Arch. Min. Sci., Vol. 58 (2013), No 3, p
|
|
- Janina Tomaszewska
- 6 lat temu
- Przeglądów:
Transkrypt
1 Arch. Mi. Sci., Vol. 58 (2013), No 3, p Electroic versio (i color) of this paper is available: DOI /amsc BEATA TRZASKUŚ-ŻAK*, ANDRZEJ ŻAK** BINARY LINEAR PROGRAMMING IN THE MANAGEMENT OF MINE RECEIVABLES BINARNE PROGRAMOWANIE LINIOWE W ZARZĄDZANIU NALEŻNOŚCIAMI KOPALNI This paper presets a method of biary liear programmig for the selectio of customers to whom a rebate will be offered. I retur for the rebate, the customer udertakes paymet of its debt to the mie by the deadlie specified. I this way, the compay is expected to achieve the required rate of collectio of receivables. This, of course, will be at the expese of reduced reveue, which ca be made up for by icreased sales. Customer selectio was doe i order to keep the overall cost to the mie of the offered rebates as low as possible: K x k mi cr j j j1 where: K cr total cost of rebates grated by the mie; k j cost of gratig the rebate to a j th customer; x j decisio variables; j = 1,, particular customers. The calculatios were performed with the Solver tool (Excel programme). The cost of rebates was calculated from the formula: (j) k j = P j K k where: P j differece i reveues from customer j; K k (j) cost of the so-called trade credit with regard to customer j. The cost of the trade credit was calculated from the formula: T r ts Kk Ns s * AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY, FACULTY OF MINING AND GEOENGINEERING, DEPARTMENT OF ECONOMICS AND MANAGEMENT IN INDUSTRY, AL. A. MICKIEWICZA 30, KRAKOW, POLAND. t-zak@agh.edu.pl ** AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY, FACULTY OF APPLIED MATHEMATICS, DEPARTMENT OF DISCRETE MATHEMATICS, AL. A. MICKIEWICZA 30, KRAKOW, POLAND. zakadrz@agh.edu.pl
2 942 where r iterest rate o the bak loa, % t s collectio time for the receivable i days (e.g. t 1 = 30, t 2 = 45,, t 12 = 360); N s value of the receivable at collectio date t s. This paper presets the geeral model of liear biary programmig for maagig receivables by gratig rebates. The model, i its geeral form, aims at: miimisig the objective fuctio: with the restrictios: j1 K x k mi cr j j j1 ( N x N ) qn tji j ji i i = 1,..., m ad: x j (0,1) where: N t ji value of the timely paymets of a customer j i a i th moth of the period aalysed; N ji value of the overdue receivables of a customer j i a i th moth of the period aalysed; q the assumed miimum percetage of timely paymets collected; N i summarised value of all receivables i the moth i; m the umber of moths i the period aalysed. The geeral model was used for applicatio to the example of the operatig Mie X. Furthermore, the study has bee exteded through the presetatio of a biary model of liear programmig, i which the objective fuctio should miimise the aticipated value of the cost of rebates: EK ( ) p xk cr j j j j1 where: p j deotes the probability of use of the rebate by customer j. The paper presets two mathematical models. Oe is a determiist model which ca be used uder certaity coditios, whereas the other cosiders the risk of the rebates ot beig used by the customers. The paper also describes some radom experimets with the Mote Carlo method. Keywords: liear programmig method, risk ad ucertaity, rebate, discout, receivables maagemet W artykule zastosowao metodę biarego programowaia liiowego w celu wyboru odbiorców, którym zostaie zapropooway rabat. W zamia za propooway rabat, day odbiorca zobowiązuje się spłacać w założoym termiie ależość kopali. W te sposób przedsiębiorstwo ma osiągąć odpowiedi poziom ściągalości ależości termiowych. Staie się to oczywiście kosztem zmiejszeia przychodów, które moża zrekompesować poprzez zwiększeie sprzedaży. Wybór odbiorców dokoay został w taki sposób aby sumaryczy koszt zapropoowaego rabatu był dla kopali jak ajmiejszy, czyli: K x k mi cr j j j1 gdzie: K cr całkowity koszt udzieloych rabatów przez kopalię k j koszt udzieleia rabatu j-temu odbiorcy, x j zmiee decyzyje, j = 1,, poszczególi odbiorcy.
3 943 Do obliczeń wykorzystao arzędzie Solver (program Exel). Koszty rabatów wyliczoo ze wzoru: (j) k j = P j K k gdzie P j różica w przychodach od odbiorcy j, (j) K k koszt tak zwaego kredytu kupieckiego pooszoego względem odbiorcy j. Koszt kredytu kupieckiego wyzaczoo ze wzoru: T r ts Kk Ns s gdzie r stopa procetowa zaciągiętego kredytu bakowego, %, t s okres ściągaia ależości, di (p. t 1 = 30, t 2 = 45,, t 12 = 360), N s wartość ależości o termiie ściągalości t s. W artykule zaprezetowao ogóly model biarego programowaia liiowego do zarządzaia ależościami, z wykorzystaiem rabatu. Model te w ogólej postaci ma: zmiimalizować fukcję celu: przy ograiczeiach: j1 K x k mi cr j j j1 ( N x N ) qn tji j ji i i = 1,..., m oraz: x j (0,1) gdzie: N t ji wartość ależości termiowych odbiorcy j w i-tym miesiącu aalizowaego okresu, N ji wysokość ależości ietermiowych odbiorcy j w i-tym miesiącu okresu, q założoy, miimaly odsetek ściągalości ależości termiowych, N i sumarycza wartość wszystkich ależości w miesiącu i, m liczba miesięcy w aalizowaym okresie. Ogóly model posłużył do jego aplikacji a przykładzie daych fukcjoującej kopali X. Poadto rozważaia te rozszerzoo przedstawiając biary model programowaia liiowego, w którym fukcja celu powia miimalizować oczekiwaą wartość kosztów rabatów, czyli: EK ( ) p xk cr j j j j1 gdzie p j ozacza prawdopodobieństwo skorzystaia z rabatu przez odbiorcę j. W artykule zostały sformułowae dwa modele matematycze. Pierwszy z ich to model determiistyczy, który może być stosoway w warukach pewości, zaś drugi uwzględia ryzyko ieskorzystaia z rabatów przez odbiorców. W artykule przeprowadzoo rówież pewe losowe eksperymety za pomocą metody Mote Carlo. Słowa kluczowe: metoda programowaia liiowego, ryzyko i iepewość, rabat, zarządzaie ależościami
4 Itroductio Liear programmig has bee applied to a umber of optimisatio problems (Czopek, 2001; Osiadacz, 2000; Jaśkowski, 1998). It ca be also applied i the maagemet of receivables which result from trade credits grated i the course of busiess, icludig various forms of rebates (Cooke, 2001; Jasiukiewicz at.al., 2001; Kloowska, 2005; Lewadowska, 2000). Covetioal receivables-maagemet methods are based o the so-called icremetal method, i which the icrease i reveue after the rebate compesates for the cost of gratig the rebate. However, liear programmig eables methods of receivables maagemet to be optimised, for example, as follows, through: maximisig reveue from sales, ad thus profit; optimisig the periods of rebates grated; miimisig the cost of trade credit grated; miimisig the risk of overdue or lost receivables; restructurig timely paymets ad overdue receivables. The liear programmig problem ivolves fidig a optimal solutio to the liear objective fuctio f(x) with argumets x 1, x 2,..., x, give certai restrictios icludig the variables x j (j = 1, 2,..., ). This ca be preseted i geeral form, as follows: to optimise the objective fuctio: f ( x1, x2,..., x ) c x optimum(max,mi) (1) j j j1 with the restrictios: or ij j i j1 a x b (2) ij j i j1 a x b, for i = 1, 2,..., m (3) x j 0, for j = 1, 2,..., (4) m < (5) where: f(x 1, x 2,..., x ) objective fuctio; c j coefficiets of objective fuctio; a ij, b j directio coefficiets, real umbers; m umber of restrictios. I the group of liear programmig problems uder cosideratio, it is aturally ecessary to limit the rage of acceptable solutios (Gass, 1980; Jasiukiewicz et. al., 2001; Radzikowski, 1979), sice two further coditios limitig the solutio usually have to be satisfied. I the case of a mie, such restrictios might be, for example, limited resources or limited miig output.
