STATISTICAL VALIDATION OF THE METHOD FOR MEASURING RADIUS VARIATIONS OF COMPONENTS ON THE MACHINE TOOL

Wielkość: px
Rozpocząć pokaz od strony:

Download "STATISTICAL VALIDATION OF THE METHOD FOR MEASURING RADIUS VARIATIONS OF COMPONENTS ON THE MACHINE TOOL"

Transkrypt

1 Metrol. Meas. Syst., Vol. XVIII (011), No. 1, pp METROLOGY AND MEASUREMENT SYSTEMS Idex , ISSN STATISTICAL VALIDATION OF THE METHOD FOR MEASURING RADIUS VARIATIONS OF COMPONENTS ON THE MACHINE TOOL Staisław Adamczak, Adam Jausiewicz, Włodzimierz Makieła, Krzysztof Stępień Kielce Uiversity of Techology, Chair of Mechaical Techology ad Metrology, Al lecia P. P. 7, Kielce, Polad, , Abstract This paper deals with the experimetal validatio of the suitability of the method for measurig radial variatios of compoets o the process tool. The tests were coducted usig a computerized PSA6, which was compared to a Talyrod 73. The results of measuremet of roudess deviatios as well as roudess profiles were aalyzed for a sample of 70 shafts. The roudess deviatios were assessed by determiig the experimetal errors, while the profiles obtaied with the tested device were compared to those registered by the referece device usig three correlatio coefficiets. Keywords: roudess, experimetal method error, process tool. 011 Polish Academy of Scieces. All rights reserved 1. Itroductio The method for measurig roudess profiles o the process tool which bases o the variatios i the compoet radius belogs to a group of o-referece methods. It requires fixig a compoet i the cetres, rotatig it ad registerig the variatios i the radius i the rotatio agle fuctio by meas of a probe fitted perpedicular to the axis of rotatio [1,, 3]. The measuremet data may cotai a error, which is related to the type of probe applied ad the accuracy with which the ceter holes were made. The method error was determied theoretically [4]. It ca also be estimated experimetally by comparig the results obtaied with the tested istrumet to those from the referece istrumet. This paper discusses the results of statistical tests ad calculatios for the aalyzed ad referece istrumets, PSA6 ad Talyrod 73, respectively. The assessmet was made usig the experimetal error of roudess deviatio ad the correlatio-based compariso of the measured roudess profiles. I statistical testig, we used a sample of 70 groud shafts with ceter holes selected at radom from a batch. The measuremets were coducted uder laboratory coditios at the Kielce Uiversity of Techology, applyig equipmet suitable for measuremet of form profiles. The sequece ad rage of the calculatios were as follows: a. Determiatio of the experimetal error of the method for measurig roudess profiles, accordig to the priciples of statistical iferece, takig roudess deviatios ito cosideratio: the procedure for the estimatio ad test of sigificace for the mea value of the experimetal error [1, 5], the procedure for the estimatio ad test of sigificace for the variaces ad mea deviatios of the experimetal error [1, 5],, Article history: received o Ja. 5, 011; accepted o Feb. 8, 011; available olie o Mar. 1, 011.

2 S. Adamczak et al.: STATISTICAL VALIDATION OF THE METHOD FOR MEASURING RADIUS VARIATIONS OF COMPONENTS the estimatio of the cofidece iterval of a sigle method error ad measuremet accuracy, the procedure for the test of cocordace betwee the distributio of the method error i a populatio with the theoretical distributio [1, 6] b. Statistical compariso of roudess profiles usig the correlatio calculus: compariso of roudess profiles by meas of cross-correlatio coefficiets, compariso of roudess profiles by meas of Pearso s liear correlatio coefficiets, compariso of roudess profiles by meas of Spearma s rak correlatio coefficiets. First, the referece istrumet, Talyrod 73, was used to measure the roudess profile of each compoet of a sample. I this way, a real roudess profile was obtaied. The measuremet results for a give roudess profile i the digital form ad the values of the roudess deviatio, Z, ad the amplitudes of the particular harmoics of this profile were trasmitted to the memory of the test-stad computer. Statistical iferece, i.e. drawig coclusios o the properties of the geeral populatio basig o the results obtaied for a sample or samples draw from this populatio, requires estimatig the values of the parameters of the distributio (poit estimatio), determiig the cofidece itervals (parameter estimatio) or testig statistical hypotheses. To reduce the probability of errors to a miimum, it was ecessary to: select a appropriate statistical method accordig to the data cocerig the aalyzed properties ad the tests to be coducted, use a represetative sample, strictly follow the procedure of each statistical method, apply the statistical methods selected for each test oly oce, maitai the assumed level of sigificace throughout the etire statistical hypothesis test, maitai the assumed level of cofidece whe determiig the cofidece iterval.. Experimetal error The basic method for idetifyig the accuracy of a measuremet istrumet is to compare its results with those obtaied by meas of a referece istrumet [1]. Oe of the most importat parameters used for this purpose is the experimetal error ( EBM) described by the followig relatioship: xi yi EBM =, (1) y i where: EBM experimetal error, x i measuremet result obtaied with the tested istrumet; y i measuremet result obtaied with the referece istrumet. The calculated experimetal errors were used to determie the accuracy of the aalyzed istrumet ad, accordigly, validate its suitability for certai applicatios. Table 1 shows rages of relative method errors established i our previous research ad the correspodig applicatios. 36

3 Metrol. Meas. Syst., Vol. XVIII (011), No. 1, pp Table 1. Rages of relative method errors i surface texture measuremet ad the correspodig applicatios [1]. Measuremet accuracy Type of applicatio rage [%] % 5% Measuremet of stadards: roughess, waviess, form profiles 5% 15% Scietific research 10% 5% Measuremet of surface texture uder idustrial coditios 3. Statistical determiatio of the method error usig roudess deviatios A sample cosistig of 70 groud shafts was used to establish the experimetal error through statistical testig. The aalysis icluded: the estimatio ad test of sigificace for the mea value, the estimatio ad test of sigificace for the variaces ad mea deviatios, the estimatio of the cofidece iterval of a sigle method error for the assumed cofidece, the determiatio of the cocordace of the distributio of the method error i a populatio with the theoretical distributio Procedures for the estimatio ad test of sigificace for the mea value of the experimetal error I order to compare the mea values of the experimetal error, it was ecessary to measure roudess deviatios i the same cross-sectios usig three differet istrumets. First, the value of the roudess deviatio was established by meas of the referece istrumet, i.e. the Talyrod 73, with higher spidle rotatio accuracy (spidle ruout of 0 m). The, the experimetal errors were calculated. Their mea values were determied usig the followig relatioship: 1 EBM = EBM i, () i = 1 where: umber of samples, EBM i relative method error of the roudess deviatio for each elemet of the sample. The mea value of the method error i the aalyzed populatio was estimated usig the followig procedure: a. Determie the method error icludig the roudess deviatio of the profile measured at a computerized test stad, b. Estimate the mea value of the method error, c. Estimate the iterval of cofidece for the mea value of the method error with ormal distributio ad the ukow mea deviatio usig the followig formula: where: s s E B M u p ; E B M + u p, EBM the mea value of the method error, s the calculated mea deviatio, u p the quatile of the ormal distributio read from the tables i Refs.[1, 6, 7, 8]. (3) 37

4 S. Adamczak et al.: STATISTICAL VALIDATION OF THE METHOD FOR MEASURING RADIUS VARIATIONS OF COMPONENTS To explai whether or ot the divergece betwee the mea values is radom, it was ecessary to coduct a test of the meas for a case whe the values of the mea square errors are ukow. The mea values could be thus compared by calculatig the value of t s from: t s = s z x x , (4) where: x 1, x - the mea values beig compared, 1, umber of measuremets, s z = ( 1) ( 1) ( 1) + ( 1) s + s 1 1 1, (5) where: s 1, s mea square errors of the measured values of x 1, x The calculated value of t s was compared with its critical value, t(p, k) read from the tables i Ref. [1]. The critical value is determied whe P = 0.95 ad the umber of degrees of freedom is calculated from the followig relatioship. k = 1 +. (6) If t s exceeds the critical value, it ca be assumed that the divergece is sigificat; if ot, the divergece is radom (isigificat). 3.. Procedures for the estimatio ad test of sigificace for the variaces ad mea deviatios of the experimetal errors Whe establishig the relatioships betwee the variaces, oe eeds to estimate ad test the sigificace for the variaces. This is particularly importat whe the accuracy of istrumets is checked. The procedure to estimate the populatio variace for a case whe the mea value of the method error is ukow ivolves: a. calculatig the variaces value accordig to the formula: ( ) i 1, (7) s = 1 i= 1 EBM EBM where: umber of samples, EBM i the method error for the measuremet of a elemet i the sample, EBM the estimated mea method error for the sample. b. calculatig the value of the coefficiet F usig the followig relatioship: s F 1. s = > (8) 1 The calculated value of the coefficiet F was compared with the critical value read from the tables i Ref. [1]. If the value of F is greater tha the critical value, the divergece betwee the aalyzed variaces is sigificat. However, whe F is less tha the critical value, the divergece is assumed to be radom (isigificat). 38

