Algorytmy stochastyczne, wykład 07 Parametryczne systemy
|
|
- Lidia Kowalewska
- 9 lat temu
- Przeglądów:
Transkrypt
1 Algorytmy stochastyczne, wykład 07 Parametryczne systemy Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika
2 polecenia mogą przyjmować argumenty np: F (10) naprzód o 10 kroków f (x) naprzód o x kroków bez rysowania linii (45) obrót w prawo o 45 stopni
3 Przykłady A(x, y) B(y p)a(x 1, y)a(x, y 1) uwaga: symbole +, -, / stają się przeciążone i mogą oznaczać obrót lub działanie zależnie od konktekstu w implementacji bezpieczniej będzie zmienić oznaczenia obrotów
4 Przykłady System z warunkami A(x) : x => 3 B(1)A(x 1)A(x 1) A(x) : x < 3 C Produkcje mogą być zależne od argumentu(ów)
5 Po co? rozszerzenie funkcjonalności modelowanie zmieniającej się wielkości elementy programowania w opisie systemów
6 Dodatkowe instrukcje! zmiana grubości kreski (zwykle zmniejszenie), uwaga grubość powinna być zapisywana i odczytywana ze stosu podczas operacji [ oraz ] $ zorientuj żółwia pionowo do góry zmiana koloru na następny w palecie (kora, liść, kwiaty)
7 Przepis na drzwo: łodyga rozgałęzienie (dwie odnogi z jednej łodygi) zmniejszenie grubości łodygi zmniejszenie długości łodygi (jednej lub obu)
8 L-System Drzewo 1
9 Przykład Drzewo z jednym stożkiem wzrostu aksjomat s : A(1, 10) Produkcje: A(l, w) :!(w)f (l)[&(a 0 )B(l r 2, w w r )]/(d)a(l r 1, w w r ) B(l, w) :!(w)f (l)[ (a 2 )$C(l r 2, w w r )]C(l r 1, w w r ) C(l, w) :!(w)f (l)[+(a 2 )$B(l r 2, w w r )]B(l r 1, w w r ) r 1, r 2, w r, a 0, a 2, d stałe
10 L-System Drzewo 1
11 Przykład Do parametrów można dodać mały szum Parametryczny LS można uzyć do iterowania offsetu: A(L, W ) : l > 5 F (y)a(l 1, W ) A(L, W ) : l <= 4 F (x)[+a(l 1, W 0.8)][ A(L 1, W 0.9)] można wydłużyć łodygę przed pierwszymi rozgałęzieniami Inny pomysł: można zablokować liczbę rekurencyjnych rozgałęzień
12 Przykład Drzewo z rozwijające się w dwóch gałęziach aksjomat s : A(1, 10) Produkcje: A(l, w) :!(w)f (l)[&(a 1 )B(l r 1, w w r )]/(180)[&(a 2 )B(l r 2, w w r )] B(l, w) :!(w)f (l)[+(a 1 )$B(l r 1, w w r )][ (a 2 )$B(l r 2, w w r )] r 1, r 2, w r, a 0, a 2 stałe
13 L-System Drzewo 2 Jarosław Piersa WSN 2013/2014 Wykład 07
14 Przykład Drzewo z trzeba odnogami z łodygi aksjomat s :!(1)F (200)/(45)A Produkcje: A :!(v r )F (50)[&(a)F (50)A]/(d 1 )[&(a)f (50)A]/(d 2 )[&(a)f (50)A] F (l) : F (l l r )!(w) :!(w v r ) l r, v r, a, d 1, d 2 stałe
15 L-System Drzewo 3
16 Zig-zag Łodyga w kształcie zygzaka
17 Zig-zag Łodyga w kształcie zygzaka A(α, l) F (l)[f (l 0.5)P(l)] + (α)a( α, l 0.9)
18 Spiralne Łodyga w kształcie spirali
19 Spirala Łodyga w kształcie spirali A(α, l) F (l)[f (l 0.5)P(l)][+(π/2)L(l)] + (α)a(α, l 0.9)
20 Podwójne Łodyga w kształcie rozgałęziona
21 Podwójna Rozgałęzienie A(α, l) F (l)[f (l 0.5)P(l)][+(π/2)L(l)][ (π/2)l(l)][+(α)f (l 0.9)A(α, l 0.9)][ (α)f (l 0.9)A(α, l 0.9)]
22 Zigzag Wykorzystanie: zigzag
23 Łodyga Zygzag A(α, l, d) : d = 0 F (l) A(α, l, d) : d >= 1 F (l)[+(α)zigzag(d)]a( α, l 0.9, d 1)
24 Spiralna Roślina: spiralna
25 Zigzag Kwiaty rozgałęzione
26 Razem Drzewo wraz z pędami Jarosław Piersa WSN 2013/2014 Wykład 07
27 Ciekawostka: neuron w PovRay
28 Źródła P. Prosiunkiewicz, A. Liendenmayer, The algorithmic beaty of plants
29 Algorytm Fraktal kwadraty i diamenty Dane: wysokość i szerokość obszaru wielkości 2 n, dla n N zadana wartość na rogach obszaru (0, 0), (2 n, 0), (0, 2 n ), (2 n, 2 n ) Wynik: mapa wysokości dla każdego punktu
30 Algorytm Fraktal kwadraty i diamenty dane: s x, k x, s y, k y startowe i końcowe indeksy dla x i y jeżeli s x + 1 = k x, to zakończ (równoważnie zachodzi: s y + 1 = k y ) przypisz środkowy x m x := przypisz środkowy y m y := sx +kx 2 sy +ky 2 ustal wartość dla środkowego punktu T [m x, m y ] := T [sx,sy ]+T [kx,sy ]+T [sx,ky ]+T [kx,ky ] 4 + N(0, σ 2 ) ustal wartość dla środków na brzegach (kont.)
