymany wynik spełnia warunki zadania 6. Liczby całkowite. Dodawanie i odejmowanie liczb całkowitych dodawać liczby całkowite odejmować liczby całkowite zaznaczać liczby całkowite na osi liczbowej rozpoznawać liczby przeciwne wyznaczać wartość bezwzględną liczby stosować własności wartości bezwzględnej 7. Mnożenie i dzielenie liczb całkowitych mnożyć liczby całkowite dzielić liczby całkowite obliczać wartości wyrażeń arytmetycznych, wykorzystując działania na liczbach całkowitych 8. Ułamki zwykłe. Działania na ułamkach zwykłych dodawać liczby wymierne odejmować liczby wymierne mnożyć liczby wymierne dzielić liczby wymierne obliczać ułamek danej liczby porównywać ułamki zwykłe porównywać liczby mieszane stosować działania na liczbach wymiernych do rozwiązywania zadań z treścią szacować wartości wyrażeń arytmetycznych Strona 5 z 29

6 9. Liczby dziesiętne. Działania na liczbach dziesiętnych porównywać liczby dziesiętne zamieniać ułamki zwykłe na liczby dziesiętne zamieniać ułamki dziesiętne na ułamki zwykłe dodawać liczby dziesiętne odejmować liczby dziesiętne mnożyć liczby dziesiętne dzielić liczby dziesiętne stosować reguły kolejności wykonywania działań i własności działań zapisywać wyrażenia dwumianowane w postaci liczb dziesiętnych wykonywać działania na wielkościach mianowanych lub dwumianowanych zamieniać ułamki okresowe na ułamki zwykłe stosować działania na liczbach dziesiętnych do rozwiązywania zadań z treścią szacować wartości wyrażeń arytmetycznych 10. Rozwiązywanie zadań tekstowych analizować treść zadania tekstowego zapisywać wyrażenie arytmetyczne na podstawie treści zadania zapisywać treść zadania tekstowego na podstawie wyrażenia arytmetycznego będącego opisem zadania oceniać sensowność wyniku 11. Potęgi wyznaczać naturalną potęgę liczby wymiernej stosować reguły kolejności wykonywania działań obliczać wartości wyrażeń arytmetycznych 12. Wprowadzenie do geometrii rozpoznawać podstawowe figury geometryczne rozróżniać kąty ostre, proste i rozwarte określać relacje między podstawowymi figurami geometrycznymi rysować figury geometryczne o zadanych własnościach stosować własności kątów wierzchołkowych, przyległych, naprzemianległych, odpowiadających 13. Własności trójkątów obliczać obwód trójkąta obliczać pole trójkąta obliczać miary kątów wewnętrznych trójkąta klasyfikować trójkąty ze względu na boki, kąty korzystać z własności trójkątów 14. Własności czworokątów stosować wzory na pola i obwody poznanych czworokątów klasyfikować czworokąty stosować własności czworokątów rysować czworokąty o podanych polach 15. Własności wielokątów rozpoznawać i nazywać wielokąty rozpoznawać wielokąty foremne wyznaczać sumę miar kątów wewnętrznych wielokąta obliczać pola i obwody wielokątów wyznaczać liczbę przekątnych danego wielokąta 16. Własności kół i okręgów rysować koła i okręgi o podanych własnościach wskazać promienie, średnice i cięciwy w narysowanym okręgu lub kole rysować cięciwy i łuki w okręgu spełniające zadane warunki określać wzajemne położenie dwóch okręgów o zadanych promieniach na podstawie informacji o odległości środków określać wzajemne położenie dwóch okręgów, korzystać z własności położenia okręgów 17. Własności graniastosłupów rozpoznawać graniastosłupy nazywać graniastosłupy rysować siatki graniastosłupów rozpoznawać w budowlach elementy będące graniastosłupami obliczać liczbę ścian, krawędzi, wierzchołków graniastosłupa w zależności od wielokąta będącego jego podstawą rysować siatkę opisanego graniastosłupa i zbudować z niej jego model rozpoznawać siatki graniastosłupów Strona 6 z 29

7 18. Pola powierzchni i objętości graniastosłupów opisywać wzorami pola powierzchni i objętości graniastosłupów obliczać pola i objętości graniastosłupów zamieniać jednostki pola i objętości 19. Przekroje brył budować model graniastosłupa z danej siatki rysować siatki graniastosłupów szkicować graniastosłupy szkicować graniastosłupy o podanych własnościach wskazać na modelu bryły przekrój opisany słownie poszukiwać różnych przekrojów tej samej bryły 20. Układ współrzędnych podawać współrzędne punktów zaznaczonych w układzie współrzędnych zaznaczać w układzie współrzędnych punkty o podanych współrzędnych określać położenie punktu o podanych współrzędnych w układzie wskazywać ćwiartki układu XOY rysować w układzie współrzędnych wykresy różnych przyporządkowań zaznaczać w układzie współrzędnych punkty spełniające podany warunek zaznaczać w układzie współrzędnych obszary opisane nierównościami 21. Wyrażenia algebraiczne obliczać wartości wyrażeń algebraicznych porządkować jednomiany dodawać sumy algebraiczne redukować wyrazy podobne opisywać sytuację za pomocą wyrażenia algebraicznego 22. Przekształcanie wyrażeń algebraicznych zapisywać wyrażenia algebraiczne opisane słowami mnożyć sumę algebraiczną przez jednomian odczytywać zapisane wyrażenia algebraiczne rozpoznawać jednomiany wyłączać wspólny czynnik poza nawias 23. Równania stopnia pierwszego z jedną niewiadomą sprawdzać, czy dana liczba spełnia równanie rozwiązywać równania metodą równań równoważnych sprawdzać, czy liczba spełnia dane równanie budować równania równoważne do danych opisywać sytuacje za pomocą równań budować równania stopnia pierwszego z jedną niewiadomą, gdy dana jest liczba spełniająca to równanie rozpoznawać równania sprzeczne rozpoznawać równania tożsamościowe budować równania sprzeczne budować równania tożsamościowe 24. Nierówności stopnia pierwszego z jedną niewiadomą sprawdzać, czy dane liczby spełniają nierówność rozwiązywać nierówności 25. Zadania tekstowe przedstawiać w formie skróconej informacje zawarte w zadaniu z treścią zapisać treść zadania za pomocą równania sprawdzać zgodność rozwiązania równania z warunkami zadania 26. Symetria osiowa. Figury osiowosymetryczne wyznaczyć obraz figury w symetrii osiowej wskazać osie symetrii figury wskazać symetrię osiową, w której jedna figura jest obrazem drugiej stosować własności symetrii osiowej Strona 7 z 29

8 27. Symetria środkowa. Figury środkowosymetryczne znaleźć obraz figury w symetrii środkowej rozpoznawać figury symetryczne względem pewnego punku rozpoznać figury środkowosymetryczne wskazać środek symetrii figury wskazać środek symetrii, gdy dane są figura i jej obraz wyznaczyć środek symetrii figury 28. Figury przystające określać, czy figury są przystające rysować figury przystające do danej rozpoznawać trójkąty przystające stosować cechy przystawania trójkątów do rozpoznawania figur przystających 29. Procent liczby przedstawiać część zapisaną procentem w postaci ułamka lub liczby dziesiętnej wyrażać wielkości za pomocą ułamków zwykłych, ułamków dziesiętnych i procentów obliczać procent liczby stosować obliczenia procentowe do rozwiązywania zadań obliczać wartość obniżki lub podwyżki ceny o dany procent obliczać podatek VAT zamieniać promile na procenty obliczać promil z danej liczby rozwiązywać zadania tekstowe wyznaczać ilości czystego złota lub srebra w stopie danej próby 30. Obliczanie liczby na podstawie jej procentu zamieniać procenty na ułamki dziesiętne i zwykłe obliczać na różne sposoby wielkość na podstawie danego jej procentu stosować obliczenia procentowe do rozwiązywania zadań 31. Obliczanie, ile procent jednej liczby stanowi druga obliczać, ile procent jednej liczby stanowi druga liczba stosować obliczenia procentowe do rozwiązywania zadań 32. Wielkości proporcjonalne rozpoznawać wielkości proporcjonalne obliczać niewiadome z podanej proporcji wyznaczać wielkości proporcjonalne do danych wyznaczać współczynnik proporcjonalności zapisywać proporcje w postaci ilorazowej lub ułamkowej 33. Diagramy kołowe odczytywać informacje przedstawione na diagramach przedstawiać dane na diagramach interpretować dane przedstawione na diagramie kołowym dobierać rodzaj diagramu w zależności od danych 34. Czytanie wykresów odczytywać informacje o przebiegu zjawiska (sytuacji) z wykresów porównywać informacje z kilku wykresów interpretować informacje przedstawione na wykresach wnioskować o dalszym przebiegu zjawiska (sytuacji) 35. Badanie sytuacji losowych wyznaczać wszystkie możliwe wyniki doświadczenia losowego odczytywać wyniki doświadczeń losowych określać zdarzenia niemożliwe, prawdopodobne i pewne przedstawiać na schematach przebieg doświadczenia losowego określać szanse w typowych grach i doświadczeniach losowych Strona 8 z 29