5 Metrol. Meas. Syst., Vol. XVIII (011), No. 1, pp Estimatio of the cofidece iterval of a sigle method error ad measuremet accuracy The cofidece iterval of a sigle method error for the assumed level of sigificace was read from the ormal distributio tables. The cofidece iterval was calculated usig the followig relatioships: ( EBM u s; EBM + u s), (9) p where: EBM the mea value of the method error, u p the quatile of the ormal distributio, s the mea square deviatio of the method error. The measuremet accuracy of the aalyzed methods was determied usig the followig relatioship: max. p DP = EBM ± u p s (10) Formula (10) was used to qualitatively assess the measuremet accuracy of each method. It icluded roudess deviatios of the compoets from a give statistical sample, which were measured twice: first with the referece istrumet, ad the with the tested istrumet. Accuracy defied i this way icludes experimetal errors related to the systematic ad radom errors of the measuremet of this deviatio Procedure for the test of the cocordace betwee the distributio of the method error i a populatio with the theoretical distributio All the cosideratios were based o the assumptio that the results of the experimet are distributed ormally. The doubts cocerig the ormality of distributio will be fially dissolved if the procedure for the tests of the cocordace betwee the method error distributio ad the theoretical distributio is applied. I this aalysis, we used oe of the most popular tests determiig the level of cocordace with the ormal distributio test χ [1, 3] Assessig the results of statistical tests for the method error Table icludes results of the statistical tests of the method error established for the measuremet of radius variatios o a process tool for a sample of 70, estimatio of the tests, estimatio of the cofidece itervals ad tests of cocordace betwee the method error distributio ad the theoretical distributio. The mea values of the relative experimetal error of the method ad the cofidece itervals of a sigle value of the error idicate that the accuracy of measuremet of roudess deviatios for the aalyzed samples rages from 10% to 5% [1]. Table shows results of statistical testig of the experimetal method error calculated with respect to the Talyrod 73. The sigificace test for the mea values ad the variaces idicates that the divergece betwee the values calculated o the basis of the radomized test ad the critical values is radom. The test of cocordace with the theoretical distributio cofirms that the results of the experimetal error are i agreemet. The statistical testig of the experimetal error made it possible to calculate the accuracy of the method for measurig roudess profiles o the process tool based o the variatios i compoet radius. The accuracy was approximately 18%, which cofirms the istrumet suitability for aalyzig surface structure uder idustrial coditios. 39

6 S. Adamczak et al.: STATISTICAL VALIDATION OF THE METHOD FOR MEASURING RADIUS VARIATIONS OF COMPONENTS Table. Results of the statistical determiatio of the experimetal error for the PSA 6 based o the results obtaied by meas of the Talyrod 73. Sample type Groud shafts Number of samples 70 Observed value of EBM mi the method error EBM max 0.53 Mea value Cofidece iterval for P= ±0.013 (u p =1.96) Test of sigificace for the mea radom divergece value Test of sigificace for the variaces radom divergece Mea deviatio s Test of cocordace with the The error distributio i cocordace theoretical distributio with the theoretical distributio Method accuracy MA [%] 18 % 4. Method for comparig roudess profiles by meas of the correlatio calculus 4.1. Compariso of roudess profiles usig cross-correlatio coefficiets The aalysis ad estimatio of the experimetal method error were used to assess the suitability of a istrumet for accurate measuremet. It is extremely importat to determie how similar the measured profiles are, because, theoretically, a istrumet may provide us with approximate results despite the fact that a completely differet roudess profile is registered. It is possible to visually compare two results obtaied for the same cross sectio with differet measuremet istrumets. The compariso, however, is oly of qualitative character. To compare the measured profiles quatitatively, oe eeds to use the correlatio calculus [1], by determiig the cross-correlatio fuctio. It ca be represeted usig the relatioship for the so-called coefficiet of cocordace: π Z ( ϕ) Z ( ϕ + ϕ ) dϕ r( φ ) =, (11) π π Z ( ϕ) dϕ + Z ( ϕ) dϕ T W T W 0 0 where: Z T (ϕ) profile measured by applyig the tested method, Z W (ϕ) profile measured usig the referece method, ϕ 0 shift betwee the measured profiles. The coefficiets ca be used to compare eve a sigle measuremet result. They may rage from 1 to 1. Whe the cross-correlatio coefficiet is egative, there is defiitely o agreemet betwee the measured profiles. Positive coefficiets ca be estimated basig o the rules provided by I. P. Guilford [1]. For the etire sample ( = 70), we determied: the mea value ad cofidece iterval, the cofidece iterval for a sigle cross-correlatio coefficiet. Usig the calculated mea values of the coefficiets of cocordace betwee the compared roudess profiles ad the estimated cofidece itervals for a sigle value of the coefficiet 40

7 Metrol. Meas. Syst., Vol. XVIII (011), No. 1, pp oe ca assume that the correlatio betwee the compared roudess profiles, i.e. oes measured with the radial method ad oes obtaied with the referece istrumet is very high. This is cofirmed also through qualitative (visual) compariso of these profiles (Figs.1 ad ) Table 3. Results of statistical tests of cross-correlatio coefficiets for the pair of istrumets: the PSA 6 ad the Talyrod 73 Sample type Groud shafts Number of samples 70 Observed mi value max Mea value Cofidece iterval for P=0.95 (u p =1.96) 0.995±0.00 Mea deviatio s Cofidece iterval for the variaces 0.009± Figures 1 ad show the visual compariso of roudess profiles measured usig the referece istrumet (Talyrod 73) ad the aalyzed istrumet (PSA6). The results illustrated below were obtaied for three compoets with differet values of the coefficiets of cocordace. Fig. 1 Visual compariso of two roudess profiles i rectagular coordiates measured with two differet istrumets (the Talyrod 73 solid lie, the PSA 6 dotted lie: a) compariso for compoet No 16 (crosscorrelatio coefficiet ), b) compariso for compoet No 6 (cross-correlatio coefficiet ), c) compariso for compoet No 68 (cross-correlatio coefficiet ) 41

8 S. Adamczak et al.: STATISTICAL VALIDATION OF THE METHOD FOR MEASURING RADIUS VARIATIONS OF COMPONENTS Fig. Compariso of the amplitude spectra of the roudess profiles measured with two istrumets: the Talyrod 73 shaded bars, ad the PSA 6 white bars: a) compariso for compoet No 16, b) compariso for compoet No 6, c) compariso for compoet No Compariso of roudess profiles usig Pearso s liear correlatio coefficiets A alterative solutio for a cross-correlatio fuctio is to apply the Pearso s liear correlatio fuctio to assess the cocordace of profiles. The compariso required chagig the coordiates of the measuremet poits ito amplitudes ad phase shifts for harmoics from to 15. That was possible by applyig a Fast Fourier Trasform. The estimatio was carried out usig the obtaied values of amplitudes of the particular harmoics. Establishig the cocordace betwee profiles by meas of phase shifts was less importat as this testifies to the repeatability of positioig of a compoet i a istrumet [1]. Oce the values of the amplitudes of the harmoics from the two istrumets (the referece measuremet istrumet ad the PSA 6) were grouped ito 14 sets for each 4

9 Metrol. Meas. Syst., Vol. XVIII (011), No. 1, pp harmoic umber, they were statistically aalyzed, which ivolved establishig the coefficiet of correlatio betwee the amplitudes of the harmoics obtaied by usig the referece method ad the tested method. The, the matrix of the correlatio coefficiets was calculated. Pearso s correlatio coefficiets were calculated usig the followig relatioship: r = sxy s s where: s XY - covariace of the X i Y i sets, s X - mea deviatio for the values of the X i set, s Y - mea deviatio for the values of the Y i set. where: X Y XY X X i Yi i = 1, 1 s = ( C C )( C CY ), (13) C X i - values of the amplitudes of the particular harmoics for profile Z p (ϕ) C X - mea value of the amplitudes of the particular harmoics for profile Z p (ϕ) C - values of the amplitudes of the particular harmoics for profile Z a (ϕ) Y i C Y - mea value of the amplitudes of the particular harmoics for profile Z a (ϕ) The SADCOM program was used to calculate the correlatio matrices. The results are tabularized i Table 4. Usig the I.P. Guilford table, oe ca determie the relatioships betwee the obtaied correlatio coefficiet ad the degree of correlatio betwee the obtaied roudess profiles. Table 4. Pearso s correlatio matrix for measuremets by applyig the tested method ad the referece measuremet istrumet Talyrod 73 (1) I additio, the hypotheses were verified for each correlatio coefficiet by calculatig the statistic accordig to: r t =, (14) 1 r where: r estimated correlatio coefficiet, umber of samples. After assumig the probability (P = 0.95) ad the umber of degrees of freedom ( ), we read the critical values, t kr, ad compared them to the statistic, t. It was the possible to 43

