WYMAGANIA EDUKACYJNE Z MATEMATYKI

Wielkość: px
Rozpocząć pokaz od strony:

Download "WYMAGANIA EDUKACYJNE Z MATEMATYKI"

Transkrypt

1 WYMAGANIA EDUKACYJNE Z MATEMATYKI

2 KLASA I Tytuł modułu Umiejętności podstawowe: konieczne i podstawowe : rozszerzające, wykraczające i dopełniające I. LICZBY zaznacza na osi liczbowej punkty odpowiadające liczbom całkowitym, wymiernym (np , 1 ), parom liczb 2 2 przeciwnych odczytuje współrzędne punktów na osi liczbowej oblicza odległość między punktami odpowiadającymi liczbom wymiernym oblicza sumy, różnice, iloczyny i ilorazy liczb całkowitych określa znak iloczynu i ilorazu liczb całkowitych stosuje zasady dotyczące kolejności wykonywania działań w prostym wyrażeniu arytmetycznym na liczbach całkowitych wymienia dzielniki naturalne liczb dwucyfrowych uzasadnia podzielność liczb naturalnych przez 2, 3, 4, 5, 9 i 10 podaje przykłady liczb pierwszych i złożonych rozkłada liczbę na czynniki pierwsze wyznacza największy wspólny dzielnik liczb naturalnych rozwiązuje proste zadania tekstowe, wykorzystując działania w zbiorze liczb całkowitych podaje cyfry używane do zapisu liczb w systemie rzymskim zamienia liczby zapisane w systemie rzymskim na liczby zapisane w systemie dziesiętnym (i odwrotnie) zamienia ułamek niewłaściwy na liczbę mieszaną (i odwrotnie) skraca i rozszerza ułamki zaznacza na osi liczbowej liczby spełniające dany warunek określa, ile liczb całkowitych spełnia dany warunek uzasadnia podzielność liczb naturalnych przez 6, 8, 15, 20 itd. stosuje podzielność liczb naturalnych do rozwiązywania zadań tekstowych rozwiązuje zadania o podwyższonym stopniu trudności dotyczące liczb zapisanych w systemie rzymskim stosuje ułamki do rozwiązywania zadań tekstowych oraz osadzonych w kontekście praktycznym oblicza wartości wyrażeń arytmetycznych zawierających ułamki zwykłe i dziesiętne skończone zgodnie z własną strategią obliczeń; podaje ich interpretację wyznacza cyfrę znajdującą się na podanym miejscu po przecinku w rozwinięciu dziesiętnym liczby szacuje wyniki działań, w tym w zadaniach osadzonych w kontekście praktycznym stosuje cechy podzielności do uzasadniania ogólnych własności liczb całkowitych lub ich sum rozwiązuje zadania o podwyższonym stopniu trudności dotyczące działań na liczbach całkowitych i wymiernych

3 stosuje ułamki do zamiany jednostek zamienia ułamki zwykłe na dziesiętne (i odwrotnie) dodaje, odejmuje, mnoży i dzieli ułamki zwykłe oraz dziesiętne oblicza wartość wyrażenia arytmetycznego zawierającego działania na ułamkach, stosując zasady dotyczące kolejności wykonywania działań sprawdza, o ile lub ile razy jedna liczba jest większa od drugiej stosuje działania na ułamkach do rozwiązywania zadań tekstowych porównuje liczby wymierne zapisane w różnych postaciach zaokrągla liczbę z podaną dokładnością ocenia, czy przybliżenie zostało podane z nadmiarem czy z niedomiarem szacuje wartości prostych wyrażeń arytmetycznych buduje wyrażenia arytmetyczne odpowiednie do kontekstu praktycznego zadań tekstowych

4 II.POTĘGI I PIERWIAS TKI oblicza wartości potęg liczb wymiernych o wykładnikach naturalnych zapisuje liczbę w postaci potęgi określa znak potęgi w prostych przypadkach zapisuje w postaci jednej potęgi iloczyn i iloraz potęg o takich samych podstawach zapisuje w postaci jednej potęgi potęgę potęgi stosuje prawa działań na potęgach do obliczania wartości prostych wyrażeń arytmetycznych oblicza wartości pierwiastków kwadratowego i sześciennego z liczby nieujemnej oblicza wartości prostych wyrażeń arytmetycznych, w których występują pierwiastki kwadratowe lub sześcienne, pamiętając o zasadach dotyczących kolejności wykonywania działań wyznacza liczbę podpierwiastkową, gdy dana jest wartość pierwiastka kwadratowego lub sześciennego stosuje pierwiastek drugiego stopnia do rozwiązywania prostych zadań dotyczących pól kwadratów i objętości sześcianów zamienia w prostych przypadkach jednostki długości, prędkości i pola określa znak potęgi w trudniejszych przypadkach porównuje liczby zapisane w postaci potęg zapisuje potęgę w postaci iloczynu lub ilorazu potęg o takich samych podstawach zapisuje w postaci jednej potęgi iloczyny i ilorazy potęg o takich samych wykładnikach stosuje prawa działań na potęgach do upraszczania wyrażeń algebraicznych oblicza wartości wyrażeń arytmetycznych, w których występują pierwiastki kwadratowe lub sześcienne, pamiętając o zasadach dotyczących kolejności wykonywania działań porównuje liczby, stosując własności działań na pierwiastkach kwadratowych i sześciennych stosuje zamianę jednostek do rozwiązywania zadań praktycznych rozwiązuje zadania o podwyższonym stopniu trudności dotyczące potęg i pierwiastków III. PROCENT Y zamienia procenty i promile na ułamki (i odwrotnie) określa, jakim procentem całości jest jej część w prostych przypadkach określa, jakim procentem jednej liczby jest druga liczba oblicza procent danej liczby oblicza w pamięci liczbę, gdy dany jest jej procent, np.10%, stosuje procenty w zadaniach o kontekście praktycznym, m.in. dotyczących stężeń, diagramów, lokat bankowych, obniżek, podwyżek wyznacza liczbę, znając jej procent, również w zadaniach osadzonych w kontekście praktycznym oblicza, o ile procent jedna liczba jest większa lub

5 IV.FIGURY PŁASKIE 50%, 1% oblicza, w prostych przypadkach, cenę towaru po obniżkach lub podwyżkach w prostych przypadkach porównuje cenę wyjściową z ceną po podwyżkach lub obniżkach wykorzystuje procenty do rozwiązywania prostych zadań praktycznych wskazuje proste równoległe i prostopadłe oraz odcinki równoległe i prostopadłe sprawdza, czy punkty są współliniowe oblicza długość łamanej przy danych długościach jej boków oblicza miary wskazanych kątów w prostych przypadkach (również kątów tworzonych przez wskazówki zegara), korzystając z własności kątów przyległych, wierzchołkowych, odpowiadających i naprzemianległych konstruuje prostą prostopadłą i prostą równoległą do danej prostej i przechodzącą przez dany punkt konstruuje symetralną odcinka i dwusieczną kąta oraz kąty o miarach 30, 45, 60 opisuje proste konstrukcje geometryczne sprawdza, czy istnieje trójkąt o danych kątach wyznacza miarę trzeciego kąta w trójkącie klasyfikuje trójkąty ze względu na miary kątów lub długości boków sprawdza, czy dane trójkąty są przystające; podaje cechę, z której przystawanie wynika (w prostych przypadkach) rozpoznaje i nazywa czworokąty mniejsza od drugiej porównuje cenę wyjściową z ceną po podwyżkach i obniżkach stosuje pojęcie punktu procentowego do opisu zmiany wielkości stosuje obliczenia procentowe do rozwiązywania zadań osadzonych w kontekście praktycznym stosuje procenty do rozwiązywania zadań o podwyższonym stopniu trudności uzasadnia własności trójkątów i czworokątów rozwiązuje zadania o podwyższonym stopniu trudności dotyczące figur na płaszczyźnie, w szczególności trójkątów i czworokątów

6 V. WYRAŻEN IA ALGEBRAI CZNE stosuje własności kątów i przekątnych, w kwadratach, prostokątach i rombach (w prostych przypadkach) oblicza pola trójkąta i czworokąta w prostych przypadkach zaznacza punkty w układzie współrzędnych i odczytuje współrzędne zaznaczonych punktów oblicza pola trójkątów prostokątnych i prostokątów, znając współrzędne ich wierzchołków oblicza wartość liczbową wyrażenia algebraicznego opisuje proste związki między wielkościami za pomocą wyrażeń algebraicznych nazywa dane wyrażenia algebraiczne rozpoznaje wyrażenia, które są jednomianami; podaje ich przykłady podaje współczynniki liczbowe jednomianów porządkuje jednomiany mnoży jednomiany wypisuje wyrazy sumy algebraicznej wskazuje wyrazy podobne w sumie algebraicznej redukuje wyrazy podobne w sumie algebraicznej dodaje i odejmuje sumy algebraiczne w prostych wyrażeniach algebraicznych mnoży sumy algebraiczne przez jednomiany w prostych przypadkach wyłącza podany czynnik z wyrazów sumy poza nawias buduje i przekształca proste wyrażenia algebraiczne odpowiednio do kontekstu wynikającego z treści rozwiązywanego zadania stosuje wyłączanie wspólnego czynnika poza nawias do uzasadniania ogólnych własności liczb stosuje wyrażenia algebraiczne do zapisu zależności między różnymi wielkościami rozwiązuje zadania o podwyższonym stopniu trudności dotyczące wyrażeń algebraicznych

