GRADIENT DAMAGE WITH VOLUMETRIC-DEVIATORIC DECOMPOSITION AND ONE STRAIN MEASURE
|
|
- Angelika Michalik
- 6 lat temu
- Przeglądów:
Transkrypt
1 Aam MECHANICS WOSAO AND CONROL RADIEN Vol. 30 No. 4 DAMAE 2011 WIH VOLUMERIC-DEVIAORIC DECOMPOSIION... Aam WOSAO * RADIEN DAMAE WIH VOLUMERIC-DEVIAORIC DECOMPOSIION AND ONE SRAIN MEASURE SUMMARY he paper presens a wo-fiel formulaion of he graien-enhance amage moel an is applicaion. his isoropic moel is characerize by wo amage parameers wih a volumeric-eviaoric ecomposiion. However, one srain measure governs he evelopmen of amage as for he scalar escripion. he heory is verifie by means of one-elemen benchmarks an also a more sophisicae simulaion, namely he spliing of concree cyliner in he razilian es is iscusse. eywors: isoropic amage, graien enhancemen, finie elemen meho RADIENOWY MODEL MECHANII USZODZEÑ Z ASJAOROWO-DEWIAOROW DEOMPOZYCJ I JEDN MIAR ODSZA CENIA Aryku³ przesawia wupolowe sformu³owanie graienowego moelu mechaniki uszkozeñ i jego zasosowanie. en izoropowy moel charakeryzuj¹ wa paramery uszkozenia z pozia³em aksjaorowo-ewiaorowym. Jenak- e jena miara oksza³cenia ecyuje o rozwoju uszkozenia jak w opisie skalarnym. eoria jes zweryfikowana za pomoc¹ esów jenoelemenowych, a ak e barziej zaawansowanej symulacji roz³upywania beonowego cylinra w zw. eœcie brazylijskim. S³owa kluczowe: izoropowy moel mechaniki uszkozeñ, moel graienowy, meoa elemenów skoñczonych 1. INRODUCION In he simples form of he amage heory one scalar parameer eermines he egraaion process. his efiniion of amage was firsly inrouce in (achanov, 1958). Alhough his amage concep was propose for isoropic coninuum, i can be generalize inroucing anisoropy. If amage irecions are isinguishe hen one scalar parameer is insufficien. In he lieraure amage vecors (rajcinovic an Fonseka 1981), secon-orer amage ensors (Murakami an Ohno 1981, een 1983, Liewka 1985) an fourh-orer amage ensors (Chaboche 1981, rajcinovic 1989, Lemaire an Chaboche 1990) have been efine. Differen escripions of he amage heory can be foun in (Skrzypek an anczarski 1999, Wu an Li 2008). However, numerical implemenaion of he heory wih fourh-orer amage ensors is complicae an a proper seup of maerial variables is ifficul. On he oher han, he scalar moel can be exene o wo amage parameers (Ju 1990) remaining wihin he isoropic escripion. Some auhors (Mazars an Pijauier-Cabo 1989, Comi 2001) employ he moificaion where amage is ecompose ino wo pars relae o ensile an compressive acions. However, he proposal iscusse in his paper resuls from a volumeric-eviaoric spli given for example in (Lubliner e al. 1989, Comi an Perego 2001). he firs amage parameer influences he bulk moulus an he secon one reuces he shear moulus. Hence wo ifferen amage growh funcions are isinguishe, bu one amage hisory parameer an one amage loaing funcion are assume. As a consequence, when he moel i is applie in a graien-enhance forma, one averaging equaion is sill he basis of a formulaion of finie elemen meho as for he scalar graien amage (Peerlings e al. 1996). he heory is briefly iscusse in Secions 2 an 3. he implemene moel is firs examine for one finie elemen, in Secion 4. he nex compuaional verificaion is performe in Secion 5 by he simulaion of he razilian cyliner spli es. Final remarks are given in Secion VOLUMERIC-DEVIAORIC SPLI he coninuum amage formulaion saisfies he isoropy coniion if wo amage parameers ω an ω for he volumeric an eviaoric pars respecively are consiere, cf. (Lubliner e al. 1989, Ju 1990, Comi an Perego 2001, Carol e al. 2002). he consiuive equaion becomes: σ = E ε (1) where: E = (1 ω ) ΠΠ + 2(1 ω ) Q (2) Here σ is he sress ensor an ε is he srain ensor. oh are consiere in a vecor form an ε = [ε 11 ε 22 ε 33 ε 12 ε 23 ε 13 ]. he amage parameer ω reuces bulk moulus an he parameer ω egraes shear moulus. he following relaions are inrouce: 1 3 Q = Q 0 ΠΠ (3) 1 3 where in hree imensions (3D): Π = [1, 1, 1, 0, 0, 0] an Q0 = iag 1, 1, 1,,, Qev = I ΠΠ (4) * Cracow Universiy of echnology, Faculy of Civil Engineering, Warszawska 24, Cracow, Polan; awosako@ L5.pk.eu.pl 254
2 MECHANICS AND CONROL Vol. 30 No Noe ha he srain an sress vecors are spli ino volumeric an eviaoric pars: 1 ε= θ ε ev 3 Π + (5) σ = Πp + ξ (6) an he variables on he righ-han sie are as follows: θ = Π ε is he ilaaion, ε ev = Qε is he eviaoric srain, 1 p = Π σ is he pressure an ξ = Q ev σ is he eviaoric 3 sress. he sress rae is obaine iffereniaing (1): &σ = Eε& ω& ÊΠΠ ε 2ω& Q ε (7) One amage hisory parameer κ is aope, i.e. κ = κ = κ, so ha one amage loaing funcion: f ( ε, κ ) =ε% ( ε ) κ = 0 (8) is assume. he uhn-ucker coniions are saisfie by he equivalen srain measure ε% an he amage hisory parameer κ. his means ha funcion ε% () ε can be efine analogically o he scalar amage moel. However, wo ifferen amage growh funcions are isinguishe: ω = ω (κ ) (9) ω = ω (κ ) (10) Since one hisory parameer κ governs he amage evoluion, he raes of amage parameers ω an ω uring loaing are respecively: ω κ ε% ω & = ε& κ ε% ε ω κ ε% ω & = ε& κ ε% ε (11) (12) is sill he basis of he wo-fiel formulaion like for he scalar graien amage (Peerlings e al. 1996). he above relaion involves he secon graiens of he average srain ε. he parameer c > 0 has a uni of lengh square an i is connece wih he inernal lengh scale l of 1 2 a maerial. he relaion c = l is erive for insance in 2 (Askes e al. 2000). Insea of he local equivalen srain ε% he average srain ε now governs he amage progress: f ( ε, κ ) = ε( ε% ( ε )) κ = 0 (14) he amage raes are compue as: ω κ ω & = ε & = ε & (15) κ ε ω κ ω & = ε & = ε & (16) κ ε he weak form of equilibrium equaions can be wrien as: δ ε σv = δ u bv + δu S (17) where u is he isplacemen fiel, b is he boy force vecor, is he racion vecor. A weak form of Equaion (13) is erive using reen s formula an he homogeneous naural bounary coniion: ( ε) ν =0: δε ε V + ( δε) c ε V = δε ε V % (18) he wo-fiel formulaion involves inepenen inerpolaions of isplacemens u an average srain measure ε in he semi-iscree linear sysem. he primary fiels are inerpolae in his way: an uring unloaing boh ω& an ω& are equal o 0. u = Na an ε=h e (19) 3. ISOROPIC RADIEN DAMAE I is by now common knowlege ha he graien enhance moel accoring o (Peerlings e al. 1996, eers 1997, Pamin, 2004) is nonlocal. During a failure process, from he onse of localizaion unil he oal loss of he siffness, he governing sysem of equaions remains ellipic an he regularizaion allows one o avoi a spurious mesh sensiiviy. his secion concerns he erivaion of isoropic amage wih a graien enhancemen. he equaions of he bounary value problem (VP) are almos he same as for scalar amage, bu he angen sress-srain relaion is efine in (7). Hence he averaging equaion: 2 ε c ε=ε% (13) where N an h conain suiable shape funcions. From he above inerpolaions he seconary fiels can be compue in he following way: ε = a an ε = g e (20) where = LN (L is he sanar ifferenial operaor marix) an g = h. he iscreize equaions mus hol for any amissible δa an δe, herefore: σv = N bv + N S ( hh + cgg ) ev = hεv % (21) (22) 255
