Detekcja i rekonstrukcja obrazu w PET

Wielkość: px
Rozpocząć pokaz od strony:

Download "Detekcja i rekonstrukcja obrazu w PET"

Transkrypt

1 Detekcja i rekonstrukcja obrazu w PET Elżbieta Kochanowicz, Jan Kulka Wydział Fizyki i Techniki Jądrowej AGH w Krakowie enowak@novell.ftj.agh.edu.pl Technika tomografii emisji pozytonów (PET) jest nowym i dynamicznie rozwijającym się narzędziem medycyny nuklearnej pozwalającym obrazować metaboliczne zmiany narządów i tkanek. Metoda ta posługuje się radioizotopami β + promieniotwórczymi takimi jak: 11 C, 15 O, 13 N, 18 F, 82 Rb, 68 Ga (1). Najpowszechniej stosowany ze względu na czas połowicznego rozpadu (108 min) jest izotop 18 F produkowany akceleratorowo. Tory detekcyjne dla wszystkich radioizotopów są jednakowe, gdyż rejestrujemy fotony o tej samej energii 511 kev. Podczas przemiany β + z jądra izotopu znakującego farmaceutyk emitowany jest pozyton i neutrino elektronowe. Podczas gdy neutrino przechodzi przez ciało pacjenta bez oddziaływania, pozyton w tkance pacjenta przebywa drogę ok. 3 mm (zależną od energii uzyskanej w rozpadzie) do miejsca anihilacji z elektronem ośrodka. W wyniku tego zjawiska masa elektronu i pozytonu zostaje zamieniona na dwa fotony - promieniowania anihilacyjnego (rzadziej trzy) rozchodzące się pod kątem 180º, z których każdy unosi energię równą 511 kev. Gdy dwa fotony anihilacyjne zostaną zarejestrowane w koincydencji (równoczesna rejestracja fotonów przez dwa naprzeciwległe detektory) miejsce anihilacji zostaje zlokalizowane jako punkt leżący na linii koincydencyjnej zwanej linią zdarzenia (LOR ang. line of response) (ryc.1). Rejestracja tych fotonów w przedziale 12 ns przyjmowana jest obecnie jako koincydencja rzeczywista. Ta dyskryminacja czasowa wraz z dyskryminacją energetyczną rejestrowanych fotonów pozwala na pominięcie kolimacji przestrzennej i w znacznym stopniu eliminuje koincydencje przypadkowe, co czyni ją konkurencyjną do techniki SPECT. Adres: WFiTJ, Al. Mickiewicza 30, Kraków

2 Ryc.1. Geometria pomiarowa obrazująca lokalizację detektorów wokół ciała pacjenta oraz źródła kalibracji transmisyjnej 137 Cs. (2) Fakt, że pozytony od miejsca zgromadzenia radiofarmaceutyku do miejsca anihilacji przebywają pewną drogę swobodną oraz że fotony anihilacyjne nie zawsze emitowane są pod kątem , lecz z dopuszczalną różnicą ± 0.5 (związane jest to z zachowaniem resztkowego pędu pozytonu) powoduje pogorszenie przestrzennej zdolności rozdzielczej. Na wielkość tą wynoszącą około 3 mm (dla 18 F) ma również wpływ niezbędna wielkość detektora konieczna do zdeponowania wysokiej energii fotonów (1). Ta niska rozdzielczość przestrzenna powoduje, że coraz częściej wykonuje się badanie wielomodalne, tzn. obraz funkcjonalny (PET) jest nakładany poprzez rotację, przesunięcie i skalowanie na obraz anatomiczny o dużej rozdzielczości uzyskany w badaniu MR lub CT (3). Detektory promieniowania. Wymagania. Detektorami wykorzystywanymi w kamerach PET są głównie detektory scyntylacyjne. Współczesne, komercyjnie dostępne kamery PET bazują na detektorach scyntylacyjnych z użyciem kryształu Bi 4 Ge 3 O 12 (BGO). Jest to kryształ o dużej gęstości właściwej (dobrze absorbujący energię), odporny mechanicznie i o relatywnie niskiej cenie, lecz charakteryzuje się długim czasem zaniku impulsu świetlnego oraz niską wydajnością świetlną. Poszukiwania materiału optymalnego na scyntylator prowadzone są przez kilka organizacji np.: CERN, UCLA związanych głównie z

3 fizyką wysokich energii. Kryteriami w poszukiwaniu scyntylatorów są: wydajność świetlna, czas zaniku wyświecania, średnia droga oddziaływania pozytonu z kryształem, stosunek fotoelektronów do rozproszenia comptonowskiego, gęstość materiału, jego koszt oraz koszt wyhodowania kryształu. Biorąc pod uwagę te techniczne aspekty najatrakcyjniejszymi wydają się być w kolejności: LSO, BGO, GSO, NaJ(Tl), PbSO 4, BaF 2 (wg. wag przyjętych do programu ORACLE przez LBNL - Life Sciences Division of the Lawrence Berkeley, UCLA - University of California at Los Angeles, DRUW Department or Radiology at the University of Washington) (4). Jak wynika z tego zestawienia obiecującymi są kryształy bazujące na lutecie: Lu 2 SiO 2 (LSO) czy też LuAlO 3 (LuAP). Mimo, że drugi kryształ nie znalazł się pośród wymienionych jako optymalny do kamer PET, należy wspomnieć, że z początkiem 2000 roku rozpoczął się program rozwoju technologii kryształu LuAP o różnym poziomie domieszkowania cerem. Jego wydajność świetlna jest dwukrotnie mniejsza od LSO ale pozwala na uzyskanie energetycznej zdolności rozdzielczej tak dobrej jak dla LSO (rzędu 10%). Ponadto jest on gęstszy o 10% a stała czasowa zaniku impulsu jest dwukrotnie mniejsza (5,6). Wiele publikacji wskazuje na zainteresowanie kryształami PWO o doskonale poznanych parametrach i niskiej cenie ze względu na masową produkcję dla potrzeb fizyki wysokich energii. Scyntylator ten ma konkurencyjną gęstość właściwą, doskonałe własności czasowe. Jedynie jego wydajność świetlna jest o dwa rzędy wielkości mniejsza od LSO i wymaga polepszenia poprzez zastosowanie odpowiednich domieszek tak, aby można było wdrożyć go do zastosowań w PET (7,8,9).

4 Najważniejsze parametry kryształów zamieszczone zostały w tabeli I. Materiał scyntylatora NaI Domieszka Długość fali [nm] Wydajność świetlna [l.fotonów/mev] Stała czasowa [ns] Gęstość [g/cm 3 ] Higroskopijność Tl tak CsI Tl nieznacznie CsI Na nieznacznie Bi 4 Ge 3 O 12 (BGO) Lu 2 SiO 2 (LSO) nie Ce<0.1% nie BaF 2 Ce 0.2% 310, nie BaF 2 Ce 4.5% 340, nie LaF 2 Ce 10% 300, nie YAlO 3 (YAP) GdAlO 3 (GAP) LuAlO 3 (LuAP) Y 3 Al 5 O 12 (YAG) Gd 2 SiO 2 (GSO) Ce 0.2% nie Ce 1% 335, , nie Ce <1% nie Ce<1% nie Ce<0.5% nie LuPO nie PbWO 4-410, nie PbSO nie Tabela I. Przegląd właściwości fizycznych scyntylatorów. (10,11,12,13) Z detektorów półprzewodnikowych największe szanse w rywalizacji ze scyntylatorami w zakresie zastosowań do PET mają związki: TeCd i TeZnCd (telurki kadmowe i telurki kadmowo cynkowe) ze względu na dużą energetyczną zdolność rozdzielczą (2% FWHM), możliwość wyhodowania dobrych jakościowo, dużych monokryształów wysokociśnieniową metodą Bridgmana oraz ich możliwość zastosowania w temperaturach pokojowych. Jednakże ze względu na mniejszą gęstość właściwą, aby osiągnąć tą samą wydajność fotopiku jaką uzyskuje się w kryształach BGO przy grubości 3 cm, grubość tych materiałów powinna wynosić co najmniej 6 cm. Drugim ograniczeniem jest zbyt duży czas rozdzielczy tych detektorów rzędu 1µs, podczas gdy