10 S. Adamczak et al.: STATISTICAL VALIDATION OF THE METHOD FOR MEASURING RADIUS VARIATIONS OF COMPONENTS defie whether or ot there exists ay correlatio. I the correlatio matrix, the highlighted umbers idicate that the correlatio occurs, while those i a white backgroud represet ull correlatio Compariso of roudess profiles usig Spearma s rak correlatio coefficiets Aother fuctio used to compare measured roudess profiles is the Spearma correlatio. Sice the method has previously proved to be effective, it was used for this aalysis. The basic defiitio of Spearma s correlatio fuctio is as follows: if the compared properties ca be ordered icreasigly, the it is possible to apply a rak correlatio fuctio. This was particularly sigificat i the experimetal tests coducted as part of this aalysis. Determiig Spearma s rak correlatio coefficiets for measuremet of differet compoets will imply that there is a correlatio betwee the obtaied roudess profiles. The procedure to derive Spearma s coefficiets of the rak correlatio betwee the amplitudes of the particular compared roudess profiles was as follows: determiig the amplitudes of each harmoic i the X ad Y sets, from the highest to the lowest accordig to variable Z T, ad the accordig to aother variable, i.e. Z W, for each pair of raks Z T ad Z W, determiig the differece D by subtractig the lower rak from the higher oe, assessig a rak correlatio coefficiet usig the formula 6D rs = 1, ( 1) where: D sum of squares of differeces betwee the raks determied by meas of relatioship (16) umber of samples. = ( xi yi ), i= 1 (15) D r r (16) where: r xi rak of a elemet of the X i set, r yi rak of elemets of the Y i set. As show i Table 5, the calculated coefficiets of the rak correlatio betwee the values of amplitudes of the particular harmoics for each sample were give i the form of the matrix of Spearma s correlatio coefficiets. I the matrix, the ull correlatio results were highlighted. Table 5. Spearma s correlatio matrix 44

11 Metrol. Meas. Syst., Vol. XVIII (011), No. 1, pp Estimatig the results of statistical testig for the compared roudess profiles usig the correlatio calculus Pearso s correlatio coefficiets were calculated for each set of amplitudes of the compared roudess profiles usig a special computer program, SADCOM [9]. The profiles were measured by meas of: o-referece istrumets equipped with ROFORM ad CYFORM software, referece istrumets equipped with the SAJD software, ZEISS coordiate machies with the CALYPSO software. Some of the calculatio results obtaied by applyig Pearso s ad Spearma s correlatio coefficiets for the amplitudes of each harmoic are provided i Table 6. Table 6. Pearso s ad Spearma s coefficiets of correlatio betwee the two istrumets, the PSA6 ad the Talyrod 73, for the amplitudes of each harmoic Harmoic umber Pearso s coefficiet Spearma s coefficiet From Table 6 it is clear that all the aalyzed relatioships are correlated, which was deoted by the plus sig (+) at each correlatio coefficiet. The values of the correlatio coefficiets show that there is a very high or high correlatio betwee the amplitudes of the harmoics that are domiat for the compared roudess profiles ad the amplitudes of the harmoics that have a sigificat effect o the profile form ( = 10). For the other amplitudes of each harmoic, the correlatio is i most cases very high, high ad moderate. 5. Coclusio The statistical tests show that there exists a high correlatio betwee the roudess deviatios as well as the roudess profiles measured with two differet methods. The 18 % accuracy cofirms that the aalyzed method is suitable for measurig surface texture uder idustrial coditios. Visual compariso of roudess profiles also shows that the tested istrumet ca be used for accurate measuremets. The correlatio betwee measured profiles was very high whe the profiles were compared usig a fuctio of correlatio, i.e. crosscorrelatio, Pearso s correlatio ad Spearma s correlatio. The tests cofirm that the aalyzed method ca be effectively used for measurig roudess profiles uder idustrial coditios. 45

12 S. Adamczak et al.: STATISTICAL VALIDATION OF THE METHOD FOR MEASURING RADIUS VARIATIONS OF COMPONENTS Refereces [1] Adamczak, S. (008). Measuremet of surface texture. Form profiles, waviess ad roughess. Warsaw. WNT. (i Polish). [] Jakubiec, W., Maliowski, J. (004). Metrology of Geometrical Quatities. Warsaw: WNT. (i Polish). [3] Pada, A., Jurko, J. (008). Bearigs for pumps ad compressors. Proceedigs of the 1th Iteratioal scietific ad egieerig coferece Hervico 008. Kielce Uiversity of Techology. Polad, [4] Adamczak, S., Jausiewicz, A. (004). Determiig the theoretical method error for measuremet of roudess profiles o productio machies. CEEPUS Sciece Report, Project PL-17, Measurig Techology i Advaced Maufacturig Systems. Kielce Uiversity of Techology, [5] Adamczak, S., Michalski, D. (004). Statistical Methods For Compariso of Measurig Istrumets Accuracy. Metrology ad Measuremets Systems, 11 (3), [6] Tiku, M.L. (1980). Goodess of fit statistics based o the spacigs of complete or cesored samples. Australia Joural of Statistics,, [7] Whitehouse, D.J. (1994). Hadbook of Surface Metrology. Istitute of Physics. Bristol&Philadelphia. [8] Whitehouse, D. J. (00). Surfaces ad their measuremet. Lodo. HPS. [9] Adamczak, S., Michalski, D. (00). SADCOM user maual. Kielce Uiversity of Techology. (i Polish) 46

Machine Learning for Data Science (CS4786) Lecture 8. Kernel PCA & Isomap + TSNE

Machine Learning for Data Science (CS4786) Lecture 8. Kernel PCA & Isomap + TSNE Machie Learig for Data Sciece (CS4786) Lecture 8 Kerel PCA & Isomap + TSNE LINEAR PROJECTIONS X d W = Y K d K Works whe data lies i a low dimesioal liear sub-space KERNEL TRICK ( ) ( ) We have have ice

Bardziej szczegółowo

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

Rozpoznawanie twarzy metodą PCA Michał Bereta   1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów Rozpoznawanie twarzy metodą PCA Michał Bereta www.michalbereta.pl 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów Wiemy, że możemy porównywad klasyfikatory np. za pomocą kroswalidacji.

Bardziej szczegółowo

Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and

Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and Fig 4 Measured vibration signal (top). Blue original signal. Red component related to periodic excitation of resonances and noise. Green component related. Rotational speed profile used for experiment

Bardziej szczegółowo

Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019

Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019 Poniższy zbiór zadań został wykonany w ramach projektu Mazowiecki program stypendialny dla uczniów szczególnie uzdolnionych - najlepsza inwestycja w człowieka w roku szkolnym 2018/2019. Tresci zadań rozwiązanych

Bardziej szczegółowo

STATISTICAL RESEARCH OF STEEL GRADES: DX51D, DX52D AND DX53D BADANIA STATYSTYCZNE GATUNKÓW STALI: DX51D, DX52D I DX53D

STATISTICAL RESEARCH OF STEEL GRADES: DX51D, DX52D AND DX53D BADANIA STATYSTYCZNE GATUNKÓW STALI: DX51D, DX52D I DX53D TECHNICAL TRANSACTIONS CIVIL ENGINEERING CZASOPISMO TECHNICZNE BUDOWNICTWO 4-B/204 PAWEŁ ŻWIREK* STATISTICAL RESEARCH OF STEEL GRADES: DX5D, DX52D AND DX53D BADANIA STATYSTYCZNE GATUNKÓW STALI: DX5D, DX52D

Bardziej szczegółowo

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science Proposal of thesis topic for mgr in (MSE) programme 1 Topic: Monte Carlo Method used for a prognosis of a selected technological process 2 Supervisor: Dr in Małgorzata Langer 3 Auxiliary supervisor: 4