3 Aam WOSAO RADIEN DAMAE WIH VOLUMERIC-DEVIAORIC DECOMPOSIION... he VP is linearize, hence a noal poins he incremens of he primary fiels from insan o insan + Δ are ecompose in such a way: a +Δ = a + Δa an e +Δ = e + Δe (23) Analogically, a inegraion poins we inrouce he ecomposiion of ε, σ an ε%. he equilibrium equaions hen become: ( σ +Δ σ)v = +Δ +Δ = N b V + N S an he averaging equaion has he form: ( hh + cgg )( e +Δ e)v = = h( ε % +Δε% )V (24) (25) he incremenal consiuive relaion is erive saring from Equaion (7): Δ σ = E Δa ΠΠ + 2Q ε h Δe where he amage incremens have been calculae as: (26) Δω = h Δe (27) Δω = h Δe (28) an he erivaives are eermine a insan.we can rewrie Equaion (24) in a marix form: +Δ aa Δa+ ae Δ e = fex f in (29) where: aa = E V (30) ae = [ ΠΠ Q] ε h V +Δ +Δ +Δ = V + (31) f ex N b N S (32) fin = σ V (33) In Equaion (25) he incremen of equivalen srain measure Δε% is compue from he inerpolae isplacemen incremen Δa: ε% Δε % = Δ = Δ ε s a ε an Equaion (25) can be formulae as follows: (34) eaδ a+ eeδ e = fε f e (35) he marices an vecors in Equaion (35) are similar o he scalar amage formulaion, cf. (Peerlings e al. 1996): ea = h s V (36) ee = ( hh + cgg )V (37) fε = h ε % V (38) fe = eee (39) Evenually, he following sysem of equaions is use: +Δ aa ae Δa f ex fin = ea ee Δe fε fe 4. ONE-ELEMEN ENCHMARS (40) Firsly wo benchmarks wih one finie elemen (FE) are compue. hese simple ess permi one o observe he behaviour of he isoropic amage a he poin level. eer unersaning of his moel is essenial o prouce more avance analyses ension in one irecion One hree-imensional finie elemen (FE) wih eigh noes is subjece o saic ension in one irecion. he aa for elasiciy are as follows: Young s moulus E = MPa, Poisson s raio ν = he normalize elasic energy release rae (Ju 1989) is employe in compuaions as he loaing funcion, however he Mazars efiniion (Mazars 1984) an he moifie von Mises efiniion (e Vree e al. 1995) for his kin of ension es are all equivalen, i.e. κ = ε 11.We emphasize ha amage hreshol κ o = influences one inepenen hisory parameer κ. he simple moificaion of scalar heory gives a possibiliy o aop of wo ifferen amage growh funcions, separaely for he egraaion of bulk moulus an shear moulus. All calculae cases are juxapose in able
4 MECHANICS AND CONROL Vol. 30 No here are presene symbols use o isinguish a given case an corresponing amage growh aa. During he amage evoluion ω can grow in ifferen ways. Linear sofening law (Peerlings e al. 1996): κu κ κo ωκ ( ) = κ κu κo (41) is inrouce in his example in orer o illusrae he properies of he isoropic amage moel. In he amage evoluion firsly κ excees hreshol κ o an nex ens o ulimae value κ u which correspons o oal amage. Here equal or ifferen ulimae values κ u are assume for he volumeric an eviaoric egraaion. Hence inex i =, permis one o isinguish he analyze processes. he cases wih ienical aa for boh amage growh funcions can be reae as reference (sanar scalar amage). lin lin, able 1 ension in one irecion compue cases Symbol of case Linear sofening Ulimae value of hisory parameer Volumeric κ u = κ u = Deviaoric κ u = κ u = Diagrams of srain ε 11 versus ω an ω in he final phase of amage are shown in Figure 1 for chosen cases. hey can help one o unersan how ifferen amage growh funcions influence he resuls. he non-monoonic funcion ω(ε 11 ) in Figure 1(b) resuls from snapback behaviour which is seen in Figure 2. In Figure 2 he cases wih linear sofening are presene. As expece, afer he peak, iagrams for lin, an lin, sar o ecline beween iagrams for lin an lin,&. However, he nonlinear characer of sofening is surprising for he linear amage growh efine for cases lin, an lin,. Moreover, in case lin,, where he eviaoric par has larger κ u, arclengh conrol mus be use because of he snapback effec. herefore, i is enough o change he ulimae value κ u for given volumeric or eviaoric par in orer o obain a nonlinear escen of he sress-srain iagram. a) b) lin, κ u = κ u = lin,& exp exp, exp, Symbol of case exp, & κ u = Exponenial sofening Duciliy parameer Volumeric κ u = Deviaoric η = 1000 η = 1000 η = 750 η = 1000 η = 1000 η = 750 η = 750 η = 750 c) Exponenial sofening law (Mazars an Pijauier-Cabo 1989, Peerlings e al. 1998): κo η( κ κ ) ωκ ( ) = 1 1 α+αe o κ (42) ) is also analyze because his funcion is aope in furher compuaions. Here he parameers η an α are responsible for he rae of sofening an resiual sress which in one imension ens o (1 α)eκ o. In his analysis uciliy parameer η is varie. he amage evoluion is governe by ominaing volumeric or isorion failure. he same numerical sabiliy parameer α = 0.98 is assigne. I is also possible o aop wo ifferen amage laws uring he failure process, cf. (Wosako 2008). Fig. 1. Developmen of amage parameers in amage-srain iagrams 257
5 Aam WOSAO RADIEN DAMAE WIH VOLUMERIC-DEVIAORIC DECOMPOSIION... Fig. 2. Influence of ulimae u i κ (i =, ) in linear sofening Figure 3 epics he iagrams for amage growh funcions relae o exponenial sofening. he inerpreaion is easy since each sofening branch has an exponenial characer. For cases exp, an exp, wih ifferen uciliy parameers he iagrams run beween he exreme cases exp an exp,&. Analogically o he cases wih linear funcions a cerain regulariy can be noe. If he fracure energy for he eviaoric par is increase (compare cases exp an exp,), i gives a larger ifference in response han for larger fracure energy aope for he volumeric par. I is oubful o consier he concep of fracure energy only for a chosen par of he siffness, however in orer o simplify he explanaions his concep is use here. I is shown in Figure 4 how his parameer changes. In he case of linear sofening he value of ν ω rasically ens o a lower or upper limi. hese limis can be perceive as conroversial resuls. Such exreme behaviour in simulaion an as a consequence nonlinear relaion beween ε 11 an σ 11 seems o be unesirable. A complee egraaion for he volumeric par in case lin, gives finally ν ω equal o 1. On he oher han he zero shear siffness in case lin, leas o ν ω = 0.5 like for incompressible maerials, cf. (Carol e al. 2002). If exponenial sofening is use (see Figure 4, case exp,) a smooh rop o zero is observe, bu his is no always so. he saring value of ν ω an also he configuraion of he consiere es ecie on wheher ν ω becomes negaive. For quasibrile maerials like concree generally i is expece ha Poisson s raio ens o 0 uring he amage evoluion (Carol e al. 2002) Willam s es Fig. 4. Sensiiviy of Poisson s raio ν ω Fig. 3. Influence of uciliy parameer η i (i =, ) in exponenial sofening If ω ω he Poisson s raio is no consan. I can be compue as (Wosako 2008): ( ω) ( ω) ( ω ) + ( ω ) ν ω = (43) so ha Poisson s raio epening on he siffness egraaion is inrouce. o isinguish he Poisson s raio which is given as an elasic maerial parameer from he one efine in Equaion (43) he subscrip ω is use. Hence, his new parameer ν ω is compue uring he amage process. he ension-shear es calle also Willam s es was compue he firs ime in (Willam e al. 1987). I serves he purpose of verificaion of inelasic maerial moels a he poin level. he resuls of paricular moels can be ifferen even if hese moels in uniaxial ension exhibi a quie similar behaviour, as i was noice in (Winnicki an Cichoñ 1996), so he simulaion of ension-shear loaing process a he poin level complees he numerical analysis of a given moel. One finie elemen wih four noes in plane sress is subjece o loaing in wo phases: I. Uniaxial horizonal ension wih verical conracion ue o he Poisson s effec, accoring o he relaion beween he srain incremens: Δε 11 : Δε 22 : Δγ 12 = 1 : ν : 0. hese coniions are obeye unil he ensile srengh is aaine. II. Immeiaely afer he ensile srengh is reache he change of configuraion is enforce. he proporions for he srain incremens are arrange as follows: Δε 11 : Δε 22 : Δγ 12 = 0.5 : 0.75 : 1. his relaion inuces ension in wo irecions an aiionally a shear srain. As a consequence a roaion of principal srain axes occurs, bu he ension regime is preserve. 258