7 VI. RÓWNANI A VII. SYMETRIE sprawdza, czy dana liczba jest rozwiązaniem równania sprawdza, czy równania są równoważne rozwiązuje proste równania liniowe z jedną niewiadomą zapisuje zależności między wielkościami za pomocą równań liniowych z jedną niewiadomą (w prostych przypadkach) rozwiązuje proste zadania tekstowe, w tym dotyczące procentów, stosując równania liniowe porównuje liczby, używając symboli nierówności zaznacza na osi liczbowej zbiór liczb spełniających warunek typu: x 3, x <5 zapisuje nierówność, jaką spełniają liczby zaznaczone na osi liczbowej sprawdza, czy dana liczba jest rozwiązaniem nierówności oblicza, ile liczb naturalnych (całkowitych) spełnia podaną nierówność (w prostych przypadkach) wyznacza wskazaną wielkość z podanych wzorów, w tym wyrażających zależności fizyczne i geometryczne (w prostych przypadkach) znajduje obraz punktu w symetrii względem danej prostej lub względem danego punktu znajduje obraz trójkąta w symetrii względem prostej równoległej do jednego z boków rysuje obraz kwadratu w symetrii względem jednego z wierzchołków wskazuje oś symetrii i środek symetrii danej figury (jeśli rozwiązuje równania liniowe z jedną niewiadomą, tworząc własną strategię rozwiązania wyznacza wskazaną niewiadomą z równania z większą liczbą zmiennych stosuje pojęcia równania sprzecznego i równania tożsamościowego analizuje treść zadania tekstowego, układa równanie, rozwiązuje je i podaje odpowiedź rozwiązuje zadania tekstowe, w tym dotyczące procentów, stosując równania liniowe zaznacza na osi liczbowej zbiór liczb spełniających warunek typu: - 1 x < 3 zapisuje nierówność, jaką spełniają liczby zaznaczone na osi liczbowej (w trudniejszych przypadkach) oblicza, ile liczb naturalnych (całkowitych) spełnia podaną nierówność wyznacza wskazaną wielkość z podanych wzorów, w tym wyrażających zależności fizyczne i geometryczne; podaje konieczne założenia stosuje równania w zadaniach, zwłaszcza w zadaniach tekstowych o znacznym stopniu trudności rozwiązuje równania, które są iloczynem czynników liniowych stosuje symetrię osiową do rozwiązywania problemów konstrukcyjnych rozwiązuje zadania, stosując złożenie różnych symetrii oblicza pole części wspólnej figury i jej obrazu w symetrii względem prostej rozwiązuje zadania o podwyższonym stopniu trudności dotyczące symetrii i figur symetrycznych

8 istnieją); podaje ich liczbę (w prostych przypadkach) podaje przykłady figur osiowosymetrycznych i środkowosymetrycznych znajduje obrazy punktów w układzie współrzędnych w symetrii względem osi układu lub początku układu współrzędnych KLASA II Umiejętności podstawowe Tytuł modułu konieczne podstawowe rozszerzające dopełniajace wykraczające

9 Umiejętności podstawowe Tytuł modułu 1. Statystyka odczytywać informacje z diagramu odczytywać informacje z tabeli przedstawiać informacje na diagramach i w tabelach konieczne podstawowe rozszerzające dopełniajace wykraczające odczytywać dane przedstawione na diagramie i w tabeli obliczać średnią arytmetyczną wyników wyznaczać modalną wyników wyznaczać medianę wyników interpretować wyniki w oparciu o liczby charakteryzujące zbiór wyników 2. Mnożenie i dzielenie potęg o tych samych podstawach obliczać wartość potęgi o wykładniku naturalnym zapisywać potęgi w postaci iloczynu jednakowych czynników obliczać wartość wyrażenia arytmetycznego mnożyć i dzielić potęgi o tych samych podstawach podnosić potęgę do potęgi zapisywać potęgi na różne sposoby zamieniać jednostki z wykorzystaniem zapisu potęgowego upraszczać wyrażenie korzystając ze wzorów na iloczyn i iloraz potęg o tych samych podstawach oraz potęgę potęgi stosować poznane twierdzenia o potęgach obliczać wartości wyrażeń arytmetycznych zawierających potęgi, zgodnie z poznanymi twierdzeniami dostrzegać i formułować reguły 3. Mnożenie i dzielenie potęg o tych samych wykładnikach obliczać potęgi o wykładniku naturalnym zapisywać potęgi w postaci iloczynu jednakowych czynników obliczać wartość wyrażeń arytmetycznych zgodnie z kolejnością wykonywania działań mnożyć i dzielić potęgi o tych samych wykładnikach obliczać wartość wyrażeń, stosując wzory dotyczące działań na potęgach przekształcać wyrażenia algebraiczne do najprostszej postaci doprowadzać wyrażenia algebraiczne do najprostszej postaci zgodnie z poznanymi regułami formułować reguły posługiwać się poznanymi pojęciami matematycznymi

10 Umiejętności podstawowe Tytuł modułu 4. Potęga o wykładniku całkowitym konieczne podstawowe rozszerzające dopełniajace wykraczające obliczać potęgi liczb o wykładnikach naturalnych wyznaczyć odwrotność danej liczby przedstawić liczbę w postaci potęgi o wykładniku całkowitym obliczać potęgi o wykładniku ujemnym stosować poznane twierdzenia o potęgach do potęg o wykładnikach całkowitych korzystać z poznanych wzorów dotyczących potęg przedstawiać wyrażenia algebraiczne zawierające potęgi o wykładnikach całkowitych w najprostszej postaci zapisywać liczby z wykorzystaniem dziesiątkowego pozycyjnego systemu liczenia i całkowitych wykładników liczby 10 zapisywać liczby w notacji wykładniczej i zamieniać notację wykładniczą na postać dziesiętną formułować reguły posługiwać się poznanymi pojęciami matematycznymi 5. Wielokąty wpisane w okrąg rozpoznawać wielokąty wpisane w okrąg wskazywać środek okręgu opisanego na trójkącie wyznaczać konstrukcyjnie środek okręgu opisanego na trójkącie: ostrokątnym, prostokątnym, rozwartokątnym opisać okrąg na trójkącie korzystać z własności wielokątów wpisanych w okrąg badać własności czworokątów wpisanych w okrąg wyznaczać, o ile to możliwe, środki okręgów opisanych na czworokątach formułować warunki określające możliwości wpisywania wielokątów w okrąg dostrzegać analogie formułować hipotezy 6. Położenie prostej względem okręgu rozpoznawać na rysunku styczne i sieczne badać wzajemne położenie prostych: siecznej i stycznej do okręgu wyznaczać konstrukcyjnie styczną do okręgu znajdować punkty płaszczyzny spełniające podane warunki uzasadnić konstrukcję stycznej do okręgu

11 Umiejętności podstawowe Tytuł modułu 7. Wielokąty opisane na okręgu konieczne podstawowe rozszerzające dopełniajace wykraczające rozpoznawać trójkąty opisane na okręgu rozpoznawać wielokąty opisane na okręgu wyznaczać środek okręgu wpisanego w trójkąt rysować wielokąty opisane na okręgu wykorzystywać własności wielokątów opisanych na okręgu 8. Obwód i pole koła obliczać i szacować z zadaną dokładnością długość okręgu, gdy dany jest jego promień obliczać pole koła, gdy dana jest długość promienia lub średnicy obliczać długość promienia, gdy dana jest długość okręgu obliczać długość promienia lub średnicy, gdy dane jest pole koła obliczać pole pierścienia kołowego obliczać długość łuku obliczać pole wycinka koła posługiwać się przybliżeniami dziesiętnymi liczby π określać własności odcinka kołowego obliczać pole odcinka kołowego 9. Mnożenie sum algebraicznych obliczać wartości liczbowe wyrażeń algebraicznych redukować wyrazy podobne w sumie algebraicznej mnożyć sumę algebraiczną przez jednomian wyłączać wspólny czynnik poza nawias mnożyć sumy algebraiczne przedstawiać sumę w postaci iloczynu

12 Umiejętności podstawowe Tytuł modułu 10. Kwadrat sumy wyrażeń algebraicznych konieczne podstawowe rozszerzające dopełniajace wykraczające zapisywać kwadrat sumy dwóch wyrażeń w postaci sumy algebraicznej zapisywać kwadrat różnicy dwóch wyrażeń w postaci sumy algebraicznej przekształcać kwadrat sumy i różnicy dwóch wyrażeń na sumę algebraiczną z wykorzystaniem wzorów skróconego mnożenia stosować praktycznie wzory na kwadrat sumy i kwadrat różnicy do obliczania wartości kwadratów liczb naturalnych przekształcać wyrażenia algebraiczne z wykorzystaniem wzorów skróconego mnożenia uzasadnić geometrycznie wzór na kwadrat sumy rozwiązywać równania z wykorzystaniem wzorów skróconego mnożenia na kwadrat sumy i kwadrat różnicy uzasadniać proste z wykorzystaniem wzorów na kwadrat sumy i kwadrat różnicy 11. Różnica kwadratów wyrażeń algebraicznych stosować wzór na różnicę kwadratów wyrażeń algebraicznych obliczać wartość różnicy kwadratów dwóch liczb naturalnych z zastosowaniem wzoru zamieniać różnicę kwadratów wyrażeń algebraicznych na iloczyn sumy przez różnicę tych wyrażeń korzystać ze wzorów skróconego mnożenia przekształcać wyrażenia algebraiczne z wykorzystaniem wzorów skróconego mnożenia interpretować geometrycznie wzór na różnicę kwadratów wyrażeń algebraicznych rozwiązywać równania z wykorzystaniem wzoru na różnicę kwadratów uzasadniać proste z wykorzystaniem wzorów skróconego mnożenia na różnicę kwadratów