9 Klasa II Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego w klasie 2 gimnazjum uczeń potrafi: Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym tworzyć teksty w stylu matematycznym wykorzystywać słownictwo matematyczne wprowadzane przy okazji nowych treści tworzyć teksty w stylu matematycznym redagować prace projektowe na zadany temat z wykorzystaniem wiadomości uzyskanych z różnych źródeł: encyklopedii matematycznych, internetu czy literatury popularnonaukowej prowadzić rozumowania matematyczne sprawnie posługiwać się językiem matematycznym podejmować próby dowodów prostych twierdzeń matematycznych stosować poznane wiadomości do rozwiązywania problemów praktycznych i teoretycznych w sytuacjach nietypowych rozwiązywać zadania o podwyższonym stopniu trudności czytać książki popularyzujące treści matematyczne Strona 9 z 29

10 Osiągnięcia przedmiotowe W rezultacie realizacji modułu uczeń potrafi: Umiejętności podstawowe 1. Statystyka odczytywać informacje z diagramu odczytywać informacje z tabeli przedstawiać informacje na diagramach i w tabelach odczytywać dane przedstawione na diagramie i w tabeli obliczać średnią arytmetyczną wyników wyznaczać modalną wyników wyznaczać medianę wyników interpretować wyniki w oparciu o liczby charakteryzujące zbiór wyników 2. Mnożenie i dzielenie potęg o tych samych podstawach obliczać wartość potęgi o wykładniku naturalnym zapisywać potęgi w postaci iloczynu jednakowych czynników obliczać wartość wyrażenia arytmetycznego mnożyć i dzielić potęgi o tych samych podstawach podnosić potęgę do potęgi zapisywać potęgi na różne sposoby zamieniać jednostki z wykorzystaniem zapisu potęgowego upraszczać wyrażenie korzystając ze wzorów na iloczyn i iloraz potęg o tych samych podstawach oraz potęgę potęgi stosować poznane twierdzenia o potęgach obliczać wartości wyrażeń arytmetycznych zawierających potęgi, zgodnie z poznanymi twierdzeniami dostrzegać i formułować reguły 3. Mnożenie i dzielenie potęg o tych samych wykładnikach obliczać potęgi o wykładniku naturalnym zapisywać potęgi w postaci iloczynu jednakowych czynników obliczać wartość wyrażeń arytmetycznych zgodnie z kolejnością wykonywania działań mnożyć i dzielić potęgi o tych samych wykładnikach obliczać wartość wyrażeń, stosując wzory dotyczące działań na potęgach przekształcać wyrażenia algebraiczne do najprostszej postaci doprowadzać wyrażenia algebraiczne do najprostszej postaci zgodnie z poznanymi regułami formułować reguły posługiwać się poznanymi pojęciami matematycznymi Strona 10 z 29

11 4. Potęga o wykładniku całkowitym obliczać potęgi liczb o wykładnikach naturalnych wyznaczyć odwrotność danej liczby przedstawić liczbę w postaci potęgi o wykładniku całkowitym obliczać potęgi o wykładniku ujemnym stosować poznane twierdzenia o potęgach do potęg o wykładnikach całkowitych korzystać z poznanych wzorów dotyczących potęg przedstawiać wyrażenia algebraiczne zawierające potęgi o wykładnikach całkowitych w najprostszej postaci zapisywać liczby z wykorzystaniem dziesiątkowego pozycyjnego systemu liczenia i całkowitych wykładników liczby 10 zapisywać liczby w notacji wykładniczej i zamieniać notację wykładniczą na postać dziesiętną formułować reguły posługiwać się poznanymi pojęciami matematycznymi 5. Wielokąty wpisane w okrąg rozpoznawać wielokąty wpisane w okrąg wskazywać środek okręgu opisanego na trójkącie wyznaczać konstrukcyjnie środek okręgu opisanego na trójkącie: ostrokątnym, prostokątnym, rozwartokątnym opisać okrąg na trójkącie korzystać z własności wielokątów wpisanych w okrąg badać własności czworokątów wpisanych w okrąg wyznaczać, o ile to możliwe, środki okręgów opisanych na czworokątach formułować warunki określające możliwości wpisywania wielokątów w okrąg dostrzegać analogie formułować hipotezy 6. Położenie prostej względem okręgu rozpoznawać na rysunku styczne i sieczne badać wzajemne położenie prostych: siecznej i stycznej do okręgu wyznaczać konstrukcyjnie styczną do okręgu znajdować punkty płaszczyzny spełniające podane warunki uzasadnić konstrukcję stycznej do okręgu 7. Wielokąty opisane na okręgu rozpoznawać trójkąty opisane na okręgu rozpoznawać wielokąty opisane na okręgu wyznaczać środek okręgu wpisanego w trójkąt rysować wielokąty opisane na okręgu wykorzystywać własności wielokątów opisanych na okręgu Strona 11 z 29

12 8. Obwód i pole koła obliczać i szacować z zadaną dokładnością długość okręgu, gdy dany jest jego promień obliczać pole koła, gdy dana jest długość promienia lub średnicy obliczać długość promienia, gdy dana jest długość okręgu obliczać długość promienia lub średnicy, gdy dane jest pole koła obliczać pole pierścienia kołowego obliczać długość łuku obliczać pole wycinka koła posługiwać się przybliżeniami dziesiętnymi liczby π określać własności odcinka kołowego obliczać pole odcinka kołowego 9. Mnożenie sum algebraicznych obliczać wartości liczbowe wyrażeń algebraicznych redukować wyrazy podobne w sumie algebraicznej mnożyć sumę algebraiczną przez jednomian wyłączać wspólny czynnik poza nawias mnożyć sumy algebraiczne przedstawiać sumę w postaci iloczynu 10. Kwadrat sumy wyrażeń algebraicznych zapisywać kwadrat sumy dwóch wyrażeń w postaci sumy algebraicznej zapisywać kwadrat różnicy dwóch wyrażeń w postaci sumy algebraicznej przekształcać kwadrat sumy i różnicy dwóch wyrażeń na sumę algebraiczną z wykorzystaniem wzorów skróconego mnożenia stosować praktycznie wzory na kwadrat sumy i kwadrat różnicy do obliczania wartości kwadratów liczb naturalnych przekształcać wyrażenia algebraiczne z wykorzystaniem wzorów skróconego mnożenia uzasadnić geometrycznie wzór na kwadrat sumy rozwiązywać równania z wykorzystaniem wzorów skróconego mnożenia na kwadrat sumy i kwadrat różnicy uzasadniać proste z wykorzystaniem wzorów na kwadrat sumy i kwadrat różnicy Strona 12 z 29

13 11. Różnica kwadratów wyrażeń algebraicznych stosować wzór na różnicę kwadratów wyrażeń algebraicznych obliczać wartość różnicy kwadratów dwóch liczb naturalnych z zastosowaniem wzoru zamieniać różnicę kwadratów wyrażeń algebraicznych na iloczyn sumy przez różnicę tych wyrażeń korzystać ze wzorów skróconego mnożenia przekształcać wyrażenia algebraiczne z wykorzystaniem wzorów skróconego mnożenia interpretować geometrycznie wzór na różnicę kwadratów wyrażeń algebraicznych rozwiązywać równania z wykorzystaniem wzoru na różnicę kwadratów uzasadniać proste z wykorzystaniem wzorów skróconego mnożenia na różnicę kwadratów 12. Przekształcanie wzorów przekształcać wyrażenia algebraiczne opisywać sytuację matematyczną wyrażeniem algebraicznym wyznaczać określoną wielkość z podanego wzoru przekształcać wzory 13. Twierdzenie Pitagorasa rozpoznać trójkąt prostokątny spośród trójkątów o podanych długościach boków wyznaczać długość trzeciego boku trójkąta prostokątnego, gdy dane są długości dwóch pozostałych jego boków rozpoznać wśród trójkątów prostokątnych trójkąt egipski podać twierdzenie odwrotne do twierdzenia Pitagorasa zbudować kwadrat o polu dwa razy większym od pola danego kwadratu udowodnić twierdzenie Pitagorasa sformułować twierdzenia analogiczne do twierdzenia Pitagorasa dla innych trójkątów niż prostokątne Strona 13 z 29

14 14. Wprowadzenie pojęcia pierwiastka wskazać liczbę taką, że po podniesieniu jej do kwadratu, otrzymamy daną liczbę wskazać liczbę taką, że po podniesieniu jej do sześcianu otrzymamy daną liczbę obliczać wartości pierwiastków kwadratowych obliczać wartości pierwiastków sześciennych szacować wartość pierwiastków kwadratowych zaokrąglać wartości pierwiastków kwadratowych ze wskazaną dokładnością umiejscowić liczbę, np. 2, na osi liczbowej oszacować i zaokrąglić niewymierne wartości pierwiastków stosować kalkulator do obliczeń wartości działań na liczbach wymiernych i pierwiastkach o wartościach niewymiernych wskazać podobieństwa i różnice między definicją pierwiastka kwadratowego a definicją pierwiastka trzeciego stopnia 15. Mnożenie i dzielenie pierwiastków obliczać wartości pierwiastków arytmetycznych drugiego i trzeciego stopnia stosować reguły kolejności wykonywania działań zamieniać iloczyn pierwiastków na pierwiastek iloczynu zamieniać iloraz pierwiastków na pierwiastek ilorazu podnosić pierwiastek do potęgi i obliczać jego wartość wyłączać czynnik przed znak pierwiastka włączać czynnik pod znak pierwiastka szacować wartość wyrażenia, w którym występuje pierwiastek usuwać niewymierność z mianownika ułamka Strona 14 z 29