Bardziej szczegółowo

Helena Boguta, klasa 8W, rok szkolny 2018/2019

Helena Boguta, klasa 8W, rok szkolny 2018/2019 Poniższy zbiór zadań został wykonany w ramach projektu Mazowiecki program stypendialny dla uczniów szczególnie uzdolnionych - najlepsza inwestycja w człowieka w roku szkolnym 2018/2019. Składają się na

Bardziej szczegółowo

Criteria of Database Quality Appraisement and Choice Stochastic Models in Prediction of Real Estate Market Value

Criteria of Database Quality Appraisement and Choice Stochastic Models in Prediction of Real Estate Market Value Criteria of Database Quality Appraisemet ad Choice Stochastic Models i Predictio of Real Aa BARAŃSKA, Polad Key words: cadastre, real estate, valuatio, property taxes, market value SUMMARY Databases of

Bardziej szczegółowo

Knovel Math: Jakość produktu

Knovel Math: Jakość produktu Knovel Math: Jakość produktu Knovel jest agregatorem materiałów pełnotekstowych dostępnych w formacie PDF i interaktywnym. Narzędzia interaktywne Knovel nie są stworzone wokół specjalnych algorytmów wymagających

Bardziej szczegółowo

MAPPING SPATIAL DISTRIBUTION OF CHOSEN ENVIRONMENTAL CHARACTERISTICS FOR AGRICULTURAL USE IN LOWER SILESIA1

MAPPING SPATIAL DISTRIBUTION OF CHOSEN ENVIRONMENTAL CHARACTERISTICS FOR AGRICULTURAL USE IN LOWER SILESIA1 Acta Sci. Pol., Geodesia et Descriptio Terrarum 2 (2) 203, 29-40 ISSN 644 0668 (prit) ISSN 2083 8662 (o-lie) MAPPING SPATIAL DISTRIBUTION OF CHOSEN ENVIRONMENTAL CHARACTERISTICS FOR AGRICULTURAL USE IN

Bardziej szczegółowo

Wprowadzenie do programu RapidMiner, część 2 Michał Bereta 1. Wykorzystanie wykresu ROC do porównania modeli klasyfikatorów

Wprowadzenie do programu RapidMiner, część 2 Michał Bereta  1. Wykorzystanie wykresu ROC do porównania modeli klasyfikatorów Wprowadzenie do programu RapidMiner, część 2 Michał Bereta www.michalbereta.pl 1. Wykorzystanie wykresu ROC do porównania modeli klasyfikatorów Zaimportuj dane pima-indians-diabetes.csv. (Baza danych poświęcona

Bardziej szczegółowo

Installation of EuroCert software for qualified electronic signature

Installation of EuroCert software for qualified electronic signature Installation of EuroCert software for qualified electronic signature for Microsoft Windows systems Warsaw 28.08.2019 Content 1. Downloading and running the software for the e-signature... 3 a) Installer

Bardziej szczegółowo

Hard-Margin Support Vector Machines

Hard-Margin Support Vector Machines Hard-Margin Support Vector Machines aaacaxicbzdlssnafiyn9vbjlepk3ay2gicupasvu4iblxuaw2hjmuwn7ddjjmxm1bkcg1/fjqsvt76fo9/gazqfvn8y+pjpozw5vx8zkpvtfxmlhcwl5zxyqrm2vrg5zw3vxmsoezi4ogkr6phieky5crvvjhriqvdom9l2xxftevuwcekj3lktmhghgniauiyutvrwxtvme34a77kbvg73gtygpjsrfati1+xc8c84bvraowbf+uwnipyehcvmkjrdx46vlykhkgykm3ujjdhcyzqkxy0chur6ax5cbg+1m4bbjptjcubuz4kuhvjoql93hkin5hxtav5x6yyqopnsyuneey5ni4keqrxbar5wqaxbik00icyo/iveiyqqvjo1u4fgzj/8f9x67bzmxnurjzmijtlybwfgcdjgfdtajwgcf2dwaj7ac3g1ho1n4814n7wwjgjmf/ys8fenfycuzq==

Bardziej szczegółowo

www.irs.gov/form990. If "Yes," complete Schedule A Schedule B, Schedule of Contributors If "Yes," complete Schedule C, Part I If "Yes," complete Schedule C, Part II If "Yes," complete Schedule C, Part

Bardziej szczegółowo

OpenPoland.net API Documentation

OpenPoland.net API Documentation OpenPoland.net API Documentation Release 1.0 Michał Gryczka July 11, 2014 Contents 1 REST API tokens: 3 1.1 How to get a token............................................ 3 2 REST API : search for assets

Bardziej szczegółowo

ŚLĄSKI PRZEGLĄD STATYSTYCZNY

ŚLĄSKI PRZEGLĄD STATYSTYCZNY Polskie Towarzystwo Statystycze Oddział we Wrocławiu ŚLĄSKI Silesia Statistical Review Wydawictwo Uiwersytetu Ekoomiczego we Wrocławiu Wrocław 2o11 RADA NAUKOWA Walety Ostasiewicz Tadeusz Bedarski, Luisa

Bardziej szczegółowo

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering Machine Learning for Data Science (CS4786) Lecture 11 Spectral Embedding + Clustering MOTIVATING EXAMPLE What can you say from this network? MOTIVATING EXAMPLE How about now? THOUGHT EXPERIMENT For each

Bardziej szczegółowo

www.irs.gov/form990. If "Yes," complete Schedule A Schedule B, Schedule of Contributors If "Yes," complete Schedule C, Part I If "Yes," complete Schedule C, Part II If "Yes," complete Schedule C, Part

Bardziej szczegółowo

Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2

Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2 Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2 aaaklnictzzjb9tgfmcnadpg7oy0lxa9edva9kkapdarhyk2k7gourinlwsweyzikuyiigvyleiv/cv767fpf/5crc1xt9va5mx7w3m/ecuqw1kuztpx/rl3/70h73/w4cog9dhhn3z62d6jzy+yzj766txpoir9nzszisjynetqr+rvlfvyoozu5xbybpsxb1wahul8phczdt2v4zgchb7uecwphlyigrgkjcyiflfyci0kxnmr4z6kw0jsokvot8isntpa3gbknlcufiv/h+hh+eur4fomd417rvtfjoit5pfju6yxiab2fmwk0y/feuybobqk+axnke8xzjjhfyd8kkpl9zdoddkazd5j6bzpemjb64smjb6vb4xmehysu08lsrszopxftlzee130jcb0zjxy7r5wa2f1s2off2+dyatrughnrtpkuprlcpu55zlxpss/yqe2eamjkcf0jye8w8yas0paf6t0t2i9stmcua+inbi2rt01tz22tubbqwidypvgz6piynkpobirkxgu54ibzoti4pkw2i5ow9lnuaoabhuxfxqhvnrj6w15tb3furnbm+scyxobjhr5pmj5j/w5ix9wsa2tlwx9alpshlunzjgnrwvqbpwzjl9wes+ptyn+ypy/jgskavtl8j0hz1djdhzwtpjbbvpr1zj7jpg6ve7zxfngj75zee0vmp9qm2uvgu/9zdofq6r+g8l4xctvo+v+xdrfr8oxiwutycu0qgyf8icuyvp/sixfi9zxe11vp6mrjjovpmxm6acrtbia+wjr9bevlgjwlz5xd3rfna9g06qytaoofk8olxbxc7xby2evqjmmk6pjvvzxmpbnct6+036xp5vdbrnbdqph8brlfn/n/khnfumhf6z1v7h/80yieukkd5j0un82t9mynxzmk0s/bzn4tacdziszdhwrl8x5ako8qp1n1zn0k6w2em0km9zj1i4yt1pt3xiprw85jmc2m1ut2geum6y6es2fwx6c+wlrpykblopbuj5nnr2byygfy5opllv4+jmm7s6u+tvhywbnb0kv2lt5th4xipmiij+y1toiyo7bo0d+vzvovjkp6aoejsubhj3qrp3fjd/m23pay8h218ibvx3nicofvd1xi86+kh6nb/b+hgsjp5+qwpurzlir15np66vmdehh6tyazdm1k/5ejtuvurgcqux6yc+qw/sbsaj7lkt4x9qmtp7euk6zbdedyuzu6ptsu2eeu3rxcz06uf6g8wyuveznhkbzynajbb7r7cbmla+jbtrst0ow2v6ntkwv8svnwqnu5pa3oxfeexf93739p93chq/fv+jr8r0d9brhpcxr2w88bvqbr41j6wvrb+u5dzjpvx+veoaxwptzp/8cen+xbg==

Bardziej szczegółowo

Numerical sequences with computer

Numerical sequences with computer Nauki ścisłe priorytetem społeczeństwa opartego a wiedzy Artykuły a platformę CMS S t r o a 1 Dr Aa Rybak Istitute of the Computer Sciece Uiversity i Białystok Numerical sequeces with computer Itroductio