5 kwalifikacja zdarzenia prawdziwego detekcji dopuszcza różnicę czasu rejestracji fotonów do kilku nanosekund. Tak duże obostrzenie czasowe wydaje się obecnie dyskwalifikować użycie tych detektorów w bezkolimacyjnej metodzie PET. Natomiast możliwe jest ich użycie dla obrazowania o niższej intensywności detekcji tj. z zastosowaniem kolimatorów współosiowych do obrazowania planarnego (14,15,16). Postęp technologiczny w produkcji detektorów fotowoltanicznych a w szczególności fotodiod lawinowych zhybrydyzowanych ze scyntylatorem umożliwił powstanie nowego systemu detekcji dla PET. Duże nadzieje pokładane są w wielkopowierzchniowych detektorach diod lawinowych ze względu na szybkie narastanie impulsu: rzędu 15 ns, wysoką energetyczną zdolność rozdzielczą wynoszącą około 6% przy wzmocnieniu 140 razy, dobrą wydajność kwantową na poziomie 70% (dla λ=400 nm) oraz niski poziom szumu (17,18,19,20). Własności systemów PET. Typowy skaner PET składa się z detektorów scyntylacyjnych ułożonych w wielu pierścieniach. Taka geometria pomiarów pozwala na równoczesne zebranie danych z wielu płaszczyzn obrazowych. Pojedynczy blok detektorowy ponacinany jest w celu ograniczenia dyfuzji światła a przez to umożliwienie uzyskania pozycjoczułej detekcji, tworząc matrycę 6x6 (GE) lub 7x8 (Siemens) detektorów. Impulsy światła pochodzące z pojedynczych scyntylatorów zbierane są zwykle przez 4 fotopowielacze (lub fotopowielacz o 4 polach) umieszczonych z tyłu bloku. Identyfikację scyntylatora, który zarejestrował foton, przeprowadza się analizując ilość światła dochodzącą do poszczególnych fotopowielaczy (21).

6 Ryc. 2. Blok 6x6 detektorów BGO (GE). Wymiary pojedynczego scyntylatora: 8.4mm (axial), 4mm (transaxial) (21). Wewnętrzna średnica pierścienia cm Poprzeczne pole widzenia (FOV) 50 cm Podłużne pole widzenia (AFOV) 15-25cm Liczba pierścieni Liczba pól obrazowych Liczba detektorów na pierścień Wymiar detektora 3x6x30 mm 4x8x30 mm Tabela II. Ogólne gabaryty i dane konstrukcyjne kamery PET (22) Współczesne skanery PET są przystosowane do obrazowania 3D poprzez usunięcie przegród separujących pomiędzy scyntylatorami rozszerzając pole widzenia do wszystkich pierścieni i podnosząc liczbę zliczeń. Powoduje to jednak pogorszenie stosunku sygnału do szumu. W celu poprawy jego wartości zawęża się czas koincydencji oraz dyskryminuje się scyntylacje leżące poza głównym fotopikiem. W obrazowaniu 2D (wysunięte przesłony ryc.3.) koincydencje rejestrowane są w obrębie tego samego pierścienia, dopuszczalne jednakże są koincydencje w pierścieniach sąsiadujących (23,24). Problemem w obrazowaniu 3D jest promieniowanie rozproszone, które stanowi 40-60% rejestrowanych koincydencji. Rozproszone fotony dodają się do szumu w obrazie PET pogarszając kontrast szczególnie w obszarach o dużym gromadzeniu znacznika np.: mózg, wątroba, pęcherz.

7 Dlatego w celu jakościowej dokładności obrazu wymagana jest w obrazowaniu 3D pełna korekcja rozproszenia promieniowania anihilacyjnego. Ryc. 3. Obrazowanie 2D. Wysunięte przegrody wolframowe (spełniające role kolimatora) umożliwiając zbiór danych w 2D i ograniczając pole widzenia (FOV) do detektorów w obrębie tego samego pierścienia (25). Ze względu na dużą liczbę detektorów (bez względu na technikę detekcji) konieczna jest elektroniczna obróbka sygnału i akwizycja danych w bezpośredniej bliskości detektora (26). Schemat takiego modułu elektronicznego do obsługi 64 detektorów przedstawiono poniżej. Ryc. 4. Schemat blokowy układu elektroniki "front-end", część analogowa: przedwzmacniacz, układ kształtujący, dyskryminator amplitudy (27). Korekcja osłabienia fotonów. W celu określenia współczynnika osłabienia fotonów anihilacyjnych w ciele pacjenta (w wyniku zjawisk - absorbcji fotoelektrycznej i rozproszenia Comptona) używa się zewnętrzne źródło

8 pojedynczych fotonów Cs o energii 662 kev (T 1/2 =30.1 lat), które rotuje wokół pacjenta. Współczynnik ten określany jest wzdłuż każdej linii koincydencyjnej (LOR) i rekonstruowany przy użyciu metody wstecznej projekcji (FBP). Wykorzystanie izotopu Cs jako źródła transmisyjnego znacznie skraca czas trwania skanów transmisyjnych (w przeciwieństwie do skanów transmisyjnych z wykorzystaniem CT) (28). Ryc. 5. Podział czasu badania pacjenta pomiędzy sekwencją transmisyjną (3 min.) od źródła 137 Cs oraz emisyjną (5 min.) fotonów z anihilacji e - - e + z obrazowanej tkanki (1). Bezpośrednie dane, jakie uzyskuje się ze skanera to projekcje p(x r, φ) dla pojedynczej warstwy prostopadłej do długiej osi ciała pacjenta i różnych kątów φ (0:π). Aby uzyskać interesujący nas rozkład aktywności podanego pacjentowi izotopu f(x,y) w obrazowaniu 2D czy też f(x,y,z) w obrazowaniu 3D dla pojedynczej warstwy, dane te muszą zostać przetworzone. Wyznaczenie obrazu 2D odbywa się na podstawie serii pomiarów w 1D (projekcje). Zastąpienie funkcji rozkładu aktywności znacznika f(x,y) szeregiem wartości dyskretnych odpowiada podziałowi obrazowanego obiektu na N= n x n kwadratowych elementów tzw. pixeli (ryc. 6)

9 Ryc. 6. Dane obrazowe projekcje 1D p(x r, φ) dla 0<φ< π dla pojedynczej warstwy prostopadłej do długiej osi ciała pacjenta (2) Ryc.7. Zasada rekonstrukcji metodą filtrowanej wstecznej projekcji FBP (2). Najczęściej używaną metodą rekonstrukcji obrazu oprócz metod iteracyjnych i całkowitej transformacji Fouriera jest metoda analityczna wykorzystująca algorytm wstecznej projekcji BP (ang. backprojection). Polega ona na tym, że wszystkim pixelom dającym wkład do danej projekcji przypisujemy wartości równe projekcji.(ryc.7) Procedurę tą przeprowadza się dla wszystkich kątów φ uzyskując obraz sumacyjny. Rekonstrukcja obrazu metodą wstecznej projekcji wymaga użycia projekcji 1D poddanych filtracji. Algorytm łączący te dwa ważne kroki rekonstrukcji obrazu to filtrowana projekcja wsteczna FBP (ang. filtered backprojection). Po poddaniu odwrotnej transformacie Fouriera wstecznie zrzutowanych filtrowanych profili uzyskujemy macierz

