Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI
|
|
- Maksymilian Wawrzyniak
- 9 lat temu
- Przeglądów:
Transkrypt
1 Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI
2 I. Zagadnienia do opracowania. 1. Procesy przenoszenia ciepła: a) przewodzenie ciepła; b) promieniowanie temperaturowe; c) dyfuzja. 2. Promieniowanie elektromagnetyczne Słońca. 3. Efekt cieplarniany. 4. Kolektor słoneczny: a) rodzaje kolektorów; b) budowa i zasada działania kolektorów słonecznych; c) sprawność kolektora. 5. Podstawy termodynamiki: a) przemiany gazowe; b) zasady termodynamiki; c) układ termodynamiczny; d) przemiany termodynamiczne odwracalne i nieodwracalne; e) zjawisko Joule a Thomsona. 6. Pompa ciepła: a) podział pomp ciepła; b) budowa i zasada działania pompy ciepła; c) współczynnik sprawności i moc pompy. 7. Słoneczne instalacje cieplne. 8. Budowa stanowiska pomiarowego oraz przebieg doświadczenia. II. Zadania doświadczalne. 1. Zapoznać się z układem pomiarowym przestawionym na Zdjęciu 1. Wykonać pomiary według szczegółowego opisu procedur pomiarowych zamieszczonego w Dodatku. 2. Określić współczynnik sprawności wodnego kolektora słonecznego. Czynności z punktów II.2. IL.4. wykonać według szczegółowych instrukcji zamieszczonych w Dodatku. Instytut Fizyki Doświadczalnej 1.
3 3. Wyznaczyć współczynnik sprawności pompy ciepła. 4. Określić całkowitą sprawność układu pompa kolektor. Zdjęcie 1. Stanowisko pomiarowe do badania układu pompa ciepła kolektor słoneczny: 1 lampa halogenowa; 2 suszarka; 3 sonda termoelektryczna; 4 kolektor słoneczny; 5 pompa wodna z miernikiem przepływu; 6 zasilacz pompy wodnej; 7 cyfrowy miernik temperatury; 8 miernik mocy, czasu i energii elektrycznej; 9 pompa ciepła; 10 rezerwuar z parownikiem i wymiennikiem ciepła; 11 rezerwuar ze skraplaczem. III. Zestaw przyrządów. 1. Kolektor słoneczny. 2. Pompa ciepła. 3. Parownik. 4. Skraplacz. 5. Wymiennik ciepła. 6. Rezerwuar wymiennika. 7. Lampa halogenowa o mocy 1 kw. 8. Cyfrowy miernik temperatury. 9. Miernik mocy, czasu i energii elektrycznej. 10. Sondy termoelektryczne. 11. Pompa wodna z zasilaczem. 12. Suszarka. 13. Grzałka. 14. Metrówka. 15. Stoper. Instytut Fizyki Doświadczalnej 2.
4 IV. Literatura. 1. R. Eisberg, R. Resnick Fizyka kwantowa atomów, cząsteczek, ciał stałych, jąder i cząstek elementarnych, PWN, Warszawa D. Halliday, R. Resnick, J. Walker Podstawy fizyki, T 2., PWN, Warszawa H. Kaiser Wykorzystanie energii słonecznej, Wydawnictwo AGH, Kraków W. Lewandowski Proekologiczne odnawialne źródła energii, WNT, Warszawa Z. Pluta Słoneczne instalacje energetyczne, Oficyna Wyd. Politechniki Warszawskiej M. Zawadzki Kolektory słoneczne pompy ciepła na tak, Oficyna Wydawnicza Polska Ekologia, Warszawa PHYWE Systeme GmbH & Co.KG Solar Ray Collector, Laboratory Experiments, Physics , L. Andrèn Solar Installations. Practical Applications for the Built Environment, James &James Science Publishers, London R. Eisberg, R. Resnick Quantum Physics of Atom, Molecules, Solids, Nuclei and Particles, John Wiley & Sons Ltd, New York D. Halliday, R. Resnick, J. Walker Fundamentals of Physics, John Wiley & Sons Ltd, New York M. Fox Optical Properties of Solid, Oxford University Press, Oxford Instytut Fizyki Doświadczalnej 3.