13 Umiejętności podstawowe Tytuł modułu 12. Przekształcanie wzorów konieczne podstawowe rozszerzające dopełniajace wykraczające przekształcać wyrażenia algebraiczne opisywać sytuację matematyczną wyrażeniem algebraicznym wyznaczać określoną wielkość z podanego wzoru przekształcać wzory 13. Twierdzenie Pitagorasa rozpoznać trójkąt prostokątny spośród trójkątów o podanych długościach boków wyznaczać długość trzeciego boku trójkąta prostokątnego, gdy dane są długości dwóch pozostałych jego boków rozpoznać wśród trójkątów prostokątnych trójkąt egipski podać twierdzenie odwrotne do twierdzenia Pitagorasa zbudować kwadrat o polu dwa razy większym od pola danego kwadratu udowodnić twierdzenie Pitagorasa sformułować twierdzenia analogiczne do twierdzenia Pitagorasa dla innych trójkątów niż prostokątne

14 Umiejętności podstawowe Tytuł modułu 14. Wprowadzenie pojęcia pierwiastka konieczne podstawowe rozszerzające dopełniajace wykraczające wskazać liczbę taką, że po podniesieniu jej do kwadratu, otrzymamy daną liczbę wskazać liczbę taką, że po podniesieniu jej do sześcianu otrzymamy daną liczbę obliczać wartości pierwiastków kwadratowych obliczać wartości pierwiastków sześciennych szacować wartość pierwiastków kwadratowych zaokrąglać wartości pierwiastków kwadratowych ze wskazaną dokładnością umiejscowić liczbę, np. 2, na osi liczbowej oszacować i zaokrąglić niewymierne wartości pierwiastków stosować kalkulator do obliczeń wartości działań na liczbach wymiernych i pierwiastkach o wartościach niewymiernych wskazać podobieństwa i różnice między definicją pierwiastka kwadratowego a definicją pierwiastka trzeciego stopnia 15. Mnożenie i dzielenie pierwiastków obliczać wartości pierwiastków arytmetycznych drugiego i trzeciego stopnia stosować reguły kolejności wykonywania działań zamieniać iloczyn pierwiastków na pierwiastek iloczynu zamieniać iloraz pierwiastków na pierwiastek ilorazu podnosić pierwiastek do potęgi i obliczać jego wartość wyłączać czynnik przed znak pierwiastka włączać czynnik pod znak pierwiastka szacować wartość wyrażenia, w którym występuje pierwiastek usuwać niewymierność z mianownika ułamka

15 Umiejętności podstawowe Tytuł modułu 16. Budowa odcinków o niewymiernych długościach konieczne podstawowe rozszerzające dopełniajace wykraczające obliczać wartości kwadratów i pierwiastków kwadratowych zastosować twierdzenie Pitagorasa do obliczania długości boków trójkąta prostokątnego rysować odcinki o długościach wyrażonych pierwiastkiem kwadratowym z liczby naturalnej rozstrzygać na podstawie twierdzenia odwrotnego do twierdzenia Pitagorasa, czy trójkąt o podanych długościach boków jest trójkątem prostokątnym 17. Zastosowanie twierdzenia Pitagorasa stosować twierdzenie Pitagorasa do rozwiązywania zadań stosować twierdzenie Pitagorasa do obliczenia długości wysokości w trójkątach równoramiennych, równobocznych, przekątnych w prostokątach, kwadratach, rombach stosować wzór na długość przekątnej kwadratu stosować wzór na długość wysokości trójkąta równobocznego uzasadniać i formułować twierdzenia z wykorzystaniem twierdzenia Pitagorasa dostrzegać formułować spostrzeżenia

16 Umiejętności podstawowe Tytuł modułu 18. Twierdzenie Pitagorasa w układzie współrzędnych konieczne podstawowe rozszerzające dopełniajace wykraczające zaznaczać punkty o podanych współrzędnych w układzie współrzędnych rysować wielokąty o podanych współrzędnych wierzchołków obliczać odległość punktu o podanych współrzędnych od początku układu współrzędnych korzystać z twierdzenia Pitagorasa do rozwiązywania zadań wyznaczać długość odcinka o podanych współrzędnych jego końców sprawdzać, czy trójkąty o podanych współrzędnych wierzchołków są prostokątne obliczać pola danych trójkątów i czworokątów z wykorzystaniem twierdzenia Pitagorasa i twierdzenia odwrotnego korzystać z poznanych wzorów przy wyliczaniu długości odcinka 19. Przyporządkowani a określać dziedzinę i przeciwdziedzinę przyporządkowań wskazywać wartości przyporządkowania dla konkretnego argumentu dostrzegać i określać przyporządkowania opisywać przyporządkowania na podstawie rysunku, grafu, tabeli, wykresu przedstawiać przyporządkowania na różne sposoby 20. Pojęcie funkcji rozpoznawać, które przyporządkować jest, a które nie jest funkcją odczytywać z wykresu funkcji wartości funkcji dla danego argumentu i odwrotnie określać dziedzinę, przeciwdziedzinę i zbiór wartości funkcji opisywać funkcje różnymi sposobami: słownie, za pomocą grafu, tabeli, wykresu rozpoznawać, czy dany wykres jest wykresem funkcji rysować wykres funkcji na podstawie jej różnych opisów obliczać wartości funkcji dla danego argumentu sprawdzać, czy punkty o podanych współrzędnych należą do wykresu funkcji dostrzegać formułować spostrzeżenia

17 Umiejętności podstawowe Tytuł modułu 21. Własności funkcji rozpoznawać na podstawie wykresu, czy funkcja jest rosnąca, malejąca, czy stała konieczne podstawowe rozszerzające dopełniajace wykraczające odczytywać z wykresów funkcji przedziały dziedziny, w których funkcja jest rosnąca, malejąca, stała odczytywać z wykresu miejsca zerowe funkcji rysować wykresy funkcji na podstawie informacji o jej monotoniczności i miejscach zerowych dostrzegać formułować spostrzeżenia 22. Proporcjonalność prosta rozpoznawać wykresy proporcjonalności prostej rysować wykresy proporcjonalności prostej wyznaczać wzory proporcjonalności prostej określać położenie wykresu proporcjonalności prostej w zależności od współczynnika proporcjonalności 23. Funkcja liniowa rysować wykresy funkcji liniowych sprawdzać, czy punkt o podanych współrzędnych należy do wykresu funkcji liniowej wyznaczać miejsca zerowe funkcji liniowych wyznaczyć równanie funkcji liniowej, której wykres przechodzi przez punkty o danych współrzędnych określać własności funkcji liniowej na podstawie jej wzoru 24. Równania liniowe z dwiema niewiadomymi opisywać sytuację za pomocą równania sprawdzać, czy para liczb spełnia równanie pierwszego stopnia z dwiema niewiadomymi rozwiązywać graficzne równania stopnia pierwszego z dwiema niewiadomymi wyznaczać zbiór rozwiązań równania postaci Ax By C 0, gdzie A, B 0

18 Umiejętności podstawowe Tytuł modułu 25. Układ równań. Interpretacja graficzna konieczne podstawowe rozszerzające dopełniajace wykraczające przedstawiać wykresy równań w układzie współrzędnych sprawdzać, czy dana para liczb spełnia układ równań rozwiązywać graficznie układ równań zapisać układ równań na podstawie rysunku prostych ilustrujących te równania nazywać układy równań 26. Rozwiązywanie układów równań metodą podstawiania sprawdzać, czy dana para liczb jest rozwiązaniem układu równań rozwiązywać układy równań metodą podstawiania rozwiązywać zadania tekstowe za pomocą układu równań nazywać układy równań 27. Ostrosłupy rozpoznawać wśród podanych brył ostrosłupy wyznaczać liczbę: ścian, krawędzi, wierzchołków, wielokąta będącego podstawą ostrosłupa na podstawie podanej własności ostrosłupa rysować siatki ostrosłupów rozpoznawać ostrosłupy prawidłowe rysować ostrosłupy wyznaczać długość krawędzi czworościanu foremnego, gdy dana jest długość sumy wszystkich krawędzi wyznaczać długości krawędzi bocznej i krawędzi podstawy w ostrosłupie prawidłowym rysować zadane przekroje ostrosłupów 28. Pole powierzchni i objętość ostrosłupa obliczać pole powierzchni ostrosłupów obliczać objętość ostrosłupów odczytywać informacje z rysunku wykorzystywać wzory na pole powierzchni ostrosłupów wykorzystywać wzory na objętość ostrosłupów rysować ostrosłupy rysować zadane przekroje ostrosłupów rozwiązywać zadania z wykorzystaniem poznanych zależności dostrzegać zależności pomiędzy graniastosłupami a ostrosłupami o tej samej podstawie i wysokości

19 Umiejętności podstawowe Tytuł modułu 29. Zastosowanie twierdzenia Pitagorasa w zadaniach konieczne podstawowe rozszerzające dopełniajace wykraczające rozpoznawać i nazywać graniastosłupy i ostrosłupy określać własności graniastosłupów i ostrosłupów zapisywać związki między długościami boków trójkąta prostokątnego stosować przekształcenia algebraiczne stosować twierdzenie Pitagorasa i twierdzenia do niego odwrotne 30. Określanie szans podawać przykłady doświadczeń losowych odczytywać wyniki doświadczeń losowych wyznaczać wszystkie możliwe wyniki prostych doświadczeń losowych określać zdarzenia danego doświadczenia losowego rysować odpowiednie przekroje graniastosłupów i ostrosłupów obliczać pola trójkątów i czworokątów obliczać długości przekątnych prostopadłościanu i sześcianu obliczać pole zaznaczonego przekroju danej bryły przedstawiać na schematach przebieg doświadczenia losowego określać szanse w typowych grach i doświadczeniach losowych tworzyć modele probabilistyczne dla typowych doświadczeń losowych przewidywać wyniki doświadczenia losowego