5 945 I receivables maagemet, restrictios (2) ad (3), depedig o the rebate scheme chose, may ivolve (Lewadowska, 2000; Pluta & Michalski, 2005; Portalska & Koratowicz, 2003; Sierpińska, 2005; Szyszko, 2000) the followig: the acceptable value of receivables for the etire mie or a idividual customer; the acceptable value of the overall cost of the trade credit grated, or grated idividually to each of the customers; the expected reveue of the mie after applyig the rebate; miimum prices eeded to guaratee required reveue; miimum rate of collectio of timely paymets, etc. I the case of maagemet of a miig compay, geerally speakig, the decisio-maker, eve i the case of receivables maagemet, is ofte faced with a yes or o choice. If this is the case, biary problems are ivolved, usually decisio-related problems, with the atural iterpretatio x j = 0, whe a decisio is made ot to execute a project or x j = 1 whe decided otherwise. This paper addresses this very issue, which depeds o the selectio of customers to whom the mie will ad will ot grat the rebate. The paper formulates two mathematical models. Oe ca be applied uder determiistic coditios, whereas the other cosiders the risk of the rebates ot used by the customers. Some completely radom experimets were also coducted (usig the Mote Carlo method). Therefore, the followig aalysis of the problem ca be uderstood as how to make decisios uder certaity, risk or ucertaity coditios. It is worth metioig that strategies for the above-metioed situatios have also bee ivestigated (Cyrul, 2004) i a paper presetig differet methods. 2. Formulatio of the geeral biary model of the liear programmig Let us suppose that the mie accurately moitors its customers ad is able to specify (at least approximately) the followig values: k j cost of rebate grated to customer j, j = 1, 2,...,. N t ji value of the timely paymets of customer j i the i th moth of the period aalysed; N ji value of the overdue receivables of a customer j i the i th moth of the period aalysed; umber of customers. Let N ti deote the overall value of all timely paymets from all customers i the moth i, N ti N j1 t ji, i = 1, 2,..., m (6) ad N i deote the overall value of all overdue receivables from all customers i the moth i, N i N (7) j1 ad N i deote the overall value of all receivables i the moth i: ji N i = N ti + N i (8)
6 946 It is further assumed that a decisio o gratig a rebate to a give customer applies to the etire period aalysed. The customer, i retur for the rebate, udertakes to pay all receivables i timely fashio every moth. The objective of the mie is to grat rebates to some of the customers, so that the overall percetage of timely paymets from all customers will icrease to the assumed miimum level i every moth. Such a miimum percetage will be deoted by q. I additio, the overall cost of rebates should be as low as possible. To create a mathematical model for the above problem, the followig decisive variables will be itroduced: x j 1, customer j grated the discout (9) 0, otherwise. Let us aalyse how timely paymets chage after rebates are applied. While gratig a rebate to the customer j (i.e., whe x j = 1), the timely paymets of that customer will icrease by N ji i each moth i, ad thus yield N t ji + N ji, which equals N t ji + x j N ji. If o rebate is grated to the customer j, i.e. whe x j = 0, the timely paymets of that customer will ot chage ad will, therefore, remai at the level N t ji, which, agai, equals N t ji + x j N ji. Therefore, the coditio uder which the timely paymets i each moth i achieve the assumed miimum percetage of the overall receivables of that moth will be fulfilled by the restrictio: NtjixjNji qni (10) j1 Assumig that the cost of the rebate grated to customer j is deoted by k j, the the actual cost of the rebate grated to customer j is x j k j, which meas zero cost whe the rebate is ot grated (because the x j = 0); if the rebate is grated, it is simply k j (because the x j = 1). Hece, the overall cost of the rebates give is: K x k (11) cr j j j1 To sum up, the mathematical model of biary liear programmig of the problem is as follows: miimise ad: with the restrictios K x k (12) cr j j j1 NtjixjNji qn (13) i j1 x j {0,1} j = 1, 2,..., (14) It is kow that gratig the rebate to customer j meas, i practice, reducig the sales price for that customer. If o additioal terms were added to the cotract save the requiremet to reduce
7 the term of paymet for customer j, the the reveue of the mie would be reduced. To prevet that, extra provisios should be added to the cotract. Therefore, let the followig deote: A oj the reveue of the mie received so far from customer j; A j the expected reveue from customer j, give the rebate. The the additioal provisio will take the followig form: for x j = 1 for x j = A j x j A oj (15) A j = A oj (16) Note, however, that coditios (15) ad (16) do ot costitute part of the model (12)-(14), but are icluded oly i a modified cotract with a give customer. 3. Applicatio of the biary model of the liear programmig Let us preset the above model i a hypothetical example. Table 1 shows the data regardig the paymet of receivables by te customers withi a period of 3 moths i the past year. The mie aticipates the same values i the first quarter of the year aalysed. Paymet of mie receivables by 10 selected customers, PLN TABLE 1 Customer Moth of the 1 st quarter year A Receivables paid o time Overall overdue receivables Overdue receivables, moths , ,597 92,597 20, customer , ,032 53,008 80, ,749 23,445 66,280 67, ,859 39,031 19,420 19, customer ,821 35,745 7,613 18,475 9, ,858 42,478 17,719 9,714 15, , customer ,656 34,945 33,303 1, ,470 63,179 48,180 13,357 1, ,733 30,405 30, customer ,245 23,174 23, ,780 27,797 21,345 6, customer , ,785 6,278 6,
8 948 TABLE ,603 16,279 16, customer ,702 16, , , ,100 5,926 5, customer ,581 7,725 7, , ,750 64,287 15,210 13,455 16,928 18, customer ,647 61,288 29,750 12,274 4,381 14, ,108 81,106 29,818 19,750 12,274 19, ,204 40, ,222 0 customer ,330 40,303 13, , ,444 76,578 36,275 13, , , customer ,392 29,054 29, ,725 29,211 15,965 13, TOTAL 1,109,986 1,173,668 Percetage, % As show above, timely paymets costitute oly 49% of all receivables. Assumig that the goal of the compay s maagemet is to pla a strategy which would result i a receivable collectio rate of at least 80% each moth, that goal ca be achieved by givig rebates i retur for timely paymet of the receivables. Cosiderig, for example, customer 9 ad the third moth, assumig that the aual iterest rate of a bak loa is r = 9.5% ad the rate of the rebate is u = 9%, the, the profit achieved through payig off the trade credit would be: Kk PLN 12 6 The loss i the third moth due to the rebate would be: P 0.09 ( ) PLN Therefore, i the third moth, the cost of the rebate grated to customer 9 would be: P K k PLN The value k 9 would be achieved after addig up the cost of the rebate i all 3 moths. Table 2 below presets the cost calculated. Cost of rebate to idividual customers i three aalysed moths i PLN TABLE 2 k 1 k 2 k 3 k 4 k 5 k 6 k 7 k 8 k 9 k 10 41, , , , , , , , , , The curret status of overdue receivables ad timely paymets is show i tables 3 ad 4.