10 obrazującą rozkład 2D znacznika. W obrazowaniu 3D spotykamy się z nadmiarem danych (już zbiór danych 2D jest wystarczający do rekonstrukcji obrazu rozkładu znacznika f(x,y,z)). Jednak należy pamiętać, że celem użycia nadmiarowych projekcji danych (kąt θ 0 kąt między płaszczyzną prostopadłą do długiej osi ciała pacjenta a kierunkiem zdarzenia) jest redukcja szumu statystycznego w rekonstrukcji obiektu. Rozkład f(x,y,z) jest superpozycją transformat Fouriera na projekcjach poddanych filtracji przy wszystkich kątach φ i θ (2,29,30). Podsumowanie Badanie PET umożliwia lokalizację zmian funkcjonalnych w ciele pacjenta. Dobrze ugruntowane jest stosowanie radiofaramaceutyku fluorodeoksyglukozy ( 18 FDG), dla którego przestrzenna zdolność rozdzielcza wynosi około 3mm a otrzymany obraz można nałożyć na wysokorozdzielczy obraz CT lub NMR. Nanosekundowa technika detekcji koincydencji oraz wysokowydajne ciężkie scyntylatory o krótkim czasie świecenia wraz z dedykowanymi zhybrydyzowanymi z nimi układami scalonymi elektroniki front-end dostarczają danych pomiarowych o lepszym stosunku sygnału do szumu niż obrazowanie SPECT. W standardowym protokole skaningu całego ciała, dorosłemu pacjentowi podaje się dożylnie aktywność około 10 mci (370 MBq) [ 18 F]-FDG. Po uwzględnieniu dawki skutecznej wynoszącej dla tego radiofamaceutyku: msv/mbq aktywność ta odpowiada dawce na całe ciało ok. 10 msv (31). Piśmiennictwo 1. Ruhlmann J, Oehr P, Biersack HJ. PET in Oncology 1999; 1: Kinahan PE, Defrise M. Theoretical Aspects of Medical Image Reconstruction. Physica Medica 1996; 12: Del Guerra A, Damiani C, Di Domenico G, at al. Seeing double: combined modalities in functional imaging. Nucl Instr and Meth in Phys Res 2001; A 471: Shlichta PJ. An Exhaustive and Systematic Search for Optimal PET Scintillator Materials. IEEE NSS/MIC/RTSD/SNPS Conference 2001, San Diego; N Moszyński M, Wolski D, Ludziejewski T, at al. Properties of the new LuAP:Ce scintillator. Nucl Instr and Meth in Phys Res 1997; A 385: Balcerzyk M, Gontarz Z, Moszyński M, Kapusta M. Future hosts for fast and high light output cerium-doped scintillator. J Lumin 2000; 87-89: Mao R, Qu X, Ren G, at al. Lead Tungstate Crystals of High Yield for Medical Imaging. IEEE NSS/MIC/RTSD/SNPS Conference 2001, San Diego; M13A Annenkov A, Korzhik M, Lecoq P. Mass Production of PWO Crystals for Electromagnetic Calorimetry: Peculiarities and Prospects, IEEE NSS/MIC/RTSD/SNPS Conference 2000, Lyon: Kamenskikh IA, Kirm M, Kolobanov VN, at al. Optical and Luminescence Properties of Complex Lead Oxides, IEEE NSS/MIC/RTSD/SNPS Conference 2000, Lyon: Korzhik M, Lecoq P. Search of new scintillation materials for nuclear medicine application. IEEE NSS/MIC/RTSD/SNPS Conference 2000, Lyon: Balcerzyk M, Moszyński M, Kapusta M, at al. YSO,

11 LSO, GSO, AND LGSO. A Study of Energy Resolution and Nonproportionality. IEEE NSS/MIC/RTSD/SNPS Conference 1999, Seattle; N Van Eijk CWE. Development of inorganic scintillators. Nucl Instr and Meth in Phys Res 1997; A 392: Moszyński M, Ludziejewski T, Wolski D, at al. Timing properties of GSO, LSO and other Ce doped scintillators. Nucl Instr and Meth in Phys Res 1996; A 372: Eisen Y, Shor A, Mardor I. CdTe and CdZnTe gamma ray detectors for medical and industrial imaging system. Nucl Instr and Meth in Phys Res 1999; A 428: Giboni KL, Aprile E, Doke T, at al. Coincidence timing of Schottky CdTe detectors for tomographic imaging. Nucl Instr and Meth in Phys Res 2000; A 450: Melnikov AA. CdZnTe radiation detectors. J Crys Growth 1999; 197: Węgrzecka I, Węgrzecki M. The properties of ITE s silicon avalanche photodiodes within the spectral range used in scintillation detection. Nucl Instr and Meth in Phys Res 1999; A 426: Moszyński M, Kapusta M, Balcerzyk M, at al. Comparative Study of Avalanche Photodiodes Within Different Structures in Scintillation Detection. IEEE NSS/MIC/RTSD/SNPS Conference 2000, Lyon: Gys T. An Overview of Current Developments in Position-Sensitive Hybrid Photon Detectors and Photo- Multiplier Tubes. IEEE NSS/MIC/RTSD/SNPS Conference 1999, Seattle; N Ziegler SI, Pichler BJ, Boening G, at al. A prototype high-resolution animal position tomograph with avalanche photodiode arrays and LSO crystals. E J Nucl Med 2001; 28(2). 21. Tornai MP, Germano G, Hoffman EJ. Positioning and Energy Response of PET Block Detectors with Different Light Sharing Schemes, IEEE Trans Nucl Sci 1994; 41(4): Wienhard K. Pet State-of-the-Art Instrumentation. Physica Medica 1996; 12: Aykac M, Uribe J, Baghaei H, at al. Septa Design Study for Volumetric Imaging in Positron Emission Tomography. IEEE NSS/MIC/RTSD/SNPS Conference 2001, San Diego; M5A Kadrmas DJ, Rust TC. Converging Slat Collimators for Hybrid PET. IEEE NSS/MIC/RTSD/SNPS Conference 2001, San Diego; M Moses WW. Trends in PET imaging. Nucl Instr and Meth in Phys Res 2001; 471A : Young JW, Moyers JC, Lenox M. FPGA Based Front-End Electronics for High Resolution PET Scanner. IEEE NSS/MIC/RTSD/SNPS Conference 1999, Seattle; M Dąbrowski W, Białas W, Gryboś P, at al. A readout system for position sensitive measurements of X-ray using silicon strip detectors. Nucl Instr and Meth in Phys Res 2000; A 442: Bilger K, Adam LE, Karp JS. Collimation of a 137 Cs Point Source for Transmission Scanning in PET, IEEE NSS/MIC/RTSD/SNPS Conference 2001, San Diego; M5A Defrise M, Clack R, Townsend DW. Image reconstruction from truncated, two-dimensional, parallel projections. Inv Probl 1995; 11: Asma E, Shattuck DW, Leahy RM. Lossless Compression of List-Mode 3D PET Data. IEEE NSS/MIC/RTSD/SNPS Conference 2001, San Diego; M Murray IPC, Ell PJ. Nuclear Medicine in Clinical Diagnosis and Treatment 1998, Churchill, Livingstone.

TECHNIKI MEDYCYNY NUKLEARNEJ. TOMOGRAFIA PET Wykład 12

TECHNIKI MEDYCYNY NUKLEARNEJ. TOMOGRAFIA PET Wykład 12 TECHNIKI MEDYCYNY NUKLEARNEJ TOMOGRAFIA PET Wykład 12 Positron Emission Tomography PET Emisyjna Tomografia Pozytonowa Umożliwia rekonstrukcję tomograficzną przestrz rozkładu aktywności izotopu poprzez

Bardziej szczegółowo

Sprzęt stosowany w pozytonowej tomografii emisyjnej

Sprzęt stosowany w pozytonowej tomografii emisyjnej Sprzęt stosowany w pozytonowej tomografii emisyjnej Skaner PET-CT stanowi połączony w jedno urządzenie zespół dwóch tomografów, tomografu rentgenowskiego oraz tomografu PET. W artykule przedstawiono opis

Bardziej szczegółowo

Techniki Jądrowe w Diagnostyce i Terapii Medycznej

Techniki Jądrowe w Diagnostyce i Terapii Medycznej Techniki Jądrowe w Diagnostyce i Terapii Medycznej Wykład 4, 10 kwietnia 2018 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Obrazowanie w medycynie

Bardziej szczegółowo

Techniki Jądrowe w Diagnostyce i Terapii Medycznej

Techniki Jądrowe w Diagnostyce i Terapii Medycznej Techniki Jądrowe w Diagnostyce i Terapii Medycznej Wykład 3-12 marca 2019 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Oddziaływanie z materią

Bardziej szczegółowo

FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych

FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych Wykład 11 Zastosowania fizyki jądrowej w medycynie Medycyna nuklearna Medycyna nuklearna - dział medycyny zajmujący się bezpiecznym zastosowaniem izotopów

Bardziej szczegółowo

Pomiar energii wiązania deuteronu. Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu

Pomiar energii wiązania deuteronu. Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu J1 Pomiar energii wiązania deuteronu Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu Przygotowanie: 1) Model deuteronu. Własności deuteronu jako źródło informacji o siłach jądrowych [4] ) Oddziaływanie

Bardziej szczegółowo

Wyznaczanie profilu wiązki promieniowania używanego do cechowania tomografu PET

Wyznaczanie profilu wiązki promieniowania używanego do cechowania tomografu PET 18 Wyznaczanie profilu wiązki promieniowania używanego do cechowania tomografu PET Ines Moskal Studentka, Instytut Fizyki UJ Na Uniwersytecie Jagiellońskim prowadzone są badania dotyczące usprawnienia

Bardziej szczegółowo

Badanie schematu rozpadu jodu 128 J

Badanie schematu rozpadu jodu 128 J J8A Badanie schematu rozpadu jodu 128 J Celem doświadczenie jest wyznaczenie schematu rozpadu jodu 128 J Wiadomości ogólne 1. Oddziaływanie kwantów γ z materią (1,3) a/ efekt fotoelektryczny b/ efekt Comptona

Bardziej szczegółowo

Laboratorium Technik Obrazowania

Laboratorium Technik Obrazowania Laboratorium Technik Obrazowania Krzysztof Kacperski Zakład Fizyki Medycznej, Centrum Onkologii - Instytut im. Marii Skłodowskiej-Curie Nowe technologie w Medycynie Nuklearnej Gamma kamera Nowe fotodetektory

Bardziej szczegółowo

PL B1. UNIWERSYTET JAGIELLOŃSKI, Kraków, PL BUP 05/15. PAWEŁ MOSKAL, Czułówek, PL WUP 03/18. rzecz. pat.