31 Algorytm Fraktal kwadraty i diamenty ustal wartość dla środków na brzegach T [sx,sy ]+T [sx,ky ] T [s x, m y ] := 2 + N(0, σ 2 ) T [kx,sy ]+T [kx,ky ] T [k x, m y ] := 2 + N(0, σ 2 ) T [sx,sy ]+T [kx,sy ] T [m x, s y ] := 2 + N(0, σ 2 ) T [sx,ky ]+T [kx,ky ] T [m x, k y ] := 2 + N(0, σ 2 ) wywołaj rekurencyjnie algorytm dla powstałych czterech mniejszych podobszarów
32 Przykłady Fraktal kwadraty i diamenty
33 Po pokolorowaniu i oświetleniu Fraktal kwadraty i diamenty
34 Niebo i chmury Fraktal kwadraty i diamenty Mapa pokolorowana: biały niebieski
35 Plazma click Fraktal kwadraty i diamenty
Algorytmy stochastyczne, wykład 05 Systemy Liendenmayera, modelowanie roślin
Algorytmy stochastyczne, wykład 5, modelowanie roślin Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 214-3-2 1 2 3 ze stosem Przypomnienie gramatyka to system (Σ, A, s,
Systemy Lindenmayera (L-systemy)
Systemy Lindenmayera (L-systemy) L-systemy Zastosowania: Generowanie fraktali Modelowanie roślin L-systemy Fraktale (łac. fractus złamany, cząstkowy) cechy samopodobieństwa Krzywa Kocha (płatek śniegu)
Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka Adaline.
Wstęp do sieci neuronowych, wykład 3 Warstwy, jednostka Adaline. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 13-1- Projekt pn. Wzmocnienie potencjału dydaktycznego
Modele i symulacje - Scratch i Excel
Instytut Matematyki Uniwersytet Gdański Literatura P. Szlagowski, Programowanie wizualne scratch 2.0 SCRATCH jest językiem programowania, w którym możesz stworzyć własne interaktywne historyjki, animacje,
Logo Komeniusz. Gimnazjum w Tęgoborzy. Mgr Zofia Czech
Logo Komeniusz Gimnazjum w Tęgoborzy Mgr Zofia Czech to język strukturalny, umożliwiający dzielenie algorytmu na wyraźnie wyodrębnione problemy, których rozwiązanie opisuje się za pomocą procedur (tzn.
Języki formalne i automaty Ćwiczenia 5
Języki formalne i automaty Ćwiczenia 5 Autor: Marcin Orchel Spis treści Spis treści... 1 Wstęp teoretyczny... 2 L-systemy... 2 Grafika żółwia... 2 Bibliografia... 5 Zadania... 6 Zadania na 3.0... 6 Zadania
L-systemy Lindemayera w 3D. Gramatyki grafowe
L-systemy Lindemayera w 3D Gramatyki grafowe L-systemy Lindemayera w 3D Kodowanie położenia żółwia w 3D 3 wektor jednostkowe położenia żółwia, Heading, Left,Up Heading to kierunek żółwia Left to kierunek
Warsztaty komputerowe
Warsztaty komputerowe Temat: Programowanie w LOGO KOMENIUSZ - grafika żółwia Warsztaty komputerowe - grafika żółwia 1 Wprowadzenie teoretyczne Programowanie w LOGO KOMENIUSZ grafika żółwia Programowanie
Projekt współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego
Wstęp Rekurencja jest to wywołanie podprogramu (procedury) samej przez siebie. W logo zapis rekurencji będzie wyglądał następująco: oto nazwa_funkcji czynności_wykonywane_przez_procedurę nazwa_funkcji
INTERAKTYWNA KOMUNIKACJA WIZUALNA. Systemy Lindenmayera (L-systemy)
INTERAKTYWNA KOMUNIKACJA WIZUALNA Systemy Lindenmayera () Zastosowania: Generowanie fraktali Modelowanie roślin Fraktale (łac. fractus złamany, cząstkowy) cechy samopodobieństwa Krzywa Kocha (płatek śniegu)
Obliczenia inspirowane Naturą
Obliczenia inspirowane Naturą Wykład 04 Systemy Lindenmayera Jarosław Miszczak IITiS PAN Gliwice 19/10/2016 1 / 37 1 L-Systemy 2 GroIMP i XL ALife 2 / 37 L-Systemy L-systemy czyli systemy Lindenmayera.