9 949 Value of overdue receivables paid by idividual customers, PLN TABLE 3 Customer Overall overdue receiveables Moth 1 112,597 39, , ,279 5,926 64,287 40, ,747 Moth 2 133,032 35,745 34,945 23, ,279 7,725 61,288 40,303 29, ,545 Moth 3 156,749 42,478 63,179 27,797 6, ,106 76,578 29, ,376 Value of timely paymets paid by idividual customers, PLN TABLE 4 Customer Overall timely paymets Moth 1 80,744 17,859 6,598 29, ,603 43,100 99,750 23,204 35, ,611 Moth 2 36,718 19,821 50,656 26,245 33,063 50,702 37,581 64,647 49,330 19, ,155 Moth ,858 10,470 17,780 26,785 88,168 43,882 76,108 25,444 26, ,220 As show above, the overall performig ad overdue receivables are respectively PLN 693,358, 769,700 ad 820,596 i moths 1, 2 ad 3, ad 80% (the assumed miimum percetage q) of that sum is respectively PLN 554, i moth 1, PLN 615,760 i moth 2 ad PLN 656, i moth 3. After substitutig the data i the model (12)-(14) ad solvig it with Excel s Solver tool, the followig solutio was obtaied: x1 x3 x4 x9 1, x2 x5 x6 x7 x8 x10 0 ad the total cost of the rebate grated was K cr = PLN 83, Therefore, the best choice would be to grat rebates to customers 1, 3, 4 ad 9. The the etire cost of the rebate would be PLN 83, For example, achievig the required level of timely paymets would be possible if the compay grated rebates to customers 1, 3, 8 ad 10. The, however, the overall cost of rebates would be PLN 102, Biary liear programmig method i gratig rebates to mie customers, cosiderig risk I practice, the requiremet that those customers give rebates pay their debt o time might ot be met. Therefore, a additioal radom elemet has bee itroduced. Let p j be the approximate kow (as a result of moitorig) probability that customer j will use the rebate. The objective is to idetify those customers to whom rebates will be grated, so that the expected value of timely paymets is at least q 100% of all receivables (ote that q is the miimum assumed percetage of collected timely paymets) ad the cost of the rebates give is as low as possible.
10 950 N t ji deotes a radom variable which idicates a icrease i the collectio of timely paymets from customer j i moth i, whe that customer was grated the rebate. Therefore: N t ji = N ji with the probability p j N t ji = 0 with the probability 1 p j (the above equatios result from the fact that i cases where the rebate is used, the customer is obliged to pay overdue receivables o time). Therefore, the expected value of the icrease i timely paymets from customer j i moth i equals: E( N ) N p (17) tji ji j Fially, the expected value of the icrease i timely paymets from customer j i moth i equals: EN ( N ) N E( N ) N p N (18) tji tji tji tji tji j ji owig to the liearity of the expected values (ote that N t ji is ot a radom variable but a kow value). O the other had, whe customer j is ot grated the rebate, the performig receivables will ot chage ad will remai N t ji. I geeral, both situatios ca be described i a commo formula: EN ( N ) N xp N (19) tji tji tji j j ji usig agai the iterpretatio of the decisio variables x j. Note that the overall cost is also a radom variable with the expected value programmig problem will be ivolved: miimise with the restrictios cr j j j j1 EK ( ) p x k cr j j j j1. Therefore, the followig biary EK ( ) p xk (20) Ntjixj pjnji qni i = 1,..., m (21) j1 x j {0,1} j = 1,..., (22) The above model will be described agai with the data from table 1. Moreover, all probabilities p j were determied as 0.8. After pluggig the data ito the model (15)-(17) ad solvig it with Excel s Solver tool, the followig solutio was obtaied: x1 x3 x8 x9 x10 1 x2 x4 x5 x6 x7 0 ad the expected cost of the rebate grated was K cr = PLN 94,
11 Summary Note that the cost of gratig rebates k j, j = 1,..., ca be uderstood i the broadest sese as the cost of debt collectio resultig from other methods of receivables maagemet (e.g. court fees, hirig a debt collectio compay, or the cost of credit isurace). Therefore, model (12)-(14) would also be applicable i such aalysis (this refers also to model (20)-(22)). The above model (12)-(14) was also applied to aalysis of the receivables of a real mie ( X ) ad its 110 selected customers. The simulated level of the compay s timely paymets i Year 1 of the aalysis was aroud 41%. The required share of timely paymets was fixed, as i the example, at the level of at least 80% i each moth of the year aalysed. To solve the biary problem (12)-(14), the Solver tool was used agai. However, due to the great umber of variables (110 customers), Excel did ot fid a optimum solutio withi a reasoable time. Istead of optimisig the origial biary problem, it was decided to solve its liear relaxatio, i.e. the problem of liear programmig resultig from (12)-(14), by replacig the restrictios (14) with 0 x j 1 The solutio of the relaxatio is the value of PLN 2,227,114 which is the lower limit for K cr, i.e. K cr PLN 2,227,114. Such a solutio, however, is uacceptable, sice the variables assume fractioal values ad have o practical iterpretatio. The solutio was the rouded to the closest biary oe. Oe drawback of such roudig is that it may ot fulfil all the required restrictios. Also, i this case, after roudig, the percetage of timely paymets was maitaied above the level of 80% i all moths except oe, i which it was slightly below 79%. Sice that level oly slightly differed from the assumed oe, such roudig was cosidered acceptable. The cost of such a solutio was PLN 2,354,076, so the relative error does ot exceed 5.7%. The value of relative error was derived from the formula: * * opt Z Z Z Z Z where: Z * the accepted solutio, Z opt ukow value of the optimum solutio. opt opt The iequality i the formula results from the fact that Z opt 2,227,114 PLN. It is merely a estimatio of the relative error of approximatio. I practice, a much smaller error should be expected. The solutio was, therefore, cosidered satisfactory. To compesate for the resultat cost of the rebate by icreasig sales, the mie would have to sell 48, Mg more product at a average price of PLN 48.08/Mg. I the mie i questio, the average mothly sales i the year aalysed amouted to 130, Mg, so the plaed icrease i sales would be 37.5% of the mothly average. Some radom experimets were also coducted, usig the Mote Carlo method, i which rebates were grated to all customers, ad the probability of usig the rebate was set at 0.7 for each of the customers. The expected value of timely paymets slightly exceeded 80% i each moth. The expected value of the total cost of the rebates grated was PLN 3,020, As ca be see, careful selectio (simplex method) of customers to whom rebates should be grated
12 952 works, i this respect, better tha radom choice (Mote Carlo method). However, model (12)- (14) will produce good results oly whe all customers are carefully moitored ad whe most of the predictios prove to be correct. Calculatios with the Mote Carlo method are less sesitive to uexpected chages i some values. The model described by formulas (20)-(22) is a sort of combiatio of the optimum choice method with a certai degree of radomess i allowig the customers ot to use the rebate. I cotrast to the Mote Carlo method, however, a group of customers to whom we are iclied to grat the rebate is first idetified. The, radom methods are applied to the selected group, whereas i the Mote Carlo method, radom methods were applied to all customers. Model (20)-(22) is a kid of compromise (limited radomess) betwee optimum choice ad radom choice of the recipiets of the rebates. Model (20)-(22) was also applied to the aalysed Mie X. A procedure was adopted similar to the case of model (12)-(14). The probability of usig the rebate was set at 0.7. A solutio meetig all coditios ad with a expected value of the total cost of PLN 2,855,210 was obtaied. Thus it ca be stated that the attempt