15 16. Budowa odcinków o niewymiernych długościach obliczać wartości kwadratów i pierwiastków kwadratowych zastosować twierdzenie Pitagorasa do obliczania długości boków trójkąta prostokątnego rysować odcinki o długościach wyrażonych pierwiastkiem kwadratowym z liczby naturalnej rozstrzygać na podstawie twierdzenia odwrotnego do twierdzenia Pitagorasa, czy trójkąt o podanych długościach boków jest trójkątem prostokątnym 17. Zastosowanie twierdzenia Pitagorasa stosować twierdzenie Pitagorasa do rozwiązywania zadań stosować twierdzenie Pitagorasa do obliczenia długości wysokości w trójkątach równoramiennych, równobocznych, przekątnych w prostokątach, kwadratach, rombach stosować wzór na długość przekątnej kwadratu stosować wzór na długość wysokości trójkąta równobocznego uzasadniać i formułować twierdzenia z wykorzystaniem twierdzenia Pitagorasa dostrzegać formułować spostrzeżenia 18. Twierdzenie Pitagorasa w układzie współrzędnych zaznaczać punkty o podanych współrzędnych w układzie współrzędnych rysować wielokąty o podanych współrzędnych wierzchołków obliczać odległość punktu o podanych współrzędnych od początku układu współrzędnych korzystać z twierdzenia Pitagorasa do rozwiązywania zadań wyznaczać długość odcinka o podanych współrzędnych jego końców sprawdzać, czy trójkąty o podanych współrzędnych wierzchołków są prostokątne obliczać pola danych trójkątów i czworokątów z wykorzystaniem twierdzenia Pitagorasa i twierdzenia odwrotnego korzystać z poznanych wzorów przy wyliczaniu długości odcinka Strona 15 z 29

16 19. Przyporządkowania określać dziedzinę i przeciwdziedzinę przyporządkowań wskazywać wartości przyporządkowania dla konkretnego argumentu dostrzegać i określać przyporządkowania opisywać przyporządkowania na podstawie rysunku, grafu, tabeli, wykresu przedstawiać przyporządkowania na różne sposoby 20. Pojęcie funkcji rozpoznawać, które przyporządkować jest, a które nie jest funkcją odczytywać z wykresu funkcji wartości funkcji dla danego argumentu i odwrotnie określać dziedzinę, przeciwdziedzinę i zbiór wartości funkcji opisywać funkcje różnymi sposobami: słownie, za pomocą grafu, tabeli, wykresu rozpoznawać, czy dany wykres jest wykresem funkcji rysować wykres funkcji na podstawie jej różnych opisów obliczać wartości funkcji dla danego argumentu sprawdzać, czy punkty o podanych współrzędnych należą do wykresu funkcji dostrzegać formułować spostrzeżenia 21. Własności funkcji rozpoznawać na podstawie wykresu, czy funkcja jest rosnąca, malejąca, czy stała odczytywać z wykresów funkcji przedziały dziedziny, w których funkcja jest rosnąca, malejąca, stała odczytywać z wykresu miejsca zerowe funkcji rysować wykresy funkcji na podstawie informacji o jej monotoniczności i miejscach zerowych dostrzegać formułować spostrzeżenia 22. Proporcjonalność prosta rozpoznawać wykresy proporcjonalności prostej rysować wykresy proporcjonalności prostej wyznaczać wzory proporcjonalności prostej określać położenie wykresu proporcjonalności prostej w zależności od współczynnika proporcjonalności Strona 16 z 29

17 23. Funkcja liniowa rysować wykresy funkcji liniowych sprawdzać, czy punkt o podanych współrzędnych należy do wykresu funkcji liniowej wyznaczać miejsca zerowe funkcji liniowych wyznaczyć równanie funkcji liniowej, której wykres przechodzi przez punkty o danych współrzędnych określać własności funkcji liniowej na podstawie jej wzoru 24. Równania liniowe z dwiema niewiadomymi opisywać sytuację za pomocą równania sprawdzać, czy para liczb spełnia równanie pierwszego stopnia z dwiema niewiadomymi rozwiązywać graficzne równania stopnia pierwszego z dwiema niewiadomymi wyznaczać zbiór rozwiązań równania postaci Ax By C 0, A, B gdzie Układ równań. Interpretacja graficzna przedstawiać wykresy równań w układzie współrzędnych sprawdzać, czy dana para liczb spełnia układ równań rozwiązywać graficznie układ równań zapisać układ równań na podstawie rysunku prostych ilustrujących te równania nazywać układy równań 26. Rozwiązywanie układów równań metodą podstawiania sprawdzać, czy dana para liczb jest rozwiązaniem układu równań rozwiązywać układy równań metodą podstawiania rozwiązywać zadania tekstowe za pomocą układu równań nazywać układy równań Strona 17 z 29

18 27. Ostrosłupy rozpoznawać wśród podanych brył ostrosłupy wyznaczać liczbę: ścian, krawędzi, wierzchołków, wielokąta będącego podstawą ostrosłupa na podstawie podanej własności ostrosłupa rysować siatki ostrosłupów rozpoznawać ostrosłupy prawidłowe rysować ostrosłupy wyznaczać długość krawędzi czworościanu foremnego, gdy dana jest długość sumy wszystkich krawędzi wyznaczać długości krawędzi bocznej i krawędzi podstawy w ostrosłupie prawidłowym rysować zadane przekroje ostrosłupów 28. Pole powierzchni i objętość ostrosłupa obliczać pole powierzchni ostrosłupów obliczać objętość ostrosłupów odczytywać informacje z rysunku wykorzystywać wzory na pole powierzchni ostrosłupów wykorzystywać wzory na objętość ostrosłupów rysować ostrosłupy rysować zadane przekroje ostrosłupów rozwiązywać zadania z wykorzystaniem poznanych zależności dostrzegać zależności pomiędzy graniastosłupami a ostrosłupami o tej samej podstawie i wysokości 29. Zastosowanie twierdzenia Pitagorasa w zadaniach rozpoznawać i nazywać graniastosłupy i ostrosłupy określać własności graniastosłupów i ostrosłupów zapisywać związki między długościami boków trójkąta prostokątnego stosować przekształcenia algebraiczne stosować twierdzenie Pitagorasa i twierdzenia do niego odwrotne rysować odpowiednie przekroje graniastosłupów i ostrosłupów obliczać pola trójkątów i czworokątów obliczać długości przekątnych prostopadłościanu i sześcianu obliczać pole zaznaczonego przekroju danej bryły Strona 18 z 29

19 30. Określanie szans podawać przykłady doświadczeń losowych odczytywać wyniki doświadczeń losowych wyznaczać wszystkie możliwe wyniki prostych doświadczeń losowych określać zdarzenia danego doświadczenia losowego 31. Procent składany wykonywać działania na liczbach wymiernych obliczać procent danej liczby obliczać liczbę, gdy dany jest jej procent przedstawiać na schematach przebieg doświadczenia losowego określać szanse w typowych grach i doświadczeniach losowych wykonywać obliczenia z wykorzystaniem procentów obliczać należne odsetki po roku oszczędzania tworzyć modele probabilistyczne dla typowych doświadczeń losowych przewidywać wyniki doświadczenia losowego planować i stosować obliczenia na kalkulatorze poszukiwać i porządkować informacje porównywać i analizować dane przedstawione w różny sposób obliczać procent składany Klasa III Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego w klasie 3 gimnazjum uczeń potrafi: Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym wykorzystywać słownictwo matematyczne wprowadzane przy okazji nowych treści tworzyć teksty w stylu matematycznym prowadzić rozumowania matematyczne sprawnie posługiwać się językiem matematycznym stosować poznane wiadomości w sytuacjach nietypowych rozwiązywać zadania o podwyższonym stopniu trudności Strona 19 z 29

20 Strona 20 z 29

21 Osiągnięcia przedmiotowe W rezultacie realizacji modułu uczeń potrafi: Umiejętności podstawowe 32. Histogramy czytać dane przedstawione na diagramach i w tabelach sporządzać diagramy słupkowe interpretować dane przedstawione na diagramach i w tabelach czytać dane zilustrowane piramidą ludności interpretować dane zilustrowane piramidą ludności sporządzać histogramy 33. Rozwiązywanie układów równań przekształcać równania liniowe na równania równoważne przekształcać układy równań na równoważne układy równań rozwiązywać proste układy równań liniowych metodą przeciwnych współczynników i metodą podstawiania graficznie rozwiązywać układy równań liniowych rozpoznawać układy równań oznaczonych, nieoznaczonych i sprzecznych rozwiązywać układy równań liniowych metodą przeciwnych współczynników graficznie interpretować układy równań oznaczonych, nieoznaczonych i sprzecznych budować schemat blokowy ilustrujący sposób postępowania podczas rozwiązywania układu równań metodą podstawiania 34. Rozwiązywanie zadań tekstowych za pomocą układów równań rozwiązywać proste zadania tekstowe za pomocą równań rozwiązywać proste zadania tekstowe za pomocą układów równań rozwiązywać zadania tekstowe za pomocą równań rozwiązywać zadania tekstowe za pomocą układów równań Strona 21 z 29