5 Dodatek Przebieg doświadczenia I. Wykonać pomiary temperatur przy temperaturze wody na wejściu kolektora T IN 20 0 C oraz przy oświetlaniu kolektora lampą. 1. Rezerwuar z umieszczonym wymiennikiem ciepła (10 na Zdjęciu 1) wypełnić wodą, tak aby spirale wymiennika ciepła były całkowicie zanurzone. Powstałą kąpiel starannie wymieszać. 2. Umieścić w zlewce grzałkę. Mieszając, podgrzać wodę do temperatury około 20 0 C, po czym wyłączyć zasilanie grzałki. W trakcie trwania kolejnych etapów doświadczenia należy regularnie mieszać wodę w rezerwuarze i utrzymywać możliwie stałą temperaturę wody na wejściu kolektora. 3. Ustawić lampę halogenową w odległości 70 cm od kolektora, a kolektor prostopadle do kierunku padającego światła. Włączyć lampę. Obudowa lampy silnie się nagrzewa! Zabrania się dotykania jej oraz zasłaniania otworów wentylacyjnych. Lampę należy wyłączyć niezwłocznie po wykonaniu pomiarów. 4. Włączyć zasilacz pompy wodnej (Zdjęcie 2) i ustawić pokrętło regulacji napięcia na wartość 4 V, a pokrętło regulacji ogranicznika prądu na wartość 1 A. 5. Przy pomocy zaworu pompy wodnej ustawić prędkość przepływu na 100 cm 3 /min. Podczas wykonywania pomiarów stale kontrolować szybkość przepływu wody w obiegu kolektora. Zdjęcie 2. Pompa cyrkulacyjna: 1 zawór regulacji szybkości przepływu; 2 wskaźnik przepływu. Instytut Fizyki Doświadczalnej 4.
6 6. Z cyfrowego miernika temperatury (Zdjęcie 3) notować wskazania temperatur na wejściu T IN i wyjściu T OUT kolektora oraz temperaturę w rezerwuarze z wymiennikiem ciepła T R przez 30 minut co 1 minutę. Po przeprowadzeniu każdego pomiaru wymieszać wodę w rezerwuarze. Zdjęcie 3. Cyfrowy miernik temperatury: 1 wyświetlacze wskazujące temperaturę z wybranego kanału wejściowego; 2 kanały wejściowe, świecenie czerwonej kontrolki mierzona temperatura wyświetlana jest na górnym wyświetlaczu, zielonej kontrolki na dolnym wyświetlaczu; 3 przyciski sterujące kanałów, od lewej: zmiana kanału wejściowego, zmiana skali temperatury, zmiana trybu pracy, ustawienie zera; 4 wskaźnik wybranej skali temperatury. 7. Po dokonaniu ostatniego odczytu wyłączyć lampę. 8. Powtórzyć pomiary z punktu I. 6. w Dodatku dla kolektora bez szyby i tylnej płyty. 9. Skręcić do minimum pokrętło regulacji napięcia zasilacza pompy, a następnie wyłączyć pompę wodną. 10. Opróżnić zbiornik wody przy pomocy kranu spustowego. 11. Na podstawie otrzymanych wyników we wspólnym układzie współrzędnych sporządzić wykresy zależności temperatur T IN, T OUT oraz T R w funkcji czasu. 12. Obliczyć różnice temperatur na wejściu i wyjściu kolektora. 13. Obliczyć współczynnik sprawności kolektora korzystając z wzoru: η = c wm (T OUT T IN ) qa, (1) gdzie: T OUT temperatura wody na wyjściu kolektora; T IN temperatura wody na wejściu kolektora; Instytut Fizyki Doświadczalnej 5.
7 Ćwiczenie 7 : Badanie własności pompy ciepła c w ciepło właściwe wody, c w = 4186 J/kg K; m prędkość przepływu wody, m 1 = 100 g/min, m 2 = 200 g/min; R R A powierzchnia czynna kolektora, A = 0,12 m2; q natężenie padającego światła w odległości 70 cm od kolektora, q = 1 kw/m2. Obliczyć błędy wyznaczonych wartości współczynników sprawności kolektora. II. Wyznaczyć sprawność pompy ciepła. 1. Napełnić rezerwuary (1 i 8 na Zdjęciu 4) zimną wodą (około 10 0C) do poziomu zaznaczonego na ściankach zbiornika, tak aby spirale wymienników ciepła były całkowicie zanurzone. Woda w zbiorniku skraplacza nie może być zimniejsza niż w zbiorniku parownika. Wymieszać wodę w rezerwuarach. Zdjęcie 4. Pompa ciepła: 1 rezerwuar z parownikiem; 2 zawór rozprężny; 3 manometr mierzący nadciśnienie czynnika roboczego po opuszczeniu parownika; 4 wziernik umożliwiający obserwację stanu czynnika roboczego po opuszczeniu parownika; 5 kompresor sprężający czynnik roboczy; 6 manometr mierzący nadciśnienie czynnika roboczego po opuszczeniu skraplacza; 7 wziernik umożliwiający obserwację stanu czynnika roboczego po opuszczeniu skraplacza; 8 rezerwuar ze skraplaczem. 2. Dokonać pomiaru wielkości: ciśnienia za skraplaczem p 1 (manometr (6)) oraz ciśnienia za parownikiemp 2 (manometr (3)); temperatury wody T 1 w zbiorniku skraplacza oraz temperatury T 2 w zbiorniku parownika; Instytut Fizyki Doświadczalnej 6.