to safeguard agaist certai radom occurreces resulted i icreasig the overall expected cost of the operatio. Note, however, that complete radomess i gratig rebates resulted i a expected overall cost of PLN 3,020, (see the summary of model (12)-(14)). The paper was writte i 2013 withi the framework of statutory research registered with the AGH Uiversity of Sciece ad Techology i Krakow, uder the umber Refereces Cooke K.A., Positive Cash Flow. Career Press. New York. Cyrul T., Risk ad decisios - selected theories. Arch. Mi. Sci., Vol. 49, Spec. Iss., p Czopek K.,2001. Budgetig of the miig output costs by meas of dual programmig. Arch. Mi. Sci., Vol. 46, No. 1, p Gass S.I., Programowaie liiowe: metody i zastosowaia. PWN, Warszawa. Jasiukiewicz B., Jokiel E.M., Koźma Z., Ożóg M., Skrzycka-Pilch B., Widykacja ależości w obrocie gospodarczym. ODDK, Gdańsk. Jaśkowski A., Multi-dimesioal optimizatio of quatitative-qualitative productio structure of a group of coal mies (holdig compaies) i the light of basic requiremets of coal cosumers. Arch. Mi. Sci., Vol. 43, No. 4, p Kloowska S., Należości, wycea, ewidecja księgowa, ujęcie podatkowe. ODDK, Gdańsk. Lewadowska L., Niekowecjoale formy fiasowaia przedsiębiorczości. ODDK, Gdańsk Osiadacz A., Optimizatio i atural gas trasmissio etwork. Arch. Mi. Sci., Vol. 45, No. 3, p Pluta W., Michalski G., Krótkotermiowe zarządzaie kapitałem. C. H. Beck, Warszawa. Portalska A., Koratowicz O., Odzyskiwaie ależości pieiężyh. C. H. Beck, Warszawa. Radzikowski W., Programowaie liiowe i ieliiowe w orgaizacji i zarządzaiu. Wydawictwo Uiwersytetu Warszawskiego. Sierpińska M., Nowoczese arzędzia zarządzaia fiasami w przedsiębiorstwie góriczym-cz. 3. Wiadomości Góricze, Katowice, R. 56, r 3, s Szyszko L., Fiase przedsiębiorstwa. PWE, Warszawa. Received: 23 November 2012
Machine Learning for Data Science (CS4786) Lecture 8. Kernel PCA & Isomap + TSNE
Machie Learig for Data Sciece (CS4786) Lecture 8 Kerel PCA & Isomap + TSNE LINEAR PROJECTIONS X d W = Y K d K Works whe data lies i a low dimesioal liear sub-space KERNEL TRICK ( ) ( ) We have have ice
Revenue Maximization. Sept. 25, 2018
Revenue Maximization Sept. 25, 2018 Goal So Far: Ideal Auctions Dominant-Strategy Incentive Compatible (DSIC) b i = v i is a dominant strategy u i 0 x is welfare-maximizing x and p run in polynomial time
Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019
Poniższy zbiór zadań został wykonany w ramach projektu Mazowiecki program stypendialny dla uczniów szczególnie uzdolnionych - najlepsza inwestycja w człowieka w roku szkolnym 2018/2019. Tresci zadań rozwiązanych
Helena Boguta, klasa 8W, rok szkolny 2018/2019
Poniższy zbiór zadań został wykonany w ramach projektu Mazowiecki program stypendialny dla uczniów szczególnie uzdolnionych - najlepsza inwestycja w człowieka w roku szkolnym 2018/2019. Składają się na
Tychy, plan miasta: Skala 1: (Polish Edition)
Tychy, plan miasta: Skala 1:20 000 (Polish Edition) Poland) Przedsiebiorstwo Geodezyjno-Kartograficzne (Katowice Click here if your download doesn"t start automatically Tychy, plan miasta: Skala 1:20 000
Patients price acceptance SELECTED FINDINGS
Patients price acceptance SELECTED FINDINGS October 2015 Summary With growing economy and Poles benefiting from this growth, perception of prices changes - this is also true for pharmaceuticals It may
Cracow University of Economics Poland. Overview. Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions 2000-2005
Cracow University of Economics Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions 2000-2005 - Key Note Speech - Presented by: Dr. David Clowes The Growth Research Unit CE Europe
Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)
Zakopane, plan miasta: Skala ok. 1:15 000 = City map (Polish Edition) Click here if your download doesn"t start automatically Zakopane, plan miasta: Skala ok. 1:15 000 = City map (Polish Edition) Zakopane,
Hard-Margin Support Vector Machines
Hard-Margin Support Vector Machines aaacaxicbzdlssnafiyn9vbjlepk3ay2gicupasvu4iblxuaw2hjmuwn7ddjjmxm1bkcg1/fjqsvt76fo9/gazqfvn8y+pjpozw5vx8zkpvtfxmlhcwl5zxyqrm2vrg5zw3vxmsoezi4ogkr6phieky5crvvjhriqvdom9l2xxftevuwcekj3lktmhghgniauiyutvrwxtvme34a77kbvg73gtygpjsrfati1+xc8c84bvraowbf+uwnipyehcvmkjrdx46vlykhkgykm3ujjdhcyzqkxy0chur6ax5cbg+1m4bbjptjcubuz4kuhvjoql93hkin5hxtav5x6yyqopnsyuneey5ni4keqrxbar5wqaxbik00icyo/iveiyqqvjo1u4fgzj/8f9x67bzmxnurjzmijtlybwfgcdjgfdtajwgcf2dwaj7ac3g1ho1n4814n7wwjgjmf/ys8fenfycuzq==
LEARNING AGREEMENT FOR STUDIES
LEARNING AGREEMENT FOR STUDIES The Student First and last name(s) Nationality E-mail Academic year 2014/2015 Study period 1 st semester 2 nd semester Study cycle Bachelor Master Doctoral Subject area,
ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS.
ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS. Strona 1 1. Please give one answer. I am: Students involved in project 69% 18 Student not involved in
SUPPLEMENTARY INFORMATION FOR THE LEASE LIMIT APPLICATION
SUPPLEMENTARY INFORMATION FOR THE LEASE LIMIT APPLICATION 1. Applicant s data Company s name (address, phone) NIP (VAT) and REGON numbers Contact person 2. PPROPERTIES HELD Address Type of property Property
Arch. Min. Sci., Vol. 58 (2013), No 2, p. 541 550
Arch. Min. Sci., Vol. 58 (2013), No 2, p. 541 550 Electronic version (in color) of this paper is available: http://mining.archives.pl DOI 10.2478/amsc-2013-0036 KAZIMIERZ CZOPEK *, BEATA TRZASKUŚ-ŻAK*
Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis
Machine Learning for Data Science (CS4786) Lecture11 5 Random Projections & Canonical Correlation Analysis The Tall, THE FAT AND THE UGLY n X d The Tall, THE FAT AND THE UGLY d X > n X d n = n d d The
www.irs.gov/form990. If "Yes," complete Schedule A Schedule B, Schedule of Contributors If "Yes," complete Schedule C, Part I If "Yes," complete Schedule C, Part II If "Yes," complete Schedule C, Part
SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like
SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1 I SSW1.1, HFW Fry #65, Zeno #67 Benchmark: Qtr.1 like SSW1.2, HFW Fry #47, Zeno #59 Benchmark: Qtr.1 do SSW1.2, HFW Fry #5, Zeno #4 Benchmark: Qtr.1 to SSW1.2,
Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science
Proposal of thesis topic for mgr in (MSE) programme 1 Topic: Monte Carlo Method used for a prognosis of a selected technological process 2 Supervisor: Dr in Małgorzata Langer 3 Auxiliary supervisor: 4
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition) Robert Respondowski Click here if your download doesn"t start automatically Wojewodztwo Koszalinskie:
Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering
Machine Learning for Data Science (CS4786) Lecture 11 Spectral Embedding + Clustering MOTIVATING EXAMPLE What can you say from this network? MOTIVATING EXAMPLE How about now? THOUGHT EXPERIMENT For each
www.irs.gov/form990. If "Yes," complete Schedule A Schedule B, Schedule of Contributors If "Yes," complete Schedule C, Part I If "Yes," complete Schedule C, Part II If "Yes," complete Schedule C, Part
MaPlan Sp. z O.O. Click here if your download doesn"t start automatically
Mierzeja Wislana, mapa turystyczna 1:50 000: Mikoszewo, Jantar, Stegna, Sztutowo, Katy Rybackie, Przebrno, Krynica Morska, Piaski, Frombork =... = Carte touristique (Polish Edition) MaPlan Sp. z O.O Click
Financial results of Apator Capital Group in 1Q2014
I. Wyniki GK Apator za rok 213 - Podsumowanie Raportowane przychody ze sprzedaży na poziomie 212 (wzrost o 1,5%), nieznacznie (3%) poniżej dolnego limitu prognozy giełdowej. Raportowany zysk netto niższy
Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów
Rozpoznawanie twarzy metodą PCA Michał Bereta www.michalbereta.pl 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów Wiemy, że możemy porównywad klasyfikatory np. za pomocą kroswalidacji.