20 Umiejętności podstawowe Tytuł modułu 31. Procent składany wykonywać działania na liczbach wymiernych obliczać procent danej liczby obliczać liczbę, gdy dany jest jej procent konieczne podstawowe rozszerzające dopełniajace wykraczające wykonywać obliczenia z wykorzystaniem procentów obliczać należne odsetki po roku oszczędzania planować i stosować obliczenia na kalkulatorze poszukiwać i porządkować informacje porównywać i analizować dane przedstawione w różny sposób obliczać procent składany KLASA III Umiejętności podstawowe Tytuł modułu KONIECZNE PODSTAWOWE ROZSZERZAJĄCE DOPEŁNIAJACE WYKRACZAJĄCE 32. Histogramy czytać dane przedstawione na diagramach i w tabelach sporządzać diagramy słupkowe interpretować dane przedstawione na diagramach i w tabelach czytać dane zilustrowane piramidą ludności interpretować dane zilustrowane piramidą ludności sporządzać histogramy

21 Tytuł modułu 33. Rozwiązywanie układów równań Umiejętności podstawowe KONIECZNE PODSTAWOWE ROZSZERZAJĄCE DOPEŁNIAJACE WYKRACZAJĄCE przekształcać równania liniowe na równania równoważne przekształcać układy równań na równoważne układy równań rozwiązywać proste układy równań liniowych metodą przeciwnych współczynników i metodą podstawiania graficznie rozwiązywać układy równań liniowych rozpoznawać układy równań oznaczonych, nieoznaczonych i sprzecznych rozwiązywać układy równań liniowych metodą przeciwnych współczynników graficznie interpretować układy równań oznaczonych, nieoznaczonych i sprzecznych budować schemat blokowy ilustrujący sposób postępowania podczas rozwiązywania układu równań metodą podstawiania

22 Tytuł modułu 34. Rozwiązywanie układów równań Umiejętności podstawowe KONIECZNE PODSTAWOWE ROZSZERZAJĄCE DOPEŁNIAJACE WYKRACZAJĄCE przekształcać równania liniowe na równania równoważne przekształcać układy równań na równoważne układy równań rozwiązywać proste układy równań liniowych metodą przeciwnych współczynników i metodą podstawiania graficznie rozwiązywać układy równań liniowych rozpoznawać układy równań oznaczonych, nieoznaczonych i sprzecznych rozwiązywać układy równań liniowych metodą przeciwnych współczynników graficznie interpretować układy równań oznaczonych, nieoznaczonych i sprzecznych budować schemat blokowy ilustrujący sposób postępowania podczas rozwiązywania układu równań metodą podstawiania 35. Rozwiązywanie zadań tekstowych za pomocą układów równań rozwiązywać proste zadania tekstowe za pomocą równań rozwiązywać proste zadania tekstowe za pomocą układów równań rozwiązywać zadania tekstowe za pomocą równań rozwiązywać zadania tekstowe za pomocą układów równań

23 Tytuł modułu 36. Wielkości odwrotnie proporcjonalne Umiejętności podstawowe KONIECZNE PODSTAWOWE ROZSZERZAJĄCE DOPEŁNIAJACE WYKRACZAJĄCE budować tabelki liczbowe przedstawiające podane zależności rozpoznawać wielkości wprost proporcjonalne rozpoznawać wielkości odwrotnie proporcjonalne przekształcać wyrażenia algebraiczne rozwiązywać proste zadania tekstowe zapisywać zależności występujące w zadaniach opisywać wzorem przedstawione zależności stosować wiadomości o proporcjach do rozwiązywania zadań dostrzegać i formułować spostrzeżenia dostrzegać wielkości wprost i odwrotnie proporcjonalne opisywane za pomocą wzorów fizycznych 37. Przykłady funkcji nieliniowych sporządzać wykresy funkcji nieliniowych, wykorzystując tabele sporządzać wykresy funkcji nieliniowych podanych wzorem odczytywać z wykresów podstawowe własności funkcji opisywać przyporządkowania za pomocą wzorów określać dziedziny i zbiory wartości przykładowych funkcji nieliniowych opisywać własności funkcji nieliniowych na podstawie ich wykresów opisywać z wykresów funkcji nieliniowych przedstawioną sytuację z życia codziennego dostrzegać i je uzasadniać formułować hipotezy i je weryfikować uzasadniać badać własności funkcji nieliniowych

24 38. Proporcje sprawdzać, czy dane liczby tworzą proporcję wskazywać wyrazy skrajne i wyrazy środkowe w podanych proporcjach rozwiązywać równania podane w postaci proporcji rozwiązywać proste zadania tekstowe z zależnościami podanymi w postaci proporcji układać proporcje na podstawie tekstów zadań rozwiązywać zadania tekstowe z zależnościami podanymi w postaci proporcji przekształcać wzory zapisane w postaci proporcji stosować proporcje złożone rozwiązywać zadania tekstowe z wykorzystaniem proporcji złożonej przekształcać wzory zapisane w postaci proporcji złożonych 39. Twierdzenie Talesa stosować twierdzenie Talesa dzielić konstrukcyjnie odcinki na równe części stosować twierdzenie Talesa w sytuacjach realistycznych schematyzować i matematyzować badać stosunki pól figur analizować dowody twierdzeń argumentować uzasadniać dostrzegać i wykorzystywać analogie 40. Podobieństwo figur obliczać wymiary figur podobnych na podstawie skali podobieństwa rysować figury podobne w danej skali wyznaczać skale podobieństw wyznaczać skale, w jakich występują figury podobne uzasadniać, że dane figury są podobne wyznaczać stosunek pól figur podobnych obliczać pola figur podobnych w danej skali dostrzegać i je uzasadniać formułować hipotezy i je weryfikować

25 41. Podobieństwo trójkątów rozpoznawać trójkąty podobne w oparciu o poznane cechy podobieństwa trójkątów wyznaczać długości odpowiednich boków trójkątów podobnych wyznaczać miary kątów trójkątów podobnych wyznaczać skale podobieństw porównywać pola trójkątów podobnych formułować twierdzenia i twierdzenia do nich odwrotne dostrzegać i je uzasadniać formułować hipotezy i je weryfikować uzasadniać podane wykorzystywać poznane cechy do badania podobieństwa innych figur 42. Wykorzystywanie związków miarowych w trójkątach stosować twierdzenie Pitagorasa do wyliczania długości jednego z boków trójkąta prostokątnego dostrzegać zależności między długościami boków a miarami kątów w trójkątach prostokątnych równoramiennych dostrzegać zależności między długościami boków a miarami kątów w trójkątach prostokątnych, w których miary kątów ostrych są równe 30 i 60 stosować poznane zależności do wyznaczania długości boków w trójkątach prostokątnych dostrzegać związki między kątami w trójkątach prostokątnych a stosunkami długości boków stosować poznane związki miarowe do rozwiązywania zadań, w których występują inne wielokąty wyznaczać związki miarowe w trójkątach prostokątnych równoramiennych oraz trójkątach prostokątnych o miarach kątów ostrych 30 i 60 wykorzystywać poznane związki miarowe występujące w trójkątach prostokątnych do rozwiązywania praktycznych problemów występujących w życiu dostrzegać badać, jak zmienia się stosunek długości odpowiednich boków trójkąta prostokątnego w zależności od miary kąta formułować hipotezy i je weryfikować zapisywać dostrzeżone

26 43. Walec szkicować bryły obrotowe powstałe z obrotu wskazanych wielokątów względem zadanych osi obrotu wskazywać figury, z których na skutek obrotu względem danej osi można otrzymać daną bryłę obrotową obliczać pola powierzchni bocznych i całkowitych walców obliczać objętości walców szkicować figury, z których na skutek obrotu wokół osi powstała dana bryła wskazywać oś obrotu walca wyznaczać figury tworzące siatkę walca rysować siatki walców wskazywać przekroje walców obliczać poszczególne wymiary walca obliczać wymiary prostokąta, z którego na skutek obrotu względem zadanej osi powstał walec rozwiązywać zadania o treści praktycznej z wykorzystaniem poznanych wzorów na pole powierzchni i objętość walca 44. Stożek wskazywać figury, z których na skutek obrotu względem danej osi można otrzymać stożki podawać wymiary stożków na podstawie długości boków trójkątów prostokątnych, w wyniku obrotu których powstały te stożki obliczać pola powierzchni bocznych i całkowitych stożków obliczać objętości stożków wyznaczać figury tworzące siatkę stożka rysować siatki stożków i ich przekroje szkicować bryły obrotowe powstałe z obrotu wskazanych wielokątów względem zadanych osi obrotu przekształcać wzory rozwiązywać zadania o treści odnoszącej się do rzeczywistości z wykorzystaniem poznanych wzorów na pole powierzchni i objętość stożka wskazywać figury, z których na skutek obrotu względem danych osi można otrzymać stożki ścięte wyznaczać figury tworzące siatkę stożka ściętego szkicować siatki stożków ściętych obliczać objętości stożków ściętych