22 35. Wielkości odwrotnie proporcjonalne budować tabelki liczbowe przedstawiające podane zależności rozpoznawać wielkości wprost proporcjonalne rozpoznawać wielkości odwrotnie proporcjonalne przekształcać wyrażenia algebraiczne rozwiązywać proste zadania tekstowe zapisywać zależności występujące w zadaniach opisywać wzorem przedstawione zależności stosować wiadomości o proporcjach do rozwiązywania zadań dostrzegać i formułować spostrzeżenia dostrzegać wielkości wprost i odwrotnie proporcjonalne opisywane za pomocą wzorów fizycznych 36. Przykłady funkcji nieliniowych sporządzać wykresy funkcji nieliniowych, wykorzystując tabele sporządzać wykresy funkcji nieliniowych podanych wzorem odczytywać z wykresów podstawowe własności funkcji opisywać przyporządkowania za pomocą wzorów określać dziedziny i zbiory wartości przykładowych funkcji nieliniowych opisywać własności funkcji nieliniowych na podstawie ich wykresów opisywać z wykresów funkcji nieliniowych przedstawioną sytuację z życia codziennego dostrzegać i je uzasadniać formułować hipotezy i je weryfikować uzasadniać badać własności funkcji nieliniowych 37. Proporcje sprawdzać, czy dane liczby tworzą proporcję wskazywać wyrazy skrajne i wyrazy środkowe w podanych proporcjach rozwiązywać równania podane w postaci proporcji rozwiązywać proste zadania tekstowe z zależnościami podanymi w postaci proporcji układać proporcje na podstawie tekstów zadań rozwiązywać zadania tekstowe z zależnościami podanymi w postaci proporcji przekształcać wzory zapisane w postaci proporcji stosować proporcje złożone rozwiązywać zadania tekstowe z wykorzystaniem proporcji złożonej przekształcać wzory zapisane w postaci proporcji złożonych Strona 22 z 29

23 38. Twierdzenie Talesa stosować twierdzenie Talesa dzielić konstrukcyjnie odcinki na równe części stosować twierdzenie Talesa w sytuacjach realistycznych schematyzować i matematyzować badać stosunki pól figur analizować dowody twierdzeń argumentować uzasadniać dostrzegać i wykorzystywać analogie 39. Podobieństwo figur obliczać wymiary figur podobnych na podstawie skali podobieństwa rysować figury podobne w danej skali wyznaczać skale podobieństw wyznaczać skale, w jakich występują figury podobne uzasadniać, że dane figury są podobne wyznaczać stosunek pól figur podobnych obliczać pola figur podobnych w danej skali dostrzegać i je uzasadniać formułować hipotezy i je weryfikować 40. Podobieństwo trójkątów rozpoznawać trójkąty podobne w oparciu o poznane cechy podobieństwa trójkątów wyznaczać długości odpowiednich boków trójkątów podobnych wyznaczać miary kątów trójkątów podobnych wyznaczać skale podobieństw porównywać pola trójkątów podobnych formułować twierdzenia i twierdzenia do nich odwrotne dostrzegać i je uzasadniać formułować hipotezy i je weryfikować uzasadniać podane wykorzystywać poznane cechy do badania podobieństwa innych figur Strona 23 z 29

24 41. Wykorzystywanie związków miarowych w trójkątach stosować twierdzenie Pitagorasa do wyliczania długości jednego z boków trójkąta prostokątnego dostrzegać zależności między długościami boków a miarami kątów w trójkątach prostokątnych równoramiennych dostrzegać zależności między długościami boków a miarami kątów w trójkątach prostokątnych, w których miary kątów ostrych są równe 30 i 60 stosować poznane zależności do wyznaczania długości boków w trójkątach prostokątnych dostrzegać związki między kątami w trójkątach prostokątnych a stosunkami długości boków stosować poznane związki miarowe do rozwiązywania zadań, w których występują inne wielokąty wyznaczać związki miarowe w trójkątach prostokątnych równoramiennych oraz trójkątach prostokątnych o miarach kątów ostrych 30 i 60 wykorzystywać poznane związki miarowe występujące w trójkątach prostokątnych do rozwiązywania praktycznych problemów występujących w życiu dostrzegać badać, jak zmienia się stosunek długości odpowiednich boków trójkąta prostokątnego w zależności od miary kąta formułować hipotezy i je weryfikować zapisywać dostrzeżone 42. Walec szkicować bryły obrotowe powstałe z obrotu wskazanych wielokątów względem zadanych osi obrotu wskazywać figury, z których na skutek obrotu względem danej osi można otrzymać daną bryłę obrotową obliczać pola powierzchni bocznych i całkowitych walców obliczać objętości walców szkicować figury, z których na skutek obrotu wokół osi powstała dana bryła wskazywać oś obrotu walca wyznaczać figury tworzące siatkę walca rysować siatki walców wskazywać przekroje walców obliczać poszczególne wymiary walca obliczać wymiary prostokąta, z którego na skutek obrotu względem zadanej osi powstał walec rozwiązywać zadania o treści praktycznej z wykorzystaniem poznanych wzorów na pole powierzchni i objętość walca Strona 24 z 29

25 43. Stożek wskazywać figury, z których na skutek obrotu względem danej osi można otrzymać stożki podawać wymiary stożków na podstawie długości boków trójkątów prostokątnych, w wyniku obrotu których powstały te stożki obliczać pola powierzchni bocznych i całkowitych stożków obliczać objętości stożków wyznaczać figury tworzące siatkę stożka rysować siatki stożków i ich przekroje szkicować bryły obrotowe powstałe z obrotu wskazanych wielokątów względem zadanych osi obrotu przekształcać wzory rozwiązywać zadania o treści odnoszącej się do rzeczywistości z wykorzystaniem poznanych wzorów na pole powierzchni i objętość stożka wskazywać figury, z których na skutek obrotu względem danych osi można otrzymać stożki ścięte wyznaczać figury tworzące siatkę stożka ściętego szkicować siatki stożków ściętych obliczać objętości stożków ściętych 44. Kula wskazywać figury, z których na skutek obrotu względem danej osi można otrzymać kulę obliczać pola powierzchni kul obliczać objętości kul obliczać pole powierzchni i objętość kuli o zadanym promieniu obliczać długość promienia kuli o podanej objętości lub polu powierzchni rozwiązywać zadania o treści odnoszącej się do rzeczywistości z wykorzystaniem poznanych wzorów na pole powierzchni i objętość kuli Strona 25 z 29

26 45. Twierdzenie Pitagorasa w przestrzeni rozpoznawać i wyznaczać w bryłach trójkąty prostokątne, których bokami są odpowiednie odcinki obliczać długości odcinków brył niezbędne do obliczania ich pól powierzchni i objętości z zastosowaniem twierdzenia Pitagorasa lub własności trójkątów prostokątnych o kątach ostrych 30 i 60 oraz 45 przekształcać wzory 46. Wielościany foremne rozróżniać wielościany foremne rysować wielościany foremne obliczać długości krawędzi, pola powierzchni i objętości niektórych wielościanów foremnych wyznaczać przekroje wielościanów foremnych dostrzegać i związki zachodzące w wielościanach foremnych oraz między wielościanami o takich samych polach lub długościach krawędzi 47. Podobieństwo w przestrzeni rozpoznawać bryły podobne zgodnie z podanymi zasadami obliczać wymiary brył podobnych do danych obliczać pola powierzchni i objętości brył podobnych do danych wyznaczać skale podobieństw brył podobnych obliczać pola powierzchni i objętości graniastosłupów, ostrosłupów i brył obrotowych stawiać hipotezy i je weryfikować określać zależności między danymi wielkościami Strona 26 z 29

27 48. Regularności w tabliczce mnożenia 49. Starożytne systemy liczbowe dodawać i mnożyć liczby naturalne korzystać z praw działań przedstawiać dowolne liczby naturalne w postaci sum potęg liczby 2 rozumować przez analogię uzasadniać dostrzeżone zapisywać liczby w różnych systemach liczenia odczytywać liczby zapisane w różnych systemach liczenia zamieniać liczby z systemu dziesiątkowego na dwójkowy zamieniać liczby z systemu dwójkowego na dziesiątkowy porównywać liczby zapisane w systemach dziesiątkowym i dwójkowym 50. Matematyka w gimnazjum samodzielnie poszukiwać odpowiednich materiałów informacyjnych przedstawiać zdobyte informacje stosować różnorodne formy przekazu rozumować przez analogię uzasadniać dostrzeżone Strona 27 z 29