Algorytmy stochastyczne, wykład 01 Podstawowy algorytm genetyczny
Algorytmy stochastyczne, wykład 01 J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2014-02-21 In memoriam prof. dr hab. Tomasz Schreiber (1975-2010) 1 2 3 Różne Orientacyjny
Wstęp do sieci neuronowych, wykład 12 Wykorzystanie sieci rekurencyjnych w optymalizacji grafowej
Wstęp do sieci neuronowych, wykład 12 Wykorzystanie sieci rekurencyjnych w optymalizacji grafowej Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2013-01-09
Programowanie w LOGO KOMENIUSZ grafika żółwia
Wprowadzenie teoretyczne Programowanie w LOGO KOMENIUSZ grafika żółwia Programowanie w logo polega na opisywaniu czynności wykonywanych przez żółwia za pomocą procedur, czyli zrozumiałych dla żółwia poleceń.
(12) OPI S OCHRONN Y WZORU PRZEMYSŁOWEGO
(12) OPI S OCHRONN Y WZORU PRZEMYSŁOWEGO (19) PL (11)11103 (21) Numer zgłoszenia: 9776 (51) Klasyfikacja : 11-04 (22) Data zgłoszenia: 31.05.200 6 (54) Sztuczn y kwia t (73) Uprawnion y z rejestracj i
ALGORYTMY. Polecenia Skrót Znaczenie Działanie Przykład pż
ALGORYTMY 1. Temat: ALGORYTMICZNE ROZWIĄZYWANIE PROBLEMÓW POWTÓRZENIE I UZUPEŁNIENIE Notatka: Programowanie (tworzenie programu) rozpoczyna się od ułożenia algorytmu, według którego będzie działał program,
Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka Adaline.
Wstęp do sieci neuronowych, wykład 3 Warstwy, jednostka Adaline. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 211-1-18 1 Pomysł Przykłady Zastosowanie 2
FRAKTALE I SAMOPODOBIEŃSTWO
FRAKTALE I SAMOPODOBIEŃSTWO Mariusz Gromada marzec 2003 mariusz.gromada@wp.pl http://multifraktal.net 1 Wstęp Fraktalem nazywamy każdy zbiór, dla którego wymiar Hausdorffa-Besicovitcha (tzw. wymiar fraktalny)
Wstęp do sieci neuronowych, wykład 8 Uczenie nienadzorowane.
Wstęp do sieci neuronowych, wykład 8. M. Czoków, J. Piersa, A. Rutkowski Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika w Toruniu 1-811-6 Projekt pn. Wzmocnienie potencjału dydaktycznego
Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane cd.
Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane cd. M. Czoków, J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika w Toruniu 2013-11-26 Projekt pn. Wzmocnienie potencjału
Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane.
Wstęp do sieci neuronowych, wykład 7. M. Czoków, J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika w Toruniu 213-11-19 Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu
Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane.
Wstęp do sieci neuronowych, wykład 7. M. Czoków, J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika w Toruniu 212-11-28 Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu
3.27pt. Algorytmy i programowanie ze Scratchem
3.27pt Instytut Matematyki Uniwersytet Gdański Literatura P. Szlagowski, Programowanie wizualne scratch 2.0 SCRATCH jest językiem programowania, w którym możesz stworzyć własne interaktywne historyjki,
Opis implementacji: Poznanie zasad tworzenia programów komputerowych za pomocą instrukcji języka programowania.
Nazwa implementacji: Robot biedronka Autor: Jarosław Żok Opis implementacji: Poznanie zasad tworzenia programów komputerowych za pomocą instrukcji języka programowania. Gra została zaimplementowana z wykorzystaniem
Algorytmy i struktury danych. wykład 2
Plan wykładu: Pojęcie algorytmu. Projektowanie wstępujące i zstępujące. Rekurencja. Pojęcie algorytmu Pojęcie algorytmu Algorytm skończony zbiór operacji, koniecznych do wykonania zadania z pewnej klasy
Architektura komputerów
Architektura komputerów Tydzień 5 Jednostka Centralna Zadania realizowane przez procesor Pobieranie rozkazów Interpretowanie rozkazów Pobieranie danych Przetwarzanie danych Zapisanie danych Główne zespoły
Simba 3D LOGO. Cele zajęć: - Poznanie zasad i sposobów tworzenia procedur z parametrami. - Poznanie zasad wywoływania procedur z parametrami.