6 MECHANICS AND CONROL Vol. 30 No he es is passe if he maximum principal sress is lower han or a mos equal o he given uniaxial ensile srengh, cf. (Pivonka e al. 2004). he secon coniion is ha finally all sress componens shoul converge o zero. he se of aa is base on Pivonka e al. (2004), namely Young s moulus E = MPa, Poisson s raio ν = 0.20, an he remaining parameers are une o uniaxial ensile srengh f = 3 MPa, uniaxial compressive srengh f c = 38.3 MPa an ensile fracure energy f = 0.11 N/mm. Moifie von Mises efiniion (e Vree e al. 1995) is use, so he raio beween compressive an ensile srengh is equal o k = f c /f he hreshol is calculae as he quoien of he ensile srengh an Young s moulus κ o = f /E = In his es exponenial sofening is consiere. he firs parameer α is equal o 1.0, which means ha a complee loss of siffness is amie. As previously four cases wih ifferen prescribe uciliy parameers are consiere. he basic case exp is for pure scalar amage wih η = η = Such a value seems o be unrealisically huge, bu resuls in a fas maerial failure. Nex wo cases wih ifferen uciliies for he volumeric an eviaoric amage are calculae. he case wih more ucile exponenial sofening for he eviaoric par wih parameers η = 4000 an η = 2000 an as an effec larger volumeric amage ω is calle exp,. he opposie aa η = 2000 an η = 4000 are use for he case calle exp,, where amage for he eviaoric par governs he soluion. o complee he resuls of Willam s es he case exp,& wih boh smaller parameers η = η = 2000 is also analyze. In Figure 5 iagrams for cases exp an exp,& eermine bouns for cases wih ifferen uciliy parameers. he sress-srain iagrams for exp, an exp, are foun in exchange posiions comparing wih he example of uniaxial ension. I seems surprising, bu he Willam es eals wih a ifferen loaing hisory. In Figure 5(b) shear relaion γ 12 σ 12 is epice. A full agreemen beween iagrams for exp an exp,, an also beween iagrams for exp,& an exp, is characerisic for his es. I is connece wih he fac ha hese respecive cases have he same parameer for he eviaoric par. In Figure 6 he componens of sress ensor ogeher wih principal sresses are epice versus srain ε 11. he figure shows he resuls only for he isoropic moel aking ino accoun opions wih ifferen uciliy parameers. I is noice ha for case exp, he secon principal sress has negaive values for large ε 11. he final enency is ha all componens converge o zero. Figure 7 is ploe for all consiere cases. As i is epice in enlarge secor he zero value is finally reache. If he parameer α is less han 1.0, he resiual values remain, see (Wosako 2008). a) b) a) b) Diagrams of relaions γ 12 σ 12 Fig. 5. Willam s es influence of uciliy parameer η i (i =, ) Fig. 6. Willam s es comparison of sress componens 259
7 Aam WOSAO RADIEN DAMAE WIH VOLUMERIC-DEVIAORIC DECOMPOSIION... Fig. 7. Willam s es evoluion of principal sresses for isoropic moel are confrone, in (Meschke e al. 1998) muliirecional kinemaic sofening amage-plasiciy an fixe crack moels are ese. Due o a ouble symmery only a quarer of he omain (wih raius equal o 40 mm) is consiere. he general geomery aa are base on (Winnicki e al. 2001), bu plane srain coniions are assume. he loa is applie o he specimen inirecly via a siff plaen (wih 5 mm, heigh 2.5 mm). he plaen is perfecly connece wih he specimen. In hese compuaions only one mesh shown in Figure 9 is employe, in orer o focus on he response of isoropic version of graien amage. However, mesh insensiiviy for scalar graien amage is wiely iscusse in (Wosako 2008). he loa acs ownwars a he op of he plaen. he maerial aa are juxapose in ables 2 an 3. I is shown here ha no only he inernal lengh parameer in he graien moel ecies abou he resuls of he es, bu also oher parameers, for insance he choice of he amage growh funcion, in paricular for he volumeric or eviaoric par of amage. Four opions of exponenial sofening are analyze, where ifferen combinaions of values of uciliy parameer η ecie wheher he amage process is more or less brile. he parameer α equals 0.99 for each case. A snapback response is possible so he es is compue applying he arc lengh meho. Fig. 8. Willam s es sensiiviy of Poisson s raio ν ω. Differen relaions beween parameers α an η i (i =, ) If α is equal o 1 he lower or upper limi of ν ω is reache, cf. Figure 8. he value of ν ω can reurn o he iniial one, bu for α smaller han 1.0. For quasi-brile maerials a ecreasing of Poisson s raio is expece (see also Carol e al. 2002), bu negaive values are raher non-physical an unesirable. Aenion is focuse on case exp, where he values of ν ω are less or a mos equal o given in aa. I is possible o seup boh parameers α an η separaely for volumeric an eviaoric par in such way ha negaive Poisson s raio is prevene, see (Wosako 2008). Fig. 9. Mesh for razilian es able 2 razilian es maerial moel aa 5. RAZILIAN ES he spliing effec is use o esablish he ensile srengh in quasi-brile maerials, because he compression beween he loaing plaens inuces he perpenicular ensile force acion in he mile. his phenomenon an he snapback response in he razilian es is no easy o reprouce in numerical compuaions, because uner he plaen a plasic zone of slip can appear or amage can localize in a small region. In fac, ifferen mechanical moels have been verifie numerically using his es, for example in (Chen an Chang 1978) plasiciy heories are analyze, in (Feensra 1993) roaing crack an plasiciy moels Specimen: Young s moulus: Poisson s raio: Equivalen srain measure: Fracure energy: Inernal lengh scale: hreshol: Plaen: Young s moulus: Poisson s raio: amaging E c = MPa ν = 0.15 moifie von Mises, k = 10 f = N/mm l = 6 mm, i.e. c = 18.0 κ o = ?5 elasic E s = 10 E c ν =