Bardziej szczegółowo

SNP SNP Business Partner Data Checker. Prezentacja produktu

SNP SNP Business Partner Data Checker. Prezentacja produktu SNP SNP Business Partner Data Checker Prezentacja produktu Istota rozwiązania SNP SNP Business Partner Data Checker Celem produktu SNP SNP Business Partner Data Checker jest umożliwienie sprawdzania nazwy

Bardziej szczegółowo

Zarządzanie sieciami telekomunikacyjnymi

Zarządzanie sieciami telekomunikacyjnymi SNMP Protocol The Simple Network Management Protocol (SNMP) is an application layer protocol that facilitates the exchange of management information between network devices. It is part of the Transmission

Bardziej szczegółowo

Cracow University of Economics Poland. Overview. Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions 2000-2005

Cracow University of Economics Poland. Overview. Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions 2000-2005 Cracow University of Economics Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions 2000-2005 - Key Note Speech - Presented by: Dr. David Clowes The Growth Research Unit CE Europe

Bardziej szczegółowo

Tychy, plan miasta: Skala 1: (Polish Edition)

Tychy, plan miasta: Skala 1: (Polish Edition) Tychy, plan miasta: Skala 1:20 000 (Polish Edition) Poland) Przedsiebiorstwo Geodezyjno-Kartograficzne (Katowice Click here if your download doesn"t start automatically Tychy, plan miasta: Skala 1:20 000

Bardziej szczegółowo

Sargent Opens Sonairte Farmers' Market

Sargent Opens Sonairte Farmers' Market Sargent Opens Sonairte Farmers' Market 31 March, 2008 1V8VIZSV7EVKIRX8(1MRMWXIVSJ7XEXIEXXLI(ITEVXQIRXSJ%KVMGYPXYVI *MWLIVMIWERH*SSHTIVJSVQIHXLISJJMGMEPSTIRMRKSJXLI7SREMVXI*EVQIVW 1EVOIXMR0E]XS[R'S1IEXL

Bardziej szczegółowo

Wprowadzenie do programu RapidMiner, część 5 Michał Bereta

Wprowadzenie do programu RapidMiner, część 5 Michał Bereta Wprowadzenie do programu RapidMiner, część 5 Michał Bereta www.michalbereta.pl 1. Przekształcenia atrybutów (ang. attribute reduction / transformation, feature extraction). Zamiast wybierad częśd atrybutów

Bardziej szczegółowo

ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL

ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL Read Online and Download Ebook ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL DOWNLOAD EBOOK : ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA Click link bellow and free register

Bardziej szczegółowo

WYKAZ PRÓB / SUMMARY OF TESTS. mgr ing. Janusz Bandel

WYKAZ PRÓB / SUMMARY OF TESTS. mgr ing. Janusz Bandel Sprawozdanie z Badań Nr Strona/Page 2/24 WYKAZ PRÓB / SUMMARY OF TESTS STRONA PAGE Próba uszkodzenia przy przepięciach dorywczych TOV failure test 5 Próby wykonał / The tests were carried out by: mgr ing.

Bardziej szczegółowo

MaPlan Sp. z O.O. Click here if your download doesn"t start automatically

MaPlan Sp. z O.O. Click here if your download doesnt start automatically Mierzeja Wislana, mapa turystyczna 1:50 000: Mikoszewo, Jantar, Stegna, Sztutowo, Katy Rybackie, Przebrno, Krynica Morska, Piaski, Frombork =... = Carte touristique (Polish Edition) MaPlan Sp. z O.O Click

Bardziej szczegółowo

The determination and analysis of the total measurement uncertainty of roundness deviation

The determination and analysis of the total measurement uncertainty of roundness deviation Scietific Jourals Maritime Uiversity of Szczeci Zeszyty Nauowe ademia Morsa w Szczeciie 010, 1(9). 7 76 010, 1(9) s. 7 76 The determiatio ad aalysis of the total measuremet ucertaity of roudess deviatio

Bardziej szczegółowo

Metodyki projektowania i modelowania systemów Cyganek & Kasperek & Rajda 2013 Katedra Elektroniki AGH

Metodyki projektowania i modelowania systemów Cyganek & Kasperek & Rajda 2013 Katedra Elektroniki AGH Kierunek Elektronika i Telekomunikacja, Studia II stopnia Specjalność: Systemy wbudowane Metodyki projektowania i modelowania systemów Cyganek & Kasperek & Rajda 2013 Katedra Elektroniki AGH Zagadnienia

Bardziej szczegółowo

Revenue Maximization. Sept. 25, 2018

Revenue Maximization. Sept. 25, 2018 Revenue Maximization Sept. 25, 2018 Goal So Far: Ideal Auctions Dominant-Strategy Incentive Compatible (DSIC) b i = v i is a dominant strategy u i 0 x is welfare-maximizing x and p run in polynomial time

Bardziej szczegółowo

KORELACJA 1. Wykres rozrzutu ocena związku między zmiennymi X i Y. 2. Współczynnik korelacji Pearsona

KORELACJA 1. Wykres rozrzutu ocena związku między zmiennymi X i Y. 2. Współczynnik korelacji Pearsona KORELACJA 1. Wykres rozrzutu ocena związku między zmiennymi X i Y 2. Współczynnik korelacji Pearsona 3. Siła i kierunek związku między zmiennymi 4. Korelacja ma sens, tylko wtedy, gdy związek między zmiennymi

Bardziej szczegółowo

General Certificate of Education Ordinary Level ADDITIONAL MATHEMATICS 4037/12

General Certificate of Education Ordinary Level ADDITIONAL MATHEMATICS 4037/12 UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level www.xtremepapers.com *6378719168* ADDITIONAL MATHEMATICS 4037/12 Paper 1 May/June 2013 2 hours Candidates

Bardziej szczegółowo

SNP Business Partner Data Checker. Prezentacja produktu

SNP Business Partner Data Checker. Prezentacja produktu SNP Business Partner Data Checker Prezentacja produktu Istota rozwiązania SNP Business Partner Data Checker Celem produktu SNP Business Partner Data Checker jest umożliwienie sprawdzania nazwy oraz danych

Bardziej szczegółowo

Akademia Morska w Szczecinie. Wydział Mechaniczny

Akademia Morska w Szczecinie. Wydział Mechaniczny Akademia Morska w Szczecinie Wydział Mechaniczny ROZPRAWA DOKTORSKA mgr inż. Marcin Kołodziejski Analiza metody obsługiwania zarządzanego niezawodnością pędników azymutalnych platformy pływającej Promotor:

Bardziej szczegółowo

European Crime Prevention Award (ECPA) Annex I - new version 2014

European Crime Prevention Award (ECPA) Annex I - new version 2014 European Crime Prevention Award (ECPA) Annex I - new version 2014 Załącznik nr 1 General information (Informacje ogólne) 1. Please specify your country. (Kraj pochodzenia:) 2. Is this your country s ECPA

Bardziej szczegółowo

Krytyczne czynniki sukcesu w zarządzaniu projektami

Krytyczne czynniki sukcesu w zarządzaniu projektami Seweryn SPAŁEK Krytyczne czynniki sukcesu w zarządzaniu projektami MONOGRAFIA Wydawnictwo Politechniki Śląskiej Gliwice 2004 SPIS TREŚCI WPROWADZENIE 5 1. ZARZĄDZANIE PROJEKTAMI W ORGANIZACJI 13 1.1. Zarządzanie

Bardziej szczegółowo

SWPS Uniwersytet Humanistycznospołeczny. Wydział Zamiejscowy we Wrocławiu. Karolina Horodyska

SWPS Uniwersytet Humanistycznospołeczny. Wydział Zamiejscowy we Wrocławiu. Karolina Horodyska SWPS Uniwersytet Humanistycznospołeczny Wydział Zamiejscowy we Wrocławiu Karolina Horodyska Warunki skutecznego promowania zdrowej diety i aktywności fizycznej: dobre praktyki w interwencjach psychospołecznych

Bardziej szczegółowo

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH Anna BŁACH Centre of Geometry and Engineering Graphics Silesian University of Technology in Gliwice EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH Introduction Computer techniques

Bardziej szczegółowo

Discretization of continuous signals (M 19) Dyskretyzacja sygnałów ciągłych

Discretization of continuous signals (M 19) Dyskretyzacja sygnałów ciągłych SILESIAN UNIVESITY OF TECHNOLOGY FACULTY OF ENERGY AND ENVIRONMENTAL ENGINEERING INSTITUTE OF POWER ENGINEERING AND TURBOMACHINERY POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI INSTYTUT