27 45. Kula wskazywać figury, z których na skutek obrotu względem danej osi można otrzymać kulę obliczać pola powierzchni kul obliczać objętości kul obliczać pole powierzchni i objętość kuli o zadanym promieniu obliczać długość promienia kuli o podanej objętości lub polu powierzchni rozwiązywać zadania o treści odnoszącej się do rzeczywistości z wykorzystaniem poznanych wzorów na pole powierzchni i objętość kuli 46. Twierdzenie Pitagorasa w przestrzeni rozpoznawać i wyznaczać w bryłach trójkąty prostokątne, których bokami są odpowiednie odcinki obliczać długości odcinków brył niezbędne do obliczania ich pól powierzchni i objętości z zastosowaniem twierdzenia Pitagorasa lub własności trójkątów prostokątnych o kątach ostrych 30 i 60 oraz 45 przekształcać wzory 47. Wielościany foremne rozróżniać wielościany foremne rysować wielościany foremne obliczać długości krawędzi, pola powierzchni i objętości niektórych wielościanów foremnych wyznaczać przekroje wielościanów foremnych dostrzegać i związki zachodzące w wielościanach foremnych oraz między wielościanami o takich samych polach lub długościach krawędzi

28 48. Podobieństwo w przestrzeni rozpoznawać bryły podobne zgodnie z podanymi zasadami obliczać wymiary brył podobnych do danych obliczać pola powierzchni i objętości brył podobnych do danych wyznaczać skale podobieństw brył podobnych obliczać pola powierzchni i objętości graniastosłupów, ostrosłupów i brył obrotowych stawiać hipotezy i je weryfikować określać zależności między danymi wielkościami 49. Regularności w tabliczce mnożenia dodawać i mnożyć liczby naturalne korzystać z praw działań przedstawiać dowolne liczby naturalne w postaci sum potęg liczby 2 rozumować przez analogię uzasadniać dostrzeżone

29 50. Starożytne systemy liczbowe zapisywać liczby w różnych systemach liczenia odczytywać liczby zapisane w różnych systemach liczenia zamieniać liczby z systemu dziesiątkowego na dwójkowy zamieniać liczby z systemu dwójkowego na dziesiątkowy porównywać liczby zapisane w systemach dziesiątkowym i dwójkowym 51. Matematyka w gimnazjum samodzielnie poszukiwać odpowiednich materiałów informacyjnych przedstawiać zdobyte informacje stosować różnorodne formy przekazu rozumować przez analogię uzasadniać dostrzeżone

Osiągnięcia ponadprzedmiotowe. Osiągnięcia przedmiotowe

Osiągnięcia ponadprzedmiotowe. Osiągnięcia przedmiotowe Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego w klasie 3 gimnazjum uczeń potrafi: KONIECZNE PODSTAWOWE ROZSZERZAJĄCE DOPEŁNIAJACE WYKRACZAJĄCE czytać teksty w stylu matematycznym

Bardziej szczegółowo

Strona 1 z 9. prowadzić rozumowania matematyczne sprawnie posługiwać się językiem matematycznym

Strona 1 z 9. prowadzić rozumowania matematyczne sprawnie posługiwać się językiem matematycznym Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego w klasie 3 gimnazjum uczeń potrafi: Umiejętności konieczne i podstawowe KONIECZNE( 2) PODSTAWOWE (3) ROZSZERZAJĄCE (4) DOPEŁNIAJACE

Bardziej szczegółowo

Kryteria ocen z matematyki dla klasy III gimnazjum. Osiągnięcia przedmiotowe

Kryteria ocen z matematyki dla klasy III gimnazjum. Osiągnięcia przedmiotowe umiejętności konieczne ocena dopuszczający umiejętności podstawowe ocena dostateczny umiejętności rozszerzające ocena dobry umiejętności dopełniające ocena bardzo dobry umiejętności wykraczające ocena

Bardziej szczegółowo

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą 1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku

Bardziej szczegółowo

Konieczne Podstawowe Rozszerzające Dopełniające Wykraczające. tworzyć teksty w stylu matematycznym

Konieczne Podstawowe Rozszerzające Dopełniające Wykraczające. tworzyć teksty w stylu matematycznym 14 OSIĄGNIĘCIA PONADPRZEDMIOTOWE W rezultacie kształcenia matematycznego w klasie 3 uczeń potrafi: czytać teksty w stylu matematycznym wykorzystywać słownictwo wprowadzane przy okazji nowych treści W rezultacie

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe

Osiągnięcia ponadprzedmiotowe Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego w klasie 2 gimnazjum uczeń potrafi: Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym tworzyć teksty w stylu

Bardziej szczegółowo

Kryteria oceniania Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego w klasie 3 gimnazjum uczeń potrafi:

Kryteria oceniania Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego w klasie 3 gimnazjum uczeń potrafi: 1 Copyright by Wydawnictwa Szkolne i Pedagogiczne, Warszawa 2017 Kryteria oceniania Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego w klasie 3 gimnazjum uczeń potrafi: czytać teksty

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe

Osiągnięcia ponadprzedmiotowe Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego w klasie 3 gimnazjum uczeń potrafi: Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym wykorzystywać słownictwo

Bardziej szczegółowo

Konieczne Podstawowe Rozszerzające Dopełniające Wykraczające

Konieczne Podstawowe Rozszerzające Dopełniające Wykraczające 12 OSIĄGNIĘCIA PONADPRZEDMIOTOWE W rezultacie kształcenia matematycznego w klasie 2 gimnazjum uczeń potrafi: Umiejętności konieczne i podstawowe czytać teksty w stylu tworzyć teksty w stylu wykorzystywać

Bardziej szczegółowo

Wymagania na poszczególne oceny w klasie I gimnazjum do programu nauczania MATEMATYKA NA CZASIE

Wymagania na poszczególne oceny w klasie I gimnazjum do programu nauczania MATEMATYKA NA CZASIE Wymagania na poszczególne oceny w klasie I gimnazjum do programu nauczania MATEMATYKA NA CZASIE I.LICZBY - zaznacza na osi liczbowej punkty odpowiadające liczbom całkowitym, wymiernym(np. 1 2, 2 1 1 ),

Bardziej szczegółowo

Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 1

Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 1 Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 1 Wyróżniono następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne z matematyki. dla uczniów klasy Ia i Ib. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016

Wymagania na poszczególne oceny szkolne z matematyki. dla uczniów klasy Ia i Ib. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016 Wymagania na poszczególne oceny szkolne z matematyki dla uczniów klasy Ia i Ib Gimnazjum im. Jana Pawła II w Mętowie w roku szkolnym 2015/2016 DZIAŁ I: LICZBY zaznacza na osi liczbowej punkty odpowiadające

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe

Osiągnięcia ponadprzedmiotowe Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego w klasie 2 gimnazjum uczeń potrafi: Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym tworzyć teksty w stylu

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH Marzena Zbrożyna DOPUSZCZAJĄCY: Uczeń potrafi: odczytać informacje z tabeli odczytać informacje z diagramu

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe

Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego uczeń potrafi: Osiągnięcia ponadprzedmiotowe Umiejętności konieczne i podstawowe KONIECZNE PODSTAWOWE ROZSZERZAJĄCE DOPEŁNIAJACE WYKRACZAJĄCE czytać teksty w stylu

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe

Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego uczeń potrafi: Osiągnięcia ponadprzedmiotowe Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym wykorzystywać słownictwo wprowadzane przy okazji

Bardziej szczegółowo

Plan wynikowy do programu MATEMATYKA 2001 klasa 3 gimnazjum

Plan wynikowy do programu MATEMATYKA 2001 klasa 3 gimnazjum Plan wynikowy do programu MATEMATYKA 2001 klasa 3 gimnazjum Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego uczeń potrafi: Umiejętności podstawowe KONIECZNE PODSTAWOWE ROZSZERZAJĄCE

Bardziej szczegółowo

Wymagania edukacyjne dla klasy pierwszej Matematyka na czasie

Wymagania edukacyjne dla klasy pierwszej Matematyka na czasie Wymagania edukacyjne dla klasy pierwszej Matematyka na czasie Wyróżniono następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program

Bardziej szczegółowo

Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum

Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum I. POTĘGI I PIERWIASTKI oblicza wartości potęg o wykładnikach całkowitych liczb różnych od zera zapisuje liczbę

Bardziej szczegółowo

Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 1

Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 1 Agnieszka Kamińska, Dorota Ponczek Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 1 Proponujemy, by omawiając dane zagadnienie programowe lub rozwiązując

Bardziej szczegółowo

Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE

Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE Wymagania konieczne K dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je

Bardziej szczegółowo

ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY:

ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY: ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY: KLASA II GIMNAZJUM Wymagania konieczne K dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je zatem opanować

Bardziej szczegółowo

Plan wynikowy do programu MATEMATYKA 2001 klasa 3 gimnazjum

Plan wynikowy do programu MATEMATYKA 2001 klasa 3 gimnazjum Plan wynikowy do programu MATEMATYKA 2001 klasa 3 gimnazjum Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego uczeń potrafi: czytać teksty w stylu matematycznym wykorzystywać słownictwo

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI dla uczniów klasy trzeciej gimnazjum na podstawie programu MATEMATYKA 2001

WYMAGANIA EDUKACYJNE Z MATEMATYKI dla uczniów klasy trzeciej gimnazjum na podstawie programu MATEMATYKA 2001 Osiągnięcia ponadprzedmiotowe WYMAGANIA EDUKACYJNE Z MATEMATYKI dla uczniów klasy trzeciej gimnazjum na podstawie programu MATEMATYKA 2001 W rezultacie kształcenia matematycznego uczeń potrafi: czytać