8 MECHANICS AND CONROL Vol. 30 No able 3 razilian es compue cases Symbol of case η η Damage growh exp more inensive his means ha he eviaoric amage is more imporan in he siffness egraaion an ecies abou he proper behaviour in he razilian es. Conour plos in Figures are epice for he peak an he final sae, he respecive poins A an are marke in Figure 10. exp, ω < ω exp, ω > ω exp,& less inensive a) b) c) ) Fig. 10. razilian es influence of uciliy parameer ηi (i =, ), loa-isplacemen iagrams he loa-isplacemen iagrams in Figure 10 are race for he four consiere cases. I is noice ha for cases exp, an exp he sofening pahs are monoonic an wihou any snapback. he same value of parameer η = 1200 leas o similar soluions. On he oher han, for cases exp, an exp,& he snapback response is simulae. a) e) g) f) h) b) Fig. 12. Damage paerns in razilian es Fig. 11. razilian es average srain ε he spliing is obaine only for he cases which correspon o he larger value of fracure energy f for he eviaoric par, i.e. he uciliy η = 600. I is confirme by means of Figure 11, where he isribuions of average srain are ploe for he wo sages poins A an. herefore he ineracion beween he compressive loaing an he ensile response seems o be ransferre via he eviaoric characerisics in he moel. Figure 12 shows he 261
9 Aam WOSAO RADIEN DAMAE WIH VOLUMERIC-DEVIAORIC DECOMPOSIION... amage paerns for cases exp, an exp,. Accoring o he assumpions inclue in able 3, he ominaion of amage ω in case exp, an inversely ω in case exp, is noice. he spliing effec observe for case exp, is expece in he razilian es an he coincience wih he ecrease of ν ω uring he process is suiable for concree. 6. FINAL REMARS Isoropic amage wih he volumeric-eviaoric spli is enhance by averaging equaion wih secon orer graien erm. wo ifferen amage growh funcions are assume, however one average srain measure is hol. his approach wih one srain measure involves one amage loaing funcion. Hence wo-fiel finie elemen formulaion as for he scalar graien amage is obaine. I is shown even in one FE ension es ha one of he feaures of he isoropic moels is ha evolving Poisson s raio is simulae, which is characerisic for egraing quasi-brile maerials. I is however quesionable wheher is negaive values shoul be amie in he simulaion process. In his moel his is no assure, hence only by means of appropriae values for he parameers of he moel negaive Poisson s raio can be avoie. However we can overcome his problem, if we apply he moel wih a resricion similar o propose in (anczarski an arwacz 2004). he resuls for all he opions of he moel saisfy he coniions o pass he Willam es. he case wih exp, seems o be he mos promising, because for his case he behaviour similar o quasi-brile maerials is obaine. A oal separaion of he volumeric an eviaoric pars is possible. In a more general approach wo amage loaing funcions are inrouce, wo ifferen averaging equaions an hree-fiel formulaion are erive. A similar approach wih oal separaion of amage parameers is escribe in (Carol e al. 2002), where wo amage variables influence wo loaing funcions. Such moel is calle here biissipaive isoropic moel. Acknowlegmens Valuable iscussions wih Prof. Jerzy Pamin an Prof. Anrzej Winnicki from Cracow Universiy of echnology are graefully acknowlege. he compuaions were performe using he evelopmen version of he FEAP program of Prof. R.L. aylor. References Askes H., Pamin J., e ors R. 2000, Dispersion analysis an elemen-free alerkin soluions of secon- an fourh-orer graien-enhance amage moels. In. J. Numer. Meh. Engng, 49, pp een J. 1983, Damage ensors in coninuum mechanics. J. Méc. héor. Appl., 2(1), pp Carol I., Rizzi E., Willam. 2002, An exene volumeric/eviaoric formulaion of anisoropic amage base on a pseuo-log rae. Eur. J. Mech. A/Solis, 21(5), pp Chaboche J.-L. 1981, Coninuous amage mechanics: a ool o escribe phenomena before crack iniiaion. Nuclear Engng. an Design, 64(2), pp Chen W.F., Chang.Y.P. 1978, Plasiciy soluions for concree spliing ess. ASCE J. Eng. Mech. Div., 104(EM3), pp Comi C. 2001, A non-local moel wih ension an compression amage mechanisms. Eur. J. Mech. A/Solis, 20(1), pp Comi C., Perego U. 2001, Numerical aspecs of nonlocal amage analyses. Revue européenne es élémens finis, 10(2-3-4), pp e Vree J.H.P., rekelmans W.A.M., van ils M.A.J. 1995, Comparison of nonlocal approaches in coninuum amage mechanics. Compu. & Sruc., 55(4), pp Feensra P.H. 1993, Compuaional aspecs of biaxial sress in plain an reinforce concree. Ph.D. isseraion, Delf Universiy of echnology, Delf. anczarski A., arwacz L. 2004, Noes on amage effec ensors of woscalar variables. In. J. Damage Mechanics, 13, pp eers M..D. 1997, Experimenal analysis an compuaional moelling of amage an fracure. Ph.D. isseraion, Einhoven Universiy of echnology, Einhoven. Ju J.W. 1989, On energy-base couple elasoplasic amage heories: consiuive moeling an compuaional aspecs. In. J. Solis Sruc., 25(7), pp Ju J.W. 1990, Isoropic an anisoropic amage variables in coninuum amage mechanics. ASCE J. Eng. Mech., 116(12), pp achanov L.M. 1958, ime of rupure process uner creep coniions. Iz. Aka. Nauk SSSR, O. ekh. Nauk, 8, pp (in Russian). rajcinovic D. 1989, Damage mechnics. Mechanics of Maerials, 8(2 3), pp rajcinovic D., Fonseka.U. 1981, Coninuous amage heory of brile maerials. ASME J. Appl. Mech., 48(4), pp Lemaire J., Chaboche J.-L. 1990, Mechanics of Soli Maerials. Cambrige Universiy Press, Cambrige. Liewka A. 1985, Effecive maerial consans for ororopically amage elasic soli. Arch. Mech., 37(6), pp Lubliner J., Oliver J., Oller S., Oñae E. 1989, A plasic-amage moel for concree. In. J. Solis Sruc., 25(3), pp Mazars J. 1984, Applicaion e la mécanique e l eommagemen au comporemen non linéaire e à la rupure u béon e srucure. Ph.D. isseraion, Universié Paris 6, Paris. Mazars J., Pijauier-Cabo. 1989, Coninuum amage heory applicaion o concree. ASCE J. Eng. Mech., 115, pp Meschke., Mach J., Lackner R. 1998, A amage-plasiciy moel for concree accouning for fracure-inuce anisoropy. [in:] e ors R. e al., eiors, Proc. EURO-C 1998 In. Conf. Compuaional Moelling of Concree Srucures, vol. 1, pp. 3 12, Roeram/ rookfiel. A.A. alkema. Murakami S., Ohno N. 1981, A coniuum heory of creep an creep amage. [in:] Poner A.R.S. an Hayhurs D.R., eiors, IUAM Symp., Creep in Srucures, pp , erlin, Springer. Pamin J. 2004, raien-enhance coninuum moels: formulaion, iscreizaion an applicaions. Series Civil Engineering, Monograph 301, Cracow Universiy of echnology, Cracow. Peerlings R.H.J., e ors R., rekelmans W.A.M., e Vree J.H.P. 1996, raien-enhance amage for quasi-brile maerials. In. J. Numer. Meh. Engng, 39, pp Peerlings R.H.J., e ors R., rekelmans W.A.M., eers M..D. 1998, raien-enhance amage moelling of concree fracure. Mech. Cohes.-fric. Maer., 3, pp Pivonka P., Ožbol J., Lackner R., Mang H.A. 2004, Comparaive suies of 3-consiuive moels for concree: applicaion o mixe-moe fracure. In. J. Numer. Meh. Engng, 60, pp
10 MECHANICS AND CONROL Vol. 30 No Skrzypek J., anczarski A. 1999, Moelling of Maerial Damage an Failure of Srucures: heory an Applicaions. Springer, erlin, New York. Willam., Pramono E., Sure S. 1987, Funamenal issues of smeare crack moels. [in:] Shah S.P. an Swarz S.E. (eiors), Proc. SEM-RILEM In. Conf. on Fracure of Concree an Rock, pp , ehel, Connecicu. Sociey of Engineering Mechanics. Winnicki A., Cichoñ Cz. 1996, Numerical analysis of he plain concree moel preicion for nonproporional loaing pahs. [in:] opping,.h.v., eior, Avances in Finie Elemen echnology, pp , Einburgh, Civil-Comp Press. Winnicki A., Pearce C.J., iæaniæ N. 2001, Viscoplasic Hoffman consisency moel for concree. Compu. & Sruc., 79, pp Wosako A. 2008, Finie-elemen analysis of cracking in concree using graien amage-plasiciy. Ph.D. isseraion, Cracow Universiy of echnology, Cracow. Wu J.-Y., Li J. 2008, On he mahemaical an hermoynamical escripions of srain equivalence base anisoropic amage moel. Mechanics of Maerials, 40, pp