Bardziej szczegółowo

deep learning for NLP (5 lectures)

deep learning for NLP (5 lectures) TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 6: Finish Transformers; Sequence- to- Sequence Modeling and AJenKon 1 Roadmap intro (1 lecture) deep learning for NLP (5

Bardziej szczegółowo

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition) Zakopane, plan miasta: Skala ok. 1:15 000 = City map (Polish Edition) Click here if your download doesn"t start automatically Zakopane, plan miasta: Skala ok. 1:15 000 = City map (Polish Edition) Zakopane,

Bardziej szczegółowo

Arch. Min. Sci. 62 (2017), 1, 55-72

Arch. Min. Sci. 62 (2017), 1, 55-72 Arch. Mi. Sci. 62 (2017), 1, 55-72 Electroic versio (i color) of this paper is available: http://miig.archives.pl DOI 10.1515/amsc-2017-0005 BERNARD NOWAK*, PIOTR ŻYCZKOWSKI*, RAFAŁ ŁUCZAK* FUNCTIONAL

Bardziej szczegółowo

QUANTITATIVE AND QUALITATIVE CHARACTERISTICS OF FINGERPRINT BIOMETRIC TEMPLATES

QUANTITATIVE AND QUALITATIVE CHARACTERISTICS OF FINGERPRINT BIOMETRIC TEMPLATES ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2014 Seria: ORGANIZACJA I ZARZĄDZANIE z. 74 Nr kol. 1921 Adrian KAPCZYŃSKI Politechnika Śląska Instytut Ekonomii i Informatyki QUANTITATIVE AND QUALITATIVE CHARACTERISTICS

Bardziej szczegółowo

Gamma3. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Gamma3. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation Gmm3 Nottios Trditiol me Geerlized icomplete gmm fuctio Trditiol ottio, z, z Mthemtic StdrdForm ottio Gmm, z, z Primry defiitio 06.07.0.000.0, z, z z z t t t Specific vlues Specilized vlues 06.07.03.000.0,

Bardziej szczegółowo

POLITYKA PRYWATNOŚCI / PRIVACY POLICY

POLITYKA PRYWATNOŚCI / PRIVACY POLICY POLITYKA PRYWATNOŚCI / PRIVACY POLICY TeleTrade DJ International Consulting Ltd Sierpień 2013 2011-2014 TeleTrade-DJ International Consulting Ltd. 1 Polityka Prywatności Privacy Policy Niniejsza Polityka

Bardziej szczegółowo

DM-ML, DM-FL. Auxiliary Equipment and Accessories. Damper Drives. Dimensions. Descritpion

DM-ML, DM-FL. Auxiliary Equipment and Accessories. Damper Drives. Dimensions. Descritpion DM-ML, DM-FL Descritpion DM-ML and DM-FL actuators are designed for driving round dampers and square multi-blade dampers. Example identification Product code: DM-FL-5-2 voltage Dimensions DM-ML-6 DM-ML-8

Bardziej szczegółowo

y = The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Explain your answer, write in complete sentences.

y = The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Explain your answer, write in complete sentences. The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Eplain your answer, write in complete sentences. 1. Find the derivative of the functions y 7 (b) (a) ( ) y t 1 + t 1 (c)

Bardziej szczegółowo

Few-fermion thermometry

Few-fermion thermometry Few-fermion thermometry Phys. Rev. A 97, 063619 (2018) Tomasz Sowiński Institute of Physics of the Polish Academy of Sciences Co-authors: Marcin Płodzień Rafał Demkowicz-Dobrzański FEW-BODY PROBLEMS FewBody.ifpan.edu.pl

Bardziej szczegółowo

Standardized Test Practice

Standardized Test Practice Standardized Test Practice 1. Which of the following is the length of a three-dimensional diagonal of the figure shown? a. 4.69 units b. 13.27 units c. 13.93 units 3 d. 16.25 units 8 2. Which of the following

Bardziej szczegółowo

ORTHOGONALITY OF LEGENDRE POLYNOMIALS

ORTHOGONALITY OF LEGENDRE POLYNOMIALS olad robles of Applied Scieces, 05, Vol. 3, pp. 085 090 Szczeci dr Adrzej Atoi CZAJKOWSKI a, dr aweł IGNACZAK b a Higher School of Techology ad Ecooics i Szczeci, Iforatics ad Techical Educatio Wyższa

Bardziej szczegółowo

FORMULARZ REKLAMACJI Complaint Form

FORMULARZ REKLAMACJI Complaint Form FORMULARZ REKLAMACJI Complaint Form *CZ. I PROSIMY WYPEŁNIAĆ DRUKOWANYMI LITERAMI PLEASE USE CAPITAL LETTERS I. DANE OSOBY SKŁADAJĄCEJ REKLAMACJĘ: *DANE OBOWIĄZKOWE I. COMPLAINANT S PERSONAL DATA: *MANDATORY

Bardziej szczegółowo

PARAMETRY TECHNICZNE DEKLAROWANE PRZEZ PRODUCENTA POTWIERDZONE BADANIAMI / RATINGS ASSIGNED BY THE MANUFACTURER AND PROVED BY TESTS

PARAMETRY TECHNICZNE DEKLAROWANE PRZEZ PRODUCENTA POTWIERDZONE BADANIAMI / RATINGS ASSIGNED BY THE MANUFACTURER AND PROVED BY TESTS Sprawozdanie z Strona/Page 2/24 PARAMETRY TECHNICZNE DEKLAROWANE PRZEZ PRODUCENTA POTWIERDZONE BADANIAMI / RATINGS ASSIGNED BY THE MANUFACTURER AND PROVED BY TESTS Typ Type Napięcie trwałej pracy Continuous

Bardziej szczegółowo

January 1st, Canvas Prints including Stretching. What We Use

January 1st, Canvas Prints including Stretching. What We Use Canvas Prints including Stretching Square PRCE 10 x10 21.00 12 x12 30.00 18 x18 68.00 24 x24 120.00 32 x32 215.00 34 x34 240.00 36 x36 270.00 44 x44 405.00 Rectangle 12 x18 50.00 12 x24 60.00 18 x24 90.00

Bardziej szczegółowo

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 9: Inference in Structured Prediction 1 intro (1 lecture) Roadmap deep learning for NLP (5 lectures) structured prediction

Bardziej szczegółowo

Compression strength of pine wood (Pinus Sylvestris L.) from selected forest regions in Poland, part II

Compression strength of pine wood (Pinus Sylvestris L.) from selected forest regions in Poland, part II Annals of Warsaw University of Life Sciences - SGGW Forestry and Wood Technology 83, 2013: 206-210 (Ann. WULS - SGGW, For. and Wood Technol. 83, 2013) Compression strength of pine wood (Pinus Sylvestris

Bardziej szczegółowo

www.irs.gov/form990. If "Yes," complete Schedule A Schedule B, Schedule of Contributors If "Yes," complete Schedule C, Part I If "Yes," complete Schedule C, Part II If "Yes," complete Schedule C, Part

Bardziej szczegółowo

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis Machine Learning for Data Science (CS4786) Lecture11 5 Random Projections & Canonical Correlation Analysis The Tall, THE FAT AND THE UGLY n X d The Tall, THE FAT AND THE UGLY d X > n X d n = n d d The

Bardziej szczegółowo

SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like

SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1 I SSW1.1, HFW Fry #65, Zeno #67 Benchmark: Qtr.1 like SSW1.2, HFW Fry #47, Zeno #59 Benchmark: Qtr.1 do SSW1.2, HFW Fry #5, Zeno #4 Benchmark: Qtr.1 to SSW1.2,

Bardziej szczegółowo

ZGŁOSZENIE WSPÓLNEGO POLSKO -. PROJEKTU NA LATA: APPLICATION FOR A JOINT POLISH -... PROJECT FOR THE YEARS:.

