INSTYTUT PODSTAWOWYCH PROBLEMÓW TECHNIKI STOSOWANEJ ARCHIVES DE MECANIQUE APPLIQUEE 4 XVI. V O L. XVI WARSZAWA, 1964 No. 4
|
|
- Wacława Bukowska
- 7 lat temu
- Przeglądów:
Transkrypt
1 P O L S K A A K A D E M I A N A U K INSTYTUT PODSTAWOWYCH PROLEMÓW TECHNIKI A R C H I W U M M E C H A N I K I STOSOWANEJ ARCHIVES DE MECANIQUE APPLIQUEE 4 XVI V O L XVI WARSZAWA, 1964 No 4 P A Ń S T W O W E W Y D A W N I C T W O N A U K O W E
2 ARCHIWUM MECHANIKI STOSOWANEJ 4, 16 (1964) MIXED OUNDARY-VALUE PROLEMS IN HEAT CONDUCTION W NOWACKI (WARSZAWA) 1 Inroducion Ref [1], by he same auhor, is devoed o he problem of mixed boundary condiions for a saionary hea flow in a solid The mehod presened here will now be generalized o non-homogeneous mixed boundary condiions and o problems of non-saionary hea flow The mehod will be described in a manner somewha differen from [1], differen fundamenal sysems being used A new soluion will also be given for a body wih slis Le us consider a simply conneced body, bounded by he surface S Le his surface be composed of hree regular surfaces S u S 2, S 3 wih common edges a and P (Fig 1) Le ime-variable hea sources W(P, ) Pebe locaed in he body, which FIG 1 is heaed on he surfaces S;(j = 1, 2, 3) The emperaure field hus generaed T(P, ) is described by he hea equaion (11) xv*t(p, )-f(p, ) = -M(P, ), V* = -^ + + ^ In his equaion, x = 1/QC is a maerial consan, where X is he coefficien of hea conducion g he densiy and c he specific hea The funcion M(P, ) expresses he inensiy of he hea sources We have M{P, i) = W(P, ), where W(P, ) is he quaniy of hea produced per uni volume and ime and T is he ime deri-
3 866 W Nowacki vaive of he emperaure f = 8T/8 I is assumed ha T(P, ) saisfies he iniial condiion (12) T(P,0)=/(P), Pe, and he boundary condiions!, 0 = PiCRi, ) on he surface S l R ± e S u (13) -->" 2 ' *' = fi(r 2, ) on he surface S i9 R 2 es 2, on T(R 3, i) = (p z {R 3, ) on he surface S a, i? 3 eą Le us denoe, in general, T(Ri, ) = piri, f), T ^' *' = y>i(r,, ), i = 1, 2, 3 Le us observe ha he funcions cp x, y> 2, <p 3 prescribed on he surfaces S u S 2, S 3 are known, while y l q> 2 and y 3 are unknown funcions on he same surfaces 2 Firs Soluion Mehod Le us consider a "fundamenal sysem" in which Green's funcion G(P, Q, ) of he problem saed in he firs secion will be deermined Le us assume ha he surfaces Ą and S 2 are hermally insulaed, he surface S 3 being kep a zero emperaure Le us observe also ha i is impossible o have an insulaion on he surface S 3, because hen, hea exchange across he surface S being impossible, Green's funcions would have no sense Le us deermine- Green's funcion G(P, Q, ) saisfying he hea equaion (21) x V 2 G (P, Q, 0 - G(P, Q,i)=- d(p - Q) 3(0, P, Q 6, wih he homogeneous iniial condiion (2-2) G(P, Q, 0) = 0, and he homogeneous boundary condiions 8G ( R i>q>ą o = On he surface S l R l e Ą, (23) G(R 3, 6, 0 = 0 on he surface S, R s es 3 On he righ-hand side of (21), Dirac funcion is involved o express he acion of an insananeous poin hea a Q, where
4 Mixed boundary-value problems in hea conducion 867 Le us perform on Eqs (11) and he boundary condiions (13), one-sided Laplace ransformaion as defined by equaion (24) F(P,p) = j F(P, )e-"d, p>0 o I is assumed ha he acion of he hea sources and he surface heaing on S sars a he momen = 0 + As a resul, we obain Eq (1) in he ransformed form (25) xv*f(p,p)-[pf(p,p)-np,q)]=-m(p,p), T(P, 0) = The Laplace ransformaion performed on he boundary condiions (13) yields (26) R 3 es 3 For Eq (21) and he boundary condiions (23) we proceed in a similar way We obain (27) xv*g(p, Q,p)- P G(P, Q,p) = -5(P-Q), Le us make use of Green's formula (29) S by subsiuing appropriae values from Eqs (25)-(28) earing in mind ha we obain from (29) / T(P,p)6(P- Q)d P = T(Q,p), (210) T{Q,p) = ffjf(p)g(p,q,p)d P + }JjG(P,Q,p)M(P,p)d P -j- H j j yi^ri, p) G(J? l5 Q, p)ds Rl + x I J y^r?,,p) G(i? 2, Q, p)ds Rl s, lg(r 3,Q,p) ds dn
5 868 W Nowacki Le us observe ha he inegrals on he righ-hand side of his equaion can be deermined, excep for // ip 1 GdS Rl Si For, he funcions y>, <p 3, f and M are prescribed and G has already been found from (21) Equaion (213) may be represened in he form (211) f(q, p) = T a (Q, p) + x JJ Wx(Ri, P) G(R X, Q, p)ds Ri Si because in he fundamenal sysem described he emperaure T 0 (Q, f) can be reaed as a soluion of he equaion (212) K V 2 r 0 (P, 0 - f(p, )=- M(P, ), Pe, wih he iniial condiion T(P, 0) = f(p) and he boundary condiions (213) STpjR^) "a = u > K i e <Ji> a dur 2,) T 0 (R ) = (p 3 (R 3, ), i? If one-sided Laplace ransformaion is performed on Eq (212) and he boundary condiions (213) and Green's formula (214) hen, afer some simple ransformaions, we obain (215) T 0 (Q,P) - JfJf(P)G(P, Q,p)d P + JfjM(P,p)G(P, Q,p)d P sj J + x J J %CR 2J p) G(R 2, Q,p)dS R2 - K fj lp 3 (R 3,p) s s Performing on he expression (215) he inverse Laplace ransformaion, we have (216) T 0 (Q,) = f f j f(p)g(p,q,)d P + f dr j f j M(P,T)G(P,Q,-r)d P f f j f OO + x J dx j J V2(R 2, T) G(R Q, - x) ds Rl 0 S, 0 S, Le us consider he expression (211) on which he inverse Laplace ransformaion will be performed (217) T{Q, i) - T 0 (Q, ) + jdjj Vl(R l r) G(R l Q, - r)ds Rl,
6 Mixed boundary-value problems in hea conducion 869 ip l (R l T) is an unknown funcion on he surface Ą Le us make he poin Q,e end o he poin R[, e S u on he surface S x Remembering ha T(R[, i) = 9>i(Ki> 0 is he boundary condiion on Ą, we obain from (217) {218) <Pi(Ri f) = T 0 (R{, i) + H J dx JJ ip^r^ r) G(,R 1} R[, r) ds Rl o s, In his inegral equaion, he only unknown funcion is y x (R x, ) On deermining i, we obain he emperaure T(Q, ) from (217) Le us observe ha he Green's funcion G (P, Q, ) may be expressed by anoher Green's funcion defined in he following way: Le us consider he funcion K(P, R[, ) which saisfies he hea equaion (219) n V 2 K(P, R[, f) - K(P, R[, ) == 0, wih he iniial condiion K(P, R' ly i) = 0 and he boundary condiions (220) 8K(R 2,R{,) _ Q R S K(R 3, R l ) = 0, R 3 e S 3 The firs of he condiions (220) ells us ha a concenraed and insananeous hea flow akes place a he poin R Xi e S x of hermal insulaion, and o s, If now Green's formula (29) is applied o he funcions K and G, we obain he relaion (221) JSJK(P,R' 1,p)d(P-Q)d P == xfjg(r 1,Q,p)5(R 1 -Ri)dS Rl Hence (222) Making use of his relaion in (218), we obain (223) Vl {Ri\ 0 = T 0 (R[, )+Jd JJ %(*!, TiKiR, R[, - r)ds Rl o s, Le us consider he paricular case in which he emperaure field varies harmonically wih ime Then, wih (224) M(P,) = L(P)e ia ", T(P, ) = 0(P, co)e ia " Eq (11) akes he form (225) x V 2 & (P, co) - ico 6 (P, co)= -L(P) Si