Simba 3D LOGO Scenariusz lekcji Dokument zawiera cykl proponowanych scenariuszy lekcji z wykorzystaniem programu dydaktycznego Simba 3D LOGO. Program ten oparty jest na edukacyjnym języku programowania
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.
Wstęp do sieci neuronowych, wykład 2 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 213-1-15 Projekt pn. Wzmocnienie potencjału
Scenariusz lekcji. nazwać elementy składowe procedury; wymienić polecenia służące do malowania wnętrza figur;
Scenariusz lekcji 1 TEMAT LEKCJI: Logomocja tworzenie procedur 2 CELE LEKCJI: 2.1 Wiadomości: Uczeń potrafi: nazwać elementy składowe procedury; wymienić polecenia służące do malowania wnętrza figur; wymienić
Wstęp do sieci neuronowych laboratorium 01 Organizacja zajęć. Perceptron prosty
Wstęp do sieci neuronowych laboratorium 01 Organizacja zajęć. Perceptron prosty Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2012-10-03 Projekt pn. Wzmocnienie potencjału
Podstawy programowania w Pythonie
Podstawy programowania w Pythonie Wykład 3 dr Andrzej Zbrzezny Instytut Matematyki i Informatyki Akademia Jana Długosza w Częstochowie 17 października 2012 dr Andrzej Zbrzezny (IMI AJD) Podstawy programowania
Luty 2001 Algorytmy (1) 2000/2001 1
Algorytm jest przepisem opisującym krok po kroku rozwiązanie problemu lub osiągnięcie jakiegoś celu. Korzystanie z gotowego rozwiązania. Próba samodzielnego rozwiązania problemu. Słowo algorytm pochodzi
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-10-11 1 Modelowanie funkcji logicznych
Algorytmy stochastyczne, wykład 08 Sieci bayesowskie
Algorytmy stochastyczne, wykład 08 Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2014-04-10 Prawdopodobieństwo Prawdopodobieństwo Prawdopodobieństwo warunkowe Zmienne
Wykład z Podstaw Informatyki dla I roku BO. Piotr Mika
Wykład z Podstaw Informatyki dla I roku BO Piotr Mika Napisanie programu komputerowego: Zasada rozwiązania zadania Stworzenie sekwencji kroków algorytmu Przykłady algorytmów z życia codziennego (2/1 6)
Technologie informacyjne - wykład 12 -
Zakład Fizyki Budowli i Komputerowych Metod Projektowania Instytut Budownictwa Wydział Budownictwa Lądowego i Wodnego Politechnika Wrocławska Technologie informacyjne - wykład 12 - Prowadzący: Dmochowski
Algorytmy i struktury danych. Wykład 4
Wykład 4 Różne algorytmy - obliczenia 1. Obliczanie wartości wielomianu 2. Szybkie potęgowanie 3. Algorytm Euklidesa, liczby pierwsze, faktoryzacja liczby naturalnej 2017-11-24 Algorytmy i struktury danych
CorelDraw - wbudowane obiekty wektorowe - prostokąty Rysowanie prostokątów
CorelDraw - wbudowane obiekty wektorowe - prostokąty Rysowanie prostokątów Naciskamy klawisz F6 lub klikamy w ikonę prostokąta w przyborniku po lewej stronie ekranu - zostanie wybrane narzędzie prostokąt.
Jeśli nie potrafisz wytłumaczyć czegoś w prosty sposób, to znaczy, że tak naprawdę tego nie rozumiesz
II Liceum Ogólnokształcące im. Mikołaja Kopernika w Lesznie z Oddziałami Dwujęzycznymi i Międzynarodowymi ul. Prusa 33, 64-100 Leszno Jeśli nie potrafisz wytłumaczyć czegoś w prosty sposób, to znaczy,
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2012-10-10 Projekt pn. Wzmocnienie
WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA
Rekurencja - zdolność podprogramu (procedury) do wywoływania samego (samej) siebie Wieże Hanoi dane wejściowe - trzy kołki i N krążków o różniących się średnicach wynik - sekwencja ruchów przenosząca krążki
Definiowanie procedur z parametrami w Logo Komeniuszu.