PL B1. UNIWERSYTET JAGIELLOŃSKI, Kraków, PL BUP 05/15. PAWEŁ MOSKAL, Czułówek, PL WUP 03/18. rzecz. pat. RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 228457 (13) B1 (21) Numer zgłoszenia: 405181 (51) Int.Cl. A61B 5/055 (2006.01) G01R 33/48 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22)

Bardziej szczegółowo

Scyntygrafia, Tomografia Emisyjna Pojedynczego Fotonu, Pozytonowa Tomografia Emisyjna

Scyntygrafia, Tomografia Emisyjna Pojedynczego Fotonu, Pozytonowa Tomografia Emisyjna Scyntygrafia, Tomografia Emisyjna Pojedynczego Fotonu, Pozytonowa Tomografia Emisyjna Scyntygrafia, Komputerowa Tomografia Emisyjna Pojedynczego Fotonu (ang. Single Photon Emmision Computed Tomograpy,

Bardziej szczegółowo

Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, Otwock-Świerk. Imię i nazwisko:... Imię i nazwisko:...

Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, Otwock-Świerk. Imię i nazwisko:... Imię i nazwisko:... Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, 05-400 Otwock-Świerk ĆWICZENIE 4 L A B O R A T O R I U M F I Z Y K I A T O M O W E J I J Ą D R O W E J Dobór optymalnego

Bardziej szczegółowo

Laboratorium Technik Obrazowania

Laboratorium Technik Obrazowania Laboratorium Technik Obrazowania Krzyszto Kacperski Zakład Fizyki Medycznej, Centrum Onkologii - Instytut im. Marii Skłodowskiej-Curie Gamma kamera Funkcja odpowiedzi na źródło punktowe d T D Zdolność

Bardziej szczegółowo

Badanie schematu rozpadu jodu 128 I

Badanie schematu rozpadu jodu 128 I J8 Badanie schematu rozpadu jodu 128 I Celem doświadczenie jest wyznaczenie schematu rozpadu jodu 128 I Wiadomości ogólne 1. Oddziaływanie kwantów γ z materią [1,3] a) efekt fotoelektryczny b) efekt Comptona

Bardziej szczegółowo

γ6 Liniowy Model Pozytonowego Tomografu Emisyjnego

γ6 Liniowy Model Pozytonowego Tomografu Emisyjnego γ6 Liniowy Model Pozytonowego Tomografu Emisyjnego Cel ćwiczenia Celem ćwiczenia jest zaprezentowanie zasady działania pozytonowego tomografu emisyjnego. W doświadczeniu użyjemy detektory scyntylacyjne

Bardziej szczegółowo

Med-fizykadla nie-fizyków. mgr inż. Anna Kozłowska Zakład Dydaktyki Fizyki UMK

Med-fizykadla nie-fizyków. mgr inż. Anna Kozłowska Zakład Dydaktyki Fizyki UMK Med-fizykadla nie-fizyków mgr inż. Anna Kozłowska Zakład Dydaktyki Fizyki UMK 1 Plan prezentacji Pozytonowa tomografia emisyjna (PET) Tomografia komputerowa (CT) Scyntygrafia Radioterapia 2 Pozytonowa

Bardziej szczegółowo

Liniowy Model Pozytonowego Tomografu Emisyjnego

Liniowy Model Pozytonowego Tomografu Emisyjnego Liniowy Model Pozytonowego Tomografu Emisyjnego Cel ćwiczenia Celem ćwiczenia jest zaprezentowanie zasady działania pozytonowego tomografu emisyjnego. W doświadczeniu użyjemy detektory scyntylacyjne (rys.

Bardziej szczegółowo

J8 - Badanie schematu rozpadu jodu 128 I

J8 - Badanie schematu rozpadu jodu 128 I J8 - Badanie schematu rozpadu jodu 128 I Celem doświadczenie jest wytworzenie izotopu 128 I poprzez aktywację w źródle neutronów próbki zawierającej 127 I, a następnie badanie schematu rozpadu tego nuklidu

Bardziej szczegółowo

SPEKTROMETRIA CIEKŁOSCYNTYLACYJNA

SPEKTROMETRIA CIEKŁOSCYNTYLACYJNA SPEKTROMETRIA CIEKŁOSCYNTYLACYJNA Metoda detekcji promieniowania jądrowego (α, β, γ) Konwersja energii promieniowania jądrowego na promieniowanie w zakresie widzialnym. Zalety metody: Geometria 4π Duża

Bardziej szczegółowo

Optyka falowa. Optyka falowa zajmuje się opisem zjawisk wynikających z falowej natury światła

Optyka falowa. Optyka falowa zajmuje się opisem zjawisk wynikających z falowej natury światła Optyka falowa Optyka falowa zajmuje się opisem zjawisk wynikających z falowej natury światła Optyka falowa Fizjologiczne, fotochemiczne, fotoelektryczne działanie światła wywołane jest drganiami wektora

Bardziej szczegółowo

J6 - Pomiar absorpcji promieniowania γ

J6 - Pomiar absorpcji promieniowania γ J6 - Pomiar absorpcji promieniowania γ Celem ćwiczenia jest pomiar współczynnika osłabienia promieniowania γ w różnych absorbentach przy użyciu detektora scyntylacyjnego. Materiał, który należy opanować

Bardziej szczegółowo

Nowe scyntylatory w ochronie granic

Nowe scyntylatory w ochronie granic Agnieszka Syntfeld-KaŜuch Instytut Problemów Jądrowych, Świerk 13 maja 2009 Główne zagadnienia Scyntylatory najnowsze obserwacje, odkrycia Wykrywanie materiałów niebezpiecznych kryteria doboru optymalnego

Bardziej szczegółowo

J-PET. modułowy detektor szerokiego zastosowania,

J-PET. modułowy detektor szerokiego zastosowania, J-PET modułowy detektor szerokiego zastosowania, czyli jak w Polsce łączyć badania podstawowe i stosowane Eryk Czerwiński w imieniu grupy J-PET 11 V 2017 Wydział Fizyki Uniwersytet Warszawski Plan 1. Klasyczny

Bardziej szczegółowo

Łukasz Świderski. Scyntylatory do detekcji neutronów 1/xx

Łukasz Świderski. Scyntylatory do detekcji neutronów 1/xx Seminarium ZSJ UW Scyntylatory do detekcji neutronów 1/xx Scyntylatory do detekcji neutronów Łukasz Świderski Departament Technik Jądrowych i Aparatury ul. Sołtana 7 Scyntylatory do detekcji neutronów

Bardziej szczegółowo

PET. Positron Emission Tomography. Tomograf PET. Wytwórnia radiofarmaceutyków linia technologiczna. Wytwórnia radiofarmaceutyków centrum sterowania

PET. Positron Emission Tomography. Tomograf PET. Wytwórnia radiofarmaceutyków linia technologiczna. Wytwórnia radiofarmaceutyków centrum sterowania PET Positron Emission Tomography Technika PET zastępuje obecnie starszą i gorszą technikę SPECT (Single Photon Emission Computed Tomography). PET oferuje znacznie lepszą rozdzielczość przestrzenną niż

Bardziej szczegółowo

Tomografia emisyjna pojedynczych fotonów (SPECT) w medycynie nuklearnej: technika skanowania i rekonstrukcji obrazu.

Tomografia emisyjna pojedynczych fotonów (SPECT) w medycynie nuklearnej: technika skanowania i rekonstrukcji obrazu. Tomografia emisyjna pojedynczych fotonów (SPECT) w medycynie nuklearnej: technika skanowania i rekonstrukcji obrazu. Ćwiczenie dla studentów Wydziału Fizyki Politechniki Warszawskiej Opracował: Dr inż.