7 870 W Nowacki On inroducing he noaions cp^r^ i) = 0 1 (R 1 )e im, f 2 (R 2, i) = fwe 1 ", cp z {R z, ) he boundary condiions (13) can be wrien hus:,w) = 0 (R ), R es, 1 1 (226) T Le us denoe Green's funcion by 3, a>) = & 3 (R 3 ), and solve (21) wih he boundary condiions (23) Similarly, le us solve (212) wih he boundary condiions (213) We inroduce he noaion T Q (P, ) = Q 0 (P, co)e im Making use now of he Green's formula (29) for he funcions F, and 6, we find he following expression for he ampliude 6(Q, co) (227) 6(Q, co) = e o (Q, «) + «// Wi)AĄ, Q, co)ds Ri, where Si (228) d o (Q, OJ) = /// L(P)F(P, Q, co)d P + xjj^(r^fir,, Q, co)ds R s, The funcion W ± (R^) will be deermined from he boundary condiion (229) 0 O (*;, co) + xjj W 1 (R^r( R l3 Rl co)ds Rl = 0^), R u R^eS 1 The funcion ^(JRJ having now been deermined, we can find 9 0 (Q, co) from he inegral expression (227) I should be observed ha a soluion analogous o (227)- (229) can be obained for he Helmholz equaion (230) W 2 F+X 2 F=-L, wih he boundary condiions (226) for he funcion F In he soluion of Eq (225), we should only replace & wih F and co wih +z'p Reurning now o he problem of hea conducion, le us observe ha for m -* 0 ha is, for a hea wave wih infinie period he problem ends o ha of saionary hea flow Equaion (11) becomes Poisson's equaion Denoing he emperaure in his sae by T(P), he inensiy of hea sources by M(P), Green's funcion by G(P, Q) ec, we obain for he emperaure equaion (231) T(Q) = T 0 (Q) + KJJ Vl (iy G(R l Q)dS Rl, SI
8 Mixed boundary-value problems in hea conducion 871 where (232) T o (0 = jff M(P)G(P, Q)d P + JJ ^(R,) G(R 2, Q)dS Rl The unknown funcion y) 3 (R^) will be obained from he boundary condiion ( Pl (Ri)=T 0 (R' 1 ),R 1 es 1 (233) T 0 (Rd + x SI yi(*i)gcri R'i,)dS Rl = Vl (R[) Si The above mehod for deermining he emperaure disribuion wih mixed boundary condiions is useful if Green's funcion G (P, Q, ) can be obained in he fundamenal sysem assumed For simple bodies such as a semi-infinie body, a slab, a sphere, a finie or semi-infinie cylinder, he form of he funcion G(P, Q, ) is known Le us consider as an example he case of a finie cylinder, in which Ą will denoe he lower boom, S 3 he upper boom and S 2 ^he laeral surface The fundamenal sysem is he same cylinder, hermally insulaed on S 1 and S 2 and kep a zero emperaure on S 3 In his fundamenal sysem, Green's funcion G(P, Q, ) can be obained relaively easily, as also he emperaure T Q (Q, f) The unknown funcion ipx(r x > i) on he surface S x will be deermined from (233) In he paricular case of mixed boundary condiions under consideraion, he soluion presens no major difficulies I should be observed in addiion ha he problem reaed here can be solved in a simpler way by direc inegraion of Eq (11), he inegral Eq (223) no being considered Much greaer difficulies are encounered for solving he nex problem, concerning he semi-infinie cylinder (Fig 2) wih mixed and disconinuous boundary condiions on he laeral surface FIG 2 Le he emperaure of he par S x of he laeral surface be zero, he par is 2 of ha surface being insulaed and le he emperaure of Ą be <p 3 (i? 9, i), R e >S 3 Disconinuiy of boundary condiions occurs on he regular laeral surface Sx+iSg "As a fundamenal sysem, we assume a semi-infinie cylinder hermally insulaed
9 872 W Nowacki over he enire area S x +S^ In his fundamenal sysem, we find easily he funcions G(P, Q> 0 arl d 7o(2> 0- The unknown funcion ip^r^ ) can be deermined from he inegral Eq (223) only However, an accurae soluion of his inegral equaion is conneced wih serious mahemaical difficulies, which can be overcome only in a few simple cases of saionary flow in paricular In more complex cases, we mus have recourse o approximae soluions of Eq (223) A similar case of disconinuous boundary condiions is ha of he semi-infinie cylinder of Fig 3 The deerminaion of Green's funcion G(P, Q, ) and T(Q, ) Jfn FIG 3 in he fundamenal sysem (hermal insulaion over Ą and S 2 and zero emperaure over 5 S ) is no difficul in his case eiher Difficulies are firs encounered in he soluion of he inegral Eq (223) Le us consider wo semi-infinie cylinders joined in he z = 0 plane A secional view of his sysem is represened by Fig 4 The surfaces Sj and S" are hermally FIG 4 insulaed; SI and SI 1 are kep a zero emperaure The surface S[ = SJ 1 is ha of join beween he regions T and u The fundamenal sysem is consiued by wo semi-infinie cylinders: he cylinder z, hermally insulaed on SJ + S 1! and kep a zero emperaure on Si and he cylinder u hermally insulaed on Sp+S 1?, and kep a zero emperaure on SJ Le us obain he funcions G^P, Q, i), Tl (Q, ), P,Qej
10 Mixed boundary-value problems in hea conducion 873 and G"(P, Q, ), T"(Q, i) in he region n, The emperaure gradien in he plane will be assumed o be unknown a a We wrie Eq (217) firs for he region I and hen for he region n Leing he poins Q x e x and g u e u end o he poin R[ on SI = S" and making use of he condiion of idenical emperaure on SI, [(pkr^ ) = <p (Ri> OL we obain he required inegral equaion for he unknown funcion ip^rj, *) The soluion of (11) wih he boundary condiions (13) leads o ha of he inegral Eq (223) In more complex cases wih mixed condiions on he surface S(S= S 1 -\- S 2 +,S k ), a se of inegral equaions will be obained FIG 5 Le us consider he solid body represened in Fig 5 in which hermal sources ac, and mixed boundary condiions are prescribed on he surface 5 1 = (234) T(Ri, ) = -PiCRi, 0 ĄsĄ; ~Jp"^ = %(* 2, 0 T(i?, 0 = <p 8 (i? 8,0 ĄeĄ; T(R, ) = Le us assume as a fundamenal sysem he same body, hermally insulaed on he surfaces S l S 2 and S 3, and kep a zero emperaure on 5 d In his fundamenal se, Green's funcion G(P, Q, ) and emperaure T 0 {Q, ) mus be found The laer will be obained as a soluion of (11) wih he boundary condiions (234) from he equaion (235) T(Q, ) = T 0 (Q, ) +«/ dv / J W 1 (R 1, r)g(r 1,Q,- r)ds Rl dx JJrp 3 (R 3, r)g(r 3,Q,-r)dS Ri s,
11 874 W Nowacki Leing he poin Q end firs o R x e S l and hen o Q, R 3 e S 3, and aking he firs and he hird of he condiions (234), we obain a se of wo inegral equaions (236) cpik ) - T 0 (Ri )+xfdrj} Vl(R l r)g(r l R[, - r)ds Rl o s x + xjdrjj ip 3 (R s, T) G(R S, R» - T)dS Ri> R l R[ e Ą s cp 3 (R' 3, ) = T 0 (R^ ) + xjdr}j ^(R,, r)g(r v Rś, - r)ds Rl 0 S + xjdr Jjy s (R 3, r)g(i? 3, R' 3, - x)ds R3, R 3> R' 3 es 5 o s' a On solving his for y>i(ri, ) and ip 3 (_R 3, f), we find he emperaure T(Q, ) from Eq (235) Le us reurn o he iniial problem of deermining he emperaure in he body of Fig 1, The boundary condiions will he somewha modified, i being assumed ha he hea exchange over he surface S is free ar( (237) f lł ^ + ht(r l ) =0, h= cons, ĄeĄ on y deermining in he fundamenal sysem assumed he Green's funcion [Eqs (21) and (22)], and he emperaure T o [Eqs (212) and (213)], we obain Eqs, (216) and (217) wih y>i(^i» 0 replaced by ht(r u ) In his way, (217) akes he form i (238) T(Q, i) - T 0 (Q, )-xh] dr JJ T(R U r) G^, Q,-r) ds Rl o s, Leing now he poin Q end o R[ on S u we obain an inegral equaion of he second kind i (239) T(R[ ) = T 0 (R 1, i) - hx J dx J T(R U r)g(r u R[, - r)ds Rl 0 S Having deermined T(R 1} ) on S from (239), we find emperaure T(Q, ) from (238) FIG 6 Le us proceed now o solve he wo-dimensional problem Le us consider he infinie cylinder wih cross-secion S Le he conour of his cross-secion be composed of secionally regular arcs s l s 2, s s (Fig 6) Le us assume ha he emperaure