1 Scenariusze trzech lekcji z informatyki w gimnazjum. Definiowanie procedur z parametrami w Logo Komeniuszu. Dział programu: Programowanie czynności powtarzalnych. Dotychczasowa wiedza ucznia: Uczeń potrafi
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa, Andrzej Rutkowski Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2018-10-15 Projekt
Struktury Danych i Złożoność Obliczeniowa
Struktury Danych i Złożoność Obliczeniowa Zajęcia 3 Struktury drzewiaste drzewo binarne szczególny przypadek drzewa, które jest szczególnym przypadkiem grafu skierowanego, stopień każdego wierzchołka jest
Od szczegółu do ogółu, praktyczne refleksje o nauczaniu informatyki wg nowej podstawy programowej
Od szczegółu do ogółu, praktyczne refleksje o nauczaniu informatyki wg nowej podstawy programowej Konferencja w ramach XII edycji Akademii TIK Nowa podstawa programowa z informatyki w świetle reformy oświaty
Zadania domowe. Ćwiczenie 2. Rysowanie obiektów 2-D przy pomocy tworów pierwotnych biblioteki graficznej OpenGL
Zadania domowe Ćwiczenie 2 Rysowanie obiektów 2-D przy pomocy tworów pierwotnych biblioteki graficznej OpenGL Zadanie 2.1 Fraktal plazmowy (Plasma fractal) Kwadrat należy pokryć prostokątną siatką 2 n
Dynamiczny przydział pamięci w języku C. Dynamiczne struktury danych. dr inż. Jarosław Forenc. Metoda 1 (wektor N M-elementowy)
Rok akademicki 2012/2013, Wykład nr 2 2/25 Plan wykładu nr 2 Informatyka 2 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr III, studia niestacjonarne I stopnia Rok akademicki 2012/2013
Teoretyczne podstawy informatyki
Teoretyczne podstawy informatyki Wykład 4a: Rozwiązywanie rekurencji http://kiwi.if.uj.edu.pl/~erichter/dydaktyka2010/tpi-2010 Prof. dr hab. Elżbieta Richter-Wąs 1 Czas działania programu Dla konkretnych
Podstawy algorytmiki i programowania - wykład 6 Sortowanie- algorytmy
1 Podstawy algorytmiki i programowania - wykład 6 Sortowanie- algorytmy Treści prezentowane w wykładzie zostały oparte o: S. Prata, Język C++. Szkoła programowania. Wydanie VI, Helion, 2012 www.cplusplus.com
Modelowanie rynków finansowych z wykorzystaniem pakietu R
Modelowanie rynków finansowych z wykorzystaniem pakietu R Metody numeryczne i symulacje stochastyczne Mateusz Topolewski woland@mat.umk.pl Wydział Matematyki i Informatyki UMK Plan działania 1 Całkowanie
1 TEMAT LEKCJI: 2 CELE LEKCJI: 3 METODY NAUCZANIA 4 ŚRODKI DYDAKTYCZNE 5 UWARUNKOWANIA TECHNICZNE. Scenariusz lekcji.
Gwiazdy i gwiazdki Scenariusz lekcji Scenariusz lekcji 1 TEMAT LEKCJI: Gwiazdy i gwiazdki 2 CELE LEKCJI: 2.1 Wiadomości: Uczeń potrafi: zdefiniować pojęcie gwiazda ; wyjaśnić polecenie Losowa; określić
Algorytmy komputerowe. dr inŝ. Jarosław Forenc
Rok akademicki 2009/2010, Wykład nr 8 2/24 Plan wykładu nr 8 Informatyka 1 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia niestacjonarne I stopnia Rok akademicki 2009/2010
Wymagania edukacyjne na ocenę z informatyki klasa 3
Wymagania edukacyjne na ocenę z informatyki klasa 3 0. Logo [6 godz.] PODSTAWA PROGRAMOWA: Rozwiązywanie problemów i podejmowanie decyzji z wykorzystaniem komputera, stosowanie podejścia algorytmicznego.
Grafika Komputerowa Materiały Laboratoryjne
Grafika Komputerowa Materiały Laboratoryjne Laboratorium 6 Processing c.d. Wstęp Laboratorium 6 poszerza zagadnienie generowania i przetwarzania obrazów z wykorzystaniem języka Processing 2, dedykowanego
Wstęp do sieci neuronowych, wykład 04. Skierowane sieci neuronowe. Algorytmy konstrukcyjne dla sieci skierowanych
Wstęp do sieci neuronowych, wykład 04. Skierowane sieci neuronowe. dla sieci skierowanych Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-10-25 1 Motywacja
Algorytmy, reprezentacja algorytmów.