8 temperatury czynnika chłodzącego na wejściu parownika T P IN oraz na wyjściu parownikat P OUT, temperatury czynnika chłodzącego na wejściuskraplacza T S IN oraz na wyjściu skraplacza T S OUT. 3. Włączyć zasilanie pompy. 4. Przez 30 minut co 2 minuty mierzyć p 1, p 2, T 1, T 2, T P IN, T P OUT, T S IN, T S OUT oraz obserwować wskazania miernika mocy. W trakcie wykonywania pomiarów, co około 2 minuty, należy mieszać wodę w obu zbiornikach. 5. Wyłączyć pompę ciepła. 6. Zanotować wskazania licznika energii elektrycznej (Zdjęcie 5) i skasować wskazania miernika. Zdjęcie 5. Miernik mocy, czasu i energii elektrycznej: 1 wyświetlacz wartości mocy; 2 przycisk wyboru funkcji woltomierza; 3 przycisk RESET ; 4 przycisk STOP ; 5 przycisk wyboru jednostek energii; 6 wyświetlacz energii elektrycznej zużytej przez pompę. 7. Opróżnić zbiorniki wody przy pomocy kranów spustowych. 8. We wspólnym układzie współrzędnych sporządzić wykres temperatur w funkcji czasu. 9. Wyznaczyć wartości zmiany temperatur wody w jednostce czasu T t z przebiegu funkcji T 1(t) oraz T 2 (t) metodą przybliżenia wyników doświadczalnych odpowiednimi wielomianami. Wyniki przedstawić na wykresie. Określić błąd wyznaczonej wielkości. Zinterpretować otrzymane wyniki. Instytut Fizyki Doświadczalnej 7.
9 10. Obliczyć wartość współczynnika sprawności pompy korzystając z wzoru: ε = Q = c wm w T 1 P P t (2) gdzie: Q natężenie przepływu ciepła, przekazane przez skraplacz, Q = c w m w T 1 t ; P elektryczna moc sprężarki, P = 120 W; c w ciepło właściwe wody, c w = 4182 J/kg K; m w masa wody, V = 3,9 dm 3 ; T t zmiana temperatury wody w jednostce czasu. 11. Z wyników pomiarów dla czasu t = 10 min odczytać wartości ciśnień czynnika roboczego p 1 i p Z Tabeli 1. odczytać odpowiadającą ciśnieniu p 2 wartość właściwej entalpii pary czynnika roboczego h 1 oraz wartość objętości właściwej pary ν oraz odpowiadającą ciśnieniu p 1 wartość właściwej entalpii czynnika roboczego w stanie ciekłym h 3. W celu skorzystania z tabeli parametrów czynnika roboczego, do wskazań manometru należy dodać wartość ciśnienia atmosferycznego równą 1 barowi (1 bar = 10 5 Pa). 13. Obliczyć efektywność objętościową sprężarki korzystając ze wzoru: λ = V, (3) V g gdzie: V rzeczywiste natężenie przepływu czynnika roboczego przez sprężarkę, V = ν Q ; h 1 h 3 Q natężenie przepływu ciepła pobieranego przez parownik; ν objętość właściwa par czynnika roboczego; h 1 entalpią właściwą par czynnika; h 3 entalpią właściwą czynnika w stanie ciekłym; V g geometryczne natężenie przepływu, V g = V g f; V g pojemnością skokowa sprężarki, V g = 5,08 cm 3 ; f liczba obrotów tłoka sprężarki na minutę, f = 1450 min 1. Instytut Fizyki Doświadczalnej 8.
10 Tabela 1. Parametry czynnika roboczego pompy: Θ temperatura, p wartość bezwzględna ciśnienia, ν objętość właściwa pary, h entalpia właściwa cieczy, h entalpia właściwa pary. Instytut Fizyki Doświadczalnej 9.
11 III. Badanie zespołu kolektor pompa. 1. Włączyć zasilacz pompy wodnej i ustawić napięcie na wartość 4 V. 2. Przygotować pompę ciepła zgodnie z punktem II.1 Dodatku. 3. Otworzyć maksymalnie zawór pompy cyrkulacyjnej. 4. Obserwując wskazania miernika, odczekać aż temperatury T IN na wejściu kolektora oraz T OUT na wyjściu kolektora ustabilizują się i będą w przybliżeniu równe. 5. Przy pomocy zaworu pompy cyrkulacyjnej ustawić prędkość przepływu na 100 cm 3 /min. Podczas wykonywania pomiarów stale kontrolować szybkość przepływu wody w obiegu kolektora. 6. Włączyć zasilanie pompy. 7. Odczytywać i notować temperaturę T IN na wejściu kolektora, T OUT na wyjściu kolektora, temperaturę wody T 1 w zbiorniku skraplacza oraz temperatury T 2 w zbiorniku parownika w odstępach jednominutowych aż do momentu, gdy temperatura wody T 1 osiągnie 0 0 C. W trakcie wykonywania pomiarów należy mieszać wodę w obu zbiornikach co około 2 minuty. 8. Wyłączyć pompę ciepła. 9. Opróżnić zbiorniki wody przy pomocy kranów spustowych. 10. We wspólnym układzie współrzędnych sporządzić wykres temperatur T IN i T OUT w funkcji czasu. 11. Obliczyć sprawność kolektora w chwilach, w których odczytywano temperaturę korzystając z wzoru: η = P U AP i = m c w AP i (T OUT T IN ) gdzie: P U moc użyteczna, oddawana przez kolektor; P i gęstość mocy promieniowania padającego na kolektor; A powierzchnia czynna kolektora, A = 0,12 m 2 ; m natężenie przepływu masy wody, m =100 g/min; c w ciepło właściwe wody, c w = 4182 J/kg K; T IN temperatura wody na wejściu kolektora; T OUT temperatura wody na wyjściu kolektora. Wyniki obliczeń przedstawić na wykresie, przybliżając punkty odpowiednią funkcją. Instytut Fizyki Doświadczalnej 10.