12 Mixed boundary-value problems in hea conducion 875 field is independen of he variables x z (he x g axis is parallel o he axis of he cylinder) Le he emperaure field in he cylinder be produced by hea sources W(P, ), and by surface heaing The emperaure in he region S is deermined by equaion if *-~ \Xiy X 2 ) Jj (240) xv\t{p, ) f(p, ) = M(P, ), wih he boundary condiion (241) T(P, 0) = 0, and he boundary condiions T(R l ) = 99^, ), R x es x, 1 dx 2 ^ dy* ' (242) 8T( f* f) - y>^r b ), R 2 e s,, Le us deermine Green's funcion G(P, Q, f) from he hea equaion (243) xv?g{p, Q, f)-g{p,q,) = ~d(p~q)5(i), P,QeS, wih he iniial condiion (244) G(P, Q, 0) = 0, and he boundary condiions <245) dg{r 2, ) 3n = ' * 26S2 ' 8n G(R 3,)=0, i? Making use of Green's formula in he plane S, we obain equaions r r Q es <246) T(Q, ) = T 0 (Q, ) + x I dx I yi^ru -r)g(i? 1; Q,-x)ds^_,, 0 j, -^ 5l where (247) TJQ, 0=1 f/(p)g(p, g, 0^+ I dx \ \ M(P, x)g(p, Q, J J J J J s c c -\- % \ dx \ ipzirz, T)G(-R 2 > 2> ~' J J,-*/dx 0 s, P,QeS, R x es x, R z i
13 876 W Nowacki The unknown funcion ip^r^ i) will be found from equaion (248) <p x {R[,)=T 0 (K,) + xfdrj Wl{R,, r)g(r 1,R[,-r)ds x, o», which will be obained from (246) by leing he poin Q end o R[ on he boundary s^ Similarly, he previous resuls, obained for periodic and seady emperaure, can be generalized o wo-dimensional problems of hea conducion 3 Second Soluion Mehod We shall give anoher varian of he soluion mehod of (11) wih mixed boundary condiions (13) The difference in he procedure will consis in a differen choice of he fundamenal sysem While in he previous case hermal insulaion exended over S x and Ą for he funcion G, now, for he funcion G*, we shall ake he same body wih he surfaces S ± and 5 a kep a zero emperaure The funcion G*(P, Q, } should herefore saisfy he hea equaion (31) «V»G*(P,fi, )-G*(P, Q, 0 = -d(p-q)d(), wih he iniial condiion (32) G*(P,G, 0) = 0, and he boundary condiions G*(R u Q,) = 0, R 1 es 1 ; (33) G*(R i,q,) = 0, R 2 es 2 ; G*(R a,q,) = 0, ReS 3 If now Greenes formula (29) is applied o he funcions Tand G*, and if he boundary condiions (13) and (33) are considered, we obain (34) f(q, p) = Jfffip) G*(P, Q, p)d P + fjj M(P, p) G*(P, Q, p)d P or (3-5) s, Le us observe ha he quaniies involved in TJ (Q, p) are known The funcion T*(Q, 0 can be obained by solving he hea equaion (36) * V 2 T*(P, 0 - f*(p, ) = -M(P, ), Pe,
14 Mixed boundary-value problems in hea conducion 877 wih he iniial condiion T*(P, 0) =f{p) and he boundary condiion (3 ' },0 = 0, ĄeĄ; T O *(R S, i) = ^s(i? 3,0, R 3 es 9 On performing on (31), (33), (36), (37) one-sided Laplace ransformaion, we obain from Green's formula an equaion, which, afer inverse ransformaion, akes he form (38) T*(Q, ) = fjjf(p)g*(p, Q, )d P + J dx j(j M(P, r) G*(P, Q> -r)d F On performing now he inverse ransformaion on (35), we obain (39) 2m 0 = T*(Q, )-xfdtjf<p z (R r) dg *( R *> 8 Ck±zA d s Ri o s I is known, however, ha he boundary condiion assigned on S z is (310) d^'^vifofl, ĄeĄ Le us make use of his condiion by leing he poin Qei) pass o he curren poin R' 2 E S 2, and by performing he equaion d/dri Thus, from (39), we find j R,, K ~ r ) ram f» fw ^fw0 j 0 S«where d/dn' denoes he normal derivaive a R' z e S z The inegral Eq (311) will be used o rind he unknown funcion (p 2 (R 2, ) From (39) we can find he emperaure am 0- Le us consider also Green's funcion K*(P, R' 2, ), saisfying, in our fundamenal sysem, he hea equaion (312) H V 2 K*(P, R'i, ) - K*(P, R' 2, 0 = 0, P e, wih he iniial condiion K*(P, R' 2, 0) = 0, and he boundary condiions (313) K*(R l 2& 0 = 0, RjeS!, ' where JdrfJ 5(R i -R' 2
15 7 - Nowacki y applying Green's formula o he funcions G* and K* on which one-sided Laplace ransformaion has been performed, we find ha (314) j hence, on performing he inverse Laplace ransformaion, we obain earing in mind (315), Eq (36) can be represened in he form J ax J J (316) y> 2 (i? 2, 0 = ^ h b s Similarly o Sec 2, we can easily pass from Eqs (39)-(310) o hose for harmonic emperaure or seady-sae flow Le us consider also he problem wih he following boundary condiions on he surface S 1 of he body (317) ar( f 2> /} + ArCUa, 0 = 0, on Making use of he inegral Eq (316) and bearing in mind ha o and aking ino consideraion he second of he condiions (37), we find (318) ht{r 2, ) = ^T 1- J ax J J T^, T) ^ rf oj J J o s % Thus in he case of he boundary condiions (317), an equaion of he second kind is obained 4 Soluion for a ody wih Slis and Insulaing Diaphragms Le us consider a simly conneced body bounded by he surface S and having a sli, of which he (upper and lower) surfaces are denoed by S% and S' 2 ', respecively he remaining par of he surface being denoed by S v Le he body be subjec o inernal hea sources and surface heaing The emperaure T(P, i) mus saisfy he hea equaion (41) x V 2 TCP, ) - f(p, ) = -M(P, ), Pe, wih he iniial condiion ( 4-2) T(P,0)=f(P),
16 Mixed boundary-value problems in hea conducion 879 and he boundary condiions (4l3) 2X1*1,0-0 on Ą, R 1 es 1, r(u0 = 0 on S^iS^' Le us consider he funcion G(P, Q, f) in he basic sysem consiued by he same body Si wih no sli The funcion G(P, Q, ) mus saisfy he hea equaion (44), wih he iniial condiion (45) G(P, Q, 0) = 0 and he boundary condiion (46) G(R 1> Q,)=0 on Ą Le us perform on (41)-(46) he one-sided Laplace ransformaion, and apply Green's formula (47), Afer some simple rearrangemen, we obain S (48) 2XG P) = j ff f ( F W p, Q> P) d v + /// M(P,p) G(P, Q, p)d p or SŚ+S2' ' ~dn 2 (49) T(Q, p) = T 0 (Q, p) + x \ \ G(R 2, Q, p)\ -^ where + denoes he upper and he lower par of he surface S 2 The funcion G having been defined in he region wih no sli, his funcion is differen from zero on 5 a The emperaure gradiens on he surfaces S^ and S'^' are also differen from zero (he second boundary condiion of he group (43) being ha of zero emperaure) The expression in brackes under he inegraion sign in (49) can be reaed as an unknown funcion ip(r 2, ) Thus Eq (49) akes, on performing he inverse Laplace ransformaion, he form i (410) f(q, i) = r o (fi, 0 + «/ jj o s, (i?, r) G(R, Q, ) V 2 2 ds, Rl where (411) T 0 (Q, ) = JJJf(P)G(P, Q, - x)d +fdr jjj M(P, r) G{P, Q, - x)d ' 0 J Arch Mech Sos 2