Algorytmy, reprezentacja algorytmów. Wprowadzenie do algorytmów Najważniejszym pojęciem algorytmiki jest algorytm (ang. algorithm). Nazwa pochodzi od nazwiska perskiego astronoma, astrologa, matematyka
FRAKTALE. nie tworzą się z przypadku. Są tworzone naturalnie przez otaczającą nas przyrodę, bądź za pomocą
Małgorzata Mielniczuk FRAKTALE Poniższy referat będzie traktować o fraktalach, majestatycznych wzorach, których kręte linie nie tworzą się z przypadku. Są tworzone naturalnie przez otaczającą nas przyrodę,
Fraktale deterministyczne i stochastyczne. Katarzyna Weron Katedra Fizyki Teoretycznej
Fraktale deterministyczne i stochastyczne Katarzyna Weron Katedra Fizyki Teoretycznej Szare i Zielone Scena z Fausta Goethego (1749-1832), Mefistofeles do doktora (2038-2039): Wszelka, mój bracie, teoria
Sortowanie - wybrane algorytmy
Sortowanie - wybrane algorytmy Aleksandra Wilkowska Wydział Matematyki - Katedra Matematyki Stosowanej Politechika Wrocławska 2 maja 2018 1 / 39 Plan prezentacji Złożoność obliczeniowa Sortowanie bąbelkowe
Spis treści. Od autorów / 9
Od autorów / 9 Rozdział 1. Bezpieczny i legalny komputer / 11 1.1. Komputer we współczesnym świecie / 12 Typowe zastosowania komputera / 12 1.2. Bezpieczna i higieniczna praca z komputerem / 13 Wpływ komputera
Procedura rekurencyjna to taka procedura, która wywołuje samą siebie.
P r o c e d u r y r e k u r e n c y j n e S t r o n a 1 Procedury rekurencyjne Procedura rekurencyjna to taka procedura, która wywołuje samą siebie. Schemat procedury rekurencyjnej: oto nazwa_procedury
Stan Graniczny Użytkowania Temperatura na zewnątrz. Obciążenie charakterystyczne [kn/m 2 ] -0,5 5,28 4,72 4,31 3,05 -0,6 4,31 6,10 4,31 4,04 3,27
charakterystycznego wiatrem [kn/m 2 ] dla płyt PW PUR-S 40 Tabela 1 Grubość okładziny zewnętrznej Grubość okładziny wewnętrznej Min. szerokość podpory skrajnej 40 Min. szerokość podpory środkowej 60 *
EGZAMIN MATURALNY Z INFORMATYKI
WPISUJE ZDAJĄCY NUMER UCZNIA EGZAMIN MATURALNY Z INFORMATYKI POZIOM ROZSZERZONY CZĘŚĆ I ARKUSZ EGZAMINACYJNY PROJEKTU INFORMATURA DATA: 8 GRUDNIA 2017 R. CZAS PRACY: 60 MINUT LICZBA PUNKTÓW DO UZYSKANIA:
Efektywność algorytmów
Efektywność algorytmów Algorytmika Algorytmika to dział informatyki zajmujący się poszukiwaniem, konstruowaniem i badaniem własności algorytmów, w kontekście ich przydatności do rozwiązywania problemów
Sortowanie danych. Jolanta Bachan. Podstawy programowania
Sortowanie danych Podstawy programowania 2013-06-06 Sortowanie przez wybieranie 9 9 9 9 9 9 10 7 7 7 7 7 10 9 1 3 3 4 10 7 7 10 10 10 10 4 4 4 4 4 4 3 3 3 3 2 2 2 2 2 2 2 3 1 1 1 1 1 1 Gurbiel et al. 2000
Programowanie w języku LOGO KOMENIUSZ
Programowanie w języku LOGO KOMENIUSZ Wykład nr 1 mgr inż. Józef Wójcik e-mail: jwojcik@pwsz-ns.edu.pl www.it.pwsz-ns.edu.pl/~jwojcik 2 Wprowadzenie Język Logo powstał w Laboratorium Sztucznej Inteligencji
Wstęp do sieci neuronowych, wykład 9 Sieci rekurencyjne. Autoasocjator Hopfielda
Wstęp do sieci neuronowych, wykład 9. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2018-12-10 Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu
Algorytmy i. Wykład 5: Drzewa. Dr inż. Paweł Kasprowski
Algorytmy i struktury danych Wykład 5: Drzewa Dr inż. Paweł Kasprowski pawel@kasprowski.pl Drzewa Struktury przechowywania danych podobne do list ale z innymi zasadami wskazywania następników Szczególny
Podstawy programowania. Wykład Funkcje. Krzysztof Banaś Podstawy programowania 1
Podstawy programowania. Wykład Funkcje Krzysztof Banaś Podstawy programowania 1 Programowanie proceduralne Pojęcie procedury (funkcji) programowanie proceduralne realizacja określonego zadania specyfikacja
Ćwiczenie pochodzi ze strony
Ćwiczenie pochodzi ze strony http://corel.durscy.pl/ Celem ćwiczenia jest poznanie właściwości obiektu Elipsa oraz możliwości tworzenia za pomocą niego rysunków. Dodatkowo, w zadaniu tym, ćwiczone są umiejętności
Elektroniczne materiały dydaktyczne do przedmiotu Wstęp do Sieci Neuronowych
Elektroniczne materiały dydaktyczne do przedmiotu Wstęp do Sieci Neuronowych Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-12-21 Koncepcja kursu Koncepcja
REKURENCJA W JĘZYKU HASKELL. Autor: Walczak Michał
REKURENCJA W JĘZYKU HASKELL Autor: Walczak Michał CZYM JEST REKURENCJA? Rekurencja zwana rekursją, polega na wywołaniu przez funkcję samej siebie. Algorytmy rekurencyjne zastępują w pewnym sensie iteracje.