28 WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM ZE SPECYFICZNYMI TRUDNOŚCIAMI W UCZENIU SIĘ Uczniów ze specyficznymi trudnościami w uczeniu się obowiązują na lekcjach matematyki wymagania i kryteria ocen określone w wymaganiach edukacyjnych dla wszystkich uczniów, z pewnymi wyjątkami: Uczeń pracuje podczas lekcji w miarę swoich możliwości Uczeń ma wydłużony czas pracy, mniejszą liczbę zadań do wykonania oraz niższy stopień trudności Uczeń zajmuje stanowisko pracy blisko nauczyciela w celu lepszego kontaktu Nauczyciel nadzoruje samodzielną pracę ucznia Nauczyciel pomaga w rozwiązywaniu zdań tekstowych poprzez zadawanie naprowadzających pytań, ewentualnie uczeń pracuje w grupie z kolegami Wiadomości ucznia sprawdzane są częściej w formie ustnej W przypadku pracy pisemnej nauczyciel ma do dyspozycji: - przygotowanie odrębnego zestawu zadań - obniżenie punktacji i wydłużenie czasu pracy. Ucznia zachęca się do pracy poprzez pochwały Strona 28 z 29

29 Ocenie podlega także: - zaangażowanie do nauki - wysiłek włożony w pracę na zajęciach - przygotowanie do lekcji - samodzielność w wykonywanych działaniach - zainteresowanie tematyką zajęć - aktywność na zajęciach - umiejętność pracy w zespole Od ucznia wymaga się podstawowych umiejętności i wiadomości, o których mowa w podstawie programowej. W przypadku, kiedy uczeń sprosta owym wymaganiom oraz zdobywa dobre wyniki, wówczas wymagania rozszerza się w celu wyrównania jego wiadomości z pozostałymi uczniami. Strona 29 z 29

Projekt Planu wynikowego do programu MATEMATYKA 2001 Gimnazjum klasa 1. Osiągnięcia ponadprzedmiotowe

Projekt Planu wynikowego do programu MATEMATYKA 2001 Gimnazjum klasa 1. Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego uczeń potrafi: Umiejętności konieczne i podstawowe Osiągnięcia ponadprzedmiotowe KONIECZNE PODSTAWOWE ROZSZERZAJĄCE DOPEŁNIAJĄCE WYKRACZAJĄCE czytać teksty w stylu

Bardziej szczegółowo

Kryteria ocen z matematyki w klasie I gimnazjum

Kryteria ocen z matematyki w klasie I gimnazjum 1. Zbieranie, porządkowanie i prezentowanie danych 1. Liczby naturalne 1. Cechy podzielności 1. Działania na liczbach naturalnych 1. Algorytmy działań pisemnych odczytywać informacje przedstawione w tabelach

Bardziej szczegółowo

Osiągnięcia przedmiotowe

Osiągnięcia przedmiotowe 1. Zbieranie, porządkowanie i prezentowanie danych przedstawione w tabelach przedstawione na przedstawiać dane w tabelach przedstawiać dane na przedstawione w tabelach przedstawione na porównywać informacje

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KL I NA POSZCZEGÓLNE OCENY W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ RUDKACH Marzena Zbrożyna

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KL I NA POSZCZEGÓLNE OCENY W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ RUDKACH Marzena Zbrożyna WYMAGANIA EDUKACYJNE Z MATEMATYKI W KL I NA POSZCZEGÓLNE OCENY W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ RUDKACH Marzena Zbrożyna DOPUSZCZAJĄCY: Uczeń potrafi: odczytywać informacje przedstawione w tabelach

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe. Osiągnięcia przedmiotowe

Osiągnięcia ponadprzedmiotowe. Osiągnięcia przedmiotowe Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego w klasie 3 gimnazjum uczeń potrafi: KONIECZNE PODSTAWOWE ROZSZERZAJĄCE DOPEŁNIAJACE WYKRACZAJĄCE czytać teksty w stylu matematycznym

Bardziej szczegółowo

Kryteria oceniania Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego w klasie 3 gimnazjum uczeń potrafi:

Kryteria oceniania Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego w klasie 3 gimnazjum uczeń potrafi: 1 Copyright by Wydawnictwa Szkolne i Pedagogiczne, Warszawa 2017 Kryteria oceniania Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego w klasie 3 gimnazjum uczeń potrafi: czytać teksty

Bardziej szczegółowo

2. Kryteria oceniania

2. Kryteria oceniania 2. Kryteria oceniania OSIĄGNIĘCIA PONADPRZEDMIOTOWE W rezultacie kształcenia matematycznego w klasie 1 gimnazjum uczeń potrafi: Umiejętności konieczne i podstawowe Umiejętności ponadpodstawowe Konieczne

Bardziej szczegółowo

Strona 1 z 9. prowadzić rozumowania matematyczne sprawnie posługiwać się językiem matematycznym

Strona 1 z 9. prowadzić rozumowania matematyczne sprawnie posługiwać się językiem matematycznym Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego w klasie 3 gimnazjum uczeń potrafi: Umiejętności konieczne i podstawowe KONIECZNE( 2) PODSTAWOWE (3) ROZSZERZAJĄCE (4) DOPEŁNIAJACE

Bardziej szczegółowo

Konieczne Podstawowe Rozszerzające Dopełniające Wykraczające. tworzyć teksty w stylu matematycznym

Konieczne Podstawowe Rozszerzające Dopełniające Wykraczające. tworzyć teksty w stylu matematycznym 14 OSIĄGNIĘCIA PONADPRZEDMIOTOWE W rezultacie kształcenia matematycznego w klasie 3 uczeń potrafi: czytać teksty w stylu matematycznym wykorzystywać słownictwo wprowadzane przy okazji nowych treści W rezultacie

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe

Osiągnięcia ponadprzedmiotowe Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego w klasie 2 gimnazjum uczeń potrafi: Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym tworzyć teksty w stylu

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego w klasie 1 gimnazjum uczeń potrafi:

Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego w klasie 1 gimnazjum uczeń potrafi: 1 Copyright by Wydawnictwa Szkolne i Pedagogiczne sp. z o.o., Warszawa 2015 Kryteria oceniania Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego w klasie 1 gimnazjum uczeń potrafi:

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe

Osiągnięcia ponadprzedmiotowe Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego w klasie 3 gimnazjum uczeń potrafi: Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym wykorzystywać słownictwo

Bardziej szczegółowo

Kryteria ocen z matematyki dla klasy III gimnazjum. Osiągnięcia przedmiotowe

Kryteria ocen z matematyki dla klasy III gimnazjum. Osiągnięcia przedmiotowe umiejętności konieczne ocena dopuszczający umiejętności podstawowe ocena dostateczny umiejętności rozszerzające ocena dobry umiejętności dopełniające ocena bardzo dobry umiejętności wykraczające ocena

Bardziej szczegółowo

Konieczne Podstawowe Rozszerzające Dopełniające Wykraczające

Konieczne Podstawowe Rozszerzające Dopełniające Wykraczające 12 OSIĄGNIĘCIA PONADPRZEDMIOTOWE W rezultacie kształcenia matematycznego w klasie 2 gimnazjum uczeń potrafi: Umiejętności konieczne i podstawowe czytać teksty w stylu tworzyć teksty w stylu wykorzystywać

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe

Osiągnięcia ponadprzedmiotowe Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego w klasie 2 gimnazjum uczeń potrafi: Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym tworzyć teksty w stylu

Bardziej szczegółowo

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą 1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE DO PROGRAMU MATEMATYKA 2001 KLASA 1A, 1B, 1C GIMNAZJUM ROK SZK.2016/2017

WYMAGANIA EDUKACYJNE DO PROGRAMU MATEMATYKA 2001 KLASA 1A, 1B, 1C GIMNAZJUM ROK SZK.2016/2017 WYMAGANIA EDUKACYJNE DO PROGRAMU MATEMATYKA 2001 KLASA 1A, 1B, 1C GIMNAZJUM ROK SZK.2016/2017 Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego uczeń potrafi: Umiejętności konieczne

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE DO PROGRAMU MATEMATYKA 2001 GIMNAZJUM KL. IA, ID ROK SZK. 2010/2011. Osiągnięcia ponadprzedmiotowe

WYMAGANIA EDUKACYJNE DO PROGRAMU MATEMATYKA 2001 GIMNAZJUM KL. IA, ID ROK SZK. 2010/2011. Osiągnięcia ponadprzedmiotowe WYMAGANIA EDUKACYJNE DO PROGRAMU MATEMATYKA 2001 GIMNAZJUM KL. IA, ID ROK SZK. 2010/2011 W rezultacie kształcenia matematycznego uczeń potrafi: Umiejętności konieczne i podstawowe Osiągnięcia ponadprzedmiotowe

Bardziej szczegółowo

Plan wynikowy do programu MATEMATYKA 2001 klasa 3 gimnazjum

Plan wynikowy do programu MATEMATYKA 2001 klasa 3 gimnazjum Plan wynikowy do programu MATEMATYKA 2001 klasa 3 gimnazjum Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego uczeń potrafi: Umiejętności podstawowe KONIECZNE PODSTAWOWE ROZSZERZAJĄCE

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe

Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego uczeń potrafi: Osiągnięcia ponadprzedmiotowe Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym wykorzystywać słownictwo wprowadzane przy okazji