17 880 W Nowacki Le us make he poin Q end o i?ś on Ą earing in mind ha (in agreemen wih he second boundary condiion (43) we have T(R i ) = 0 on S 2, we obain he following inegral equaion (412), r)g(r 2, JC, - x)ds Rl s y solving (412) we find he funcion ip(r 2, T) from which he emperaure field according o (410) can be found 1 FIG 7 Le us consider in urn he solid of Fig 7, subjec also o a emperaure field bu wih differen condiions Le he emperaure #(P, ) saisfy he hea equaion (413) H V 2 #(P, 0 - &(P, ) = - M{P, f), Pe, wih he iniial condiion f(p, 0) = 0 and he boundary condiions (414), ) 8n!, 0 = 0 on 5j, = 0 on Ą = We have assumed here ha he surface 5 2 is hermally insulaed y applying Green's funcion G(P, Q, ) as deermined by Eq (44) wih he iniial condiion (45) and he boundary condiion (43), we obain, on applying Green's formula (47) for he following relaion beween he funcion & and G (415) where, 0 = (T(R 2, = JJjf(P)G(P, Q, )d+jdrf}{m(p, r)g(p, Q,-r)d 1 A similar soluion mehod was applied in Ref [2] o he problem of deflecion of a membrane and orsion of a bar and in Ref [3] o ha of orsion of a bar ha is, o he soluion of Poisson's equaion in a plane
18 Mixed boundary-value problems in hea conducion 881 Denoing by <p(i? a, ) he unknown emperaure funcion on 5" a ' and S' z \ le us rewrie Eq (415) in he form (416) 0(fi, ) = 0 o (fi, 0 + J dx fj o Le us apply he condiion - - = 0 on S 2 y leing Q pass o R' 2 es 2> we obain he following inegral equaion of he firs kind ( ) O S, The funcion <p(i? 2 T) being now deermined, we can find he emperaure &(Q, ) from Eq (416) Le us consider he case in which he following condiions are required o be saisfied for he emperaure 6(P, 0) =f(p), in addiion o he iniial condiion 6(R 1,) = 0 on Ą, (418) 0(-R 2,0 = 0 on 5j, ^ = 0 on Si' 8n Making use of Green's funcion G(P, Q, ) (44) and he condiions (45) and (46), we obain for he emperaure d(q, ) he formula (419) 6(Q, i) = 0 o (fi, ) + nfdx fj ^I lil> G^, Q, - si where o flo(fi 0 = ////( p ) G ( p > 2, 0d + «/ dx Jfj M(P, x)g{p, Q,-r)d O Le us consider now he boundary condiions (418) Leing he poin Q e in (419) end firs o GJ on SŹ, and hen o Cj' on Sj' we find he se of equaions J si' (420) 0(q, 0 = 0 = 0 o (Cl,)+xjdrfj 0j0 06{R^ T) G(2?,', C S ', f- r)ds' Rz C, C Caro" ds
19 882 W Nowacki ćri 8n I «f AT f f " 0 Si These are inegral equaions of he firs kind wih unknown funcions a on A and <?(i?2'> 0 o n "S 1^'- On solving hem for hese unknown funcions we can deermine he emperaure from (419) FIG 8 Le us consider now he simply conneced body of Fig 8 wih an insulaing diaphragm S z inside he body Le he body be aced on by some hea sources inside he body which is also heaed on he surface Ą The diaphragm condiion is dt/dn, here being no hea flow across S z The emperaure should saisfy he hea equaion (422) K V*T(P, ) ~ T(P, ) = - M(P, ), Pe, wih he iniial condiion (4-23) T(P, 0) = 0 and he boundary condiions (424) T(R 1,) = 0 on S x, ReS,, a u u u "2; "2 "a ~r >->i > -K2 >->2 Assuming in he fundamenal se Green's funcion G(P, Q, ), saisfying he equaion (44) wih he iniial condiion (45) and he boundary condiions (46), and, finally, applying Green's formula (47) o he funcions G and T (obained by solving (422), we obain (425) T(Q,p) = T 0 {Q,p) - «[f [T + (R s,p) + T_(R 2,p);
20 Mixed boundary-value problems in hea conducion 883 where T 0 (Q,p) is given by (411) and T+ T_ de oe he emperaure on he upper and lower surface of he insulaing diaphragm, respecively These emperaures are unknown funcions Their sum is denoed by q} 2 (R 2, ) Thus, (425) akes he form (426) T(Q, p) = f o (Q, />)-*//?,(*, P) J G( - R *> n &P> ds Rx Leing he poin Qe end o R' & on S 2 and performing he operaion d/dn' on (426), we obain The lef-hand side of (427) represens he normal hea flow a R' z e S 2 However, in view of he hermal insulaion on Ą, his flow is zero Eq (427) is an inegral equaion of he firs kind, from which he unknown funcion <p 2 (i? 2, p) can be deermined, hus enabling us o find T(Q,p) from (426) On performing he inverse Laplace ransformaion of (426), we obain (428) T{Q, ) = T 0 (Q, )-xf dr jf <p(r z, o S The procedure jus described can be generalized o he case of exisence in he body of more han one insulaing diaphragm In he case of r diaphragms, we obain a se of T inegral equaions References [1] W NOWACKI, A boundary problem of hea conducion ull l'acad Polon Sci Cl IV V V, No 4, 1957 [2] W NOWACKI, O pewnym przypadku skręcania pręów [On cerain cases of orsion of bars], Arch Mech Sos, I, 5 (1953) [3] J ALLAS, On he orsion of a cylindrical bar wih slis, Koninkl Nederl Acad van Weenschappen, Proceedings, Series, 64, No 1,1961 [4] H S CARSLAW, J C JAEGER, Conducion of hea in solids, Oxford 1947 [5] R SETH, Mixed boundary-value problems, Calcua Mah Soc Golden Jubilee Commemoraion V (1958/59), par 1, 79-86, Calcua Mah Soc, Calcua 1963 [6] W NOWACKI, Mixed boundary problems in hea conducion, ull l'acad Polon Sci, Serie Sci Techn, 5, 11, (1963) Sreszczenie MIESZANE WARUNKI RZEGOWE W ZAGADNIENIACH PRZEWODNICTWA CIEPLNEGO Nawiązując do swej dawniejszej pracy [1] auor rozszerza podaną am meodę rozwiązy\ unia zagadnień przewodnicwa cieplnego w ciele sałym z mieszanymi warunkami brzegowymi na nieusalone przepływy ciepła Podano dwa wariany rozwiązania, przy użyciu dwu różnych ak zwanych
21 884 W Nowacki układów podsawowych W obu warianach sprowadza się rozwiązanie zagadnienia do rozwiązania równania całkowego pierwszego rodzaju W końcu omówiono ok posępowania dla przypadku isnienia w ciele sałym szczelin oraz przesłon izolacyjnych P e 3 K) M e CMEIUAHHIE KPAEŁIE YCJIOHH SAJOA^AX TEnJIOnPOOJJHOCTH CH3H c oflhoił H3 npenbiflymix pa6ot [1] atop pacniipjiet npheflehhbiił Hef penehhh onpoco, KacaiomnxcH TenjionpoOflHOCTH Tepfloro Tejia c pa3pbihbimh KpaebiMH ycjiohhmh fljih HecTaqaoHapHLix notoko Tenna JJaioTCH fla aphahta penrehhji npn Hcnon- 3OannH flyx pasjni'qhbix, Tax Ha3biaeMbix, OCHOHIX CHCTeiw OOHX apaahtax peiilehhe 3aflaiH CO^HTCH K peiflehhio HHTerpanbHoro ypahenhh neporo pofla 3aKjno^ieHHe o6cy>kflanpoiiecc penlehhh nph HaroraHH TepflOM Tejie iqejieii H H30Ji^n0HHbix DEPARTMENT OF MECHANICS O CONTINUOUS MEDIA ITP POLISH ACADEMY OF SCIENCES Received January 9, 1964
Helena Boguta, klasa 8W, rok szkolny 2018/2019
Poniższy zbiór zadań został wykonany w ramach projektu Mazowiecki program stypendialny dla uczniów szczególnie uzdolnionych - najlepsza inwestycja w człowieka w roku szkolnym 2018/2019. Składają się na
DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION
ELEKTRYKA 0 Zeszyt (9) Rok LX Andrzej KUKIEŁKA Politechnika Śląska w Gliwicach DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION
A sufficient condition of regularity for axially symmetric solutions to the Navier-Stokes equations
A sufficient condition of regularity for axially symmetric solutions to the Navier-Stokes equations G. Seregin & W. Zajaczkowski A sufficient condition of regularity for axially symmetric solutions to
SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like
SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1 I SSW1.1, HFW Fry #65, Zeno #67 Benchmark: Qtr.1 like SSW1.2, HFW Fry #47, Zeno #59 Benchmark: Qtr.1 do SSW1.2, HFW Fry #5, Zeno #4 Benchmark: Qtr.1 to SSW1.2,
Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów
Rozpoznawanie twarzy metodą PCA Michał Bereta www.michalbereta.pl 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów Wiemy, że możemy porównywad klasyfikatory np. za pomocą kroswalidacji.
Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)
Zakopane, plan miasta: Skala ok. 1:15 000 = City map (Polish Edition) Click here if your download doesn"t start automatically Zakopane, plan miasta: Skala ok. 1:15 000 = City map (Polish Edition) Zakopane,
Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019
Poniższy zbiór zadań został wykonany w ramach projektu Mazowiecki program stypendialny dla uczniów szczególnie uzdolnionych - najlepsza inwestycja w człowieka w roku szkolnym 2018/2019. Tresci zadań rozwiązanych
OpenPoland.net API Documentation
OpenPoland.net API Documentation Release 1.0 Michał Gryczka July 11, 2014 Contents 1 REST API tokens: 3 1.1 How to get a token............................................ 3 2 REST API : search for assets
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition) Robert Respondowski Click here if your download doesn"t start automatically Wojewodztwo Koszalinskie:
Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2
Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2 aaaklnictzzjb9tgfmcnadpg7oy0lxa9edva9kkapdarhyk2k7gourinlwsweyzikuyiigvyleiv/cv767fpf/5crc1xt9va5mx7w3m/ecuqw1kuztpx/rl3/70h73/w4cog9dhhn3z62d6jzy+yzj766txpoir9nzszisjynetqr+rvlfvyoozu5xbybpsxb1wahul8phczdt2v4zgchb7uecwphlyigrgkjcyiflfyci0kxnmr4z6kw0jsokvot8isntpa3gbknlcufiv/h+hh+eur4fomd417rvtfjoit5pfju6yxiab2fmwk0y/feuybobqk+axnke8xzjjhfyd8kkpl9zdoddkazd5j6bzpemjb64smjb6vb4xmehysu08lsrszopxftlzee130jcb0zjxy7r5wa2f1s2off2+dyatrughnrtpkuprlcpu55zlxpss/yqe2eamjkcf0jye8w8yas0paf6t0t2i9stmcua+inbi2rt01tz22tubbqwidypvgz6piynkpobirkxgu54ibzoti4pkw2i5ow9lnuaoabhuxfxqhvnrj6w15tb3furnbm+scyxobjhr5pmj5j/w5ix9wsa2tlwx9alpshlunzjgnrwvqbpwzjl9wes+ptyn+ypy/jgskavtl8j0hz1djdhzwtpjbbvpr1zj7jpg6ve7zxfngj75zee0vmp9qm2uvgu/9zdofq6r+g8l4xctvo+v+xdrfr8oxiwutycu0qgyf8icuyvp/sixfi9zxe11vp6mrjjovpmxm6acrtbia+wjr9bevlgjwlz5xd3rfna9g06qytaoofk8olxbxc7xby2evqjmmk6pjvvzxmpbnct6+036xp5vdbrnbdqph8brlfn/n/khnfumhf6z1v7h/80yieukkd5j0un82t9mynxzmk0s/bzn4tacdziszdhwrl8x5ako8qp1n1zn0k6w2em0km9zj1i4yt1pt3xiprw85jmc2m1ut2geum6y6es2fwx6c+wlrpykblopbuj5nnr2byygfy5opllv4+jmm7s6u+tvhywbnb0kv2lt5th4xipmiij+y1toiyo7bo0d+vzvovjkp6aoejsubhj3qrp3fjd/m23pay8h218ibvx3nicofvd1xi86+kh6nb/b+hgsjp5+qwpurzlir15np66vmdehh6tyazdm1k/5ejtuvurgcqux6yc+qw/sbsaj7lkt4x9qmtp7euk6zbdedyuzu6ptsu2eeu3rxcz06uf6g8wyuveznhkbzynajbb7r7cbmla+jbtrst0ow2v6ntkwv8svnwqnu5pa3oxfeexf93739p93chq/fv+jr8r0d9brhpcxr2w88bvqbr41j6wvrb+u5dzjpvx+veoaxwptzp/8cen+xbg==
Katowice, plan miasta: Skala 1: = City map = Stadtplan (Polish Edition)
Katowice, plan miasta: Skala 1:20 000 = City map = Stadtplan (Polish Edition) Polskie Przedsiebiorstwo Wydawnictw Kartograficznych im. Eugeniusza Romera Click here if your download doesn"t start automatically
General Certificate of Education Ordinary Level ADDITIONAL MATHEMATICS 4037/12
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level www.xtremepapers.com *6378719168* ADDITIONAL MATHEMATICS 4037/12 Paper 1 May/June 2013 2 hours Candidates
Few-fermion thermometry
Few-fermion thermometry Phys. Rev. A 97, 063619 (2018) Tomasz Sowiński Institute of Physics of the Polish Academy of Sciences Co-authors: Marcin Płodzień Rafał Demkowicz-Dobrzański FEW-BODY PROBLEMS FewBody.ifpan.edu.pl
Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science
Proposal of thesis topic for mgr in (MSE) programme 1 Topic: Monte Carlo Method used for a prognosis of a selected technological process 2 Supervisor: Dr in Małgorzata Langer 3 Auxiliary supervisor: 4
Revenue Maximization. Sept. 25, 2018
Revenue Maximization Sept. 25, 2018 Goal So Far: Ideal Auctions Dominant-Strategy Incentive Compatible (DSIC) b i = v i is a dominant strategy u i 0 x is welfare-maximizing x and p run in polynomial time
Aerodynamics I Compressible flow past an airfoil
Aerodynamics I Compressible flow past an airfoil transonic flow past the RAE-8 airfoil (M = 0.73, Re = 6.5 10 6, α = 3.19 ) Potential equation in compressible flows Full potential theory Let us introduce
TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction
TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 9: Inference in Structured Prediction 1 intro (1 lecture) Roadmap deep learning for NLP (5 lectures) structured prediction
Hard-Margin Support Vector Machines
Hard-Margin Support Vector Machines aaacaxicbzdlssnafiyn9vbjlepk3ay2gicupasvu4iblxuaw2hjmuwn7ddjjmxm1bkcg1/fjqsvt76fo9/gazqfvn8y+pjpozw5vx8zkpvtfxmlhcwl5zxyqrm2vrg5zw3vxmsoezi4ogkr6phieky5crvvjhriqvdom9l2xxftevuwcekj3lktmhghgniauiyutvrwxtvme34a77kbvg73gtygpjsrfati1+xc8c84bvraowbf+uwnipyehcvmkjrdx46vlykhkgykm3ujjdhcyzqkxy0chur6ax5cbg+1m4bbjptjcubuz4kuhvjoql93hkin5hxtav5x6yyqopnsyuneey5ni4keqrxbar5wqaxbik00icyo/iveiyqqvjo1u4fgzj/8f9x67bzmxnurjzmijtlybwfgcdjgfdtajwgcf2dwaj7ac3g1ho1n4814n7wwjgjmf/ys8fenfycuzq==
Zarządzanie sieciami telekomunikacyjnymi
SNMP Protocol The Simple Network Management Protocol (SNMP) is an application layer protocol that facilitates the exchange of management information between network devices. It is part of the Transmission
Title: On the curl of singular completely continous vector fields in Banach spaces
Title: On the curl of singular completely continous vector fields in Banach spaces Author: Adam Bielecki, Tadeusz Dłotko Citation style: Bielecki Adam, Dłotko Tadeusz. (1973). On the curl of singular completely
Technika Próżniowa. Przyszłość zależy od dobrego wyboru produktu. Wydanie Specjalne.
Technika Próżniowa Przyszłość zależy od dobrego wyboru produktu Wydanie Specjalne www.piab.com P6040 Dane techniczne Przepływ podciśnienia Opatentowana technologia COAX. Dostępna z trójstopniowym wkładem
EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH
Anna BŁACH Centre of Geometry and Engineering Graphics Silesian University of Technology in Gliwice EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH Introduction Computer techniques
Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)
Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition) J Krupski Click here if your download doesn"t start automatically Karpacz, plan miasta 1:10 000: Panorama
ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS.
ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS. Strona 1 1. Please give one answer. I am: Students involved in project 69% 18 Student not involved in
deep learning for NLP (5 lectures)
TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 6: Finish Transformers; Sequence- to- Sequence Modeling and AJenKon 1 Roadmap intro (1 lecture) deep learning for NLP (5
Instrukcja konfiguracji usługi Wirtualnej Sieci Prywatnej w systemie Mac OSX
UNIWERSYTETU BIBLIOTEKA IEGO UNIWERSYTETU IEGO Instrukcja konfiguracji usługi Wirtualnej Sieci Prywatnej w systemie Mac OSX 1. Make a new connection Open the System Preferences by going to the Apple menu
2 7k 0 5k 2 0 1 5 S 1 0 0 P a s t w a c z ł o n k o w s k i e - Z a m ó w i e n i e p u b l i c z n e n a u s ł u g- i O g ł o s z e n i e o z a m ó w i e n i u - P r o c e d u r a o t w a r t a P o l
Knovel Math: Jakość produktu
Knovel Math: Jakość produktu Knovel jest agregatorem materiałów pełnotekstowych dostępnych w formacie PDF i interaktywnym. Narzędzia interaktywne Knovel nie są stworzone wokół specjalnych algorytmów wymagających
SG-MICRO... SPRĘŻYNY GAZOWE P.103
SG-MICRO... SG-MICRO 19 SG-MICRO SG-MICRO H SG-MICRO R SG-MICRO 32 SG-MICRO 32H SG-MICRO 32R SG-MICRO SG-MICRO H SG-MICRO R SG-MICRO 45 SG-MICRO SG-MICRO SG-MICRO 75 SG-MICRO 95 SG-MICRO 0 cylindra body
Tychy, plan miasta: Skala 1: (Polish Edition)
Tychy, plan miasta: Skala 1:20 000 (Polish Edition) Poland) Przedsiebiorstwo Geodezyjno-Kartograficzne (Katowice Click here if your download doesn"t start automatically Tychy, plan miasta: Skala 1:20 000
Instrukcja zarządzania systemem informatycznym przetwarzającym dane osobowe w Chorągwi Dolnośląskiej ZHP Spis treści
C h o r ą g i e w D o l n o l ą s k a Z H P Z a ł ą c z n i k 5 d o U c h w a ł y n r 2 2 / I X / 2 0 1 5 K o m e n d y C h o r ą g w i D o l n o 6 l ą s k i e j Z H P z d n i a 0 8. 0 62. 0 1 5 r. I n
Rodzaj obliczeń. Data Nazwa klienta Ref. Napędy z pasami klinowymi normalnoprofilowymi i wąskoprofilowymi 4/16/ :53:55 PM
Rodzaj obliczeń Data Nazwa klienta Ref Napędy z pasami klinowymi normalnoprofilowymi i wąskoprofilowymi 4/16/2007 10:53:55 PM Rodzaj obciążenia, parametry pracy Calculation Units SI Units (N, mm, kw...)
Multi-Criteria Decision Support using ELECTRE methods
Muli-Crieria Decision Suppor using ELECTRE mehods Roman Słowiński Poznań Universiy of Technology, Poland Weak poins of preference modelling using uiliy (value) funcion Uiliy funcion disinguishes only 2
Wybrzeze Baltyku, mapa turystyczna 1: (Polish Edition)
Wybrzeze Baltyku, mapa turystyczna 1:50 000 (Polish Edition) Click here if your download doesn"t start automatically Wybrzeze Baltyku, mapa turystyczna 1:50 000 (Polish Edition) Wybrzeze Baltyku, mapa
Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering
Machine Learning for Data Science (CS4786) Lecture 11 Spectral Embedding + Clustering MOTIVATING EXAMPLE What can you say from this network? MOTIVATING EXAMPLE How about now? THOUGHT EXPERIMENT For each
TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 8: Structured PredicCon 2
TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 8: Structured PredicCon 2 1 Roadmap intro (1 lecture) deep learning for NLP (5 lectures) structured predic+on (4 lectures)
A n g i e l s k i. Phrasal Verbs in Situations. Podręcznik z ćwiczeniami. Dorota Guzik Joanna Bruska FRAGMENT
A n g i e l s k i Phrasal Verbs in Situations Podręcznik z ćwiczeniami FRAGMENT Dorota Guzik Joanna Bruska Autorzy: Dorota Guzik, Joanna Bruska Konsultacja językowa: Tadeusz Z. Wolański Lektorzy: Maybe
SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA
Z n a k s p r a w y G C S D Z P I 2 7 1 0 2 02 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A U s ł u g a d r u k o w a n i a d l a p o t r z e b G d y s k i e g o
Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa Rozdział 2. Informacja o trybie i stosowaniu przepisów
Z n a k s p r a w y G C S D Z P I 2 7 1 07 2 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f U s ł u g i s p r z» t a n i a o b i e k t Gó w d y s k i e g o C e n
Zwyczajne równania różniczkowe (ZRR) Metody Runge go-ku/y
Zwyczajne równania różniczkowe (ZRR) Metody Runge go-ku/y Metoda Runge go-ku/y (4) Embedded Runge-Kutta methods. Są to jawne metody z dwoma zbiorami współczynników, pozwalające oszacować błąd obliczeń.
Jak zasada Pareto może pomóc Ci w nauce języków obcych?
Jak zasada Pareto może pomóc Ci w nauce języków obcych? Artykuł pobrano ze strony eioba.pl Pokazuje, jak zastosowanie zasady Pareto może usprawnić Twoją naukę angielskiego. Słynna zasada Pareto mówi o
Gdyńskim Ośrodkiem Sportu i Rekreacji jednostka budżetowa
W Z Ó R U M O W Y z a w a r t a w G d y n i w d n i u 2 0 1 4 r po m i d z y G d y s k i m O r o d k i e m S p o r t u i R e k r e a c j i j e d n o s t k a b u d e t o w a ( 8 1-5 3 8 G d y n i a ), l
Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.
Z n a k s p r a w y G O S I R D Z P I 2 7 1 0 3 12 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f O b s ł u g a o p e r a t o r s k aw r a z z d o s t a w» s p r
TEST: ROZWIĄZYWANIE PROBLEMÓW PRZYKŁADY
Przykładowe zadania testu typu GMAT Akademia Leona Koźmińskiego TEST: ROZWIĄZYWANIE PROBLEMÓW PRZYKŁADY CZAS ROZWIĄZYWANIA: 60 MINUT Uwaga: W niniejszym zeszycie nie można nic pisać. Odpowiedzi prosimy
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition) Robert Respondowski Click here if your download doesn"t start automatically Wojewodztwo Koszalinskie:
Camspot 4.4 Camspot 4.5
User manual (addition) Dodatek do instrukcji obsługi Camspot 4.4 Camspot 4.5 1. WiFi configuration 2. Configuration of sending pictures to e-mail/ftp after motion detection 1. Konfiguracja WiFi 2. Konfiguracja
Domy inaczej pomyślane A different type of housing CEZARY SANKOWSKI
Domy inaczej pomyślane A different type of housing CEZARY SANKOWSKI O tym, dlaczego warto budować pasywnie, komu budownictwo pasywne się opłaca, a kto się go boi, z architektem, Cezarym Sankowskim, rozmawia
Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa w Gdyni Rozdział 2. Informacja o trybie i stosowaniu przepisów
Z n a k s p r a w y G C S D Z P I 2 7 1 03 7 2 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A W y k o n a n i e r e m o n t u n a o b i e k c i e s p o r t o w y mp
Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.
Z n a k s p r a w y G O S I R D Z P I 2 7 1 03 3 2 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f U d o s t p n i e n i e t e l e b i m ó w i n a g ł o n i e n i
z d n i a 2 3. 0 4.2 0 1 5 r.
C h o r ą g i e w D o l n o l ą s k a Z H P I. P o s t a n o w i e n i a p o c z ą t k o w e U c h w a ł a n r 1 5 / I X / 2 0 1 5 K o m e n d y C h o r ą g w i D o l n o l ą s k i e j Z H P z d n i a
Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.
Z n a k s p r a w y G O S I R D Z P I 2 7 1 0 5 32 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f W y k o n a n i e p r z e g l» d ó w k o n s e r w a c y j n o -
1 0 2 / m S t a n d a r d w y m a g a ñ - e g z a m i n m i s t r z o w s k i dla zawodu R A D I E S T E T A Kod z klasyfikacji zawodów i sp e cjaln o ci dla p ot r ze b r yn ku p r acy Kod z klasyfikacji
Anonymous Authentication Using Electronic Identity Documents
Department of Computer Science Faculty of Fundamental Problems of Technology Wroclaw University of Technology Anonymous Authentication Using Electronic Identity Documents by Kamil Kluczniak A thesis submitted
Wykaz linii kolejowych, które są wyposażone w urządzenia systemu ETCS
Wykaz kolejowych, które są wyposażone w urządzenia W tablicy znajdującej się na kolejnych stronach tego załącznika zastosowano następujące oznaczenia: - numer kolejowej według instrukcji Wykaz Id-12 (D-29).