DYNAMIC ASPECTS OF INTERACTION: PANTOGRAPH CATENARY DYNAMICZNE ASPEKTY WSPÓŁPRACY PANTOGRAFU Z SIECIĄ TRAKCYJNĄ
TECHNICAL TRANSACTIONS ELECTRICAL ENGINEERING CZASOPISMO TECHNICZNE ELEKTROTECHNIKA DOI: 0.4467/353737XCT.6.46.6045 -E/06 MAREK DUDZIK, ADAM S. JAGIEŁŁO * DYNAMIC ASPECTS OF INTERACTION: PANTOGRAPH CATENARY
RESONANCE OF TORSIONAL VIBRATION OF SHAFTS COUPLED BY MECHANISMS
SCIENTIFIC BULLETIN OF LOZ TECHNICAL UNIVERSITY Nr 78, TEXTILES 55, 997 ZESZYTY NAUKOWE POLITECHNIKI ŁÓZKIEJ Nr 78, WŁÓKIENNICTWO z. 55, 997 Pages: 8- http://bhp-k4.p.loz.pl/ JERZY ZAJACZKOWSKI Loz Technical
SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like
SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1 I SSW1.1, HFW Fry #65, Zeno #67 Benchmark: Qtr.1 like SSW1.2, HFW Fry #47, Zeno #59 Benchmark: Qtr.1 do SSW1.2, HFW Fry #5, Zeno #4 Benchmark: Qtr.1 to SSW1.2,
Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)
Zakopane, plan miasta: Skala ok. 1:15 000 = City map (Polish Edition) Click here if your download doesn"t start automatically Zakopane, plan miasta: Skala ok. 1:15 000 = City map (Polish Edition) Zakopane,
Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis
Machine Learning for Data Science (CS4786) Lecture11 5 Random Projections & Canonical Correlation Analysis The Tall, THE FAT AND THE UGLY n X d The Tall, THE FAT AND THE UGLY d X > n X d n = n d d The
Hard-Margin Support Vector Machines
Hard-Margin Support Vector Machines aaacaxicbzdlssnafiyn9vbjlepk3ay2gicupasvu4iblxuaw2hjmuwn7ddjjmxm1bkcg1/fjqsvt76fo9/gazqfvn8y+pjpozw5vx8zkpvtfxmlhcwl5zxyqrm2vrg5zw3vxmsoezi4ogkr6phieky5crvvjhriqvdom9l2xxftevuwcekj3lktmhghgniauiyutvrwxtvme34a77kbvg73gtygpjsrfati1+xc8c84bvraowbf+uwnipyehcvmkjrdx46vlykhkgykm3ujjdhcyzqkxy0chur6ax5cbg+1m4bbjptjcubuz4kuhvjoql93hkin5hxtav5x6yyqopnsyuneey5ni4keqrxbar5wqaxbik00icyo/iveiyqqvjo1u4fgzj/8f9x67bzmxnurjzmijtlybwfgcdjgfdtajwgcf2dwaj7ac3g1ho1n4814n7wwjgjmf/ys8fenfycuzq==
OpenPoland.net API Documentation
OpenPoland.net API Documentation Release 1.0 Michał Gryczka July 11, 2014 Contents 1 REST API tokens: 3 1.1 How to get a token............................................ 3 2 REST API : search for assets
Towards Stability Analysis of Data Transport Mechanisms: a Fluid Model and an Application
Towards Stability Analysis of Data Transport Mechanisms: a Fluid Model and an Application Gayane Vardoyan *, C. V. Hollot, Don Towsley* * College of Information and Computer Sciences, Department of Electrical
Tychy, plan miasta: Skala 1: (Polish Edition)
Tychy, plan miasta: Skala 1:20 000 (Polish Edition) Poland) Przedsiebiorstwo Geodezyjno-Kartograficzne (Katowice Click here if your download doesn"t start automatically Tychy, plan miasta: Skala 1:20 000
Multi-Criteria Decision Support using ELECTRE methods
Muli-Crieria Decision Suppor using ELECTRE mehods Roman Słowiński Poznań Universiy of Technology, Poland Weak poins of preference modelling using uiliy (value) funcion Uiliy funcion disinguishes only 2
Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów
Rozpoznawanie twarzy metodą PCA Michał Bereta www.michalbereta.pl 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów Wiemy, że możemy porównywad klasyfikatory np. za pomocą kroswalidacji.
Helena Boguta, klasa 8W, rok szkolny 2018/2019
Poniższy zbiór zadań został wykonany w ramach projektu Mazowiecki program stypendialny dla uczniów szczególnie uzdolnionych - najlepsza inwestycja w człowieka w roku szkolnym 2018/2019. Składają się na
Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science
Proposal of thesis topic for mgr in (MSE) programme 1 Topic: Monte Carlo Method used for a prognosis of a selected technological process 2 Supervisor: Dr in Małgorzata Langer 3 Auxiliary supervisor: 4
A sufficient condition of regularity for axially symmetric solutions to the Navier-Stokes equations
A sufficient condition of regularity for axially symmetric solutions to the Navier-Stokes equations G. Seregin & W. Zajaczkowski A sufficient condition of regularity for axially symmetric solutions to
/ / * ** ***
91 / / * ** *** 93/3/31 : 9/11/0 :. 1385. 1390... :.P51 C61 G1:JEL 139 / 51 Email: kiaee@isu.ac.ir. Email: abrihami@u.ac.ir. Email: sobhanihs@u.ac.ir..7.*..**..*** 136. 1363 30.... Dynamic Sochasic ) (Opimizaion....
ANALYSIS OF A FLEXIBLE ROAD PAVEMENT ON A SUBGRADE WITH AN INCLUSION IN THE FORM OF A PIPELINE RUNNING ALONG THE ROAD AXIS
Roads and Bridges - Drogi i Mosy 17 (2018) 285-297 285 BEATA GAJEWSKA 1) MARCIN GAJEWSKI 2) CEZARY KRASZEWSKI 3) ANALYSIS OF A FLEXIBLE ROAD PAVEMENT ON A SUBGRADE WITH AN INCLUSION IN THE FORM OF A PIPELINE
Aerodynamics I Compressible flow past an airfoil
Aerodynamics I Compressible flow past an airfoil transonic flow past the RAE-8 airfoil (M = 0.73, Re = 6.5 10 6, α = 3.19 ) Potential equation in compressible flows Full potential theory Let us introduce
Katowice, plan miasta: Skala 1: = City map = Stadtplan (Polish Edition)
Katowice, plan miasta: Skala 1:20 000 = City map = Stadtplan (Polish Edition) Polskie Przedsiebiorstwo Wydawnictw Kartograficznych im. Eugeniusza Romera Click here if your download doesn"t start automatically
Belt Conveyors Calculations
Conveyors Deparmen of Mining, Dressing and Transpor Machines AGH Be Conveyors Cacuaions Pior Kuinowski, Ph. D. Eng. Pior Kasza, Ph. D. Eng. - pior.kuinowski@agh.edu.p ( 12617 30 92 B-2 ground-foor room
Convolution semigroups with linear Jacobi parameters
Convolution semigroups with linear Jacobi parameters Michael Anshelevich; Wojciech Młotkowski Texas A&M University; University of Wrocław February 14, 2011 Jacobi parameters. µ = measure with finite moments,
Sargent Opens Sonairte Farmers' Market
Sargent Opens Sonairte Farmers' Market 31 March, 2008 1V8VIZSV7EVKIRX8(1MRMWXIVSJ7XEXIEXXLI(ITEVXQIRXSJ%KVMGYPXYVI *MWLIVMIWERH*SSHTIVJSVQIHXLISJJMGMEPSTIRMRKSJXLI7SREMVXI*EVQIVW 1EVOIXMR0E]XS[R'S1IEXL
Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019
Poniższy zbiór zadań został wykonany w ramach projektu Mazowiecki program stypendialny dla uczniów szczególnie uzdolnionych - najlepsza inwestycja w człowieka w roku szkolnym 2018/2019. Tresci zadań rozwiązanych
Stargard Szczecinski i okolice (Polish Edition)
Stargard Szczecinski i okolice (Polish Edition) Janusz Leszek Jurkiewicz Click here if your download doesn"t start automatically Stargard Szczecinski i okolice (Polish Edition) Janusz Leszek Jurkiewicz
q (s, z) = ( ) (λ T) ρc = q
M O D E L O W A N I E I N Y N I E R S K I E n r 4 7, I S S N 1 8 9 6-7 7 1 X W Y Z N A C Z A N I E O D K S Z T A C E T O W A R Z Y S Z Ą C Y C H H A R T O W A N I U P O W I E R Z C H N I O W Y M W I E
Tomasz Greczyło. The Use of Digital Techniques in an Investigation of Coupled Oscillations of a Wilberforce Pendulum