Efekt motyla i dziwne atraktory
O układzie Lorenza Wydział Matematyki i Informatyki Uniwersytet Mikołaja kopernika Toruń, 3 grudnia 2009 Spis treści 1 Wprowadzenie Wyjaśnienie pojęć 2 O dziwnych atraktorach 3 Wyjaśnienie pojęć Dowolny
Modelowanie roślin przy użyciu języków formalnych
Modelowanie roślin przy użyciu języków formalnych 1. Wstęp Praca dotyczy modelowania trójwymiarowego w grafice komputerowej. Jest ona propozycją nowego systemu do generowania struktur trójwymiarowych.
Odwrotna Notacja Polska
Odwrotna Notacja Polska Odwrotna Notacja Polska w skrócie ONP) jest sposobem zapisu wyrażeń arytmetycznych. Znak wykonywanej operacji umieszczany jest po operandach, argumentach tzw. zapis postfiksowy).
Grafika Komputerowa Wykład 6. Teksturowanie. mgr inż. Michał Chwesiuk 1/23
Wykład 6 mgr inż. 1/23 jest to technika w grafice komputerowej, której celem jest zwiększenie szczegółowości renderowanych powierzchni za pomocą tekstur. jest to pewna funkcja (najczęściej w formie bitmapy)
Zmiany. Initial Step krok inicjujący sekwenser
Zmiany Initial Step krok inicjujący sekwenser W ferworze walki czasem usuniemy krok inicjujący (po rozpoczęciu FB z GRAPH jest on standardowo oznaczony S1). Skutkuje to tym, że wszystko wygląda dobrze,
Wstęp do informatyki
Wstęp do informatyki Algorytmy i struktury danych Piotr Fulmański Wydział Matematyki i Informatyki, Uniwersytet Łódzki, Polska 30 października 2009 Spis treści 1 Algorytm 2 Przetwarzane informacje 3 Struktury
Przedmiotowy Konkurs Informatyczny LOGIA powołany przez Mazowieckiego Kuratora Oświaty
Zadanie Ogniwa minilogia 16 (2017/18), etap 3 Treść zadania Napisz dwuparametrową procedurę/funkcję ogniwa, po wywołaniu której na środku ekranu powstanie rysunek łańcuszka złożonego z dwukolorowych ogniw
Podstawy Programowania
Podstawy Programowania dr Elżbieta Gawrońska gawronska@icis.pcz.pl Instytut Informatyki Teoretycznej i Stosowanej dr Elżbieta Gawrońska (ICIS) Podstawy Programowania 01 1 / 9 Plan wykładu 1 Informacje
WSTĘP DO INFORMATYKI. Drzewa i struktury drzewiaste
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej WSTĘP DO INFORMATYKI Adrian Horzyk Drzewa i struktury drzewiaste www.agh.edu.pl DEFINICJA DRZEWA Drzewo
Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka ADALINE.
Wstęp do sieci neuronowych, wykład 3 Warstwy, jednostka ADALINE. Maja Czoków, Jarosław Piersa, Andrzej Rutkowski Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 218-1-15/22 Projekt pn.
EGZAMIN MATURALNY 2012 INFORMATYKA
Centralna Komisja Egzaminacyjna EGZAMIN MATURALNY 2012 INFORMATYKA POZIOM PODSTAWOWY Kryteria oceniania odpowiedzi MAJ 2012 2 Zadanie 1. a) (0 2) Egzamin maturalny z informatyki CZĘŚĆ I Obszar standardów
Ćwiczenie 14 Dmuchawce
Dmuchawce Celem ćwiczenia jest wykorzystanie właściwości programu Flash do generowania animacji o charakterze losowym. Prezentowany efekt można wykorzystać do wielu różnych celów np. spadające liście,
Metody Kompilacji Wykład 7 Analiza Syntaktyczna
Metody Kompilacji Wykład 7 Analiza Syntaktyczna Parsowanie Parsowanie jest to proces określenia jak ciąg terminali może być generowany przez gramatykę. Włodzimierz Bielecki WI ZUT 2/57 Parsowanie Dla każdej
Rozkład materiału do zajęć z informatyki. realizowanych według podręcznika
Rozkład materiału do zajęć z informatyki realizowanych według podręcznika E. Gurbiel, G. Hardt-Olejniczak, E. Kołczyk, H. Krupicka, M.M. Sysło Informatyka, nowe wydanie z 007 roku Poniżej przedstawiamy
TEORIA GRAFÓW I SIECI