12 Określić błąd wyznaczonej wielkości. Zinterpretować uzyskany wynik. 12. Wyznaczyć wartość współczynnika efektywności pompy ε zgodnie z punktami II.8. II.10. w Dodatku. 13. Sprawdzić czy lampa halogenowa znajduje się w odległości 70 cm od kolektora oraz czy kolektor jest ustawiony prostopadle do kierunku padającego światła. 14. Powtórzyć czynności z punktów II.2. II.12. w Dodatku. Lampę włączyć równocześnie z pompą i stoperem. Obudowa lampy silnie nagrzewa się! Zabrania się dotykania obudowy lampy oraz zasłaniania jej otworów wentylacyjnych. 15. Po dokonaniu ostatniego odczytu wyłączyć lampę. Wyłączyć pompę wodną skręcając do minimum pokrętło regulacji napięcia zasilacza pompy. 16. Przeprowadzić analizę wyników określając wszystkie czynniki jakie mogą mieć wpływ na współczynnik sprawności urządzeń. Instytut Fizyki Doświadczalnej 11.
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI I. Zagadnienia do opracowania. 1. Procesy przenoszenia ciepła: a) przewodzenie ciepła: strumień energii, gęstość
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI I. Zagadnienia do opracowania. 1. Podstawy teorii pasmowej. 2. Klasyfikacja ciał stałych w oparciu o teorię pasmową.
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI I. Zagadnienia do opracowania. 1. Struktura pasmowa ciał stałych. 2. Klasyfikacja ciał stałych w oparciu o teorię
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI I. Zagadnienia do opracowania. 1. Otrzymywanie promieniowania rentgenowskiego. 2. Budowa lampy rentgenowskiej.
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI I. Zagadnienia do opracowania. 1. Podstawy teorii pasmowej. 2. Klasyfikacja ciał stałych w oparciu o teorię pasmową.
LABORATORIUM Z FIZYKI TECHNICZNEJ Ć W I C Z E N I E N R 6 BADANIE SPRAWNOŚCI KOLEKTORA SŁONECZNEGO
Projekt Plan rozwoju Politechniki Częstochowskiej współfinansowany ze środków UNII EUROPEJSKIEJ w ramach EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO Numer Projektu: POKL040101-00-59/08 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII
Ćwiczenie Nr 558. Temat: Pomiar efektywności pompy ciepła.
Ćwiczenie Nr 558 Temat: omiar efektywności pompy ciepła. I. Zagadnienia teoretyczne: 1. arowanie i skraplanie, entropia, pierwsza i druga zasada termodynamiki, przemiana termodynamiczna, przemiany odwracalne
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI I. Zagadnienia do opracowania. 1. Dualizm korpuskularno falowy światła. 2. Pochodzenie pasm energetycznych w
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI Ćwiczenie 28 : Wyznaczanie charakterystyk termistorów I. Zagadnienia do opracowania. 1. Pasma energetyczne w
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI Ćwiczenie 13 : Dyfrakcja wiązki elektronów na I. Zagadnienia do opracowania. 1. Dualizm korpuskularno falowy
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Wyznaczanie ciepła właściwego cieczy metodą kalorymetryczną
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Wyznaczanie ciepła właściwego cieczy metodą kalorymetryczną opracowanie ćwiczenia: dr J. Woźnicka, dr S. Belica ćwiczenie nr 38 Zakres zagadnień obowiązujących
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI I. Zagadnienia do opracowania. 1. Ruch obrotowy jednostajny: a) prędkość kątowa; b) prędkość liniowa; c) moment
ĆWICZENIE NR 4 WYMIENNIK CIEPŁA
ĆWICZENIE NR 4 WYMIENNIK CIEPŁA 1. Cel ćwiczenia Celem ćwiczenia jest doświadczalne zbadanie wymiany ciepła w przeponowym płaszczowo rurowym wymiennika ciepła i porównanie wyników z obliczeniami teoretycznymi.