Bardziej szczegółowo

Β2 - DETEKTOR SCYNTYLACYJNY POZYCYJNIE CZUŁY

Β2 - DETEKTOR SCYNTYLACYJNY POZYCYJNIE CZUŁY Β2 - DETEKTOR SCYNTYLACYJNY POZYCYJNIE CZUŁY I. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z zasadą działania detektorów pozycyjnie czułych poprzez pomiar prędkości światła w materiale scyntylatora

Bardziej szczegółowo

Kontrola jakości gamma kamery z użyciem fantomu Jaszczaka

Kontrola jakości gamma kamery z użyciem fantomu Jaszczaka Kontrola jakości gamma kamery z użyciem fantomu Jaszczaka Beata Brzozowska, Zygmunt Szefliński 4 lipca 2015 Streszczenie Celem ćwiczenia jest zapoznanie się z podstawowymi testami kontroli jakości gamma

Bardziej szczegółowo

J7 - Badanie zawartości manganu w stali metodą analizy aktywacyjnej

J7 - Badanie zawartości manganu w stali metodą analizy aktywacyjnej J7 - Badanie zawartości manganu w stali metodą analizy aktywacyjnej Celem doświadczenie jest wyznaczenie zawartości manganu w stalowym przedmiocie. Przedmiot ten, razem z próbką zawierającą czysty mangan,

Bardziej szczegółowo

SYMULACJA GAMMA KAMERY MATERIAŁ DLA STUDENTÓW. Szacowanie pochłoniętej energii promieniowania jonizującego

SYMULACJA GAMMA KAMERY MATERIAŁ DLA STUDENTÓW. Szacowanie pochłoniętej energii promieniowania jonizującego SYMULACJA GAMMA KAMERY MATERIAŁ DLA STUDENTÓW Szacowanie pochłoniętej energii promieniowania jonizującego W celu analizy narażenia na promieniowanie osoby, której podano radiofarmaceutyk, posłużymy się

Bardziej szczegółowo

przyziemnych warstwach atmosfery.

przyziemnych warstwach atmosfery. Źródła a promieniowania jądrowego j w przyziemnych warstwach atmosfery. Pomiar radioaktywności w powietrzu w Lublinie. Jan Wawryszczuk Radosław Zaleski Lokalizacja monitora skażeń promieniotwórczych rczych

Bardziej szczegółowo

Repeta z wykładu nr 8. Detekcja światła. Przypomnienie. Efekt fotoelektryczny

Repeta z wykładu nr 8. Detekcja światła. Przypomnienie. Efekt fotoelektryczny Repeta z wykładu nr 8 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 przegląd detektorów

Bardziej szczegółowo

NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan

NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan Spis zagadnień Fizyczne podstawy zjawiska NMR Parametry widma NMR Procesy relaksacji jądrowej Metody obrazowania Fizyczne podstawy NMR Proton, neutron,

Bardziej szczegółowo

WSTĘP. Skaner PET-CT GE Discovery IQ uruchomiony we Wrocławiu w 2015 roku.

WSTĘP. Skaner PET-CT GE Discovery IQ uruchomiony we Wrocławiu w 2015 roku. WSTĘP Technika PET, obok MRI, jest jedną z najbardziej dynamicznie rozwijających się metod obrazowych w medycynie. Przełomowymi wydarzeniami w rozwoju PET było wprowadzenie wielorzędowych gamma kamer,

Bardziej szczegółowo

Sławomir Wronka, r

Sławomir Wronka, r Applications of Particle Detectors Zastosowania detektorów cząstek w życiu codziennym Sławomir Wronka, 24.05.2007r Wczoraj (1952) Detektory Dziś Detektory zastosowania Badania naukowe, CERN Medycyna yy

Bardziej szczegółowo

Laboratorium Technik Obrazowania

Laboratorium Technik Obrazowania Laboratorium Technik Obrazowania Krzysztof Kacperski Zakład Fizyki Medycznej, Centrum Onkologii - Instytut im. Marii Skłodowskiej-Curie Plan zajęć 1. Wykład wstępny ( ~ 10-12 h) - obrazowanie radioizotopowe,

Bardziej szczegółowo

Wytwarzanie nowych scyntylatorów polimerowych na bazie poliwinylotoluenu do hybrydowego tomografu J-PET/MR

Wytwarzanie nowych scyntylatorów polimerowych na bazie poliwinylotoluenu do hybrydowego tomografu J-PET/MR Wytwarzanie nowych scyntylatorów polimerowych na bazie poliwinylotoluenu do hybrydowego tomografu J-PET/MR Development of novel plastic scintillators based on polyvinyltoluene for the hybrid J-PET/MR tomography

Bardziej szczegółowo

Pracownia Jądrowa. dr Urszula Majewska. Spektrometria scyntylacyjna promieniowania γ.

Pracownia Jądrowa. dr Urszula Majewska. Spektrometria scyntylacyjna promieniowania γ. Ćwiczenie nr 1 Spektrometria scyntylacyjna promieniowania γ. 3. Oddziaływanie promieniowania γ z materią: Z elektronami: zjawisko fotoelektryczne, rozpraszanie Rayleigha, zjawisko Comptona, rozpraszanie

Bardziej szczegółowo

Metody izotopowe 2015-06-04. Medycyna nuklearna jest to dział medycyny, w którym do diagnozowania i do terapii wykorzystuje się.

Metody izotopowe 2015-06-04. Medycyna nuklearna jest to dział medycyny, w którym do diagnozowania i do terapii wykorzystuje się. Metody izotopowe Medycyna nuklearna jest to dział medycyny, w którym do diagnozowania i do terapii wykorzystuje się radioizotopy. W technice tej można wyróżnić obrazowanie radioizotopowe oraz technikę

Bardziej szczegółowo

Wyznaczanie bezwzględnej aktywności źródła 60 Co. Tomasz Winiarski

Wyznaczanie bezwzględnej aktywności źródła 60 Co. Tomasz Winiarski Wyznaczanie bezwzględnej aktywności źródła 60 Co metoda koincydencyjna. Tomasz Winiarski 24 kwietnia 2001 WSTEP TEORETYCZNY Rozpad promieniotwórczy i czas połowicznego zaniku. Rozpad promieniotwórczy polega

Bardziej szczegółowo

Charakterystyka detektorów i kolimatorów dla gamma kamer SPECT w medycynie nuklearnej

Charakterystyka detektorów i kolimatorów dla gamma kamer SPECT w medycynie nuklearnej Charakterystyka detektorów i kolimatorów dla gamma kamer SPECT w medycynie nuklearnej Characteristic of detectors and collimators for SPECT gamma cameras in nuclear medicine ŁUKASZ KAMIL GRACZYKOWSKI Praca

Bardziej szczegółowo

mgr inż. Stefana Korolczuka

mgr inż. Stefana Korolczuka Politechnika Warszawska Wydział Elektroniki i Technik Informacyjnych Warszawa, 23 maja 2017 r. D z i e k a n a t Uprzejmie informuję, że na Wydziale Elektroniki i Technik Informacyjnych Politechniki Warszawskiej

Bardziej szczegółowo

IM-8 Zaawansowane materiały i nanotechnologia - Pracownia Badań Materiałów I 1. Badanie absorpcji promieniowania gamma w materiałach

IM-8 Zaawansowane materiały i nanotechnologia - Pracownia Badań Materiałów I 1. Badanie absorpcji promieniowania gamma w materiałach IM-8 Zaawansowane materiały i nanotechnologia - Pracownia Badań Materiałów I 1 IM-8 Badanie absorpcji promieniowania gamma w materiałach I. Cel ćwiczenia Celem ćwiczenia jest pomiar współczynników absorpcji

Bardziej szczegółowo

Fizyka jądrowa z Kosmosu wyniki z kosmicznego teleskopu γ

Fizyka jądrowa z Kosmosu wyniki z kosmicznego teleskopu γ Fizyka jądrowa z Kosmosu wyniki z kosmicznego teleskopu γ INTEGRAL - International Gamma-Ray Astrophysical Laboratory prowadzi od 2002 roku pomiary promieniowania γ w Kosmosie INTEGRAL 180 tys km Źródła

Bardziej szczegółowo

PRACOWNIA JĄDROWA ĆWICZENIE 10. Spektrometria promieniowania γ z wykorzystaniem detektora scyntylacyjnego

PRACOWNIA JĄDROWA ĆWICZENIE 10. Spektrometria promieniowania γ z wykorzystaniem detektora scyntylacyjnego Katedra Fizyki Jądrowej i Bezpieczeństwa Radiacyjnego PRACOWNIA JĄDROWA ĆWICZNI 10 Spektrometria promieniowania z wykorzystaniem detektora scyntylacyjnego Łódź 2017 I. Cel ćwiczenia Celem ćwiczenia jest

Bardziej szczegółowo

gamma - Pochłanianie promieniowania γ przez materiały

gamma - Pochłanianie promieniowania γ przez materiały PJLab_gamma.doc Promieniowanie jonizujące - ćwiczenia 1 gamma - Pochłanianie promieniowania γ przez materiały 1. Cel ćwiczenia Podczas ćwiczenia mierzy się natężenie promieniowania γ po przejściu przez

Bardziej szczegółowo

Możliwości pozytonowej emisyjnej tomografii ( PET ) w prowadzeniu pacjenta ze szpiczakiem mnogim.