SUPPLEMENTARY INFORMATION FOR THE LEASE LIMIT APPLICATION
SUPPLEMENTARY INFORMATION FOR THE LEASE LIMIT APPLICATION 1. Applicant s data Company s name (address, phone) NIP (VAT) and REGON numbers Contact person 2. PPROPERTIES HELD Address Type of property Property
Wydział Fizyki, Astronomii i Informatyki Stosowanej Uniwersytet Mikołaja Kopernika w Toruniu
IONS-14 / OPTO Meeting For Young Researchers 2013 Khet Tournament On 3-6 July 2013 at the Faculty of Physics, Astronomy and Informatics of Nicolaus Copernicus University in Torun (Poland) there were two
Konsorcjum Śląskich Uczelni Publicznych
Konsorcjum Śląskich Uczelni Publicznych Dlaczego powstało? - świat przeżywa dziś rewolucję w obszarze edukacji, - naszym celem jest promocja śląskiego jako regionu opartego na wiedzy, i najnowszych technologiach,
OSTC GLOBAL TRADING CHALLENGE MANUAL
OSTC GLOBAL TRADING CHALLENGE MANUAL Wrzesień 2014 www.ostc.com/game Po zarejestrowaniu się w grze OSTC Global Trading Challenge, zaakceptowaniu oraz uzyskaniu dostępu to produktów, użytkownik gry będzie
General Certificate of Education Ordinary Level ADDITIONAL MATHEMATICS 4037/12
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level www.xtremepapers.com *6378719168* ADDITIONAL MATHEMATICS 4037/12 Paper 1 May/June 2013 2 hours Candidates
Why do I need a CSIRT?
Przemyslaw Jaroszewski CERT Polska Przemyslaw.Jaroszewski@cert.pl Przemyslaw.Jaroszewski@cert.pl Slide: 1 Why bother with security? (1) Security threats are real Windows server from the box has CodeRed
Egzamin maturalny z języka angielskiego na poziomie dwujęzycznym Rozmowa wstępna (wyłącznie dla egzaminującego)
112 Informator o egzaminie maturalnym z języka angielskiego od roku szkolnego 2014/2015 2.6.4. Część ustna. Przykładowe zestawy zadań Przykładowe pytania do rozmowy wstępnej Rozmowa wstępna (wyłącznie
TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 8: Structured PredicCon 2
TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 8: Structured PredicCon 2 1 Roadmap intro (1 lecture) deep learning for NLP (5 lectures) structured predic+on (4 lectures)
deep learning for NLP (5 lectures)
TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 6: Finish Transformers; Sequence- to- Sequence Modeling and AJenKon 1 Roadmap intro (1 lecture) deep learning for NLP (5
DODATKOWE ĆWICZENIA EGZAMINACYJNE
I.1. X Have a nice day! Y a) Good idea b) See you soon c) The same to you I.2. X: This is my new computer. Y: Wow! Can I have a look at the Internet? X: a) Thank you b) Go ahead c) Let me try I.3. X: What
Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2
Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2 aaaklnictzzjb9tgfmcnadpg7oy0lxa9edva9kkapdarhyk2k7gourinlwsweyzikuyiigvyleiv/cv767fpf/5crc1xt9va5mx7w3m/ecuqw1kuztpx/rl3/70h73/w4cog9dhhn3z62d6jzy+yzj766txpoir9nzszisjynetqr+rvlfvyoozu5xbybpsxb1wahul8phczdt2v4zgchb7uecwphlyigrgkjcyiflfyci0kxnmr4z6kw0jsokvot8isntpa3gbknlcufiv/h+hh+eur4fomd417rvtfjoit5pfju6yxiab2fmwk0y/feuybobqk+axnke8xzjjhfyd8kkpl9zdoddkazd5j6bzpemjb64smjb6vb4xmehysu08lsrszopxftlzee130jcb0zjxy7r5wa2f1s2off2+dyatrughnrtpkuprlcpu55zlxpss/yqe2eamjkcf0jye8w8yas0paf6t0t2i9stmcua+inbi2rt01tz22tubbqwidypvgz6piynkpobirkxgu54ibzoti4pkw2i5ow9lnuaoabhuxfxqhvnrj6w15tb3furnbm+scyxobjhr5pmj5j/w5ix9wsa2tlwx9alpshlunzjgnrwvqbpwzjl9wes+ptyn+ypy/jgskavtl8j0hz1djdhzwtpjbbvpr1zj7jpg6ve7zxfngj75zee0vmp9qm2uvgu/9zdofq6r+g8l4xctvo+v+xdrfr8oxiwutycu0qgyf8icuyvp/sixfi9zxe11vp6mrjjovpmxm6acrtbia+wjr9bevlgjwlz5xd3rfna9g06qytaoofk8olxbxc7xby2evqjmmk6pjvvzxmpbnct6+036xp5vdbrnbdqph8brlfn/n/khnfumhf6z1v7h/80yieukkd5j0un82t9mynxzmk0s/bzn4tacdziszdhwrl8x5ako8qp1n1zn0k6w2em0km9zj1i4yt1pt3xiprw85jmc2m1ut2geum6y6es2fwx6c+wlrpykblopbuj5nnr2byygfy5opllv4+jmm7s6u+tvhywbnb0kv2lt5th4xipmiij+y1toiyo7bo0d+vzvovjkp6aoejsubhj3qrp3fjd/m23pay8h218ibvx3nicofvd1xi86+kh6nb/b+hgsjp5+qwpurzlir15np66vmdehh6tyazdm1k/5ejtuvurgcqux6yc+qw/sbsaj7lkt4x9qmtp7euk6zbdedyuzu6ptsu2eeu3rxcz06uf6g8wyuveznhkbzynajbb7r7cbmla+jbtrst0ow2v6ntkwv8svnwqnu5pa3oxfeexf93739p93chq/fv+jr8r0d9brhpcxr2w88bvqbr41j6wvrb+u5dzjpvx+veoaxwptzp/8cen+xbg==
Extraclass. Football Men. Season 2009/10 - Autumn round
Extraclass Football Men Season 2009/10 - Autumn round Invitation Dear All, On the date of 29th July starts the new season of Polish Extraclass. There will be live coverage form all the matches on Canal+
Sargent Opens Sonairte Farmers' Market
Sargent Opens Sonairte Farmers' Market 31 March, 2008 1V8VIZSV7EVKIRX8(1MRMWXIVSJ7XEXIEXXLI(ITEVXQIRXSJ%KVMGYPXYVI *MWLIVMIWERH*SSHTIVJSVQIHXLISJJMGMEPSTIRMRKSJXLI7SREMVXI*EVQIVW 1EVOIXMR0E]XS[R'S1IEXL
ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL
Read Online and Download Ebook ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL DOWNLOAD EBOOK : ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA Click link bellow and free register
Latent Dirichlet Allocation Models and their Evaluation IT for Practice 2016
Latent Dirichlet Allocation Models and their Evaluation IT for Practice 2016 Paweł Lula Cracow University of Economics, Poland pawel.lula@uek.krakow.pl Latent Dirichlet Allocation (LDA) Documents Latent
Cracow University of Economics Poland
Cracow University of Economics Poland Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions 2000-2005 - Keynote Speech - Presented by: Dr. David Clowes The Growth Research Unit,
Katowice, plan miasta: Skala 1: = City map = Stadtplan (Polish Edition)