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH Marzena Zbrożyna DOPUSZCZAJĄCY: Uczeń potrafi: odczytać informacje z tabeli odczytać informacje z diagramu

Bardziej szczegółowo

Plan wynikowy do programu MATEMATYKA 2001 klasa 3 gimnazjum

Plan wynikowy do programu MATEMATYKA 2001 klasa 3 gimnazjum Plan wynikowy do programu MATEMATYKA 2001 klasa 3 gimnazjum Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego uczeń potrafi: czytać teksty w stylu matematycznym wykorzystywać słownictwo

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe

Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego uczeń potrafi: Osiągnięcia ponadprzedmiotowe Umiejętności konieczne i podstawowe KONIECZNE PODSTAWOWE ROZSZERZAJĄCE DOPEŁNIAJACE WYKRACZAJĄCE czytać teksty w stylu

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI dla uczniów klasy trzeciej gimnazjum na podstawie programu MATEMATYKA 2001

WYMAGANIA EDUKACYJNE Z MATEMATYKI dla uczniów klasy trzeciej gimnazjum na podstawie programu MATEMATYKA 2001 Osiągnięcia ponadprzedmiotowe WYMAGANIA EDUKACYJNE Z MATEMATYKI dla uczniów klasy trzeciej gimnazjum na podstawie programu MATEMATYKA 2001 W rezultacie kształcenia matematycznego uczeń potrafi: czytać

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III Wymagania edukacyjne z matematyki dla kl I-III Informacje wstępne 1. Obowiązuje skala ocen: 1, 2, 3, 4, 5, 6. 2. W ciągu semestru ocenia się: a) prace klasowe

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE MATEMATYKA klasy trzecie Gimnazjum nr 19 w Krakowie

WYMAGANIA EDUKACYJNE MATEMATYKA klasy trzecie Gimnazjum nr 19 w Krakowie WYMAGANIA EDUKACYJNE MATEMATYKA klasy trzecie Gimnazjum nr 19 w Krakowie I. Zasady oceniania i sposoby sprawdzania osiągnięć edukacyjnych 1. Ocenianie ma charakter systematyczny i wieloaspektowy. 2. Formy

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE III GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE III GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE III GIMNAZJUM 1. 2. 3. 4. 5. 6. czytać dane przedstawione na diagramach i w tabelach przekształcać równania liniowe na równania równoważne ekształcać układy równań

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne stopnie szkolne klasa III

Wymagania edukacyjne na poszczególne stopnie szkolne klasa III Wymagania edukacyjne na poszczególne stopnie szkolne klasa III Rozdział 1. Bryły - wie, czym jest graniastosłup, graniastosłup prosty, graniastosłup prawidłowy - wie, czym jest ostrosłup, ostrosłup prosty,

Bardziej szczegółowo

Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE

Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE Wymagania konieczne K dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je

Bardziej szczegółowo

MATEMATYKA. WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski. KLASA I Wymagania

MATEMATYKA. WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski. KLASA I Wymagania MATEMATYKA WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski Treści zapisane kursywą (i oznaczone gwiazdką) wykraczają poza podstawę programową. Nauczyciel może je realizować,

Bardziej szczegółowo

ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY:

ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY: ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY: KLASA II GIMNAZJUM Wymagania konieczne K dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je zatem opanować

Bardziej szczegółowo

Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka

Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka TEMAT 5. Przekątna kwadratu. Wysokość trójkąta równobocznego 6. Trójkąty o kątach 90º, 45º, 45º oraz 90º, 30º, 60º 1. Okrąg opisany na trójkącie

Bardziej szczegółowo

Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum

Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum I. POTĘGI I PIERWIASTKI oblicza wartości potęg o wykładnikach całkowitych liczb różnych od zera zapisuje liczbę

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE

WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE Przekształcenia algebraiczne Równania i układy równań Pojęcie funkcji. Własności funkcji. WYRAŻENIA

Bardziej szczegółowo

Kryteria ocen z matematyki w Gimnazjum. Klasa I. Liczby i działania

Kryteria ocen z matematyki w Gimnazjum. Klasa I. Liczby i działania Kryteria ocen z matematyki w Gimnazjum Klasa I Liczby i działania obliczać wartości wyrażeń arytmetycznych, w których występują liczby wymierne skracać i rozszerzać ułamki zwykłe porównywać dwa ułamki

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM LICZBY, WYRAŻENIA ALGEBRAICZNE umie obliczyć potęgę o wykładniku naturalnym; umie obliczyć

Bardziej szczegółowo

Lista działów i tematów

Lista działów i tematów Lista działów i tematów Gimnazjum. Klasa 1 Liczby i działania Liczby Rozwinięcia dziesiętne liczb wymiernych Zaokrąglenia liczb. Szacowanie wyników Dodawanie i odejmowanie liczb dodatnich Mnożenie i dzielenie

Bardziej szczegółowo

Wymagania edukacyjne klasa trzecia.

Wymagania edukacyjne klasa trzecia. TEMAT Wymagania edukacyjne klasa trzecia. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE Lekcja organizacyjna System dziesiątkowy System rzymski Liczby wymierne i niewymierne

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE DO PROGRAMU MATEMATYKA 2001 KLASA 3A, 3B, 3C, 3D GIMNAZJUM ROK SZK.2015/2016

WYMAGANIA EDUKACYJNE DO PROGRAMU MATEMATYKA 2001 KLASA 3A, 3B, 3C, 3D GIMNAZJUM ROK SZK.2015/2016 WYMAGANIA EDUKACYJNE DO PROGRAMU MATEMATYKA 2001 KLASA 3A, 3B, 3C, 3D GIMNAZJUM ROK SZK.2015/2016 Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego uczeń potrafi: Umiejętności konieczne

Bardziej szczegółowo

Wymagania programowe na poszczególne oceny. Klasa 2. Potęgi o wykładnikach naturalnych i całkowitych. Poziom wymagań edukacyjnych:

Wymagania programowe na poszczególne oceny. Klasa 2. Potęgi o wykładnikach naturalnych i całkowitych. Poziom wymagań edukacyjnych: Wymagania programowe na poszczególne oceny Poziom wymagań edukacyjnych: K konieczny (ocena dopuszczająca) P podstawowy (ocena dostateczna) R rozszerzający (ocena dobra) D dopełniający (ocena bardzo dobra)

Bardziej szczegółowo

ZASADY OCENIANIA Z MATEMATYKI W KLASIE I GIMNAZJUM. Osiągnięcia ponadprzedmiotowe. Osiągnięcia przedmiotowe

ZASADY OCENIANIA Z MATEMATYKI W KLASIE I GIMNAZJUM. Osiągnięcia ponadprzedmiotowe. Osiągnięcia przedmiotowe ZASADY OCENIANIA Z MATEMATYKI W KLASIE I GIMNAZJUM W rezultacie kształcenia matematycznego uczeń potrafi: Umiejętności konieczne i podstawowe Osiągnięcia ponadprzedmiotowe KONIECZNE PODSTAWOWE ROZSZERZAJĄCE

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe

Osiągnięcia ponadprzedmiotowe Projekt Planu wynikowego do programu MATEMATYKA 2001 Gimnazjum klasa 1 W rezultacie kształcenia matematycznego uczeń potrafi: Umiejętności konieczne i podstawowe Osiągnięcia ponadprzedmiotowe KONIECZNE

Bardziej szczegółowo

WYMAGANIA EGZAMINACYJNE DLA KLASY III GIMNAZJUM

WYMAGANIA EGZAMINACYJNE DLA KLASY III GIMNAZJUM WYMAGANIA EGZAMINACYJNE DLA KLASY III GIMNAZJUM TEMAT WYMAGANIA SZCZEGÓŁOWE 1. LICZBY I WYRAŻENIA ALGEBRAICZNE 2. System dziesiątkowy 1. Liczby wymierne dodatnie. Uczeń: 1) zaokrągla rozwinięcia dziesiętne

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE DO PROGRAMU MATEMATYTKA 2001 KLASA II GIMNAZJUM ROK SZK. 2016/2017

WYMAGANIA EDUKACYJNE DO PROGRAMU MATEMATYTKA 2001 KLASA II GIMNAZJUM ROK SZK. 2016/2017 WYMAGANIA EDUKACYJNE DO PROGRAMU MATEMATYTKA 2001 KLASA II GIMNAZJUM ROK SZK. 2016/2017 Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego uczeń potrafi: Umiejętności konieczne i podstawowe

Bardziej szczegółowo

wymagania programowe z matematyki kl. III gimnazjum

wymagania programowe z matematyki kl. III gimnazjum wymagania programowe z matematyki kl. III gimnazjum 1. Liczby i wyrażenia algebraiczne Zna pojęcie notacji wykładniczej. Umie zapisać liczbę w notacji wykładniczej. Umie porównywać liczy zapisane w różny

Bardziej szczegółowo

KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM. Arytmetyka

KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM. Arytmetyka KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM Na stopień dostateczny uczeń powinien umieć: Arytmetyka - obliczać wartości wyrażeń arytmetycznych, w których występują liczby wymierne, - szacować wartości

Bardziej szczegółowo

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM Na ocenę dopuszczającą uczeń umie : WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM stosować cztery podstawowe działania na liczbach wymiernych, zna kolejność wykonywania działań