Możliwości pozytonowej emisyjnej tomografii ( PET ) w prowadzeniu pacjenta ze szpiczakiem mnogim. Możliwości pozytonowej emisyjnej tomografii ( PET ) w prowadzeniu pacjenta ze szpiczakiem mnogim. Bogdan Małkowski Zakład Medycyny Nuklearnej Centrum Onkologii Bydgoszcz Zastosowanie fluorodeoksyglukozy

Bardziej szczegółowo

Badania możliwości jednoczesnego dokonywania pomiarów za pomocą tomografu Jagiellonian-PET oraz tomografu komputerowego.

Badania możliwości jednoczesnego dokonywania pomiarów za pomocą tomografu Jagiellonian-PET oraz tomografu komputerowego. Uniwersytet Jagielloński Wydział Fizyki, Astronomii i Informatyki Stosowanej Badania możliwości jednoczesnego dokonywania pomiarów za pomocą tomografu Jagiellonian-PET oraz tomografu komputerowego. Praca

Bardziej szczegółowo

Analiza aktywacyjna składu chemicznego na przykładzie zawartości Mn w stali.

Analiza aktywacyjna składu chemicznego na przykładzie zawartości Mn w stali. Analiza aktywacyjna składu chemicznego na przykładzie zawartości Mn w stali. Projekt ćwiczenia w Laboratorium Fizyki i Techniki Jądrowej na Wydziale Fizyki Politechniki Warszawskiej. dr Julian Srebrny

Bardziej szczegółowo

Badanie próbek środowiskowych

Badanie próbek środowiskowych J16 Badanie próbek środowiskowych Celem ćwiczenia jest pomiar promieniowania gamma emitowanego z próbki trynitytu oraz identyfikacja i określenie aktywności izotopów w niej zawartych. Trynityt to szkliwo

Bardziej szczegółowo

PRACOWNIA JĄDROWA ĆWICZENIE 4. Badanie rozkładu gęstości strumienia kwantów γ oraz mocy dawki w funkcji odległości od źródła punktowego

PRACOWNIA JĄDROWA ĆWICZENIE 4. Badanie rozkładu gęstości strumienia kwantów γ oraz mocy dawki w funkcji odległości od źródła punktowego Katedra Fizyki Jądrowej i Bezpieczeństwa Radiacyjnego PRACOWNIA JĄDROWA ĆWICZENIE 4 Badanie rozkładu gęstości strumienia kwantów γ oraz mocy dawki w funkcji odległości od źródła punktowego Łódź 017 I.

Bardziej szczegółowo

Accelerators and medicine. Akceleratory i medycyna

Accelerators and medicine. Akceleratory i medycyna http://medgadget.com/archives/2007/08/automatic_feature_recognition_for_radiotherapy.html Accelerators and medicine Akceleratory i medycyna Sławomir Wronka, 22.11.2012r Akceleratory zastosowania Badania

Bardziej szczegółowo

Sławomir Wronka, 13.06.2008r

Sławomir Wronka, 13.06.2008r Accelerators and medicine Akceleratory i medycyna Sławomir Wronka, 13.06.2008r Akceleratory zastosowania Badania naukowe, CERN Medycyna Medycyna Sterylizacja sprzętu Diagnostyka Terapia Radioterapia standardowa

Bardziej szczegółowo

3. Zależność energii kwantów γ od kąta rozproszenia w zjawisku Comptona

3. Zależność energii kwantów γ od kąta rozproszenia w zjawisku Comptona 3. Zależność energii kwantów γ od kąta rozproszenia w zjawisku Comptona I. Przedmiotem zadania zjawisko Comptona. II. Celem zadania jest doświadczalne sprawdzenie zależności energii kwantów γ od kąta rozproszenia

Bardziej szczegółowo

Ćwiczenie 3++ Spektrometria promieniowania gamma z licznikiem półprzewodnikowym Ge(Li) kalibracja energetyczna i wydajnościowa

Ćwiczenie 3++ Spektrometria promieniowania gamma z licznikiem półprzewodnikowym Ge(Li) kalibracja energetyczna i wydajnościowa Ćwiczenie 3++ Spektrometria promieniowania gamma z licznikiem półprzewodnikowym Ge(Li) kalibracja energetyczna i wydajnościowa Cel ćwiczenia Celem ćwiczenia jest zapoznanie się - z metodyką pomiaru aktywności

Bardziej szczegółowo

Detekcja promieniowania elektromagnetycznego czastek naładowanych i neutronów

Detekcja promieniowania elektromagnetycznego czastek naładowanych i neutronów Detekcja promieniowania elektromagnetycznego czastek naładowanych i neutronów Marcin Palacz Środowiskowe Laboratorium Ciężkich Jonów UW Marcin Palacz Warsztaty ŚLCJ, 21 kwietnia 2009 slide 1 / 30 Rodzaje

Bardziej szczegółowo

Elektron w fizyce. dr Paweł Możejko Katedra Fizyki Atomowej i Luminescencji Wydział Fizyki Technicznej i Matematyki Stosowanej Politechnika Gdańska

Elektron w fizyce. dr Paweł Możejko Katedra Fizyki Atomowej i Luminescencji Wydział Fizyki Technicznej i Matematyki Stosowanej Politechnika Gdańska Elektron w fizyce dr Paweł Możejko Katedra Fizyki Atomowej i Luminescencji Wydział Fizyki Technicznej i Matematyki Stosowanej Politechnika Gdańska Gdańsk, 16.04.2011 Powstanie elektronów i Model Wielkiego

Bardziej szczegółowo

Wykorzystanie zjawiska rezonansu magnetycznego w medycynie. Mariusz Grocki

Wykorzystanie zjawiska rezonansu magnetycznego w medycynie. Mariusz Grocki Wykorzystanie zjawiska rezonansu magnetycznego w medycynie. Mariusz Grocki [1] WYŚCIG DO TYTUŁU ODKRYWCY. JĄDRO ATOMU W ZEWNĘTRZNYM POLU MAGNETYCZNYM. Porównanie do pola grawitacyjnego. CZYM JEST ZJAWISKO

Bardziej szczegółowo

Badanie własności kolimatorów gamma kamery przy wykorzystaniu źródeł: Co-57, Ba-133 i Cs-137

Badanie własności kolimatorów gamma kamery przy wykorzystaniu źródeł: Co-57, Ba-133 i Cs-137 Badanie własności kolimatorów gamma kamery przy wykorzystaniu źródeł: Co-57, Ba-133 i Cs-137 Urszula Kaźmierczak, Zygmunt Szefliński Celem ćwiczenia jest zapoznanie się z podstawami obsługi gamma kamery

Bardziej szczegółowo

Współczesne metody obrazowania w medycynie nuklearnej

Współczesne metody obrazowania w medycynie nuklearnej Współczesne metody obrazowania w medycynie nuklearnej prof. Jacek Kuśmierek Zakład Medycyny Nuklearnej Uniwersytetu Medycznego w Łodzi Kamera Scyntylacyjna 2013r. 1958r. Kamery scyntylacyjne SPECT (2 głowice)

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł kierunkowy ogólny Rodzaj zajęć: wykład, laboratorium TECHNIKI OBRAZOWANIA MEDYCZNEGO Medical Imaging Techniques Forma

Bardziej szczegółowo

Rok akademicki: 2014/2015 Kod: JFM s Punkty ECTS: 2. Poziom studiów: Studia I stopnia Forma i tryb studiów: -

Rok akademicki: 2014/2015 Kod: JFM s Punkty ECTS: 2. Poziom studiów: Studia I stopnia Forma i tryb studiów: - Nazwa modułu: Podstawy radiofarmakologii i medycyny nuklearnej Rok akademicki: 2014/2015 Kod: JFM-1-601-s Punkty ECTS: 2 Wydział: Fizyki i Informatyki Stosowanej Kierunek: Fizyka Medyczna Specjalność:

Bardziej szczegółowo

WŁAŚNOŚCI SCYNTYLACYJNE KRYSZTAŁU BGO. Winicjusz Drozdowski

WŁAŚNOŚCI SCYNTYLACYJNE KRYSZTAŁU BGO. Winicjusz Drozdowski WŁAŚNOŚCI SCYNTYLACYJNE KRYSZTAŁU BGO z Laboratorium Wzrostu Kryształów IF PSz Winicjusz Drozdowski Zakład Optoelektroniki Instytut Fizyki Uniwersytet Mikołaja Kopernika Toruń SEM #12 (2005/2006) 6 marca

Bardziej szczegółowo

Podstawowe własności jąder atomowych

Podstawowe własności jąder atomowych Podstawowe własności jąder atomowych 1. Ilość protonów i neutronów Z, N 2. Masa jądra M j = M p + M n - B 2 2 Q ( M c ) ( M c ) 3. Energia rozpadu p 0 k 0 Rozpad zachodzi jeżeli Q > 0, ta nadwyżka energii

Bardziej szczegółowo

Weryfikacja systemu TK dla potrzeb radioterapii. Dr inż. Dominika Oborska-Kumaszyńska The Royal Wolverhampton NHS Trust MPCE Department

Weryfikacja systemu TK dla potrzeb radioterapii. Dr inż. Dominika Oborska-Kumaszyńska The Royal Wolverhampton NHS Trust MPCE Department Weryfikacja systemu TK dla potrzeb radioterapii Dr inż. Dominika Oborska-Kumaszyńska The Royal Wolverhampton NHS Trust MPCE Department Symulator TK Transopzycja geometrii Testy dla TK Mechaniczne dopasowanie

Bardziej szczegółowo

Fantomy do testowania systemów obrazowania medycznego w PET na przykładzie fantomu Jaszczaka

Fantomy do testowania systemów obrazowania medycznego w PET na przykładzie fantomu Jaszczaka Andrzej WAC-WŁODARCZYK 1, Agata DANILCZUK 2 Politechnika Lubelska, Instytut Podstaw Elektrotechniki i Elektrotechnologii (1), Uniwersytet Medyczny w Lublinie, Katedra i Zakład Medycyny Nuklearnej (2) doi:10.15199/48.2018.08.26

Bardziej szczegółowo

IX. TOMOGRAFIA EMISYJNA FOTONÓW I POZYTONÓW

IX. TOMOGRAFIA EMISYJNA FOTONÓW I POZYTONÓW IX. TOMOGRAFIA EMISYJNA FOTONÓW I POZYTONÓW 9.1 Wstęp Badając pacjenta chcielibyśmy otrzymać trójwymiarowe obrazy jego narządów. Droga do tych obrazów prowadzi od otrzymania jedno- i dwuwymiarowych projekcji

Bardziej szczegółowo

Sławomir Wronka, r.

Sławomir Wronka, r. Accelerators and medicine Akceleratory i medycyna Sławomir Wronka, 15.04.2010r http://medgadget.com/archives/2007/08/automatic_feature_recognition_for_radiotherapy.html Akceleratory zastosowania Badania

Bardziej szczegółowo

AKCELERATORY I DETEKTORY WOKÓŁ NAS

AKCELERATORY I DETEKTORY WOKÓŁ NAS AKCELERATORY I DETEKTORY WOKÓŁ NAS AKCELERATOR W CERN Chociaż akceleratory zostały wynalezione dla fizyki cząstek elementarnych, to tysięcy z nich używa się w innych gałęziach nauki, a także w przemyśle

Bardziej szczegółowo

Rekapitulacja. Detekcja światła. Rekapitulacja. Rekapitulacja

Rekapitulacja. Detekcja światła. Rekapitulacja. Rekapitulacja Rekapitulacja Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje: czwartek

Bardziej szczegółowo

IX. TOMOGRAFIA EMISYJNA FOTONÓW I POZYTONÓW

IX. TOMOGRAFIA EMISYJNA FOTONÓW I POZYTONÓW IX. TOMOGRAFIA EMISYJNA FOTONÓW I POZYTONÓW 9.1 Wstęp Badając pacjenta chcielibyśmy otrzymać trójwymiarowe obrazy jego narządów. Droga do tych obrazów prowadzi od otrzymania jedno- i dwuwymiarowych projekcji

Bardziej szczegółowo

Techniki próżniowe (ex situ)

Techniki próżniowe (ex situ) Techniki próżniowe (ex situ) Oddziaływanie promieniowania X z materią rearrangement X-ray photon X-ray emission b) rearrangement a) photoemission photoelectron Auger electron c) Auger/X-ray emission a)

Bardziej szczegółowo

Ćwiczenie nr 51 BADANIE WŁASNOŚCI PROMIENIOWANIA GAMMA PRZY POMOCY SPEKTROMETRU SCYNTYLACYJNEGO

Ćwiczenie nr 51 BADANIE WŁASNOŚCI PROMIENIOWANIA GAMMA PRZY POMOCY SPEKTROMETRU SCYNTYLACYJNEGO Politechnika Warszawska Wydział Fizyki Laboratorium Fizyki II p. Piotr Kurek Do użytku wewnętrznego Ćwiczenie nr 51 BADANIE WŁASNOŚCI PROMIENIOWANIA GAMMA PRZY POMOCY SPEKTROMETRU SCYNTYLACYJNEGO I. Podstawy

Bardziej szczegółowo

Badanie absorpcji promieniowania γ

Badanie absorpcji promieniowania γ Badanie absorpcji promieniowania γ 29.1. Zasada ćwiczenia W ćwiczeniu badana jest zależność natężenia wiązki osłabienie wiązki promieniowania γ po przejściu przez warstwę materiału absorbującego w funkcji

Bardziej szczegółowo

Energetyka konwencjonalna odnawialna i jądrowa

Energetyka konwencjonalna odnawialna i jądrowa Energetyka konwencjonalna odnawialna i jądrowa Wykład 8-27.XI.2018 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Wykład 8 Energia atomowa i jądrowa

Bardziej szczegółowo

Tomografia emisyjna pojedynczych fotonów (SPECT) w medycynie nuklearnej: technika skanowania i rekonstrukcji obrazu.

Tomografia emisyjna pojedynczych fotonów (SPECT) w medycynie nuklearnej: technika skanowania i rekonstrukcji obrazu. Tomografia emisyjna pojedynczych fotonów (SPECT) w medycynie nuklearnej: technika skanowania i rekonstrukcji obrazu. Ćwiczenie dla studentów Wydziału Fizyki Politechniki Warszawskiej Opracował: Dr inż.

Bardziej szczegółowo

Identyfikacja cząstek

Identyfikacja cząstek Określenie masy i ładunku cząstek Pomiar prędkości przy znanym pędzie e/ µ/ π/ K/ p czas przelotu (TOF) straty na jonizację de/dx Promieniowanie Czerenkowa (C) Promieniowanie przejścia (TR) Różnice w charakterze

Bardziej szczegółowo

WZROST I WŁAŚCIWOŚCI SCYNTYLACYJNE MONOKRYSZTAŁÓW LuAlO,

WZROST I WŁAŚCIWOŚCI SCYNTYLACYJNE MONOKRYSZTAŁÓW LuAlO, PL ISSN 0209-0058 MATERIAŁY ELEKTRONICZNE T. 30-2002 NR 1/2 WZROST I WŁAŚCIWOŚCI SCYNTYLACYJNE MONOKRYSZTAŁÓW LuAlO, z. G a ł ą z k a ', A. J. W o j t o w i c z ^, W Szyrski', T. Ł u k a s i e w i c z

Bardziej szczegółowo

BADANIE WŁASNOŚCI PROMIENIOWANIA GAMMA PRZY POMOCY SPEKTROMETRU SCYNTYLACYJNEGO

BADANIE WŁASNOŚCI PROMIENIOWANIA GAMMA PRZY POMOCY SPEKTROMETRU SCYNTYLACYJNEGO Politechnika Warszawska Wydział Fizyki Laboratorium Fizyki II p. Piotr Kurek Do użytku wewnętrznego Ćwiczenie nr 11 BADANIE WŁASNOŚCI PROMIENIOWANIA GAMMA PRZY POMOCY SPEKTROMETRU SCYNTYLACYJNEGO I. Podstawy