Katowice, plan miasta: Skala 1:20 000 = City map = Stadtplan (Polish Edition) Polskie Przedsiebiorstwo Wydawnictw Kartograficznych im. Eugeniusza Romera Click here if your download doesn"t start automatically
CPX Cisco Partner Excellence CSPP program partnerski
CPX Cisco Partner Excellence CSPP program partnerski Hotel Double Tree by Hilton Łukasz Wilkowski Distributor Service Development Manager lwilkows@cisco.com Łódź 14 maja 2015 - Cisco Service Partner Program
Warsztaty Ocena wiarygodności badania z randomizacją
Warsztaty Ocena wiarygodności badania z randomizacją Ocena wiarygodności badania z randomizacją Każda grupa Wspólnie omawia odpowiedź na zadane pytanie Wybiera przedstawiciela, który w imieniu grupy przedstawia
Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)
Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition) J Krupski Click here if your download doesn"t start automatically Karpacz, plan miasta 1:10 000: Panorama
DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION
ELEKTRYKA 0 Zeszyt (9) Rok LX Andrzej KUKIEŁKA Politechnika Śląska w Gliwicach DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION
Bazy danych Ćwiczenia z SQL
Bazy danych Ćwiczenia z SQL W ćwiczeniach wykorzystano przyk adowy schemat bazy danych dostarczany z Personal Oracle 8 Definicję schematu i dane tabel zawiera plik bdemobld sql (c) 2001 Katedra Informatyki
OBWIESZCZENIE MINISTRA INFRASTRUKTURY. z dnia 18 kwietnia 2005 r.
OBWIESZCZENIE MINISTRA INFRASTRUKTURY z dnia 18 kwietnia 2005 r. w sprawie wejścia w życie umowy wielostronnej M 163 zawartej na podstawie Umowy europejskiej dotyczącej międzynarodowego przewozu drogowego
Rachunek lambda, zima
Rachunek lambda, zima 2015-16 Wykład 2 12 października 2015 Tydzień temu: Własność Churcha-Rossera (CR) Jeśli a b i a c, to istnieje takie d, że b d i c d. Tydzień temu: Własność Churcha-Rossera (CR) Jeśli
European Crime Prevention Award (ECPA) Annex I - new version 2014
European Crime Prevention Award (ECPA) Annex I - new version 2014 Załącznik nr 1 General information (Informacje ogólne) 1. Please specify your country. (Kraj pochodzenia:) 2. Is this your country s ECPA
Wprowadzenie do programu RapidMiner, część 2 Michał Bereta 1. Wykorzystanie wykresu ROC do porównania modeli klasyfikatorów
Wprowadzenie do programu RapidMiner, część 2 Michał Bereta www.michalbereta.pl 1. Wykorzystanie wykresu ROC do porównania modeli klasyfikatorów Zaimportuj dane pima-indians-diabetes.csv. (Baza danych poświęcona
Wyjaśnienie i ilustracje: Wyliczenie kwoty straty dla Wnioskodawcy zmarłego, który złożył wcześniej Wniosek dla osób z uszkodzeniem ciała
Wyjaśnienie i ilustracje: Wyliczenie kwoty straty dla Wnioskodawcy zmarłego, który złożył wcześniej Wniosek dla osób z uszkodzeniem ciała Wyjaśnienie i ilustracje: Wyliczenie dotyczące Wniosku dla osób
FORMULARZ REKLAMACJI Complaint Form
FORMULARZ REKLAMACJI Complaint Form *CZ. I PROSIMY WYPEŁNIAĆ DRUKOWANYMI LITERAMI PLEASE USE CAPITAL LETTERS I. DANE OSOBY SKŁADAJĄCEJ REKLAMACJĘ: *DANE OBOWIĄZKOWE I. COMPLAINANT S PERSONAL DATA: *MANDATORY
Linear Classification and Logistic Regression. Pascal Fua IC-CVLab
Linear Classification and Logistic Regression Pascal Fua IC-CVLab 1 aaagcxicbdtdbtmwfafwdgxlhk8orha31ibqycvkdgpshdqxtwotng2pxtvqujmok1qlky5xllzrnobbediegwcap4votk2kqkf+/y/tnphdschtadu/giv3vtea99cfma8fpx7ytlxx7ckns4sylo3doom7jguhj1hxchmy/irhrlgh67lxb5x3blis8jjqynmedqujiu5zsqqagrx+yjcfpcrydusshmzeluzsg7tttiew5khhcuzm5rv0gn1unw6zl3gbzlpr3liwncyr6aaqinx4wnc/rpg6ix5szd86agoftuu0g/krjxdarph62enthdey3zn/+mi5zknou2ap+tclvhob9sxhwvhaqketnde7geqjp21zvjsfrcnkfhtejoz23vq97elxjlpbtmxpl6qxtl1sgfv1ptpy/yq9mgacrzkgje0hjj2rq7vtywnishnnkzsqekucnlblrarlh8x8szxolrrxkb8n6o4kmo/e7siisnozcfvsedlol60a/j8nmul/gby8mmssrfr2it8lkyxr9dirxxngzthtbaejv
Has the heat wave frequency or intensity changed in Poland since 1950?
Has the heat wave frequency or intensity changed in Poland since 1950? Joanna Wibig Department of Meteorology and Climatology, University of Lodz, Poland OUTLINE: Motivation Data Heat wave frequency measures
Steps to build a business Examples: Qualix Comergent
How To Start a BUSINESS Agenda Steps to build a business Examples: Qualix Comergent 1 Idea The Idea is a Piece of a Company 4 2 The Idea is a Piece of a Company Investing_in_New_Ideas.wmv Finding_the_Problem_is_the_Hard_Part_Kevin
CEE 111/211 Agenda Feb 17
CEE 111/211 Agenda Feb 17 Tuesday: SW for project work: Jetstream, MSP, Revit, Riuska, POP, SV On R: drive; takes time to install Acoustics today: \\cife server\files\classes\cee111\presentations Thursday:
P R A C A D Y P L O M O W A
POLITECHNIKA POZNAŃSKA Wydział Maszyn Roboczych i Transportu P R A C A D Y P L O M O W A Autor: inż. METODA Ε-CONSTRAINTS I PRZEGLĄDU FRONTU PARETO W ZASTOSOWANIU DO ROZWIĄZYWANIA PROBLEMU OPTYMALIZACJI
Financial support for start-uppres. Where to get money? - Equity. - Credit. - Local Labor Office - Six times the national average wage (22000 zł)
Financial support for start-uppres Where to get money? - Equity - Credit - Local Labor Office - Six times the national average wage (22000 zł) - only for unymployed people - the company must operate minimum
Umowa Licencyjna Użytkownika Końcowego End-user licence agreement
Umowa Licencyjna Użytkownika Końcowego End-user licence agreement Umowa Licencyjna Użytkownika Końcowego Wersja z dnia 2 września 2014 Definicje GRA - Przeglądarkowa gra HTML5 o nazwie Sumerian City, dostępna
How much does SMARTech system cost?