Universiy of Wrocław Faculy of Physics and Asronomy Insiue of Experimenal Physics Tomasz Greczyło The Use of Digial Techniques in an Invesigaion of Coupled Oscillaions of a Wilberforce Pendulum The hesis
Zarządzanie sieciami telekomunikacyjnymi
SNMP Protocol The Simple Network Management Protocol (SNMP) is an application layer protocol that facilitates the exchange of management information between network devices. It is part of the Transmission
DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION
ELEKTRYKA 0 Zeszyt (9) Rok LX Andrzej KUKIEŁKA Politechnika Śląska w Gliwicach DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION
ROCZNIKI INŻYNIERII BUDOWLANEJ ZESZYT 7/2007 Komisja Inżynierii Budowlanej Oddział Polskiej Akademii Nauk w Katowicach
ROZNIKI INŻYNIERII BUDOWLANEJ ZESZYT 7/007 Komisja Inżynierii Budowlanej Oddział Polskiej Akademii Nauk w Kaowicach WYZNAZANIE PARAMETRÓW FUNKJI PEŁZANIA DREWNA W UJĘIU LOSOWYM * Kamil PAWLIK Poliechnika
Revenue Maximization. Sept. 25, 2018
Revenue Maximization Sept. 25, 2018 Goal So Far: Ideal Auctions Dominant-Strategy Incentive Compatible (DSIC) b i = v i is a dominant strategy u i 0 x is welfare-maximizing x and p run in polynomial time
Financial support for start-uppres. Where to get money? - Equity. - Credit. - Local Labor Office - Six times the national average wage (22000 zł)
Financial support for start-uppres Where to get money? - Equity - Credit - Local Labor Office - Six times the national average wage (22000 zł) - only for unymployed people - the company must operate minimum
LG Quick-Release Pins
L uick-elease ins 344 ingle acting pins ositive locking ush button to release Hardened and ground for strength and precision Handles - Aluminum tyle BA tyle tyle L Body: Hardened stainless steel Handle:
deep learning for NLP (5 lectures)
TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 6: Finish Transformers; Sequence- to- Sequence Modeling and AJenKon 1 Roadmap intro (1 lecture) deep learning for NLP (5
Jazz EB207S is a slim, compact and outstanding looking SATA to USB 2.0 HDD enclosure. The case is
1. Introduction Jazz EB207S is a slim, compact and outstanding looking SATA to USB 2.0 HDD enclosure. The case is made of aluminum and steel mesh as one of the coolest enclosures available. It s also small
Knovel Math: Jakość produktu
Knovel Math: Jakość produktu Knovel jest agregatorem materiałów pełnotekstowych dostępnych w formacie PDF i interaktywnym. Narzędzia interaktywne Knovel nie są stworzone wokół specjalnych algorytmów wymagających
Few-fermion thermometry
Few-fermion thermometry Phys. Rev. A 97, 063619 (2018) Tomasz Sowiński Institute of Physics of the Polish Academy of Sciences Co-authors: Marcin Płodzień Rafał Demkowicz-Dobrzański FEW-BODY PROBLEMS FewBody.ifpan.edu.pl
Inverse problems - Introduction - Probabilistic approach
Inverse problems - Introduction - Probabilistic approach Wojciech Dȩbski Instytut Geofizyki PAN debski@igf.edu.pl Wydział Fizyki UW, 13.10.2004 Wydział Fizyki UW Warszawa, 13.10.2004 (1) Plan of the talk
Instrukcja obsługi User s manual
Instrukcja obsługi User s manual Konfigurator Lanberg Lanberg Configurator E-mail: support@lanberg.pl support@lanberg.eu www.lanberg.pl www.lanberg.eu Lanberg 2015-2018 WERSJA VERSION: 2018/11 Instrukcja
Economics and Business
ISSN 2392-64 Economics and Business Review Volume (5) Number 2 205 CONTENTS ARTICLES A perspecive on leading and managing organizaional change Sanley J. Smis, Dawn E. Bowden Alernaive configuraions of
Outline of a method for fatigue life determination for selected aircraft s elements
Outline TRIBOLOGY of a method for fatigue life determination for selected aircraft s elements 71 SCIENTIFIC PROBLEMS OF MACHINES OPERATION AND MAINTENANCE 4 (164) 2010 HENRYK TOMASZEK *, MICHAŁ JASZTAL
Vacuum decay rate in the standard model and beyond
KEK-PH 2018 Winter, Dec 4-7 2018 Vacuum decay rate in the standard model and beyond Yutaro Shoji (KMI, Nagoya U.) Phys. Lett. B771(2017)281; M. Endo, T. Moroi, M. M. Nojiri, YS JHEP11(2017)074; M. Endo,
Wybrzeze Baltyku, mapa turystyczna 1: (Polish Edition)
Wybrzeze Baltyku, mapa turystyczna 1:50 000 (Polish Edition) Click here if your download doesn"t start automatically Wybrzeze Baltyku, mapa turystyczna 1:50 000 (Polish Edition) Wybrzeze Baltyku, mapa
STUDIES OF THE UNIVERSITY OF ŽILINA. Volume 20 Number 1 December Editorial Board
STUDIES OF THE UNIVERSITY OF ŽILINA Volume 20 Number 1 December 2006 Special Issue: Proceedings of Conference on Differenial and Difference Equaions and Applicaions (CDDEA), Rajecké Teplice, Slovakia June
y = The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Explain your answer, write in complete sentences.
The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Eplain your answer, write in complete sentences. 1. Find the derivative of the functions y 7 (b) (a) ( ) y t 1 + t 1 (c)
PROCEEDINGS OF THE INSTITUTE OF VEHICLES 5(109)/2016
PROCEEDINGS OF THE INSTITUTE OF VEHICLES 5(109)/2016 Krzysztof Rokicki 1 GPS AND OBD DATA IN TESTING OF THE VEHICLE DYNAMICS 1. Introduction Previously to determine the speed of the vehicle during dynamic
Installation of EuroCert software for qualified electronic signature
Installation of EuroCert software for qualified electronic signature for Microsoft Windows systems Warsaw 28.08.2019 Content 1. Downloading and running the software for the e-signature... 3 a) Installer
ENERGY DISSIPATION OF AN ELASTOMERIC FRICTION DAMPER IN SUB-ZERO TEMPERATURES
3-04 PROBLEMY EKSPLOATACJI MAINTENANCE PROBLEMS 83 Aam JUNGOWSKI, Jerzy OSIŃSKI Warsaw University of Technology, Institute of Machine Design Funamentals Warsaw aam.jungowski@ipbm.simr.pw.eu.pl, ojerz@wp.pl
SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA
Z a m a w i a j» c y G D Y S K I O R O D E K S P O R T U I R E K R E A C J I J E D N O S T K A B U D E T O W A 8 1 5 3 8 G d y n i a, u l O l i m p i j s k a 5k 9 Z n a k s p r a w y G O S I R D Z P I
Krytyczne czynniki sukcesu w zarządzaniu projektami
Seweryn SPAŁEK Krytyczne czynniki sukcesu w zarządzaniu projektami MONOGRAFIA Wydawnictwo Politechniki Śląskiej Gliwice 2004 SPIS TREŚCI WPROWADZENIE 5 1. ZARZĄDZANIE PROJEKTAMI W ORGANIZACJI 13 1.1. Zarządzanie
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition) Robert Respondowski Click here if your download doesn"t start automatically Wojewodztwo Koszalinskie:
TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 8: Structured PredicCon 2
TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 8: Structured PredicCon 2 1 Roadmap intro (1 lecture) deep learning for NLP (5 lectures) structured predic+on (4 lectures)
TECHNICAL CATALOGUE WHITEHEART MALLEABLE CAST IRON FITTINGS EE
TECHNICAL CATALOGUE WHITEHEART MALLEABLE CAST IRON FITTINGS EE Poland GENERAL INFORMATION USE Whiteheart malleable cast iron fittings brand EE are used in threaded pipe joints, particularly in water, gas,
New Roads to Cryptopia. Amit Sahai. An NSF Frontier Center
New Roads to Cryptopia Amit Sahai An NSF Frontier Center OPACity Panel, May 19, 2019 New Roads to Cryptopia What about all this space? Cryptography = Hardness* PKE RSA MPC DDH ZK Signatures Factoring IBE