Energia promieniowania termicznego sprawdzenie zależności temperaturowej
6COACH 25 Energia promieniowania termicznego sprawdzenie zależności temperaturowej Program: Coach 6 Projekt: komputer H C:\Program Files (x86)\cma\coach6\full.en\cma Coach Projects\PTSN Coach 6 \Termodynamika\Promieniowanie
Wyznaczanie sprawności grzejnika elektrycznego i ciepła właściwego cieczy za pomocą kalorymetru z grzejnikiem elektrycznym
Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. grupa II Termin: 24 III 2009 Nr. ćwiczenia: 215 Temat ćwiczenia: Wyznaczanie sprawności grzejnika elektrycznego i ciepła
Ćwiczenie 6. Wyznaczanie parametrów eksploatacyjnych kolektora słonecznego
Ćwiczenie 6 Wyznaczanie parametrów eksploatacyjnych kolektora słonecznego Wstęp Kolektor słoneczny jest urządzeniem do konwersji energii promieniowania słonecznego na ciepło. Energia docierająca do kolektora
E12. Wyznaczanie parametrów użytkowych fotoogniwa
1/5 E12. Wyznaczanie parametrów użytkowych fotoogniwa Celem ćwiczenia jest poznanie podstaw zjawiska konwersji energii świetlnej na elektryczną, zasad działania fotoogniwa oraz wyznaczenie jego podstawowych
Wyznaczenie charakterystyk cieczowego kolektora słonecznego
POLITECHNIKA BIAŁOSTOCKA Wydział Budownictwa i Inżynierii Środowiska, Instrukcja do zajęć laboratoryjnych Wyznaczenie charakterystyk cieczowego kolektora słonecznego Ćwiczenie nr 11 Laboratorium z przedmiotu
Ćwiczenie 2 WSPÓŁPRACA JEDNAKOWYCH OGNIW FOTOWOLTAICZNYCH W RÓŻNYCH KONFIGURACJACH POŁĄCZEŃ. Opis stanowiska pomiarowego. Przebieg ćwiczenia
Ćwiczenie WSPÓŁPRACA JEDNAKOWYCH OGNIW FOTOWOLTAICZNYCH W RÓŻNYCH KONFIGURACJACH POŁĄCZEŃ Opis stanowiska pomiarowego Stanowisko do analizy współpracy jednakowych ogniw fotowoltaicznych w różnych konfiguracjach
Badanie zależności temperatury wrzenia wody od ciśnienia
Ćwiczenie C2 Badanie zależności temperatury wrzenia wody od ciśnienia C2.1. Cel ćwiczenia Celem ćwiczenia jest pomiar zależności temperatury wrzenia wody od ciśnienia (poniżej ciśnienia atmosferycznego),
LABORATORIUM MECHANIKI PŁYNÓW
Ćwiczenie numer 2 Pomiar współczynnika oporu liniowego 1. Wprowadzenie Stanowisko służy do analizy zjawiska liniowych strat energii podczas przepływu laminarnego i turbulentnego przez rurociąg mosiężny
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI I. Zagadnienia do opracowania. 1. Otrzymywanie promieni rentgenowskich. 2. Budowa lampy rentgenowskiej. 3. Własności
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI Ćwiczenie 15 : Wyznaczanie ładunku właściwego e/m elektronu I. Zagadnienia do opracowania. 1. Ładunek punktowy
Laboratorium odnawialnych źródeł energii
Laboratorium odnawialnych źródeł energii Ćwiczenie nr 3 Temat: Wyznaczanie współczynników efektywności i sprawności pompy ciepła. Politechnika Gdańska Wydział Fizyki Technicznej i Matematyki Stosowanej
Ćwiczenie 3 WPŁYW NASŁONECZNIENIA I TECHNOLOGII PRODUKCJI KRZEMOWYCH OGNIW FOTOWOLTAICZNYCH NA ICH WŁASNOŚCI EKSPLOATACYJNE
Ćwiczenie WPŁYW NASŁONECZNIENIA I TECHNOLOGII PRODUKCJI KRZEMOWYCH OGNIW FOTOWOLTAICZNYCH NA ICH WŁASNOŚCI EKSPLOATACYJNE Opis stanowiska pomiarowego Stanowisko do wyznaczania charakterystyk prądowo napięciowych
Instrukcja do ćwiczenia laboratoryjnego nr 5
Instrukcja do ćwiczenia laboratoryjnego nr 5 Temat: Charakterystyki statyczne tranzystorów bipolarnych Cel ćwiczenia. Celem ćwiczenia jest poznanie charakterystyk prądowonapięciowych i wybranych parametrów
ĆWICZENIE 22 WYZNACZANIE CIEPŁA PAROWANIA WODY W TEMPERETATURZE WRZENIA
ĆWICZENIE 22 WYZNACZANIE CIEPŁA PAROWANIA WODY W TEMPERETATURZE WRZENIA Aby parowanie cieczy zachodziło w stałej temperaturze należy dostarczyć jej określoną ilość ciepła w jednostce czasu. Wielkość równą
Laboratorium z Konwersji Energii. Kolektor słoneczny
Laboratorium z Konwersji Energii Kolektor słoneczny 1.0 WSTĘP Kolektor słoneczny to urządzenie służące do bezpośredniej konwersji energii promieniowania słonecznego na ciepło użytkowe. Podział urządzeń
AUTOMATYKA I POMIARY LABORATORIUM - ĆWICZENIE NR 15 WYMIENNIK CIEPŁA CHARAKTERYSTYKI DYNAMICZNE
AUTOMATYKA I POMIARY LABORATORIUM - ĆWICZENIE NR 15 WYMIENNIK CIEPŁA CHARAKTERYSTYKI DYNAMICZNE Celem ćwiczenia jest wyznaczenie charakterystyk dynamicznych wymiennika ciepła przy zmianach obciążenia aparatu.