1. How much does an intelligent home system cost? With over six years of experience in construction of Intelligent Home Systems we have done a value analysis of systems and services usually purchased by
TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction
TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 9: Inference in Structured Prediction 1 intro (1 lecture) Roadmap deep learning for NLP (5 lectures) structured prediction
OpenPoland.net API Documentation
OpenPoland.net API Documentation Release 1.0 Michał Gryczka July 11, 2014 Contents 1 REST API tokens: 3 1.1 How to get a token............................................ 3 2 REST API : search for assets
Miedzy legenda a historia: Szlakiem piastowskim z Poznania do Gniezna (Biblioteka Kroniki Wielkopolski) (Polish Edition)
Miedzy legenda a historia: Szlakiem piastowskim z Poznania do Gniezna (Biblioteka Kroniki Wielkopolski) (Polish Edition) Piotr Maluskiewicz Click here if your download doesn"t start automatically Miedzy
www.irs.gov/form990. If "Yes," complete Schedule A Schedule B, Schedule of Contributors If "Yes," complete Schedule C, Part I If "Yes," complete Schedule C, Part II If "Yes," complete Schedule C, Part
KATOWICE SPECIAL ECONOMIC ZONE GLIWICE SUBZONE and its influence on local economy KATOWICE SPECIAL ECONOMIC ZONE - GLIWICE SUBZONE
KATOWICE SPECIAL ECONOMIC ZONE GLIWICE SUBZONE and its influence on local economy Definition: WHAT DOES THE SPECIAL ECONOMIC ZONE MEAN? THE SPECIAL ECONOMIC ZONE IS THE SEPERATED AREA WITH ATTRACTIVE TAX
ITIL 4 Certification
4 Certification ITIL 3 Certification ITIL Master scheme ITIL Expert 5 Managing across the lifecycle 5 3 SS 3 SD 3 ST 3 SO 3 CS1 4 OSA 4 PPO 4 RCV 4 SOA Ścieżka lifecycle Ścieżka Capability 3 ITIL Practitioner
EPS. Erasmus Policy Statement
Wyższa Szkoła Biznesu i Przedsiębiorczości Ostrowiec Świętokrzyski College of Business and Entrepreneurship EPS Erasmus Policy Statement Deklaracja Polityki Erasmusa 2014-2020 EN The institution is located
Few-fermion thermometry
Few-fermion thermometry Phys. Rev. A 97, 063619 (2018) Tomasz Sowiński Institute of Physics of the Polish Academy of Sciences Co-authors: Marcin Płodzień Rafał Demkowicz-Dobrzański FEW-BODY PROBLEMS FewBody.ifpan.edu.pl
photo graphic Jan Witkowski Project for exhibition compositions typography colors : +48 506 780 943 : janwi@janwi.com
Jan Witkowski : +48 506 780 943 : janwi@janwi.com Project for exhibition photo graphic compositions typography colors Berlin London Paris Barcelona Vienna Prague Krakow Zakopane Jan Witkowski ARTIST FROM
System optymalizacji produkcji energii
System optymalizacji produkcji energii Produkcja energii jest skomplikowanym procesem na który wpływa wiele czynników, optymalizacja jest niezbędna, bieżąca informacja o kosztach i możliwościach wykorzystania
Testy jednostkowe - zastosowanie oprogramowania JUNIT 4.0 Zofia Kruczkiewicz
Testy jednostkowe - zastosowanie oprogramowania JUNIT 4.0 http://www.junit.org/ Zofia Kruczkiewicz 1. Aby utworzyć test dla jednej klasy, należy kliknąć prawym przyciskiem myszy w oknie Projects na wybraną
www.irs.gov/form8879eo. e-file www.irs.gov/form990. If "Yes," complete Schedule A Schedule B, Schedule of Contributors If "Yes," complete Schedule C, Part I If "Yes," complete Schedule C, Part II If "Yes,"
Optymalizacja struktury produkcji kopalni z uwzględnieniem kosztów stałych i zmiennych
Optymalizacja struktury produkcji kopalni z uwzględnieniem kosztów stałych i zmiennych 1) dr hab. inż.; AGH Kraków, Wydział Górnictwa i Geoinżynierii 2) dr hab.; AGH Kraków, Wydział Matematyki Stosowanej
STATISTICAL VALIDATION OF THE METHOD FOR MEASURING RADIUS VARIATIONS OF COMPONENTS ON THE MACHINE TOOL
Metrol. Meas. Syst., Vol. XVIII (011), No. 1, pp. 35-46 METROLOGY AND MEASUREMENT SYSTEMS Idex 330930, ISSN 0860-89 www.metrology.pg.gda.pl STATISTICAL VALIDATION OF THE METHOD FOR MEASURING RADIUS VARIATIONS
aforementioned device she also has to estimate the time when the patients need the infusion to be replaced and/or disconnected. Meanwhile, however, she must cope with many other tasks. If the department
Formularz recenzji magazynu. Journal of Corporate Responsibility and Leadership Review Form
Formularz recenzji magazynu Review Form Identyfikator magazynu/ Journal identification number: Tytuł artykułu/ Paper title: Recenzent/ Reviewer: (imię i nazwisko, stopień naukowy/name and surname, academic
PORTS AS LOGISTICS CENTERS FOR CONSTRUCTION AND OPERATION OF THE OFFSHORE WIND FARMS - CASE OF SASSNITZ
Part-financed by EU South Baltic Programme w w w. p t m e w. p l PROSPECTS OF THE OFFSHORE WIND ENERGY DEVELOPMENT IN POLAND - OFFSHORE WIND INDUSTRY IN THE COASTAL CITIES AND PORT AREAS PORTS AS LOGISTICS
Employment. Number of employees employed on a contract of employment by gender in 2012. Company
Im not found /sites/eneacsr2012.mess-asp.com/themes/eneacsr2012/img/enea.jpg Employt Capital Group is one of the largest companies in the energy industry. Therefore it has an influence, as an employer,
Ankiety Nowe funkcje! Pomoc magda.szewczyk@slo-wroc.pl. magda.szewczyk@slo-wroc.pl. Twoje konto Wyloguj. BIODIVERSITY OF RIVERS: Survey to students
Ankiety Nowe funkcje! Pomoc magda.szewczyk@slo-wroc.pl Back Twoje konto Wyloguj magda.szewczyk@slo-wroc.pl BIODIVERSITY OF RIVERS: Survey to students Tworzenie ankiety Udostępnianie Analiza (55) Wyniki
Numerical sequences with computer
Nauki ścisłe priorytetem społeczeństwa opartego a wiedzy Artykuły a platformę CMS S t r o a 1 Dr Aa Rybak Istitute of the Computer Sciece Uiversity i Białystok Numerical sequeces with computer Itroductio
y = The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Explain your answer, write in complete sentences.