Patients price acceptance SELECTED FINDINGS
Patients price acceptance SELECTED FINDINGS October 2015 Summary With growing economy and Poles benefiting from this growth, perception of prices changes - this is also true for pharmaceuticals It may
Lecture 18 Review for Exam 1
Spring, 2019 ME 323 Mechanics of Materials Lecture 18 Review for Exam 1 Reading assignment: HW1-HW5 News: Ready for the exam? Instructor: Prof. Marcial Gonzalez Announcements Exam 1 - Wednesday February
Model standardowy i stabilność próżni
Model standardowy i stabilność próżni Marek Lewicki Instytut Fizyki teoretycznej, Wydzia l Fizyki, Uniwersytet Warszawski Sympozjum Doktoranckie Warszawa-Fizyka-Kraków, 4 Marca 2016, Kraków Na podstawie:
Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)
Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition) J Krupski Click here if your download doesn"t start automatically Karpacz, plan miasta 1:10 000: Panorama
MAGNESY KATALOG d e s i g n p r o d u c e d e l i v e r
MAGNESY KATALOG design produce deliver MAGNET 0,4 / 0,75MM owal, prostokąt, koło, kwadrat od 50 sztuk Flexible magnet 0.4 = strength example: able to hold one A4 sheet. 0.75 = strength example: able to
General Certificate of Education Ordinary Level ADDITIONAL MATHEMATICS 4037/12
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level www.xtremepapers.com *6378719168* ADDITIONAL MATHEMATICS 4037/12 Paper 1 May/June 2013 2 hours Candidates
Eksperymenty reaktorowe drugiej generacji wyznaczenie ϑ 13
Eksperymenty reaktorowe drugiej generacji wyznaczenie ϑ 13 v Przypomnienie wyniku eksperymentu KamLAND - weryfikującego oscylacje neutrin słonecznych v Formuły na prawdopodobieństwo disappearance antyneutrin
Rodzaj obliczeń. Data Nazwa klienta Ref. Napędy z pasami klinowymi normalnoprofilowymi i wąskoprofilowymi 4/16/ :53:55 PM
Rodzaj obliczeń Data Nazwa klienta Ref Napędy z pasami klinowymi normalnoprofilowymi i wąskoprofilowymi 4/16/2007 10:53:55 PM Rodzaj obciążenia, parametry pracy Calculation Units SI Units (N, mm, kw...)
Zasady rejestracji i instrukcja zarządzania kontem użytkownika portalu
Zasady rejestracji i instrukcja zarządzania kontem użytkownika portalu Rejestracja na Portalu Online Job Application jest całkowicie bezpłatna i składa się z 3 kroków: Krok 1 - Wypełnij poprawnie formularz
DM-ML, DM-FL. Auxiliary Equipment and Accessories. Damper Drives. Dimensions. Descritpion
DM-ML, DM-FL Descritpion DM-ML and DM-FL actuators are designed for driving round dampers and square multi-blade dampers. Example identification Product code: DM-FL-5-2 voltage Dimensions DM-ML-6 DM-ML-8
TRANSCOMP XIV INTERNATIONAL CONFERENCE COMPUTER SYSTEMS AIDED SCIENCE, INDUSTRY AND TRANSPORT
TRANSCOMP XIV INTERNATIONAL CONFERENCE COMPUTER SYSTEMS AIDED SCIENCE, INDUSTRY AND TRANSPORT Marcin GAJEWSKI 1 Sanisław JEMIOŁO 2 Konsrukcje murowe, sany graniczne, elemeny kohezyjne, meoda elemenów skończonych
Sequential Monte Carlo: Selected topics
Uniwersye Warszawski Wydział Maemayki, Informayki i Mechaniki Agnieszka Borowska Nr albumu: 291512 Sequenial Mone Carlo: Seleced opics Praca licencjacka na kierunku MATEMATYKA Praca wykonana pod kierunkiem
Ą Ą Ą Ń Ę Ę ń ń ń Ń Ń Ń ń Ą Ą ń ń ćż Ą Ę ń ń ń Ó ń Ż Ą ń ŚĆ Ń Ś Ń Ś Ą Ś ć ń ć ź ń Ń ń ć ź Ń Ś Ó Ż ń ź ź ń ĄŚ Ą Ś Ń ń ń ń Ę Ę ń Ż Ż Ż ń ć ń Ń ć ń Ń ŚĆ Ć ń Ń Ń ŚÓ Ą ć ć Ą Ń ź Ę ć ć ć ź ć ć ź ć ź ć ź Ę ć
TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction
TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 9: Inference in Structured Prediction 1 intro (1 lecture) Roadmap deep learning for NLP (5 lectures) structured prediction
Życie za granicą Studia
- Uczelnia I would like to enroll at a university. Wyrażenie chęci zapisania się na uczelnię I want to apply for course. an undergraduate a postgraduate a PhD a full-time a part-time an online I would
Časopis pro pěstování matematiky a fysiky
Časopis pro pěsování maemaiky a fysiky Hugo Seinhaus Różne formy prawa wielkich liczb Časopis pro pěsování maemaiky a fysiky, Vol. 74 (1949), No. 2, 114--117 Persisen URL: hp://dml.cz/dmlcz/123056 Terms
Dochody gospodarstw rolnych a ryzyko walutowe
Dochody gospodarstw rolnych a ryzyko walutowe Cezary Klimkowski Instytut Ekonomiki Rolnictwa i Gospodarki Żywnościowej Państwowy Instytut Badawczy Presentation plan A few words about theory Impact of PLN/EUR
(2), (3) S KT (1) zuz
.. XCrNi9-. Forge, ( ), -. - Forge., - -%. :,,,.. -. - -. - -.,,. - - [-].., Forge -, - [-], : S KT () ij m (,, )( ) ij, S ij ; - ; ij ; ; T ; K, - p ; m ; - ( < m < ).. - []. []., V z,, n, L H, ( ). nl
ANALIZA NAPRĘŻEŃ SKURCZOWYCH W BETONIE Z UWZGLĘDNIENIEM EWOLUCJI MIKROUSZKODZEŃ *
ROCZNIKI INŻYNIERII BUDOWLANEJZESZYT 3/4 Komisja Inżynierii Budolanej Oddział Polskiej Akademii Nauk Kaoicach ANALIZA NAPRĘŻEŃ SKURCZOWYCH W BETONIE Z UWZGLĘDNIENIEM EWOLUCJI MIKROUSZKODZEŃ * Zbignie PERKOWSKI
Wsparcie dyplomacji ekonomicznej dla strategii surowcowej
Wsparcie dyplomacji ekonomicznej dla strategii surowcowej dr Stanisław Cios, Departament Współpracy Ekonomicznej seminarium: Strategia Surowcowa Polski 26 maja 2014 r., Pałac Staszica, Warszawa Wsparcie
The Lorenz System and Chaos in Nonlinear DEs
The Lorenz System and Chaos in Nonlinear DEs April 30, 2019 Math 333 p. 71 in Chaos: Making a New Science by James Gleick Adding a dimension adds new possible layers of complexity in the phase space of
POLITECHNIKA ŚLĄSKA INSTYTUT AUTOMATYKI ZAKŁAD SYSTEMÓW POMIAROWYCH
POLITECHNIKA ŚLĄSKA INSTYTUT AUTOMATYKI ZAKŁAD SYSTEMÓW POMIAROWYCH Gliwice, wrzesień 2005 Pomiar napięcia przemiennego Cel ćwiczenia Celem ćwiczenia jest zbadanie dokładności woltomierza cyfrowego dla
www.irs.gov/form990. If "Yes," complete Schedule A Schedule B, Schedule of Contributors If "Yes," complete Schedule C, Part I If "Yes," complete Schedule C, Part II If "Yes," complete Schedule C, Part
Zestawienie czasów angielskich
Zestawienie czasów angielskich Present Continuous I am, You are, She/ He/ It is, We/ You/ They are podmiot + operator + (czasownik główny + ing) + reszta I' m driving. operator + podmiot + (czasownik główny
Rachunek lambda, zima
Rachunek lambda, zima 2015-16 Wykład 2 12 października 2015 Tydzień temu: Własność Churcha-Rossera (CR) Jeśli a b i a c, to istnieje takie d, że b d i c d. Tydzień temu: Własność Churcha-Rossera (CR) Jeśli
Aktualizacja Oprogramowania Firmowego (Fleszowanie) Microprocessor Firmware Upgrade (Firmware downloading)
Aktualizacja Oprogramowania Firmowego (Fleszowanie) Microprocessor Firmware Upgrade (Firmware downloading) ROGER sp.j. Gościszewo 59 82-416 Gościszewo Poland tel. 055 2720132 fax 055 2720133 www.roger.pl
Machine Learning for Data Science (CS4786) Lecture 24. Differential Privacy and Re-useable Holdout
Machine Learning for Data Science (CS4786) Lecture 24 Differential Privacy and Re-useable Holdout Defining Privacy Defining Privacy Dataset + Defining Privacy Dataset + Learning Algorithm Distribution
Immigration Studying. Studying - University. Stating that you want to enroll. Stating that you want to apply for a course.