Bardziej szczegółowo

ZESPÓŁ SZKÓŁ W OBRZYCKU

ZESPÓŁ SZKÓŁ W OBRZYCKU Matematyka na czasie Program nauczania matematyki w gimnazjum ZGODNY Z PODSTAWĄ PROGRAMOWĄ I z dn. 23 grudnia 2008 r. Autorzy: Agnieszka Kamińska, Dorota Ponczek ZESPÓŁ SZKÓŁ W OBRZYCKU Wymagania edukacyjne

Bardziej szczegółowo

MATEMATYKA. WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski. KLASA I Wymagania

MATEMATYKA. WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski. KLASA I Wymagania MATEMATYKA WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski Treści zapisane kursywą (i oznaczone gwiazdką) wykraczają poza podstawę programową. Nauczyciel może je realizować,

Bardziej szczegółowo

Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka

Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka TEMAT 5. Przekątna kwadratu. Wysokość trójkąta równobocznego 6. Trójkąty o kątach 90º, 45º, 45º oraz 90º, 30º, 60º 1. Okrąg opisany na trójkącie

Bardziej szczegółowo

Kryteria ocen z matematyki w Gimnazjum. Klasa I. Liczby i działania

Kryteria ocen z matematyki w Gimnazjum. Klasa I. Liczby i działania Kryteria ocen z matematyki w Gimnazjum Klasa I Liczby i działania obliczać wartości wyrażeń arytmetycznych, w których występują liczby wymierne skracać i rozszerzać ułamki zwykłe porównywać dwa ułamki

Bardziej szczegółowo

WYMAGANIA EGZAMINACYJNE DLA KLASY III GIMNAZJUM

WYMAGANIA EGZAMINACYJNE DLA KLASY III GIMNAZJUM WYMAGANIA EGZAMINACYJNE DLA KLASY III GIMNAZJUM TEMAT WYMAGANIA SZCZEGÓŁOWE 1. LICZBY I WYRAŻENIA ALGEBRAICZNE 2. System dziesiątkowy 1. Liczby wymierne dodatnie. Uczeń: 1) zaokrągla rozwinięcia dziesiętne

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE

WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE Przekształcenia algebraiczne Równania i układy równań Pojęcie funkcji. Własności funkcji. WYRAŻENIA

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE III GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE III GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE III GIMNAZJUM 1. 2. 3. 4. 5. 6. czytać dane przedstawione na diagramach i w tabelach przekształcać równania liniowe na równania równoważne ekształcać układy równań

Bardziej szczegółowo

MATEMATYKA WYMAGANIA EDUKACYJNE KLASA IAS, IBM

MATEMATYKA WYMAGANIA EDUKACYJNE KLASA IAS, IBM MATEMATYKA WYMAGANIA EDUKACYJNE KLASA IAS, IBM Lp. Temat lekcji Zakres treści Osiągnięcia uczeń: I. LICZBY 1. Oś liczbowa 1. pojęcie osi liczbowej 2. liczby przeciwne 1. zaznacza na osi liczbowej punkty

Bardziej szczegółowo

Wymagania programowe na poszczególne oceny. Klasa 2. Potęgi o wykładnikach naturalnych i całkowitych. Poziom wymagań edukacyjnych:

Wymagania programowe na poszczególne oceny. Klasa 2. Potęgi o wykładnikach naturalnych i całkowitych. Poziom wymagań edukacyjnych: Wymagania programowe na poszczególne oceny Poziom wymagań edukacyjnych: K konieczny (ocena dopuszczająca) P podstawowy (ocena dostateczna) R rozszerzający (ocena dobra) D dopełniający (ocena bardzo dobra)

Bardziej szczegółowo

Wymagania edukacyjne klasa trzecia.

Wymagania edukacyjne klasa trzecia. TEMAT Wymagania edukacyjne klasa trzecia. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE Lekcja organizacyjna System dziesiątkowy System rzymski Liczby wymierne i niewymierne

Bardziej szczegółowo

Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 2

Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 2 Agnieszka Kamińska, Dorota Ponczek Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 2 Proponujemy, by omawiając dane zagadnienie programowe lub rozwiązując

Bardziej szczegółowo

REALIZACJA TREŚCI PODSTAWY PROGRAMOWEJ PRZEZ PROGRAM MATEMATYKA Z PLUSEM

REALIZACJA TREŚCI PODSTAWY PROGRAMOWEJ PRZEZ PROGRAM MATEMATYKA Z PLUSEM REALIZACJA TREŚCI PODSTAWY PROGRAMOWEJ PRZEZ PROGRAM MATEMATYKA Z PLUSEM Treści nauczania wg podstawy programowej Podręcznik M+ Klasa I Klasa II Klasa III 1. Liczby wymierne dodatnie. Uczeń: 1) odczytuje

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne stopnie szkolne klasa III

Wymagania edukacyjne na poszczególne stopnie szkolne klasa III Wymagania edukacyjne na poszczególne stopnie szkolne klasa III Rozdział 1. Bryły - wie, czym jest graniastosłup, graniastosłup prosty, graniastosłup prawidłowy - wie, czym jest ostrosłup, ostrosłup prosty,

Bardziej szczegółowo

Lista działów i tematów

Lista działów i tematów Lista działów i tematów Gimnazjum. Klasa 1 Liczby i działania Liczby Rozwinięcia dziesiętne liczb wymiernych Zaokrąglenia liczb. Szacowanie wyników Dodawanie i odejmowanie liczb dodatnich Mnożenie i dzielenie

Bardziej szczegółowo

Nie tylko wynik Plan wynikowy dla klasy 2 gimnazjum

Nie tylko wynik Plan wynikowy dla klasy 2 gimnazjum Poziomy wymagań edukacyjnych: K konieczny P podstawowy R rozszerzający D dopełniający W wykraczający Nie tylko wynik Plan wynikowy dla klasy 2 gimnazjum Potęgi o wykładnikach naturalnych i całkowitych

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI

WYMAGANIA EDUKACYJNE Z MATEMATYKI WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA 2 I. POTĘGI I PIERWIASTKI oblicza wartości potęg o wykładnikach całkowitych liczb różnych od zera zapisuje liczbę w postaci potęgi o wykładniku ujemnym porządkuje

Bardziej szczegółowo

6. Notacja wykładnicza stosuje notację wykładniczą do przedstawiania bardzo dużych liczb

6. Notacja wykładnicza stosuje notację wykładniczą do przedstawiania bardzo dużych liczb LICZBY I DZIAŁANIA PROCENTY str. 1 Przedmiot: matematyka Klasa: 2 ROK SZKOLNY 2015/2016 temat Wymagania podstawowe P 2. Wartość bezwzględna oblicza wartość bezwzględną liczby wymiernej 3. Potęga o wykładniku

Bardziej szczegółowo

Kryteria ocen z matematyki w klasie I gimnazjum

Kryteria ocen z matematyki w klasie I gimnazjum 1. Zbieranie, porządkowanie i prezentowanie danych 1. Liczby naturalne 1. Cechy podzielności 1. Działania na liczbach naturalnych 1. Algorytmy działań pisemnych odczytywać informacje przedstawione w tabelach

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE OCENY MATEMATYKA KL.VII

WYMAGANIA NA POSZCZEGÓLNE OCENY MATEMATYKA KL.VII WYMAGANIA NA POSZCZEGÓLNE OCENY MATEMATYKA KL.VII ROZDZIAŁ I LICZBY 1. rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie do 3000 2. odczytuje liczby naturalne dodatnie zapisane w

Bardziej szczegółowo

Wymagania z matematyki na poszczególne stopnie szkolne w klasie trzeciej gimnazjum

Wymagania z matematyki na poszczególne stopnie szkolne w klasie trzeciej gimnazjum Wymagania z matematyki na poszczególne stopnie szkolne w klasie trzeciej gimnazjum I LICZBY I WYRAŻENIA ALGEBRAICZNE podawanie przykładów liczb naturalnych, całkowitych, wymiernych i niewymiernych; porównywanie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VII SZKOŁY PODSTAWOWEJ

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VII SZKOŁY PODSTAWOWEJ WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VII SZKOŁY PODSTAWOWEJ Ocenę niedostateczną otrzymuje uczeń, jeśli nie opanował wiadomości i umiejętności na ocenę dopuszczającą, nie wykazuje chęci poprawy

Bardziej szczegółowo

Liczby. Wymagania programowe kl. VII. Dział

Liczby. Wymagania programowe kl. VII. Dział Wymagania programowe kl. VII Dział Liczby rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie do 3000 odczytuje liczby naturalne dodatnie zapisane w systemie rzymskim w zakresie do

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III Wymagania edukacyjne z matematyki dla kl I-III Informacje wstępne 1. Obowiązuje skala ocen: 1, 2, 3, 4, 5, 6. 2. W ciągu semestru ocenia się: a) prace klasowe

Bardziej szczegółowo

Temat lekcji Zakres treści Wymagania podstawowe Wymagania ponadpodstawowe

Temat lekcji Zakres treści Wymagania podstawowe Wymagania ponadpodstawowe Agnieszka Kamińska, Dorota Ponczek Matematyka na czasie Rozkład materiału i plan wynikowy dla klasy Temat lekcji Zakres treści Wymagania podstawowe Wymagania ponadpodstawowe 1. Potęga o wykładniku całkowitym.