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI I. Zagadnienia do opracowania. 1. Typy ogniw paliwowych. 2. Komórki paliwowe PEM ( Proton Exchange Membrane).
LABORATORIUM INŻYNIERII MATERIAŁOWEJ
Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 20-618 Lublin, ul. Nadbystrzycka 38A www.kueitwn.pollub.pl LABORATORIUM INŻYNIERII MATERIAŁOWEJ Protokół
EFEKT FOTOWOLTAICZNY OGNIWO SŁONECZNE
ĆWICZENIE 104 EFEKT FOTOWOLTAICZNY OGNIWO SŁONECZNE Instrukcja wykonawcza 1. Wykaz przyrządów 1. Panel z ogniwami 5. Zasilacz stabilizowany oświetlacza 2. Oświetlacz 3. Woltomierz napięcia stałego 4. Miliamperomierz
POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ
KALORYMETRIA - CIEPŁO ZOBOJĘTNIANIA WSTĘP Według pierwszej zasady termodynamiki, w dowolnym procesie zmiana energii wewnętrznej, U układu, równa się sumie ciepła wymienionego z otoczeniem, Q, oraz pracy,
Ćwiczenie 14. Sprawdzanie przyrządów analogowych i cyfrowych. Program ćwiczenia:
Ćwiczenie 14 Sprawdzanie przyrządów analogowych i cyfrowych Program ćwiczenia: 1. Sprawdzenie błędów podstawowych woltomierza analogowego 2. Sprawdzenie błędów podstawowych amperomierza analogowego 3.
Wyznaczanie współczynnika przewodnictwa
Ćwiczenie C5 Wyznaczanie współczynnika przewodnictwa cieplnego wybranych materiałów C5.1. Cel ćwiczenia Celem ćwiczenia jest poznanie mechanizmów transportu energii, w szczególności zjawiska przewodnictwa
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI I. Zagadnienia do opracowania. 1. Fale elektromagnetyczne i ich własności. 2. Polaryzacja światła: a) światło
Wydział Budownictwa i Inżynierii Środowiska Katedra Ciepłownictwa. Instrukcja do zajęć laboratoryjnych
Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska Instrukcja do zajęć laboratoryjnych Temat ćwiczenia: Sprawność energetyczna pomp ciepła z wymiennikami typu Ćwiczenie nr 2 Laboratorium
[1] CEL ĆWICZENIA: Identyfikacja rzeczywistej przemiany termodynamicznej poprzez wyznaczenie wykładnika politropy.
[1] CEL ĆWICZENIA: Identyfikacja rzeczywistej przemiany termodynamicznej poprzez wyznaczenie wykładnika politropy. [2] ZAKRES TEMATYCZNY: I. Rejestracja zmienności ciśnienia w cylindrze sprężarki (wykres
MOMENT MAGNETYCZNY W POLU MAGNETYCZNYM
Ćwiczenie nr 16 MOMENT MAGNETYCZNY W POLU MAGNETYCZNYM Aparatura Zasilacze regulowane, cewki Helmholtza, multimetry cyfrowe, dynamometr torsyjny oraz pętle próbne z przewodnika. X Y 1 2 Rys. 1 Układ pomiarowy
SPIS TREŚCI TOMU I. Przedmowa 11. Wprowadzenie 15 Znaczenie gospodarcze techniki chłodniczej 18
v~.rv.kj Chłodnicza. Poradnik - tom 1 5 SPIS TREŚCI TOMU I Przedmowa 11 Wprowadzenie 15 Znaczenie gospodarcze techniki chłodniczej 18 Podstawy termodynamiki 21 Termodynamiczne parametry stanu gazu 21 2
Model solarny materiał szkoleniowy dla uczniów szkół ponadgimnazjalnych
Model solarny materiał szkoleniowy dla uczniów szkół ponadgimnazjalnych Spis treści: 1. Przeznaczenie stanowiska doświadczalnego... 3 2. Budowa stanowiska badawczego... 4 3. Elementy stanowiska badawczego...