, , , , 0
S T E R O W N I K G R E E N M I L L A Q U A S Y S T E M 2 4 V 4 S E K C J I G B 6 9 6 4 C, 8 S E K C J I G B 6 9 6 8 C I n s t r u k c j a i n s t a l a c j i i o b s ł u g i P r z e d r o z p o c z ę
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition) Robert Respondowski Click here if your download doesn"t start automatically Wojewodztwo Koszalinskie:
All Saints Day. Chants of the Proper of the Mass for. Adapted to English words and Edited by. Bruce E. Ford
Chants of the Proper of the Mass for All Saints Day Adapted to English words and Edited by Bruce E. Ford Copyright 2009 by Bruce E. Ford All rights reserved. All Saints Day Introit Gaudeamus i. BzzzzacscSYÎzz7czzhzzzchzygczygcFTzzzzzcgÐkÐhczíyígzzÄzzzjUc
Wykaz linii kolejowych, które są wyposażone w urzadzenia systemu ETCS
Wykaz kolejowych, które są wyposażone w urzadzenia W tablicy znajdującej się na kolejnych stronach tego załącznika zastosowano następujące oznaczenia: - numer kolejowej według instrukcji Wykaz Id-12 (D-29).
Pielgrzymka do Ojczyzny: Przemowienia i homilie Ojca Swietego Jana Pawla II (Jan Pawel II-- pierwszy Polak na Stolicy Piotrowej) (Polish Edition)
Pielgrzymka do Ojczyzny: Przemowienia i homilie Ojca Swietego Jana Pawla II (Jan Pawel II-- pierwszy Polak na Stolicy Piotrowej) (Polish Edition) Click here if your download doesn"t start automatically
. W IX X IE W GO LIN KARO 2
C E S~ R Z EP R Z Y M S K O MN I E M I E C C Y P 1 2 KAROLINGOWIE IX X W. WŁADCY ŚWIĘTEGO CESARSTWA RZYMSKIEGO oraz Genealogia KAROLINGOWIE IX X W. CESARZE AUSTRII opracował PRZEMYSŁAW JAWORSKI 2018 3
Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)
Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition) J Krupski Click here if your download doesn"t start automatically Karpacz, plan miasta 1:10 000: Panorama
Clockwork as a solution to the flavour puzzle
Clockwork a a oluon to the flavour puzzle Rodrigo Alono Beyond the BSM 2//28 eab6hicbns8naej3urq/qh69lbbbuleqmeif48t2a9oq9lj+3azsbboqs+gu8efdeqz/jm//gbzudtj4yelw8y8ibfcg9f9dgobmvbo8xdt7+wefr+fikrenumwyxwmsqgcngktgw4edhofnaoedolj3dzvpkhspjypzpqgh95cfnfipiynyxa26c5b4uwkajkag/jxfxiznejpmkba9zmx5glefm4kzutzumle3ochuwshqh9rpfotnyyzuhcwnlsxqyuh9pzdtsehtjoizqxxvbn4n9dltxjjzwmquhjlovcatk/nxzmgvmiomllcmul2vdfvlbmbtcmg4k2+ve7avxprxrn6r9no+jcgdwdpfgqq3qca8naaedhgd4htxlx3p2pzwvbywdo4q+czx/jbyzp
Stargard Szczecinski i okolice (Polish Edition)
Stargard Szczecinski i okolice (Polish Edition) Janusz Leszek Jurkiewicz Click here if your download doesn"t start automatically Stargard Szczecinski i okolice (Polish Edition) Janusz Leszek Jurkiewicz
WYKORZYSTANIE SYSTEMU Mathematica DO ROZWIĄZYWANIA ZAGADNIEŃ PRZEWODZENIA CIEPŁA
39/19 ARCHIWUM ODLEWNICTWA Rok 006, Rocznik 6, Nr 19 Archives of Foundry Year 006, Volume 6, Book 19 PAN - Katowice PL ISSN 164-5308 WYKORZYSTANIE SYSTEMU Mathematica DO ROZWIĄZYWANIA ZAGADNIEŃ PRZEWODZENIA
Struktury proponowane dla unikalnych rozwiązań architektonicznych.
23 Struktury proponowane dla unikalnych rozwiązań architektonicznych.. System fundamentu zespolonego może być zastosowany jako bezpieczna podstawa dla obiektów silnie obciążonych mogących być zlokalizowanymi
Polski Krok Po Kroku: Tablice Gramatyczne (Polish Edition) By Anna Stelmach
Polski Krok Po Kroku: Tablice Gramatyczne (Polish Edition) By Anna Stelmach If you are looking for the ebook by Anna Stelmach Polski krok po kroku: Tablice gramatyczne (Polish Edition) in pdf form, in
Belt Conveyors Calculations
Conveyors Deparmen of Mining, Dressing and Transpor Machines AGH Be Conveyors Cacuaions Pior Kuinowski, Ph. D. Eng. Pior Kasza, Ph. D. Eng. - pior.kuinowski@agh.edu.p ( 12617 30 92 B-2 ground-foor room
Extraclass. Football Men. Season 2009/10 - Autumn round
Extraclass Football Men Season 2009/10 - Autumn round Invitation Dear All, On the date of 29th July starts the new season of Polish Extraclass. There will be live coverage form all the matches on Canal+
BARIERA ANTYKONDENSACYJNA
Skład Obróbka Parametry techniczne BARIERA ANTYKONDENSACYJNA Lama "Lama" sp. z o.o. sp. k Właściwość Metoda badania Wartość Jednostka włóknina poliestrowa + klej PSA + folia polietylenowa Samoprzylepna
Sargent Opens Sonairte Farmers' Market
Sargent Opens Sonairte Farmers' Market 31 March, 2008 1V8VIZSV7EVKIRX8(1MRMWXIVSJ7XEXIEXXLI(ITEVXQIRXSJ%KVMGYPXYVI *MWLIVMIWERH*SSHTIVJSVQIHXLISJJMGMEPSTIRMRKSJXLI7SREMVXI*EVQIVW 1EVOIXMR0E]XS[R'S1IEXL
Towards Stability Analysis of Data Transport Mechanisms: a Fluid Model and an Application
Towards Stability Analysis of Data Transport Mechanisms: a Fluid Model and an Application Gayane Vardoyan *, C. V. Hollot, Don Towsley* * College of Information and Computer Sciences, Department of Electrical
DOI: / /32/37
. 2015. 4 (32) 1:18 DOI: 10.17223/1998863 /32/37 -,,. - -. :,,,,., -, -.,.-.,.,.,. -., -,.,,., -, 70 80. (.,.,. ),, -,.,, -,, (1886 1980).,.,, (.,.,..), -, -,,,, ; -, - 346, -,.. :, -, -,,,,,.,,, -,,,
OBWIESZCZENIE MINISTRA INFRASTRUKTURY. z dnia 18 kwietnia 2005 r.