ZGŁOSZENIE WSPÓLNEGO POLSKO -. PROJEKTU NA LATA: APPLICATION FOR A JOINT POLISH -... PROJECT FOR THE YEARS:. ZGŁOSZENIE WSPÓLNEGO POLSKO -. PROJEKTU NA LATA: APPLICATION FOR A JOINT POLISH -... PROJECT FOR THE YEARS:. W RAMACH POROZUMIENIA O WSPÓŁPRACY NAUKOWEJ MIĘDZY POLSKĄ AKADEMIĄ NAUK I... UNDER THE AGREEMENT

Bardziej szczegółowo

DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION

DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION ELEKTRYKA 0 Zeszyt (9) Rok LX Andrzej KUKIEŁKA Politechnika Śląska w Gliwicach DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION

Bardziej szczegółowo

GDAŃSKI UNIWERSYTET MEDYCZNY

GDAŃSKI UNIWERSYTET MEDYCZNY GDAŃSKI UNIWERSYTET MEDYCZNY mgr Magdalena Pinkowicka WPŁYW TRENINGU EEG-BIOFEEDBACK NA POPRAWĘ WYBRANYCH FUNKCJI POZNAWCZYCH U DZIECI Z ADHD Rozprawa doktorska Promotor dr hab. n. med. Andrzej Frydrychowski,

Bardziej szczegółowo

LEARNING AGREEMENT FOR STUDIES

LEARNING AGREEMENT FOR STUDIES LEARNING AGREEMENT FOR STUDIES The Student First and last name(s) Nationality E-mail Academic year 2014/2015 Study period 1 st semester 2 nd semester Study cycle Bachelor Master Doctoral Subject area,

Bardziej szczegółowo

Selection of controller parameters Strojenie regulatorów

Selection of controller parameters Strojenie regulatorów Division of Metrology and Power Processes Automation Selection of controller parameters Strojenie regulatorów A-9 Automatics laboratory Laboratorium automatyki Developed by//opracował: mgr inż. Wojciech

Bardziej szczegółowo

Nazwa projektu: Kreatywni i innowacyjni uczniowie konkurencyjni na rynku pracy

Nazwa projektu: Kreatywni i innowacyjni uczniowie konkurencyjni na rynku pracy Nazwa projektu: Kreatywni i innowacyjni uczniowie konkurencyjni na rynku pracy DZIAŁANIE 3.2 EDUKACJA OGÓLNA PODDZIAŁANIE 3.2.1 JAKOŚĆ EDUKACJI OGÓLNEJ Projekt współfinansowany przez Unię Europejską w

Bardziej szczegółowo

PORTS AS LOGISTICS CENTERS FOR CONSTRUCTION AND OPERATION OF THE OFFSHORE WIND FARMS - CASE OF SASSNITZ

PORTS AS LOGISTICS CENTERS FOR CONSTRUCTION AND OPERATION OF THE OFFSHORE WIND FARMS - CASE OF SASSNITZ Part-financed by EU South Baltic Programme w w w. p t m e w. p l PROSPECTS OF THE OFFSHORE WIND ENERGY DEVELOPMENT IN POLAND - OFFSHORE WIND INDUSTRY IN THE COASTAL CITIES AND PORT AREAS PORTS AS LOGISTICS

Bardziej szczegółowo

DOI: / /32/37

DOI: / /32/37 . 2015. 4 (32) 1:18 DOI: 10.17223/1998863 /32/37 -,,. - -. :,,,,., -, -.,.-.,.,.,. -., -,.,,., -, 70 80. (.,.,. ),, -,.,, -,, (1886 1980).,.,, (.,.,..), -, -,,,, ; -, - 346, -,.. :, -, -,,,,,.,,, -,,,

Bardziej szczegółowo

Rev Źródło:

Rev Źródło: KamPROG for AVR Rev. 20190119192125 Źródło: http://wiki.kamamilabs.com/index.php/kamprog_for_avr Spis treści Introdcution... 1 Features... 2 Standard equipment... 4 Installation... 5 Software... 6 AVR

Bardziej szczegółowo

B IURO B ADAWCZE DS. J AKOŚCI

B IURO B ADAWCZE DS. J AKOŚCI ISO 9001 Q Ref. Certif. No. PL 2 IEC SYSTEM FOR MUTUAL RECOGNITION OF TEST CERTIFICATES FOR ELECTRICAL EQUIPMENT (IECEE) CB SCHEME SYSTEME CEI D ACCEPTATION MUTUELLE DE CERTIFICATS D ESSAIS DES EQUIPEMENTS

Bardziej szczegółowo

Streszczenie rozprawy doktorskiej

Streszczenie rozprawy doktorskiej Doskonalenie pomiaru zawartości wody w produktach spożywczych z wykorzystaniem metody wagosuszarkowej bazującej na promieniowaniu IR mgr Sławomir Janas Streszczenie rozprawy doktorskiej Promotor pracy:

Bardziej szczegółowo

Previously on CSCI 4622

Previously on CSCI 4622 More Naïve Bayes aaace3icbvfba9rafj7ew423vr998obg2gpzkojyh4rcx3ys4lafzbjmjifdototmhoilml+hf/mn3+kl+jkdwtr64gbj+8yl2/ywklhsfircg/dvnp33s796mhdr4+fdj4+o3fvywvorkuqe5zzh0oanjakhwe1ra5zhaf5xvgvn35f62rlvtcyxpnm50awundy1hzwi46jbmgprbtrrvidrg4jre4g07kak+picee6xfgiwvfaltorirucni64eeigkqhpegbwaxglabftpyq4gjbls/hw2ci7tr2xj5ddfmfzwtazj6ubmyddgchbzpf88dmrktfonct6vazputos5zakunhfweow5ukcn+puq8m1ulm7kq+d154pokysx4zgxw4nwq6dw+rcozwnhbuu9et/tgld5cgslazuci1yh1q2ynca/u9ais0kukspulds3xxegvtyfycu8iwk1598e0z2xx/g6ef94ehbpo0d9ok9yiowsvfskh1ix2zcbpsdvaxgww7wj4zdn+he2hogm8xz9s+e7/4cuf/ata==

Bardziej szczegółowo

STATISTICAL METHODS IN BIOLOGY

STATISTICAL METHODS IN BIOLOGY STATISTICAL METHODS IN BIOLOGY 1. Introduction 2. Populations and samples 3. Hypotheses testing and parameter estimation 4. Experimental design for biological data 5. Most widely used statistical tests

Bardziej szczegółowo

PX101A. Frezy do PLEXI/ Router bits for Plexi Acrylic ALU Z= str. 122

PX101A. Frezy do PLEXI/ Router bits for Plexi Acrylic ALU Z= str. 122 101A jakości. P/P Art.. Nr P/N 1 4 45 3 1 101A.010.004.045 1,5 5 45 3 1 101A.015.005.045 2 6 45 3 1 101A.020.006.045 2 9 45 3 1 101A.020.009.045 3 6 45 3 1 101A.030.006.045 3 12 50 3 1 101A.030.012.050

Bardziej szczegółowo

!850016! www.irs.gov/form8879eo. e-file www.irs.gov/form990. If "Yes," complete Schedule A Schedule B, Schedule of Contributors If "Yes," complete Schedule C, Part I If "Yes," complete Schedule C,

Bardziej szczegółowo

www.irs.gov/form990. If "Yes," complete Schedule A Schedule B, Schedule of Contributors If "Yes," complete Schedule C, Part I If "Yes," complete Schedule C, Part II If "Yes," complete Schedule C, Part

Bardziej szczegółowo

What our clients think about us? A summary od survey results

What our clients think about us? A summary od survey results What our clients think about us? A summary od survey results customer satisfaction survey We conducted our audit in June 2015 This is the first survey about customer satisfaction Why? To get customer feedback

Bardziej szczegółowo

Zmiany techniczne wprowadzone w wersji Comarch ERP Altum

Zmiany techniczne wprowadzone w wersji Comarch ERP Altum Zmiany techniczne wprowadzone w wersji 2018.2 Copyright 2016 COMARCH SA Wszelkie prawa zastrzeżone Nieautoryzowane rozpowszechnianie całości lub fragmentu niniejszej publikacji w jakiejkolwiek postaci

Bardziej szczegółowo

Aktualizacja Oprogramowania Firmowego (Fleszowanie) Microprocessor Firmware Upgrade (Firmware downloading)

Aktualizacja Oprogramowania Firmowego (Fleszowanie) Microprocessor Firmware Upgrade (Firmware downloading) Aktualizacja Oprogramowania Firmowego (Fleszowanie) Microprocessor Firmware Upgrade (Firmware downloading) ROGER sp.j. Gościszewo 59 82-416 Gościszewo Poland tel. 055 2720132 fax 055 2720133 www.roger.pl

Bardziej szczegółowo

The impact of the global gravity field models on the orbit determination of LAGEOS satellites

The impact of the global gravity field models on the orbit determination of LAGEOS satellites models on the Satelitarne metody wyznaczania pozycji we współczesnej geodezji i nawigacji, Poland 2-4.06.2011 Krzysztof Sośnica, Daniela Thaller, Adrian Jäggi, Rolf Dach and Gerhard Beutler Astronomical