Bardziej szczegółowo

ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi

ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi Rozkład materiału nauczania został opracowany na podstawie programu

Bardziej szczegółowo

ZESPÓŁ SZKÓŁ W OBRZYCKU

ZESPÓŁ SZKÓŁ W OBRZYCKU Matematyka na czasie Program nauczania matematyki w gimnazjum ZGODNY Z PODSTAWĄ PROGRAMOWĄ I z dn. 23 grudnia 2008 r. Autorzy: Agnieszka Kamińska, Dorota Ponczek ZESPÓŁ SZKÓŁ W OBRZYCKU Wymagania edukacyjne

Bardziej szczegółowo

Ułamki i działania 20 h

Ułamki i działania 20 h Propozycja rozkładu materiału Klasa I Razem h Ułamki i działania 0 h I. Ułamki zwykłe II. Ułamki dziesiętne III. Ułamki zwykłe i dziesiętne. Przypomnienie wiadomości o ułamkach zwykłych.. Dodawanie i odejmowanie

Bardziej szczegółowo

REALIZACJA TREŚCI PODSTAWY PROGRAMOWEJ PRZEZ PROGRAM MATEMATYKA Z PLUSEM

REALIZACJA TREŚCI PODSTAWY PROGRAMOWEJ PRZEZ PROGRAM MATEMATYKA Z PLUSEM REALIZACJA TREŚCI PODSTAWY PROGRAMOWEJ PRZEZ PROGRAM MATEMATYKA Z PLUSEM Treści nauczania wg podstawy programowej Podręcznik M+ Klasa I Klasa II Klasa III 1. Liczby wymierne dodatnie. Uczeń: 1) odczytuje

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem

Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem Ocenę dopuszczającą otrzymuje uczeń, który umie: 1.zapisywać potęgi w postaci iloczynów 2. zapisywać iloczyny jednakowych

Bardziej szczegółowo

Nie tylko wynik Plan wynikowy dla klasy 2 gimnazjum

Nie tylko wynik Plan wynikowy dla klasy 2 gimnazjum Poziomy wymagań edukacyjnych: K konieczny P podstawowy R rozszerzający D dopełniający W wykraczający Nie tylko wynik Plan wynikowy dla klasy 2 gimnazjum Potęgi o wykładnikach naturalnych i całkowitych

Bardziej szczegółowo

KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM

KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM POTĘGI I PIERWIASTKI - pojęcie potęgi o wykładniku naturalnym; - wzór na mnożenie i dzielenie potęg o tych samych podstawach; - wzór na potęgowanie

Bardziej szczegółowo

PLAN WYNIKOWY Z MATEMATYKI DLA II KL. GIMNAZJUM do podręcznika GWO Matematyka z plusem. PODSTAWOWE Uczeń zna: POTĘGI I PIERWIASTKI

PLAN WYNIKOWY Z MATEMATYKI DLA II KL. GIMNAZJUM do podręcznika GWO Matematyka z plusem. PODSTAWOWE Uczeń zna: POTĘGI I PIERWIASTKI Ewa Koralewska LP..... 5... OGÓLNA PODSTA- WA PROGRA- MOWA PLAN WYNIKOWY Z MATEMATYKI DLA II KL. GIMNAZJUM do podręcznika GWO Matematyka z plusem TEMATYKA LEKCJI LICZBA GODZIN Lekcja organizacyjna. Potęga

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE

WYMAGANIA EDUKACYJNE GIMNAZJUM NR 2 W RYCZOWIE WYMAGANIA EDUKACYJNE niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z MATEMATYKI w klasie II gimnazjum str. 1 Wymagania edukacyjne niezbędne

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DLA 3 KLASY GIMNAZJUM

ROZKŁAD MATERIAŁU DLA 3 KLASY GIMNAZJUM ROZKŁAD MATERIAŁU DLA 3 KLASY GIMNAZJUM TEMAT LICZBA GODZIN LEKCYJNYCH 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) 1. Lekcja organizacyjna 1 2. System dziesiątkowy 2-4 3. System rzymski 5-6 WYMAGANIA SZCZEGÓŁOWE

Bardziej szczegółowo

KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM

KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM Na stopień dostateczny uczeń powinien umieć: Arytmetyka - zamieniać procent/promil na liczbę i odwrotnie, - zamieniać procent na promil i odwrotnie, - obliczać

Bardziej szczegółowo

6. Notacja wykładnicza stosuje notację wykładniczą do przedstawiania bardzo dużych liczb

6. Notacja wykładnicza stosuje notację wykładniczą do przedstawiania bardzo dużych liczb LICZBY I DZIAŁANIA PROCENTY str. 1 Przedmiot: matematyka Klasa: 2 ROK SZKOLNY 2015/2016 temat Wymagania podstawowe P 2. Wartość bezwzględna oblicza wartość bezwzględną liczby wymiernej 3. Potęga o wykładniku

Bardziej szczegółowo

KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ

KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ TREŚCI KSZTAŁCENIA WYMAGANIA PODSTAWOWE WYMAGANIA PONADPODSTAWOWE Liczby wymierne i

Bardziej szczegółowo

Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych ocen klasyfikacyjnych z matematyki klasa 2 (oddział gimnazjalny)

Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych ocen klasyfikacyjnych z matematyki klasa 2 (oddział gimnazjalny) edukacyjne niezbędne do uzyskania poszczególnych śródrocznych ocen klasyfikacyjnych z matematyki klasa 2 (oddział gimnazjalny) Stopień Rozdział 1. Potęgi i pierwiastki zapisuje w postaci potęgi iloczyn

Bardziej szczegółowo

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE Z MATEMATYKI W GIMNAZJUM IM. K. WIELKIEGO

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE Z MATEMATYKI W GIMNAZJUM IM. K. WIELKIEGO SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE Z MATEMATYKI W GIMNAZJUM IM. K. WIELKIEGO OBOWIĄZUJE: PODRĘCZNIK: Matematyka 2001, praca zbiorowa, wyd. WSiP 4 godziny tygodniowo ok. 136 godzin rocznie Nauczyciele uczący:

Bardziej szczegółowo

Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas

Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas klasa I 1)Działania na liczbach: dopuszczający: uczeń potrafi poprawnie wykonać cztery podstawowe działania na ułamkach

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZBY I DZIAŁANIA Poziom konieczny - ocena dopuszczająca porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej,

Bardziej szczegółowo

Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 2

Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 2 Agnieszka Kamińska, Dorota Ponczek Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 2 Proponujemy, by omawiając dane zagadnienie programowe lub rozwiązując

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem

Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem pojęcie potęgi o wykładniku naturalnym wzór na mnożenie i dzielenie potęg o tych samych podstawach wzór na potęgowanie

Bardziej szczegółowo

KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY

KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASA III FUNKCJE rozumie wykres jako sposób prezentacji informacji umie odczytać informacje z wykresu umie odczytać i porówna ć informacje z kilku wykresów

Bardziej szczegółowo

PYTANIA TEORETYCZNE Z MATEMATYKI

PYTANIA TEORETYCZNE Z MATEMATYKI Zbiory liczbowe: 1. Wymień znane Ci zbiory liczbowe. 2. Co to są liczby rzeczywiste? 3. Co to są liczby naturalne? 4. Co to są liczby całkowite? 5. Co to są liczby wymierne? 6. Co to są liczby niewymierne?

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE VIII

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE VIII WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE VIII Uczeń na ocenę dopuszczającą: - zna znaki używane do zapisu liczb w systemie rzymskim, - umie zapisać i odczytać liczby naturalne dodatnie w systemie rzymskim

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE 8 SZKOŁY PODSTAWOWEJ

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE 8 SZKOŁY PODSTAWOWEJ WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE 8 SZKOŁY PODSTAWOWEJ Wymagania na poszczególne oceny konieczne (ocena dopuszczająca) 1.