Bardziej szczegółowo

Oddziaływanie cząstek z materią

Oddziaływanie cząstek z materią Oddziaływanie cząstek z materią Trzy główne typy mechanizmów reprezentowane przez Ciężkie cząstki naładowane (cięższe od elektronów) Elektrony Kwanty gamma Ciężkie cząstki naładowane (miony, p, cząstki

Bardziej szczegółowo

ABC tomografii komputerowej

ABC tomografii komputerowej ABC tomografii komputerowej Tomografia (od gr.: tome cięcie i grafein pisanie) metoda pozwalająca na uzyskiwanie obrazów przekrojów badanej okolicy ciała. Określenie o szerokim znaczeniu, najczęściej kojarzone

Bardziej szczegółowo

Wyznaczanie energii promieniowania γ pochodzącego ze. źródła Co metodą absorpcji

Wyznaczanie energii promieniowania γ pochodzącego ze. źródła Co metodą absorpcji Wyznaczanie energii promieniowania γ pochodzącego ze 6 źródła Co metodą absorpcji I. Zagadnienia 1. Procesy fizyczne prowadzące do emisji kwantów γ. 2. Prawo absorpcji. Oddziaływanie promieniowania γ z

Bardziej szczegółowo

Radioizotopowa diagnostyka nowotworów Szczególne możliwości badania PET/CT z użyciem znakowanej glukozy

Radioizotopowa diagnostyka nowotworów Szczególne możliwości badania PET/CT z użyciem znakowanej glukozy Radioizotopowa diagnostyka nowotworów Szczególne możliwości badania PET/CT z użyciem znakowanej glukozy Katarzyna Fronczewska-Wieniawska Małgorzata Kobylecka Leszek Królicki Zakład Medycyny Nuklearnej

Bardziej szczegółowo

Detekcja cząstek elementarnych. w eksperymencie MINOS. Krzysztof Wojciech Fornalski Wydział Fizyki Politechniki Warszawskiej 2006

Detekcja cząstek elementarnych. w eksperymencie MINOS. Krzysztof Wojciech Fornalski Wydział Fizyki Politechniki Warszawskiej 2006 Detekcja cząstek elementarnych w eksperymencie MINOS Krzysztof Wojciech Fornalski Wydział Fizyki Politechniki Warszawskiej 2006 Wstęp detektory budowa i typ scyntylatorów światłowody fotopowielacze kalibracja

Bardziej szczegółowo

Warszawa, dnia r.

Warszawa, dnia r. Warszawa, dnia 19.09.2011 r. Do wszystkich pobierających SIWZ Dotyczy: udzielenia zamówienia publicznego w trybie przetargu nieograniczonego Nr 120/20/2011 na Dostawę systemu obrazowania molekularnego

Bardziej szczegółowo

Kalibracja energetyczna i synchronizacja czasowa modularnego scyntylacyjnego systemu detekcyjnego do tomografii TOF-PET.

Kalibracja energetyczna i synchronizacja czasowa modularnego scyntylacyjnego systemu detekcyjnego do tomografii TOF-PET. INSTYTUT FIZYKI WYDZIAŁ FIZYKI, ASTRONOMII I INFORMATYKI STOSOWANEJ UNIWERSYTETU JAGIELLOŃSKIEGO Kalibracja energetyczna i synchronizacja czasowa modularnego scyntylacyjnego systemu detekcyjnego do tomografii

Bardziej szczegółowo

Oddziaływanie Promieniowania Jonizującego z Materią

Oddziaływanie Promieniowania Jonizującego z Materią Oddziaływanie Promieniowania Jonizującego z Materią Plan Ogólne własności detektora Czułość Rozdzielczość energetyczna Funkcja odpowiedzi Wydajność i czas martwy Tomasz Szumlak AGH-UST Wydział Fizyki i

Bardziej szczegółowo

Licznik Geigera - Mülera

Licznik Geigera - Mülera Detektory gazowe promieniowania jonizującego. Licznik Geigera - Mülera Instrukcję przygotował: dr, inż. Zbigniew Górski Poznań, grudzień, 2004. s.1/7 ` Politechnika Poznańska, Instytut Chemii i Elektrochemii

Bardziej szczegółowo

Sławomir Wronka, 04.04.2008r

Sławomir Wronka, 04.04.2008r Accelerators and medicine Akceleratory i medycyna Sławomir Wronka, 04.04.2008r Akceleratory zastosowania Badania naukowe, CERN Md Medycyna Medycyna Sterylizacja sprzętu ę Diagnostyka Terapia Radioterapia

Bardziej szczegółowo

Wykład 4. metody badania mózgu II. dr Marek Binder Zakład Psychofizjologii

Wykład 4. metody badania mózgu II. dr Marek Binder Zakład Psychofizjologii Wykład 4 metody badania mózgu II dr Marek Binder Zakład Psychofizjologii Terminologia SAGITTAL SLICE Number of Slices e.g., 10 Slice Thickness e.g., 6 mm In-plane resolution e.g., 192 mm / 64 = 3 mm IN-PLANE

Bardziej szczegółowo

Obrazowanie MRI Skopia rtg Scyntygrafia PET

Obrazowanie MRI Skopia rtg Scyntygrafia PET Wyzwania wynikające z rozwoju metod obrazowania Technika i technologia Konferencja w ramach projektu Wykorzystywanie nowych metod i narzędzi w kształceniu studentów UMB w zakresie ochrony radiologicznej

Bardziej szczegółowo

C2: WYKORZYSTANIE DETEKTORA PÓŁPRZEWODNIKOWEGO W POMIARACH PROMIENIOWANIA

C2: WYKORZYSTANIE DETEKTORA PÓŁPRZEWODNIKOWEGO W POMIARACH PROMIENIOWANIA C2: WYKORZYSTANIE DETEKTORA PÓŁPRZEWODNIKOWEGO W POMIARACH PROMIENIOWANIA Wykonanie ćwiczenia Ćwiczenie będzie odbywało się z użyciem detektora germanowego technologii HPGe (high purity germanium lub hyperpure

Bardziej szczegółowo

Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła

Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła W- (Jaroszewicz) 19 slajdów Na podstawie prezentacji prof. J. Rutkowskiego Fizyka kwantowa promieniowanie termiczne zjawisko fotoelektryczne kwantyzacja światła efekt Comptona dualizm korpuskularno-falowy

Bardziej szczegółowo

Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, Otwock-Świerk

Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, Otwock-Świerk Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, 05-400 Otwock-Świerk ĆWICZENIE L A B O R A T O R I U M F I Z Y K I A T O M O W E J I J Ą D R O W E J Zastosowanie pojęć

Bardziej szczegółowo

Wysokowydajne falowodowe źródło skorelowanych par fotonów

Wysokowydajne falowodowe źródło skorelowanych par fotonów Wysokowydajne falowodowe źródło skorelowanych par fotonów Michał Karpioski * Konrad Banaszek, Czesław Radzewicz * * Instytut Fizyki Doświadczalnej, Instytut Fizyki Teoretycznej Wydział Fizyki Uniwersytet

Bardziej szczegółowo

Obrazowanie molekularne w Centrum Nauk Biologiczno-Chemicznych Uniwersytetu Warszawskiego

Obrazowanie molekularne w Centrum Nauk Biologiczno-Chemicznych Uniwersytetu Warszawskiego Obrazowanie molekularne w Centrum Nauk Biologiczno-Chemicznych Uniwersytetu Warszawskiego dr Zbigniew Rogulski Centrum Nauk Biologiczno-Chemicznych Wydział Chemii, Uniwersytet Warszawski Obrazowanie molekularne

Bardziej szczegółowo

Nowatorskie rozwiązanie:tpc z odczytem optycznym (prof. Wojciech Dominik)

Nowatorskie rozwiązanie:tpc z odczytem optycznym (prof. Wojciech Dominik) Nowatorskie rozwiązanie:tpc z odczytem optycznym (prof. Wojciech Dominik) Do wnętrza komory wpada promieniotwórczy jon i zatrzymuje się w gazie. Po pewnym czasie następuje rozpad z emisją cząstek naładowanych

Bardziej szczegółowo

Ćwiczenie nr 2. Pomiar energii promieniowania gamma metodą absorpcji

Ćwiczenie nr 2. Pomiar energii promieniowania gamma metodą absorpcji Ćwiczenie nr (wersja_05) Pomiar energii gamma metodą absorpcji Student winien wykazać się znajomością następujących zagadnień:. Promieniowanie gamma i jego własności.. Absorpcja gamma. 3. Oddziaływanie

Bardziej szczegółowo