Bardziej szczegółowo

HAPPY ANIMALS L01 HAPPY ANIMALS L03 HAPPY ANIMALS L05 HAPPY ANIMALS L07

HAPPY ANIMALS L01 HAPPY ANIMALS L03 HAPPY ANIMALS L05 HAPPY ANIMALS L07 HAPPY ANIMALS L0 HAPPY ANIMALS L0 HAPPY ANIMALS L0 HAPPY ANIMALS L07 INSTRUKCJA MONTAŻU ASSEMBLY INSTRUCTIONS Akcesoria / Fittings K ZW W8 W7 Ø x 6 szt. / pcs Ø7 x 70 Narzędzia / Tools DO MONTAŻU POTRZEBNE

Bardziej szczegółowo

HAPPY ANIMALS L02 HAPPY ANIMALS L04 HAPPY ANIMALS L06 HAPPY ANIMALS L08

HAPPY ANIMALS L02 HAPPY ANIMALS L04 HAPPY ANIMALS L06 HAPPY ANIMALS L08 HAPPY ANIMALS L02 HAPPY ANIMALS L04 HAPPY ANIMALS L06 HAPPY ANIMALS L08 INSTRUKCJA MONTAŻU ASSEMBLY INSTRUCTIONS Akcesoria / Fittings K O G ZW W8 W4 20 szt. / pcs 4 szt. / pcs 4 szt. / pcs 4 szt. / pcs

Bardziej szczegółowo

Steeple #3: Gödel s Silver Blaze Theorem. Selmer Bringsjord Are Humans Rational? Dec RPI Troy NY USA

Steeple #3: Gödel s Silver Blaze Theorem. Selmer Bringsjord Are Humans Rational? Dec RPI Troy NY USA Steeple #3: Gödel s Silver Blaze Theorem Selmer Bringsjord Are Humans Rational? Dec 6 2018 RPI Troy NY USA Gödels Great Theorems (OUP) by Selmer Bringsjord Introduction ( The Wager ) Brief Preliminaries

Bardziej szczegółowo

W trzech niezależnych testach frezy z powłoką X tremeblue typu V803 był w każdym przypadku prawie 2 razy bardziej wydajne niż wersja niepowlekana.

W trzech niezależnych testach frezy z powłoką X tremeblue typu V803 był w każdym przypadku prawie 2 razy bardziej wydajne niż wersja niepowlekana. To nowa powłoka ochronna i jest znacznie lepsza jak DLC, - X-TremeBLUE jest nową aplikacją powlekania oparta na najnowszych technologiach NANO struktury. - X-TremeBLUE to powłoka o mikronowej grubości,

Bardziej szczegółowo

Cracow University of Economics Poland

Cracow University of Economics Poland Cracow University of Economics Poland Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions 2000-2005 - Keynote Speech - Presented by: Dr. David Clowes The Growth Research Unit,

Bardziej szczegółowo

Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)

Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition) Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition) J Krupski Click here if your download doesn"t start automatically Karpacz, plan miasta 1:10 000: Panorama

Bardziej szczegółowo

PROCESORY ARM TRUDNO ZNALEŹĆ PROCESORY O TAK LICZNYCH, ORYGINALNYCH, NOWYCH, POMYSŁOWYCH ROZWIĄZANIACH!

PROCESORY ARM TRUDNO ZNALEŹĆ PROCESORY O TAK LICZNYCH, ORYGINALNYCH, NOWYCH, POMYSŁOWYCH ROZWIĄZANIACH! TRUDNO ZNALEŹĆ PROCESORY O TAK LICZNYCH, ORYGINALNYCH, NOWYCH, POMYSŁOWYCH ROZWIĄZANIACH! ASEMBLERY Pola Separatory Wizytówki Kody operacji Pseudo operacje adresy I dane Dyrektywy Stałe Komentarze SZKICE

Bardziej szczegółowo

Przewody do linii napowietrznych Przewody z drutów okrągłych skręconych współosiowo

Przewody do linii napowietrznych Przewody z drutów okrągłych skręconych współosiowo POPRAWKA do POLSKIEJ NORMY ICS 29.060.10 PNEN 50182:2002/AC Wprowadza EN 50182:2001/AC:2013, IDT Przewody do linii napowietrznych Przewody z drutów okrągłych skręconych współosiowo Poprawka do Normy Europejskiej

Bardziej szczegółowo

Admission to the first and only in the swietokrzyskie province Bilingual High School and European high School for the school year 2019/2020

Admission to the first and only in the swietokrzyskie province Bilingual High School and European high School for the school year 2019/2020 Rekrutacja do pierwszego i jedynego w województwie świętokrzyskim Dwujęzycznego Liceum Ogólnokształcącego oraz Europejskiego Liceum Ogólnokształcącego na rok szkolny 2019/2020 Admission to the first and

Bardziej szczegółowo

XXIII Konferencja Naukowa POJAZDY SZYNOWE 2018

XXIII Konferencja Naukowa POJAZDY SZYNOWE 2018 XXIII Konferencja Naukowa POJAZDY SZYNOWE 2018 Abstract Application of longitudinal dynamics of the train in the simulator of catenary maintenance vehicles - experimental and numerical tests Robert Konowrocki

Bardziej szczegółowo

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition) Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition) Robert Respondowski Click here if your download doesn"t start automatically Wojewodztwo Koszalinskie:

Bardziej szczegółowo

WENTYLATORY PROMIENIOWE SINGLE-INLET DRUM BĘBNOWE JEDNOSTRUMIENIOWE CENTRIFUGAL FAN

WENTYLATORY PROMIENIOWE SINGLE-INLET DRUM BĘBNOWE JEDNOSTRUMIENIOWE CENTRIFUGAL FAN WENTYLATORY PROMIENIOWE SINGLE-INLET DRUM BĘBNOWE JEDNOSTRUMIENIOWE CENTRIFUGAL FAN TYP WPB TYPE WPB Wentylatory promieniowe jednostrumieniowe bębnowe (z wirnikiem typu Single-inlet centrifugal fans (with

Bardziej szczegółowo

www.irs.gov/form990. If "Yes," complete Schedule A Schedule B, Schedule of Contributors If "Yes," complete Schedule C, Part I If "Yes," complete Schedule C, Part II If "Yes," complete Schedule C, Part

Bardziej szczegółowo

ROZPRAWY NR 128. Stanis³aw Mroziñski

ROZPRAWY NR 128. Stanis³aw Mroziñski UNIWERSYTET TECHNOLOGICZNO-PRZYRODNICZY IM. JANA I JÊDRZEJA ŒNIADECKICH W BYDGOSZCZY ROZPRAWY NR 128 Stanis³aw Mroziñski STABILIZACJA W ASNOŒCI CYKLICZNYCH METALI I JEJ WP YW NA TRWA OŒÆ ZMÊCZENIOW BYDGOSZCZ

Bardziej szczegółowo

Pomoc do programu konfiguracyjnego RFID-CS27-Reader User Guide of setup software RFID-CS27-Reader

Pomoc do programu konfiguracyjnego RFID-CS27-Reader User Guide of setup software RFID-CS27-Reader 2017-01-24 Pomoc do programu konfiguracyjnego RFID-CS27-Reader User Guide of setup software RFID-CS27-Reader Program CS27 Reader należy uruchomić przez wybór opcji CS27 i naciśnięcie przycisku START. Programme

Bardziej szczegółowo

ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS.

ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS. ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS. Strona 1 1. Please give one answer. I am: Students involved in project 69% 18 Student not involved in

Bardziej szczegółowo

Twoje osobiste Obliczenie dla systemu ogrzewania i przygotowania c.w.u.

Twoje osobiste Obliczenie dla systemu ogrzewania i przygotowania c.w.u. Twoje osobiste Obliczenie dla systemu ogrzewania i przygotowania c.w.u. Wyłączenie odpowiedzialności This Erp calculation Tool is provided by Brötje. Access to and use of this Tool shall impose the following

Bardziej szczegółowo

Convolution semigroups with linear Jacobi parameters

Convolution semigroups with linear Jacobi parameters Convolution semigroups with linear Jacobi parameters Michael Anshelevich; Wojciech Młotkowski Texas A&M University; University of Wrocław February 14, 2011 Jacobi parameters. µ = measure with finite moments,

Bardziej szczegółowo

INSTRUKCJE JAK AKTYWOWAĆ SWOJE KONTO PAYLUTION

INSTRUKCJE JAK AKTYWOWAĆ SWOJE KONTO PAYLUTION INSTRUKCJE JAK AKTYWOWAĆ SWOJE KONTO PAYLUTION Kiedy otrzymana przez Ciebie z Jeunesse, karta płatnicza została zarejestrowana i aktywowana w Joffice, możesz przejść do aktywacji swojego konta płatniczego

Bardziej szczegółowo