Wyznaczanie ciepła topnienia lodu za pomocą kalorymetru
Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. grupa II Termin: 7 IV 2009 Nr. ćwiczenia: 212 Temat ćwiczenia: Wyznaczanie ciepła topnienia lodu za pomocą kalorymetru
Instrukcja uruchamiania lasera argonowego ILA 120
Instrukcja uruchamiania lasera argonowego ILA 120 Uruchomianie lasera jest dozwolone tylko przy zamkniętych obudowach głowicy i zasilacza sieciowego. Włączenie lasera przy zdjętej obudowie głowicy lub
Ćwiczenie Nr 11 Fotometria
Instytut Fizyki, Uniwersytet Śląski Chorzów 2018 r. Ćwiczenie Nr 11 Fotometria Zagadnienia: fale elektromagnetyczne, fotometria, wielkości i jednostki fotometryczne, oko. Wstęp Radiometria (fotometria
LABORATORIUM MECHANIKI PŁYNÓW
Ćwiczenie numer Pomiar współczynnika oporu liniowego 1. Wprowadzenie Stanowisko służy do analizy zjawiska liniowych strat energii podczas przepływu laminarnego i turbulentnego przez rurociąg mosiężny o
Sprawność pompy ciepła w funkcji temperatury górnego źródła ciepła
POLITECHNIKA BIAŁOSTOCKA Wydział Budownictwa i Inżynierii Środowiska Instrukcja do zajęć laboratoryjnych Ćwiczenie nr 4 Laboratorium z przedmiotu Odnawialne źródła energii Kod: OM1302 Opracował: mgr inż.
Ćwiczenie nr 5 Doświadczenie Franka-Hertza. Pomiar energii wzbudzenia atomów neonu.
Ćwiczenie nr 5 Doświadczenie Franka-Hertza. Pomiar energii wzbudzenia atomów neonu. A. Opis zagadnienia I. Doświadczenie Franka-Hertza W 1914 roku James Franck i Gustav Hertz przeprowadzili doświadczenie,
Wyznaczanie krzywej ładowania kondensatora
Ćwiczenie E10 Wyznaczanie krzywej ładowania kondensatora E10.1. Cel ćwiczenia Celem ćwiczenia jest zbadanie przebiegu procesu ładowania kondensatora oraz wyznaczenie stałej czasowej szeregowego układu.
POLITECHNIKA RZESZOWSKA
POLITECHNIKA RZESZOWSKA Katedra Termodynamiki Instrukcja do ćwiczenia laboratoryjnego pt. WYZNACZANIE WYKŁADNIKA ADIABATY Opracowanie: Robert Smusz 1. Cel ćwiczenia Podstawowym celem niniejszego ćwiczenia
Wyznaczanie składowej poziomej natężenia pola magnetycznego Ziemi za pomocą busoli stycznych
Ćwiczenie E12 Wyznaczanie składowej poziomej natężenia pola magnetycznego Ziemi za pomocą busoli stycznych E12.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie wartości składowej poziomej natężenia pola
Ćwiczenie 425. Wyznaczanie ciepła właściwego ciał stałych. Woda. Ciało stałe Masa kalorymetru z ciałem stałym m 2 Masa ciała stałego m 0
2014 Katedra Fizyki Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg... Godzina... Ćwiczenie 425 Wyznaczanie ciepła właściwego ciał stałych Masa suchego kalorymetru m k = kg Opór grzałki
Zakład Podstaw Konstrukcji i Maszyn Przepływowych. Instytut Inżynierii Lotniczej, Procesowej i Maszyn Energetycznych. Politechnika Wrocławska
Zakład Podstaw Konstrukcji i Maszyn Przepływowych Instytut Inżynierii Lotniczej, Procesowej i Maszyn Energetycznych Politechnika Wrocławska Wydział Mechaniczno-Energetyczny INSTRUKCJA 1.a. WYZNACZANIE
Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym
Ćwiczenie 11B Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym 11B.1. Zasada ćwiczenia Na zamkniętą pętlę przewodnika z prądem, umieszczoną w jednorodnym polu magnetycznym, działa skręcający
Pomiar indukcji pola magnetycznego w szczelinie elektromagnesu
Ćwiczenie E5 Pomiar indukcji pola magnetycznego w szczelinie elektromagnesu E5.1. Cel ćwiczenia Celem ćwiczenia jest pomiar siły elektrodynamicznej (przy pomocy wagi) działającej na odcinek przewodnika
Automatyka i pomiary wielkości fizykochemicznych. Instrukcja do ćwiczenia III. Pomiar natężenia przepływu za pomocą sondy poboru ciśnienia
Automatyka i pomiary wielkości fizykochemicznych Instrukcja do ćwiczenia III Pomiar natężenia przepływu za pomocą sondy poboru ciśnienia Sonda poboru ciśnienia Sonda poboru ciśnienia (Rys. ) jest to urządzenie
Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym
Ćwiczenie 11A Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym 11A.1. Zasada ćwiczenia W ćwiczeniu mierzy się przy pomocy wagi siłę elektrodynamiczną, działającą na odcinek przewodnika
Badanie własności hallotronu, wyznaczenie stałej Halla (E2)
Badanie własności hallotronu, wyznaczenie stałej Halla (E2) 1. Wymagane zagadnienia - ruch ładunku w polu magnetycznym, siła Lorentza, pole elektryczne - omówić zjawisko Halla, wyprowadzić wzór na napięcie
WYZNACZENIE CHARAKTERYSTYKI ANTYKAWITACYJNEJ NADWYŻKI WYSOKOŚCI CIŚNIENIA METODĄ DŁAWIENIOWĄ
Zakład Podstaw Konstrukcji i Maszyn Przepływowych Instytut Inżynierii Lotniczej, Procesowej i Maszyn Energetycznych Politechnika Wrocławska Wydział Mechaniczno-Energetyczny INSTRUKCJA 5.b. WYZNACZENIE
SPRAWDZANIE SŁUSZNOŚCI PRAWA OHMA DLA PRĄDU STAŁEGO
SPRWDZNE SŁSZNOŚC PRW OHM DL PRĄD STŁEGO Cele ćwiczenia: Doskonalenie umiejętności posługiwania się miernikami elektrycznymi (stała miernika, klasa miernika, optymalny zakres wychyleń). Zapoznanie się
ZADANIE 28. Wyznaczanie przewodnictwa cieplnego miedzi
ZADANIE 28 Wyznaczanie przewodnictwa cieplnego miedzi Wstęp Pomiędzy ciałami ogrzanymi do różnych temperatur zachodzi wymiana ciepła. Ciało o wyższej temperaturze traci ciepło, a ciało o niższej temperaturze
CECHOWANIE TERMOELEMENTU Fe-Mo I WYZNACZANIE PUNKTU INWERSJI
INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA FIZYKI CIAŁA STAŁEGO Ć W I C Z E N I E N R FCS - 7 CECHOWANIE TERMOELEMENTU Fe-Mo I WYZNACZANIE
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 121: Termometr oporowy i termopara
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 121: Termometr oporowy i termopara Cel ćwiczenia: Wyznaczenie współczynnika temperaturowego oporu platyny oraz pomiar charakterystyk termopary miedź-konstantan.