Bardziej szczegółowo

Wymagania z matematyki na poszczególne oceny Klasa 2 gimnazjum

Wymagania z matematyki na poszczególne oceny Klasa 2 gimnazjum Wymagania z matematyki na poszczególne oceny Klasa 2 gimnazjum Stopień celujący może otrzymać uczeń, który spełnia kryteria na stopień bardzo dobry oraz: posiada wiadomości i umiejętności znacznie wykraczające

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Klasa I - program Matematyka z plusem" LICZBY I DZIAŁANIA POZIOM KONIECZNY - ocena dopuszczająca porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej,

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla kl. 2 Gimnazjum Publicznego im. Jana Pawła II w Żarnowcu w roku szkolnym 2016/2017

Wymagania edukacyjne z matematyki dla kl. 2 Gimnazjum Publicznego im. Jana Pawła II w Żarnowcu w roku szkolnym 2016/2017 NAUCZYCIEL: edukacyjne z matematyki dla kl. 2 Gimnazjum Publicznego im. Jana Pawła II w Żarnowcu w roku szkolnym 2016/2017 mgr Dorota Maj PODRĘCZNIK: Liczy się matematyka WYD. WSiP Na lekcjach matematyki

Bardziej szczegółowo

rozszerzające (ocena dobra)

rozszerzające (ocena dobra) WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 8 ROK SZKOLNY 2018/2019 OPARTE NA PROGRAMIE NAUCZANIA MATEMATYKI W SZKOLE PODSTAWOWEJ MATEMATYKA Z PLUSEM Wymagania na poszczególne oceny konieczne (ocena dopuszczająca)

Bardziej szczegółowo

Wymagania z matematyki na poszczególne stopnie szkolne w klasie trzeciej gimnazjum

Wymagania z matematyki na poszczególne stopnie szkolne w klasie trzeciej gimnazjum Wymagania z matematyki na poszczególne stopnie szkolne w klasie trzeciej gimnazjum I LICZBY I WYRAŻENIA ALGEBRAICZNE podawanie przykładów liczb naturalnych, całkowitych, wymiernych i niewymiernych; porównywanie

Bardziej szczegółowo

GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI

GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI Klasa I Liczby i działania wskazać liczby naturalne, całkowite, wymierne zaznaczyć liczbę wymierną na osi liczbowej podać liczbę przeciwną do danej

Bardziej szczegółowo

PG im. Tadeusza Kościuszki w Kościerzycach Przedmiot

PG im. Tadeusza Kościuszki w Kościerzycach Przedmiot KARTA MONITOROWANIA PODSTAWY PROGRAMOWEJ KSZTAŁCENIA OGÓLNEGO III etap edukacyjny PG im. Tadeusza Kościuszki w Kościerzycach Przedmiot matematyka Klasa......... Rok szkolny Imię i nazwisko nauczyciela

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE 8 SZKOŁY PODSTAWOWEJ

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE 8 SZKOŁY PODSTAWOWEJ WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE 8 SZKOŁY PODSTAWOWEJ 1) ocenę celującą otrzymuje uczeń, który spełnił wymagania na ocenę bardzo dobrą oraz: - umie zapisać i odczytać w

Bardziej szczegółowo

Przedmiotowy system oceniania Wymagania na poszczególne oceny,,liczy się matematyka

Przedmiotowy system oceniania Wymagania na poszczególne oceny,,liczy się matematyka Przedmiotowy system oceniania Wymagania na poszczególne oceny,,liczy się matematyka I. Potęgi i pierwiastki. Klasa II 1. Zapisuje w postaci potęgi iloczyn tych samych czynników i odwrotnie. 2. Oblicza

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI

WYMAGANIA EDUKACYJNE Z MATEMATYKI WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I Tytuł modułu Umiejętności podstawowe: konieczne i podstawowe : rozszerzające, wykraczające i dopełniające I. LICZBY zaznacza na osi liczbowej punkty odpowiadające

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla kl. 1a Gimnazjum Publicznego im. Jana Pawła II w Żarnowcu w roku szkolnym 2015/2016

Wymagania edukacyjne z matematyki dla kl. 1a Gimnazjum Publicznego im. Jana Pawła II w Żarnowcu w roku szkolnym 2015/2016 edukacyjne z matematyki dla kl. 1a Gimnazjum Publicznego im. Jana Pawła II w Żarnowcu w roku szkolnym 2015/2016 NAUCZYCIEL: PODRĘCZNIK: mgr Marta Kamińska Liczy się matematyka wyd. WSiP Na lekcjach matematyki

Bardziej szczegółowo

MATEMATYKA KLASY III gimnazjum LICZBY I WYRAŻENIA ALGEBRAICZNE

MATEMATYKA KLASY III gimnazjum LICZBY I WYRAŻENIA ALGEBRAICZNE MATEMATYKA KLASY III gimnazjum LICZBY I WYRAŻENIA ALGEBRAICZNE - pojęcie liczby naturalnej, całkowitej, wymiernej, niewymiernej, - sposób i potrzebę zaokrąglania liczb, - pojęcie wartości bezwzględnej,

Bardziej szczegółowo

1. FUNKCJE DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia

1. FUNKCJE DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia L.P. DZIAŁ Z PODRĘCZNIKA 1. FUNKCJE 2. POTĘGI I PIERWIASTKI NaCoBeZu kryteria sukcesu w języku ucznia 1. Wiem, co to jest układ współrzędnych, potrafię nazwać osie układu. 2. Rysuję układ współrzędnych

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne

Katalog wymagań programowych na poszczególne stopnie szkolne rozpoznaje figury podobne zna własności figur podobnych rozpoznaje trójkąty prostokątne podobne Rozdział 6. Figury podobne zna cechy podobieństwa trójkątów prostokątnych podobnych podaje skalę podobieństwa

Bardziej szczegółowo

Katalog wymagań na poszczególne stopnie szkolne klasa 3

Katalog wymagań na poszczególne stopnie szkolne klasa 3 Katalog wymagań na poszczególne stopnie szkolne klasa 3 Przedstawiamy, jakie umiejętności z danego działu powinien zdobyć uczeń, aby uzyskać poszczególne stopnie. Na ocenę dopuszczający uczeń powinien

Bardziej szczegółowo

TEMAT 1. LICZBY I DZIAŁANIA 14 20. 1. Liczby 1-2. 2. Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2

TEMAT 1. LICZBY I DZIAŁANIA 14 20. 1. Liczby 1-2. 2. Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2 TEMAT 1. LICZBY I DZIAŁANIA 14 20 LICZBA GODZIN LEKCYJNYCH 1. Liczby 1-2 2. Rozwinięcia dziesiętne liczb wymiernych 3. Zaokrąglanie liczb. Szacowanie wyników 1 1-2 WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Klasa II program Matematyka z plusem POTĘGI POZIOM KONIECZNY ocena dopuszczająca zapisać potęgę w postaci iloczynu zapisać iloczyn jednakowych czynników w postaci potęgi

Bardziej szczegółowo

DZIAŁ II: PIERWIASTKI

DZIAŁ II: PIERWIASTKI Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen z przedmiotu matematyka w II klasie gimnazjum w roku szkolnym 2016/2017 Wymagania edukacyjne dostosowane do obowiązującej

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II Wymagania edukacyjne z matematyki dla kl I-III Informacje wstępne 1. Obowiązuje skala ocen: 1, 2, 3, 4, 5, 6. 2. W ciągu semestru ocenia się: a) prace klasowe

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY ŚRÓDROCZNE I ROCZNE Z MATEMATYKI W KLASIE 8 SZKOŁY PODSTAWOWEJ

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY ŚRÓDROCZNE I ROCZNE Z MATEMATYKI W KLASIE 8 SZKOŁY PODSTAWOWEJ WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY ŚRÓDROCZNE I ROCZNE Z MATEMATYKI W KLASIE 8 SZKOŁY PODSTAWOWEJ Wymagania na poszczególne oceny ocena dopuszczająca ocena dostateczna ocena dobra ocena bardzo

Bardziej szczegółowo

Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 1

Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 1 Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 1 Wyróżniono następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające

Bardziej szczegółowo

Wymagania z matematyki na poszczególne oceny III klasy gimnazjum

Wymagania z matematyki na poszczególne oceny III klasy gimnazjum Wymagania z matematyki na poszczególne oceny III klasy gimnazjum Opracowano na podstawie planu realizacji materiału nauczania matematyki Matematyka Podręcznik do gimnazjum Nowa wersja Praca zbiorowa pod

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA 8 DZIAŁ 1. LICZBY I DZIAŁANIA

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA 8 DZIAŁ 1. LICZBY I DZIAŁANIA WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA 8 DZIAŁ 1. LICZBY I DZIAŁANIA zna znaki używane do zapisu liczb w systemie rzymskim; zna zasady zapisu liczb w systemie rzymskim; umie zapisać

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE II GIMNAZJUM

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE II GIMNAZJUM WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE II GIMNAZJUM OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który

Bardziej szczegółowo

WYMAGANIA KONIECZNE - OCENA DOPUSZCZAJĄCA:

WYMAGANIA KONIECZNE - OCENA DOPUSZCZAJĄCA: WYMAGANIA KONIECZNE - OCENA DOPUSZCZAJĄCA: zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie zaznaczać liczbę wymierną na osi liczbowej umie

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem

Wymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem Wymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem pojęcie liczby naturalnej, całkowitej, wymiernej rozszerzenie osi liczbowej na liczby ujemne sposób i potrzebę zaokrąglania

Bardziej szczegółowo

Wymagania edukacyjne niezbędne do otrzymania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki dla klasy VIII

Wymagania edukacyjne niezbędne do otrzymania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki dla klasy VIII Wymagania edukacyjne niezbędne do otrzymania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki dla klasy VIII Temat 1. System rzymski. 2. Własności liczb naturalnych. 3. Porównywanie

Bardziej szczegółowo

I. Liczby i działania

I. Liczby i działania I. Liczby i działania porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej, zamieniać ułamki zwykłe na dziesiętne i odwrotnie, zaokrąglać liczby do danego rzędu, szacować wyniki działań,

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II GIMNAZJUM Małgorzata Janik

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II GIMNAZJUM Małgorzata Janik WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II GIMNAZJUM Małgorzata Janik DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY Potęgi i pierwiastki Uczeń: Zna i rozumie pojęcie potęgi o wykładniku naturalnym Umie

Bardziej szczegółowo