- University I would like to enroll at a university. Stating that you want to enroll I want to apply for course. Stating that you want to apply for a course an undergraduate a postgraduate a PhD a full-time
DOI: / /32/37
. 2015. 4 (32) 1:18 DOI: 10.17223/1998863 /32/37 -,,. - -. :,,,,., -, -.,.-.,.,.,. -., -,.,,., -, 70 80. (.,.,. ),, -,.,, -,, (1886 1980).,.,, (.,.,..), -, -,,,, ; -, - 346, -,.. :, -, -,,,,,.,,, -,,,
SubVersion. Piotr Mikulski. SubVersion. P. Mikulski. Co to jest subversion? Zalety SubVersion. Wady SubVersion. Inne różnice SubVersion i CVS
Piotr Mikulski 2006 Subversion is a free/open-source version control system. That is, Subversion manages files and directories over time. A tree of files is placed into a central repository. The repository
EKONOMETRIA. Zastosowanie matematyki w ekonomii. Redaktor naukowy Janusz Łyko
EKONOMETRIA 26 Zasosowanie maemayki w ekonomii Redakor naukowy Janusz Łyko Wydawnicwo Uniwersyeu Ekonomicznego we Wrocławiu Wrocław 2009 Spis reści Wsęp... 7 Beaa Bal-Domańska, Ekonomeryczna analiza sigma
Test sprawdzający znajomość języka angielskiego
Test sprawdzający znajomość języka angielskiego Imię i Nazwisko Kandydata/Kandydatki Proszę wstawić X w pole zgodnie z prawdą: Brak znajomości języka angielskiego Znam j. angielski (Proszę wypełnić poniższy
Kinematics of underwater inspection robot
Kinemaics of underwaer inspecion robo Mariusz Giergiel*, Krzyszof Kurc**, Pior Małka*, Tomasz Buraowski*, Dariusz Szybicki** *AGH Universiy of Science and Technology **Rzeszow Universiy of Technology Absrac:
Wymagania bezpieczeństwa dotyczące elektrycznych przyrządów pomiarowych, automatyki i urządzeń laboratoryjnych Część 1: Wymagania ogólne
POPRAWKA do POLSKIEJ NORMY ICS 19.080; 71.040.10 PN-EN 61010-1:2011/AC Wprowadza EN 61010-1:2010/A1:2019/AC:2019-04, IDT IEC 61010-1:2010/A1:2016/AC1:2019, IDT Wymagania bezpieczeństwa dotyczące elektrycznych
, , , , 0
S T E R O W N I K G R E E N M I L L A Q U A S Y S T E M 2 4 V 4 S E K C J I G B 6 9 6 4 C, 8 S E K C J I G B 6 9 6 8 C I n s t r u k c j a i n s t a l a c j i i o b s ł u g i P r z e d r o z p o c z ę
Projekty badawcze Część VII
Projeky badawcze Część VII Projeky badawcze Część VII Spis reści Wprowadzenie.................................... 5 Informacje dodakowe............................... 5 Informacje o auorach projeków.........................
Mathematical modelling of hen s egg shape by rotation curve
Annals of Warsaw Universiy of Life Sciences SGGW Agriculure No 6 (Agriculural and Fores Engineering) 204: 59 64 (Ann. Warsaw Univ. Life Sci. SGGW, Agricul. 6, 204) Mahemaical modelling of hen s egg shape
Miedzy legenda a historia: Szlakiem piastowskim z Poznania do Gniezna (Biblioteka Kroniki Wielkopolski) (Polish Edition)
Miedzy legenda a historia: Szlakiem piastowskim z Poznania do Gniezna (Biblioteka Kroniki Wielkopolski) (Polish Edition) Piotr Maluskiewicz Click here if your download doesn"t start automatically Miedzy
PARLAMENT EUROPEJSKI
PARLAMENT EUROPEJSKI 2004 ««««««««««««Komisja Kontr oli Budżetowej 2009 WERSJA TYMCZASOWA 2004/0164(CNS) 07.03.2005 r. PROJEKT OPINII Komisji Kontroli Budżetowej dla Komisji Rolnictwa i Rozwoju Wsi w sprawie
ABOUT NEW EASTERN EUROPE BESTmQUARTERLYmJOURNAL
ABOUT NEW EASTERN EUROPE BESTmQUARTERLYmJOURNAL Formanminsidemlookmatmpoliticsxmculturexmsocietymandm economyminmthemregionmofmcentralmandmeasternm EuropexmtheremismnomothermsourcemlikemNew Eastern EuropeImSincemitsmlaunchminmPw--xmthemmagazinemhasm
ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL
Read Online and Download Ebook ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL DOWNLOAD EBOOK : ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA Click link bellow and free register
Microsystems in Medical Applications Liquid Flow Sensors
Microsystems in Medical Applications Liquid Flow Sensors Prezentacja multimedialna współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie pt. Innowacyjna dydaktyka
European Crime Prevention Award (ECPA) Annex I - new version 2014
European Crime Prevention Award (ECPA) Annex I - new version 2014 Załącznik nr 1 General information (Informacje ogólne) 1. Please specify your country. (Kraj pochodzenia:) 2. Is this your country s ECPA
EGZAMIN MATURALNY Z JĘZYKA ANGIELSKIEGO
Miejsce na naklejkę z kodem szkoły dysleksja MJA-R1_1P-072 EGZAMIN MATURALNY Z JĘZYKA ANGIELSKIEGO MAJ ROK 2007 Instrukcja dla zdającego POZIOM ROZSZERZONY CZĘŚĆ I Czas pracy 120 minut 1. Sprawdź, czy
INSTYTUT PODSTAWOWYCH PROBLEMÓW TECHNIKI STOSOWANEJ ARCHIVES DE MECANIQUE APPLIQUEE 4 XVI. V O L. XVI WARSZAWA, 1964 No. 4
P O L S K A A K A D E M I A N A U K INSTYTUT PODSTAWOWYCH PROLEMÓW TECHNIKI A R C H I W U M M E C H A N I K I STOSOWANEJ ARCHIVES DE MECANIQUE APPLIQUEE 4 XVI V O L XVI WARSZAWA, 1964 No 4 P A Ń S T W
MULTI CRITERIA EVALUATION OF WIRELESS LOCAL AREA NETWORK DESIGNS
STUDIA INFORMATICA 2015 Volume 36 Number 2 (120) Remigiusz OLEJNIK West Pomeranian University of Technology, Szczecin, Faculty of Computer Science and Information Technology MULTI CRITERIA EVALUATION OF
MaPlan Sp. z O.O. Click here if your download doesn"t start automatically
Mierzeja Wislana, mapa turystyczna 1:50 000: Mikoszewo, Jantar, Stegna, Sztutowo, Katy Rybackie, Przebrno, Krynica Morska, Piaski, Frombork =... = Carte touristique (Polish Edition) MaPlan Sp. z O.O Click