TEORIA GRAFÓW I SIECI Temat nr 1: Definicja grafu. Rodzaje i części grafów dr hab. inż. Zbigniew TARAPATA, prof. WAT e-mail: zbigniew.tarapata@wat.edu.pl http://tarapata.edu.pl tel.: 261-83-95-04, p.225/100
Typy danych. 2. Dane liczbowe 2.1. Liczby całkowite ze znakiem i bez znaku: 32768, -165, ; 2.2. Liczby rzeczywiste stało i zmienno pozycyjne:
Strona 1 z 17 Typy danych 1. Dane tekstowe rozmaite słowa zapisane w różnych alfabetach: Rozwój metod badawczych pozwala na przesunięcie granicy poznawania otaczającego coraz dalej w głąb materii: 2. Dane
Wstęp do sieci neuronowych, wykład 10 Sieci rekurencyjne. Autoasocjator Hopfielda
Wstęp do sieci neuronowych, wykład 10. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-12-13 1 Modele sieci rekurencyjnej Energia sieci 2 3 Modele sieci
Algorytmika i programowanie
Grażyna Koba Algorytmika i programowanie Programowanie w języku Logo materiały dodatkowe do podręcznika Informatyka dla gimnazjum Temat 21-L Programowanie w języku Logo Warto powtórzyć 1. Proste polecenia
CorelDraw - podstawowe operacje na obiektach graficznych
CorelDraw - podstawowe operacje na obiektach graficznych Przesuwanie obiektu Wymaż obszar roboczy programu CorelDraw (klawisze Ctrl+A i Delete). U góry kartki narysuj dowolnego bazgrołka po czym naciśnij
Plan nauczania informatyki Opracował: mgr Daniel Starego
Obowiązuje od roku szkolnego 000/00 Plan nauczania informatyki Opracował: mgr Daniel Starego Szkoła podstawowa klasy IV VI Dział, tematyka L. godz. I rok II rok. TECHNIKA KOMPUTEROWA W ŻYCIU CZŁOWIEKA
Fraktale. i Rachunek Prawdopodobieństwa
Fraktale i Rachunek Prawdopodobieństwa Przyjrzyjmy się poniższemu rysunkowi, przedstawiającemu coś,, co kształtem tem przypomina drzewo o bardzo regularnej strukturze W jaki sposób b najłatwiej atwiej
WSTĘP DO GRAFIKI KOMPUTEROWEJ
WSTĘP DO GRAFIKI KOMPUTEROWEJ Miłosz Michalski Institute of Physics Nicolaus Copernicus University Październik 2015 1 / 15 Plan wykładu Światło, kolor, zmysł wzroku. Obraz: fotgrafia, grafika cyfrowa,
Twój wynik: 4 punktów na 6 możliwych do uzyskania (66,67 %).
Powrót Twój wynik: 4 punktów na 6 możliwych do uzyskania (6667 %). Nr Opcja Punkty Poprawna Odpowiedź Rozważmy algorytm AVLSequence postaci: 1 Niech drzewo będzie rezultatem działania algorytmu AVLSequence
Obliczenia inspirowane Naturą
Obliczenia inspirowane Naturą Wykład 01 Modele obliczeń Jarosław Miszczak IITiS PAN Gliwice 05/10/2016 1 / 33 1 2 3 4 5 6 2 / 33 Co to znaczy obliczać? Co to znaczy obliczać? Deterministyczna maszyna Turinga
Zajęcia 5 łańcuchy znaków (ciąg dalszy) i funkcje
Zajęcia 5 łańcuchy znaków (ciąg dalszy) i funkcje 1. Napisz funkcję, która zwraca wartość silni dla podanej liczby n. Funkcja powinna być napisana w dwóch wersjach: iteracyjnej i rekurencyjnej. 2. Napisz
INFORMATYKA W SZKOLE. Podyplomowe Studia Pedagogiczne. Dr inż. Grażyna KRUPIŃSKA. D-10 pokój 227
INFORMATYKA W SZKOLE Dr inż. Grażyna KRUPIŃSKA grazyna@fis.agh.edu.pl D-10 pokój 227 Podyplomowe Studia Pedagogiczne 2 Algorytmy Nazwa algorytm wywodzi się od nazwiska perskiego matematyka Muhamed ibn
CIĘCIE POJEDYNCZE MARMUR
CIĘCIE POJEDYNCZE MARMUR START KONIEC 1. Parametry początku i końca cięcia (wpisywanie wartości, lub odczyt bieżącej pozycji): a. punkt start i punkt koniec b. punkt start i długość cięcia 2. Parametr:
DARMOWA PRZEGLĄDARKA MODELI IFC
www.bimvision.eu DARMOWA PRZEGLĄDARKA MODELI IFC BIM VISION. OPIS FUNKCJONALNOŚCI PROGRAMU. CZĘŚĆ IV. Spis treści ZAKŁADKA ZMIANY... 1 INNE OPCJE... 3 OPCJE ZAAWANSOWANE... 4 ZAKŁADKA ZMIANY W przypadku