The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Eplain your answer, write in complete sentences. 1. Find the derivative of the functions y 7 (b) (a) ( ) y t 1 + t 1 (c)
Zasady rejestracji i instrukcja zarządzania kontem użytkownika portalu
Zasady rejestracji i instrukcja zarządzania kontem użytkownika portalu Rejestracja na Portalu Online Job Application jest całkowicie bezpłatna i składa się z 3 kroków: Krok 1 - Wypełnij poprawnie formularz
Gradient Coding using the Stochastic Block Model
Gradient Coding using the Stochastic Block Model Zachary Charles (UW-Madison) Joint work with Dimitris Papailiopoulos (UW-Madison) aaacaxicbvdlssnafj3uv62vqbvbzwarxjsqikaboelgzux7gcaeywtsdp1mwsxeaepd+ctuxcji1r9w5984bbpq1gmxdufcy733bcmjutn2t1fawl5zxsuvvzy2t7z3zn29lkwyguktjywrnqbjwigntuuvi51uebqhjlsdwfxebz8qiwnc79uwjv6mepxgfcoljd88uiox0m1hvlnzwzgowymjn7tjyzertmvpareju5aqkndwzs83thawe64wq1j2httvxo6eopirccxnjekrhqae6wrkuuykl08/gmnjryqwsoqurubu/t2ro1jkyrzozhipvpz3juj/xjdt0ywxu55mina8wxrldkoetukairuekzbubgfb9a0q95fawonqkjoez/7lrdi6trzbcm7pqvwrio4yoarh4aq44bzuwq1ogcba4be8g1fwzjwzl8a78tfrlrnfzd74a+pzb2h+lzm=
Previously on CSCI 4622
More Naïve Bayes aaace3icbvfba9rafj7ew423vr998obg2gpzkojyh4rcx3ys4lafzbjmjifdototmhoilml+hf/mn3+kl+jkdwtr64gbj+8yl2/ywklhsfircg/dvnp33s796mhdr4+fdj4+o3fvywvorkuqe5zzh0oanjakhwe1ra5zhaf5xvgvn35f62rlvtcyxpnm50awundy1hzwi46jbmgprbtrrvidrg4jre4g07kak+picee6xfgiwvfaltorirucni64eeigkqhpegbwaxglabftpyq4gjbls/hw2ci7tr2xj5ddfmfzwtazj6ubmyddgchbzpf88dmrktfonct6vazputos5zakunhfweow5ukcn+puq8m1ulm7kq+d154pokysx4zgxw4nwq6dw+rcozwnhbuu9et/tgld5cgslazuci1yh1q2ynca/u9ais0kukspulds3xxegvtyfycu8iwk1598e0z2xx/g6ef94ehbpo0d9ok9yiowsvfskh1ix2zcbpsdvaxgww7wj4zdn+he2hogm8xz9s+e7/4cuf/ata==
!850016! www.irs.gov/form8879eo. e-file www.irs.gov/form990. If "Yes," complete Schedule A Schedule B, Schedule of Contributors If "Yes," complete Schedule C, Part I If "Yes," complete Schedule C,
Immigration Studying. Studying - University. Stating that you want to enroll. Stating that you want to apply for a course.
- University I would like to enroll at a university. Stating that you want to enroll I want to apply for course. Stating that you want to apply for a course an undergraduate a postgraduate a PhD a full-time
EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH
Anna BŁACH Centre of Geometry and Engineering Graphics Silesian University of Technology in Gliwice EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH Introduction Computer techniques
Working Tax Credit Child Tax Credit Jobseeker s Allowance
Benefits Depending on your residency status (EU citizen or not) there are various benefits available to help you with costs of living. A8 nationals need to have been working for a year and be registered
WSCHÓD I ZACHÓD SŁOŃCA SUNRISE / SUNSET
MIL GEN 2.7-1 MIL GEN 2.7 WSCHÓD I ZACHÓD SŁOŃCA SUNRISE / SUNSET OBLICZANIE CZASÓW WSCHODU I ZACHODU SŁOŃCA 1. Tabele wschodu i zachodu słońca dla lotniska EPWA oraz tabela poprawek zostały opracowane
Knovel Math: Jakość produktu
Knovel Math: Jakość produktu Knovel jest agregatorem materiałów pełnotekstowych dostępnych w formacie PDF i interaktywnym. Narzędzia interaktywne Knovel nie są stworzone wokół specjalnych algorytmów wymagających
Twoje osobiste Obliczenie dla systemu ogrzewania i przygotowania c.w.u.
Twoje osobiste Obliczenie dla systemu ogrzewania i przygotowania c.w.u. Wyłączenie odpowiedzialności This Erp calculation Tool is provided by Brötje. Access to and use of this Tool shall impose the following
NEW CUSTOMER CONSULTATION QUESTIONNAIRE KWESTIONARIUSZ KONSULTACYJNY DLA NOWEGO KLIENTA
NEW CUSTOMER CONSULTATION QUESTIONNAIRE KWESTIONARIUSZ KONSULTACYJNY DLA NOWEGO KLIENTA 1. CLIENT: KLIENT: 2. CONTACT: KONTAKT: 3. DATE: DATA: 4. CONSULTANT: KONSULTANT: 5. VENUE: MIEJSCE: 6. Briefly summarize
Country fact sheet. Noise in Europe overview of policy-related data. Poland
Country fact sheet Noise in Europe 2015 overview of policy-related data Poland April 2016 The Environmental Noise Directive (END) requires EU Member States to assess exposure to noise from key transport
WSCHÓD I ZACHÓD SŁOŃCA SUNRISE / SUNSET
AIP VFR POLAND VFR GEN 3.2-1 VFR GEN 3.2 WSCHÓD I ZACHÓD SŁOŃCA SUNRISE / SUNSET OBLICZANIE CZASÓW WSCHODU I ZACHODU SŁOŃCA 1. Tabele wschodu i zachodu słońca dla lotniska EPWA oraz tabela poprawek zostały
Bardzo formalny, odbiorca posiada specjalny tytuł, który jest używany zamiast nazwiska
- Wstęp Dear Mr. President, Dear Mr. President, Bardzo formalny, odbiorca posiada specjalny tytuł, który jest używany zamiast nazwiska Dear Sir, Dear Sir, Formalny, odbiorcą jest mężczyzna, którego nazwiska
Stargard Szczecinski i okolice (Polish Edition)
Stargard Szczecinski i okolice (Polish Edition) Janusz Leszek Jurkiewicz Click here if your download doesn"t start automatically Stargard Szczecinski i okolice (Polish Edition) Janusz Leszek Jurkiewicz
Wpływ dyrektywy PSD II na korzystanie z instrumentów płatniczych. Warszawa, 15 stycznia 2015 r. Zbigniew Długosz
Wpływ dyrektywy PSD II na korzystanie z instrumentów płatniczych Warszawa, 15 stycznia 2015 r. Zbigniew Długosz 1 do czego można wykorzystywać bankowość elektroniczną? nowe usługi płatnicze a korzystanie
WSCHÓD I ZACHÓD SŁOŃCA SUNRISE / SUNSET
AIP VFR POLAND VFR GEN 3.2-1 VFR GEN 3.2 WSCHÓD I ZACHÓD SŁOŃCA SUNRISE / SUNSET OBLICZANIE CZASÓW WSCHODU I ZACHODU SŁOŃCA 1. Tabele wschodu i zachodu słońca dla lotniska EPWA oraz tabela poprawek zostały
SubVersion. Piotr Mikulski. SubVersion. P. Mikulski. Co to jest subversion? Zalety SubVersion. Wady SubVersion. Inne różnice SubVersion i CVS
Piotr Mikulski 2006 Subversion is a free/open-source version control system. That is, Subversion manages files and directories over time. A tree of files is placed into a central repository. The repository