OBWIESZCZENIE MINISTRA INFRASTRUKTURY z dnia 18 kwietnia 2005 r. w sprawie wejścia w życie umowy wielostronnej M 163 zawartej na podstawie Umowy europejskiej dotyczącej międzynarodowego przewozu drogowego
Home Software Hardware Benchmarks Services Store Support Forums About Us
Shopping cart Search Home Software Hardware Benchmarks Services Store Support Forums About Us Home» CPU Benchmarks» CPU List CPU Benchmarks Video Card Benchmarks Hard Drive Benchmarks RAM PC Systems Android
Emilka szuka swojej gwiazdy / Emily Climbs (Emily, #2)
Emilka szuka swojej gwiazdy / Emily Climbs (Emily, #2) Click here if your download doesn"t start automatically Emilka szuka swojej gwiazdy / Emily Climbs (Emily, #2) Emilka szuka swojej gwiazdy / Emily
Installation of EuroCert software for qualified electronic signature
Installation of EuroCert software for qualified electronic signature for Microsoft Windows systems Warsaw 28.08.2019 Content 1. Downloading and running the software for the e-signature... 3 a) Installer
STUDIES OF THE UNIVERSITY OF ŽILINA. Volume 20 Number 1 December Editorial Board
STUDIES OF THE UNIVERSITY OF ŽILINA Volume 20 Number 1 December 2006 Special Issue: Proceedings of Conference on Differenial and Difference Equaions and Applicaions (CDDEA), Rajecké Teplice, Slovakia June
Zmiany techniczne wprowadzone w wersji Comarch ERP Altum
Zmiany techniczne wprowadzone w wersji 2018.2 Copyright 2016 COMARCH SA Wszelkie prawa zastrzeżone Nieautoryzowane rozpowszechnianie całości lub fragmentu niniejszej publikacji w jakiejkolwiek postaci
Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis
Machine Learning for Data Science (CS4786) Lecture11 5 Random Projections & Canonical Correlation Analysis The Tall, THE FAT AND THE UGLY n X d The Tall, THE FAT AND THE UGLY d X > n X d n = n d d The
C_) (O 9. o ri O) 3. Cl) 3 CO CD (--1 < !jl. O o (1) Ci) Z Z>Z mzz6 O' O? 55 0H> ZCD> >Z>O. CDz ZCDH:3 11 >1J1J '0»<G) o oo) (4 >CDCD)o < O O>
J Ln ) t') ' ) 4 Ni C) Q v 'ri) ] H H H H 4 C/)C(C))CJ) '''''' U) (/) C Ci) H H H H H ( :: C) : D J J i J Ci) Ci) til li' I l (C I ç An Ci NJ I (TI Ni I'J 4C ( C') C') I ( Ni Ni I (Cl ) ) \ \ dp P W W
Employment. Number of employees employed on a contract of employment by gender in 2012. Company
Im not found /sites/eneacsr2012.mess-asp.com/themes/eneacsr2012/img/enea.jpg Employt Capital Group is one of the largest companies in the energy industry. Therefore it has an influence, as an employer,
Poland) Wydawnictwo "Gea" (Warsaw. Click here if your download doesn"t start automatically
Suwalski Park Krajobrazowy i okolice 1:50 000, mapa turystyczno-krajoznawcza =: Suwalki Landscape Park, tourist map = Suwalki Naturpark,... narodowe i krajobrazowe) (Polish Edition) Click here if your
-~. ~ ~~ ~t:' ~ ~ e ~o Q.. loot. = Cj. F:f t:;::j (1) I-t (1) Q.. ."._"-"-'--, -~-- ~" ~..~',._", :::;-:;>,, ~"" '. .;.. ~ ';i B'i S' g.
.;.. ';i B'i S' g."' " if i -j;; Q!e: "'- fi) Q. i:\-.q () c." -. t:' e o loot Q.. = Cj F:f t:;::j (1) -ṯ. = (1) -t Q.. ;... ""d r.n (b.... =' OQ Cj >J t'fj =:s t:s ;;;. "'1. = t:s erd =f""i" fjj."."._"-"-'--,
Lecture 18 Review for Exam 1
Spring, 2019 ME 323 Mechanics of Materials Lecture 18 Review for Exam 1 Reading assignment: HW1-HW5 News: Ready for the exam? Instructor: Prof. Marcial Gonzalez Announcements Exam 1 - Wednesday February
PROJEKT I WALIDACJA URZĄDZEŃ POMIAROWYCH
M O D E L O W A N I E I N Y N I E R S K I E n r 4 7, I S S N 1 8 9 6-7 7 1 X P R O J E K T I W A L I D A C J A U R Z Ą D Z E P O M I A R O W Y C H a S I Y W L I N I E I K Ą T A W Y C H Y L E N I A L I
Sequential Monte Carlo: Selected topics
Uniwersye Warszawski Wydział Maemayki, Informayki i Mechaniki Agnieszka Borowska Nr albumu: 291512 Sequenial Mone Carlo: Seleced opics Praca licencjacka na kierunku MATEMATYKA Praca wykonana pod kierunkiem
Egzamin maturalny z języka angielskiego na poziomie dwujęzycznym Rozmowa wstępna (wyłącznie dla egzaminującego)
112 Informator o egzaminie maturalnym z języka angielskiego od roku szkolnego 2014/2015 2.6.4. Część ustna. Przykładowe zestawy zadań Przykładowe pytania do rozmowy wstępnej Rozmowa wstępna (wyłącznie
EKSPERYMENTALNA WERYFIKACJA METODY ROZWIĄZYWANIA ODWROTNEGO PROBLEMU PRZEWODZENIA CIEPŁA
ZESZYTY NAUKOWE POLITECHNIKI RZESZOWSKIEJ 290, Mechanika 86 RUTMech, t. XXXI, z. 86 (2/4), kwiecień-czerwiec 204, s. 9-98 Piotr DUDA EKSPERYMENTALNA WERYFIKACJA METODY ROZWIĄZYWANIA ODWROTNEGO PROBLEMU
Ruciski i Wspólnicy Kancelaria Audytorów i Doradców
Dokument informacyjny ComPress Spółka Akcyjna Sporzdzony na potrzeby wprowadzenia akcji serii A, B, C, D, E, F oraz G do obrotu na rynku NewConnect prowadzonego jako alternatywny system obrotu przez Giełd
Cracow University of Economics Poland. Overview. Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions 2000-2005
Cracow University of Economics Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions 2000-2005 - Key Note Speech - Presented by: Dr. David Clowes The Growth Research Unit CE Europe
kdpw_stream Struktura komunikatu: Status komunikatu z danymi uzupełniającymi na potrzeby ARM (auth.ste ) Data utworzenia: r.
kdpw_stream Struktura komunikatu: Status komunikatu z danymi uzupełniającymi na potrzeby ARM (auth.ste.001.01) Data utworzenia: 12.09.2017 r. : Status komunikatu z danymi uzupełniającymi na potrzeby ARM
Adult Education and Lifelong Learning
Adult Education and Lifelong Learning Adult Education Centers can provide a number of courses many of which are free to the learner. For information on the courses they provide visit www.lincolnshire.gov.uk/
photo graphic Jan Witkowski Project for exhibition compositions typography colors : +48 506 780 943 : janwi@janwi.com
Jan Witkowski : +48 506 780 943 : janwi@janwi.com Project for exhibition photo graphic compositions typography colors Berlin London Paris Barcelona Vienna Prague Krakow Zakopane Jan Witkowski ARTIST FROM
Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and
Fig 4 Measured vibration signal (top). Blue original signal. Red component related to periodic excitation of resonances and noise. Green component related. Rotational speed profile used for experiment
HAPPY ANIMALS L01 HAPPY ANIMALS L03 HAPPY ANIMALS L05 HAPPY ANIMALS L07
HAPPY ANIMALS L0 HAPPY ANIMALS L0 HAPPY ANIMALS L0 HAPPY ANIMALS L07 INSTRUKCJA MONTAŻU ASSEMBLY INSTRUCTIONS Akcesoria / Fittings K ZW W8 W7 Ø x 6 szt. / pcs Ø7 x 70 Narzędzia / Tools DO MONTAŻU POTRZEBNE
6 0 / m S t a n d a r d w y m a g a ń - e g z a m i n m i s t r z o w s k i dla zawodu K R A W I E C Kod z klasyfikacji zawodów i sp e cjaln oś ci dla p ot r ze b r yn ku p r acy Kod z klasyfikacji zawodów
HAPPY ANIMALS L02 HAPPY ANIMALS L04 HAPPY ANIMALS L06 HAPPY ANIMALS L08
HAPPY ANIMALS L02 HAPPY ANIMALS L04 HAPPY ANIMALS L06 HAPPY ANIMALS L08 INSTRUKCJA MONTAŻU ASSEMBLY INSTRUCTIONS Akcesoria / Fittings K O G ZW W8 W4 20 szt. / pcs 4 szt. / pcs 4 szt. / pcs 4 szt. / pcs
Tomasz Greczyło. The Use of Digital Techniques in an Investigation of Coupled Oscillations of a Wilberforce Pendulum
Universiy of Wrocław Faculy of Physics and Asronomy Insiue of Experimenal Physics Tomasz Greczyło The Use of Digial Techniques in an Invesigaion of Coupled Oscillaions of a Wilberforce Pendulum The hesis
January 1st, Canvas Prints including Stretching. What We Use
Canvas Prints including Stretching Square PRCE 10 x10 21.00 12 x12 30.00 18 x18 68.00 24 x24 120.00 32 x32 215.00 34 x34 240.00 36 x36 270.00 44 x44 405.00 Rectangle 12 x18 50.00 12 x24 60.00 18 x24 90.00
I n f o r m a c j e n a t e m a t p o d m i o t u k t ó r e m u z a m a w i a j» c y p o w i e r z y łk p o w i e r z y l i p r o w a d z e p o s t p
A d r e s s t r o n y i n t e r n e t o w e j, n a k t ó r e j z a m i e s z c z o n a b d z i e s p e c y f i k a c j a i s t o t n y c h w a r u n k ó w z a m ó w i e n i a ( j e e ld io t y c z y )