Bardziej szczegółowo

Osiągnięcia przedmiotowe

Osiągnięcia przedmiotowe 1. Zbieranie, porządkowanie i prezentowanie danych przedstawione w tabelach przedstawione na przedstawiać dane w tabelach przedstawiać dane na przedstawione w tabelach przedstawione na porównywać informacje

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie VII szkoły podstawowej

Wymagania edukacyjne z matematyki w klasie VII szkoły podstawowej Wymagania edukacyjne z matematyki w klasie VII szkoły podstawowej ROZDZIAŁ I LICZBY Uczeń otrzymuje ocenę dopuszczającą jeśli: 1. rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie

Bardziej szczegółowo

ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi

ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi Rozkład materiału nauczania został opracowany na podstawie programu

Bardziej szczegółowo

1. FUNKCJE DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia

1. FUNKCJE DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia L.P. DZIAŁ Z PODRĘCZNIKA 1. FUNKCJE 2. POTĘGI I PIERWIASTKI NaCoBeZu kryteria sukcesu w języku ucznia 1. Wiem, co to jest układ współrzędnych, potrafię nazwać osie układu. 2. Rysuję układ współrzędnych

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM LICZBY, WYRAŻENIA ALGEBRAICZNE umie obliczyć potęgę o wykładniku naturalnym; umie obliczyć

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE MATEMATYKA klasy trzecie Gimnazjum nr 19 w Krakowie

WYMAGANIA EDUKACYJNE MATEMATYKA klasy trzecie Gimnazjum nr 19 w Krakowie WYMAGANIA EDUKACYJNE MATEMATYKA klasy trzecie Gimnazjum nr 19 w Krakowie I. Zasady oceniania i sposoby sprawdzania osiągnięć edukacyjnych 1. Ocenianie ma charakter systematyczny i wieloaspektowy. 2. Formy

Bardziej szczegółowo

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum)

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum) Podstawa programowa przedmiotu MATEMATYKA III etap edukacyjny (klasy I - III gimnazjum) Cele kształcenia wymagania ogólne: I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje i tworzy teksty o

Bardziej szczegółowo

Projekt Planu wynikowego do programu MATEMATYKA 2001 Gimnazjum klasa 1. Osiągnięcia ponadprzedmiotowe

Projekt Planu wynikowego do programu MATEMATYKA 2001 Gimnazjum klasa 1. Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego uczeń potrafi: Umiejętności konieczne i podstawowe Osiągnięcia ponadprzedmiotowe KONIECZNE PODSTAWOWE ROZSZERZAJĄCE DOPEŁNIAJĄCE WYKRACZAJĄCE czytać teksty w stylu

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DLA 3 KLASY GIMNAZJUM

ROZKŁAD MATERIAŁU DLA 3 KLASY GIMNAZJUM ROZKŁAD MATERIAŁU DLA 3 KLASY GIMNAZJUM TEMAT LICZBA GODZIN LEKCYJNYCH 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) 1. Lekcja organizacyjna 1 2. System dziesiątkowy 2-4 3. System rzymski 5-6 WYMAGANIA SZCZEGÓŁOWE

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VII

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VII WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VII Ocena Dopuszczający Osiągnięcia ucznia rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie do 3000 odczytuje liczby naturalne dodatnie zapisane

Bardziej szczegółowo

Wymagań edukacyjne z matematyki dla klasy VII Szkoły Podstawowej

Wymagań edukacyjne z matematyki dla klasy VII Szkoły Podstawowej Wymagań edukacyjne z matematyki dla klasy VII Szkoły Podstawowej Ocena celująca Uczeń spełnia wymagania na ocenę bardzo dobrą oraz ponadto: potrafi rozwiązać zadania na kilka sposobów; umie rozwiązywać

Bardziej szczegółowo

Matematyka z kluczem. Szkoła podstawowa nr 18 w Sosnowcu. Przedmiotowe zasady oceniania klasa 7

Matematyka z kluczem. Szkoła podstawowa nr 18 w Sosnowcu. Przedmiotowe zasady oceniania klasa 7 Matematyka z kluczem Szkoła podstawowa nr 18 w Sosnowcu Przedmiotowe zasady oceniania klasa 7 KlasaVII wymagania programowe- wymagania na poszczególne oceny ROZDZIAŁ I LICZBY 1. rozpoznaje cyfry używane

Bardziej szczegółowo

PG im. Tadeusza Kościuszki w Kościerzycach Przedmiot

PG im. Tadeusza Kościuszki w Kościerzycach Przedmiot KARTA MONITOROWANIA PODSTAWY PROGRAMOWEJ KSZTAŁCENIA OGÓLNEGO III etap edukacyjny PG im. Tadeusza Kościuszki w Kościerzycach Przedmiot matematyka Klasa......... Rok szkolny Imię i nazwisko nauczyciela

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KL I NA POSZCZEGÓLNE OCENY W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ RUDKACH Marzena Zbrożyna

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KL I NA POSZCZEGÓLNE OCENY W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ RUDKACH Marzena Zbrożyna WYMAGANIA EDUKACYJNE Z MATEMATYKI W KL I NA POSZCZEGÓLNE OCENY W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ RUDKACH Marzena Zbrożyna DOPUSZCZAJĄCY: Uczeń potrafi: odczytywać informacje przedstawione w tabelach

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem

Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem pojęcie potęgi o wykładniku naturalnym wzór na mnożenie i dzielenie potęg o tych samych podstawach wzór na potęgowanie

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZBY I DZIAŁANIA Poziom konieczny - ocena dopuszczająca porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej,

Bardziej szczegółowo

KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM

KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM POTĘGI I PIERWIASTKI - pojęcie potęgi o wykładniku naturalnym; - wzór na mnożenie i dzielenie potęg o tych samych podstawach; - wzór na potęgowanie

Bardziej szczegółowo

I. Liczby i działania

I. Liczby i działania I. Liczby i działania porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej, zamieniać ułamki zwykłe na dziesiętne i odwrotnie, zaokrąglać liczby do danego rzędu, szacować wyniki działań,

Bardziej szczegółowo

PYTANIA TEORETYCZNE Z MATEMATYKI

PYTANIA TEORETYCZNE Z MATEMATYKI Zbiory liczbowe: 1. Wymień znane Ci zbiory liczbowe. 2. Co to są liczby rzeczywiste? 3. Co to są liczby naturalne? 4. Co to są liczby całkowite? 5. Co to są liczby wymierne? 6. Co to są liczby niewymierne?

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Klasa I - program Matematyka z plusem" LICZBY I DZIAŁANIA POZIOM KONIECZNY - ocena dopuszczająca porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej,

Bardziej szczegółowo

KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ

KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ TREŚCI KSZTAŁCENIA WYMAGANIA PODSTAWOWE WYMAGANIA PONADPODSTAWOWE Liczby wymierne i

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE

WYMAGANIA EDUKACYJNE GIMNAZJUM NR 2 W RYCZOWIE WYMAGANIA EDUKACYJNE niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z MATEMATYKI w klasie II gimnazjum str. 1 Wymagania edukacyjne niezbędne

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne

Katalog wymagań programowych na poszczególne stopnie szkolne rozpoznaje figury podobne zna własności figur podobnych rozpoznaje trójkąty prostokątne podobne Rozdział 6. Figury podobne zna cechy podobieństwa trójkątów prostokątnych podobnych podaje skalę podobieństwa

Bardziej szczegółowo

1. Potęga o wykładniku naturalnym Iloczyn i iloraz potęg o jednakowych podstawach Potęgowanie potęgi 1 LICZBA GODZIN LEKCYJNYCH

1. Potęga o wykładniku naturalnym Iloczyn i iloraz potęg o jednakowych podstawach Potęgowanie potęgi 1 LICZBA GODZIN LEKCYJNYCH TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI 1. POTĘGI 1. Potęga o wykładniku naturalnym 2-3 2. Iloczyn i iloraz potęg o jednakowych podstawach 3. Potęgowanie potęgi

Bardziej szczegółowo

wymagania programowe z matematyki kl. III gimnazjum

wymagania programowe z matematyki kl. III gimnazjum wymagania programowe z matematyki kl. III gimnazjum 1. Liczby i wyrażenia algebraiczne Zna pojęcie notacji wykładniczej. Umie zapisać liczbę w notacji wykładniczej. Umie porównywać liczy zapisane w różny

Bardziej szczegółowo

TEMAT 1. LICZBY I DZIAŁANIA 14 20. 1. Liczby 1-2. 2. Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2

TEMAT 1. LICZBY I DZIAŁANIA 14 20. 1. Liczby 1-2. 2. Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2 TEMAT 1. LICZBY I DZIAŁANIA 14 20 LICZBA GODZIN LEKCYJNYCH 1. Liczby 1-2 2. Rozwinięcia dziesiętne liczb wymiernych 3. Zaokrąglanie liczb. Szacowanie wyników 1 1-2 WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA 8 DZIAŁ 1. LICZBY I DZIAŁANIA

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA 8 DZIAŁ 1. LICZBY I DZIAŁANIA WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA 8 DZIAŁ 1. LICZBY I DZIAŁANIA zna znaki używane do zapisu liczb w systemie rzymskim; zna zasady zapisu liczb w systemie rzymskim; umie zapisać

Bardziej szczegółowo

ZESTAWIENIE TEMATÓW Z MATEMATYKI Z PLUSEM DLA KLASY VIII Z WYMAGANIAMI PODSTAWY PROGRAMOWEJ WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ

ZESTAWIENIE TEMATÓW Z MATEMATYKI Z PLUSEM DLA KLASY VIII Z WYMAGANIAMI PODSTAWY PROGRAMOWEJ WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ ZESTAWIENIE TEMATÓW Z MATEMATYKI Z PLUSEM DLA KLASY VIII Z WYMAGANIAMI PODSTAWY PROGRAMOWEJ TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI 1. LICZBY I DZIAŁANIA 14 h

Bardziej szczegółowo

KRYTERIA OCENIANIA Z MATEMATYKI w klasie 2a w roku szkolnym 2017/18. realizowany program nauczania: Matematyka na czasie, 4 godziny tygodniowo

KRYTERIA OCENIANIA Z MATEMATYKI w klasie 2a w roku szkolnym 2017/18. realizowany program nauczania: Matematyka na czasie, 4 godziny tygodniowo RYTERIA OCENIANIA Z MATEMATYI w klasie 2a w roku szkolnym 2017/18 realizowany program nauczania: Matematyka na czasie, 4 godziny tygodniowo wymagania konieczne (ocena 2); P wymagania podstawowe (ocena

Bardziej szczegółowo

Kryteria oceniania osiągnięć uczniów z matematyki w kl. III gimnazjum. (Program Matematyka z plusem dla III etapu edukacyjnego)

Kryteria oceniania osiągnięć uczniów z matematyki w kl. III gimnazjum. (Program Matematyka z plusem dla III etapu edukacyjnego) Kryteria oceniania osiągnięć uczniów z matematyki w kl. III gimnazjum. (Program Matematyka z plusem dla III etapu edukacyjnego) Ocena DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY CELUJĄCY Uczeń: Uczeń:

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne

Katalog wymagań programowych na poszczególne stopnie szkolne rozpoznaje figury podobne zna własności figur podobnych rozpoznaje trójkąty prostokątne podobne Rozdział 6. Figury podobne zna cechy podobieństwa trójkątów prostokątnych podobnych podaje skalę podobieństwa

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 7SP. V. Obliczenia procentowe. Uczeń: 1) przedstawia część wielkości jako procent tej wielkości;

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 7SP. V. Obliczenia procentowe. Uczeń: 1) przedstawia część wielkości jako procent tej wielkości; WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 7SP Liczby. TEMAT Rozwinięcia dziesiętne liczb wymiernych. Zaokrąglanie liczb. Szacowanie wyników. Dodawanie i odejmowanie liczb dodatnich. Mnożenie i dzielenie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE 8 SZKOŁY PODSTAWOWEJ

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE 8 SZKOŁY PODSTAWOWEJ WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE 8 SZKOŁY PODSTAWOWEJ Wymagania na poszczególne oceny konieczne (ocena dopuszczająca) 1.

Bardziej szczegółowo

Wymagania edukacyjne klasa pierwsza.

Wymagania edukacyjne klasa pierwsza. Wymagania edukacyjne klasa pierwsza. TEMAT WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I DZIAŁANIA Liczby Rozwinięcia dziesiętne liczb wymiernych Zaokrąglanie liczb. Szacowanie wyników Dodawanie

Bardziej szczegółowo

Agnieszka Kamińska, Dorota Ponczek. Matematyka na czasie Rozkład materiału i plan wynikowy dla klasy 2

Agnieszka Kamińska, Dorota Ponczek. Matematyka na czasie Rozkład materiału i plan wynikowy dla klasy 2 Agnieszka amińska, Dorota Ponczek Matematyka na czasie Rozkład materiału i plan wynikowy dla klasy Temat lekcji Zakres treści Osiągnięcia uczeń: 1. Potęga o wykładniku całkowitym. Mnożenie i dzielenie

Bardziej szczegółowo

Wymagania eduka cyjne z matematyki

Wymagania eduka cyjne z matematyki Wymagania eduka cyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZ B Y I DZIAŁANIA porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej, zamieniać ułamki zwykłe na

Bardziej szczegółowo

2. Kryteria oceniania

2. Kryteria oceniania 2. Kryteria oceniania OSIĄGNIĘCIA PONADPRZEDMIOTOWE W rezultacie kształcenia matematycznego w klasie 1 gimnazjum uczeń potrafi: Umiejętności konieczne i podstawowe Umiejętności ponadpodstawowe Konieczne

Bardziej szczegółowo

Przedmiotowy system oceniania Wymagania na poszczególne oceny,,liczy się matematyka

Przedmiotowy system oceniania Wymagania na poszczególne oceny,,liczy się matematyka Przedmiotowy system oceniania Wymagania na poszczególne oceny,,liczy się matematyka I. Potęgi i pierwiastki. Klasa II 1. Zapisuje w postaci potęgi iloczyn tych samych czynników i odwrotnie. 2. Oblicza

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI Szkoła Branżowa I Stopnia

WYMAGANIA EDUKACYJNE Z MATEMATYKI Szkoła Branżowa I Stopnia WYMAGANIA EDUKACYJNE Z MATEMATYKI Szkoła Branżowa I Stopnia KLASA I 1. Liczby rzeczywiste i wyrażenia algebraiczne 1) Liczby naturalne, cechy podzielności stosuje cechy podzielności liczby przez 2, 3,

Bardziej szczegółowo

Dopuszczający Dostateczny Dobry Bardzo dobry Celujący

Dopuszczający Dostateczny Dobry Bardzo dobry Celujący Liczby i wyrażenia zna pojęcie liczby naturalnej, całkowitej, wymiernej zna pojęcie liczby niewymiernej, rzeczywistej zna sposób zaokrąglania liczb umie zapisać i odczytać liczby naturalne dodatnie w systemie

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE

Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje

Bardziej szczegółowo

MATEMATYKA Z PLUSEM DLA KLASY VII W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ. programowej dla klas IV-VI. programowej dla klas IV-VI.

MATEMATYKA Z PLUSEM DLA KLASY VII W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ. programowej dla klas IV-VI. programowej dla klas IV-VI. MATEMATYKA Z PLUSEM DLA KLASY VII W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI. LICZBY I DZIAŁANIA 6 h Liczby. Rozwinięcia

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE DO PROGRAMU MATEMATYKA 2001 GIMNAZJUM KL. IA, ID ROK SZK. 2010/2011. Osiągnięcia ponadprzedmiotowe

WYMAGANIA EDUKACYJNE DO PROGRAMU MATEMATYKA 2001 GIMNAZJUM KL. IA, ID ROK SZK. 2010/2011. Osiągnięcia ponadprzedmiotowe WYMAGANIA EDUKACYJNE DO PROGRAMU MATEMATYKA 2001 GIMNAZJUM KL. IA, ID ROK SZK. 2010/2011 W rezultacie kształcenia matematycznego uczeń potrafi: Umiejętności konieczne i podstawowe Osiągnięcia ponadprzedmiotowe

Bardziej szczegółowo

Wymagania edukacyjne klasa druga.

Wymagania edukacyjne klasa druga. Wymagania edukacyjne klasa druga. TEMAT WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. POTĘGI Potęga o wykładniku naturalnym Iloczyn i iloraz potęg o jednakowych podstawach Potęgowanie potęgi Potęgowanie

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Klasa II program Matematyka z plusem POTĘGI POZIOM KONIECZNY ocena dopuszczająca zapisać potęgę w postaci iloczynu zapisać iloczyn jednakowych czynników w postaci potęgi

Bardziej szczegółowo

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM Na ocenę dopuszczającą uczeń umie : WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM stosować cztery podstawowe działania na liczbach wymiernych, zna kolejność wykonywania działań

Bardziej szczegółowo

WYMAGANIA EDUKACUJNE Z MATEMATYKI Z PLUSEM DLA KLASY VIII WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ TEMAT

WYMAGANIA EDUKACUJNE Z MATEMATYKI Z PLUSEM DLA KLASY VIII WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ TEMAT WYMAGANIA EDUKACUJNE Z MATEMATYKI Z PLUSEM DLA KLASY VIII TEMAT WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I DZIAŁANIA System rzymski. Powtórzenie i utrwalenie umiejętności z zakresu podstawy

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego w klasie 1 gimnazjum uczeń potrafi:

Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego w klasie 1 gimnazjum uczeń potrafi: 1 Copyright by Wydawnictwa Szkolne i Pedagogiczne sp. z o.o., Warszawa 2015 Kryteria oceniania Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego w klasie 1 gimnazjum uczeń potrafi:

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II GIMNAZJUM Małgorzata Janik

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II GIMNAZJUM Małgorzata Janik WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II GIMNAZJUM Małgorzata Janik DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY Potęgi i pierwiastki Uczeń: Zna i rozumie pojęcie potęgi o wykładniku naturalnym Umie

Bardziej szczegółowo

rozszerzające (ocena dobra)

rozszerzające (ocena dobra) WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 8 ROK SZKOLNY 2018/2019 OPARTE NA PROGRAMIE NAUCZANIA MATEMATYKI W SZKOLE PODSTAWOWEJ MATEMATYKA Z PLUSEM Wymagania na poszczególne oceny konieczne (ocena dopuszczająca)

Bardziej szczegółowo

Końcoworoczne kryteria oceniania dla klasy II z matematyki przygotowały mgr Magdalena Murawska i mgr Iwona Śliczner

Końcoworoczne kryteria oceniania dla klasy II z matematyki przygotowały mgr Magdalena Murawska i mgr Iwona Śliczner Końcoworoczne kryteria oceniania dla klasy II z matematyki przygotowały mgr Magdalena Murawska i mgr Iwona Śliczner Semestr I Rozdział: Potęgi i pierwiastki zapisuje w postaci potęgi iloczyn tych samych

Bardziej szczegółowo