Ć W I C Z E N I E N R E-18
INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA ELEKTRYCZNOŚCI I MAGNETYZMU Ć W I C Z E N I E N R E-18 WYZNACZANIE SIŁ DZIAŁAJĄCYCH NA PRZEWODNIK
Rok akademicki: 2012/2013 Kod: RBM s Punkty ECTS: 5. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne
Nazwa modułu: Termodynamika Rok akademicki: 2012/2013 Kod: RBM-1-303-s Punkty ECTS: 5 Wydział: Inżynierii Mechanicznej i Robotyki Kierunek: Mechanika i Budowa Maszyn Specjalność: Poziom studiów: Studia
Ćwiczenie 2 Mostek pojemnościowy Ćwiczenie wraz z instrukcją i konspektem opracowali P.Wisniowski, M.Dąbek
Ćwiczenie 2 Mostek pojemnościowy Ćwiczenie wraz z instrukcją i konspektem opracowali P.Wisniowski, M.Dąbek el ćwiczenia elem ćwiczenia jest zapoznanie się z metodą mostkową pomiaru pojemności kondensatora
LABORATORIUM TERMODYNAMIKI ĆWICZENIE NR 3 L3-1
L3-1 L3-2 L3-3 L3-4 L3-5 L3-6 L3-7 L3-8 L3-9 L3-10 L3-11 L3-12 L3-13 L3-14 L3-15 L3-16 L3-17 L3-18 L3-19 OPIS WYKONYWANIA ZADAŃ Celem pomiarów jest sporządzenie przebiegu charakterystyk temperaturowych
LABORATORIUM ELEKTRONIKI WZMACNIACZ MOCY
ZESPÓŁ LABORATORIÓW TELEMATYKI TRANSPORTU ZAKŁAD TELEKOMUNIKACJI W TRANSPORCIE WYDZIAŁ TRANSPORTU POLITECHNIKI WARSZAWSKIEJ LABORATORIUM ELEKTRONIKI INSTRUKCJA DO ĆWICZENIA NR 9 WZMACNIACZ MOCY DO UŻYTKU
Badanie współczynników lepkości cieczy przy pomocy wiskozymetru rotacyjnego Rheotest 2.1
Badanie współczynników lepkości cieczy przy pomocy wiskozymetru rotacyjnego Rheotest 2.1 Joanna Janik-Kokoszka Zagadnienia kontrolne 1. Definicja współczynnika lepkości. 2. Zależność współczynnika lepkości
Ćwiczenie 9. Mostki prądu stałego. Program ćwiczenia:
Ćwiczenie 9 Mostki prądu stałego Program ćwiczenia: 1. Pomiar rezystancji laboratoryjnym mostkiem Wheatsone'a 2. Niezrównoważony mostek Wheatsone'a. Pomiar rezystancji technicznym mostkiem Wheatsone'a
K raków 26 ma rca 2011 r.
K raków 26 ma rca 2011 r. Zadania do ćwiczeń z Podstaw Fizyki na dzień 1 kwietnia 2011 r. r. dla Grupy II Zadanie 1. 1 kg/s pary wo dne j o ciśnieniu 150 atm i temperaturze 342 0 C wpada do t urbiny z
Szkoła z przyszłością. szkolenie współfinansowane przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Szkoła z przyszłością szkolenie współfinansowane przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Narodowe Centrum Badań Jądrowych, ul. Andrzeja Sołtana 7, 05-400 Otwock-Świerk ĆWICZENIE
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI I. Zagadnienia do opracowania. 1. Otrzymywanie promieni rentgenowskich. 2. Budowa lampy rentgenowskiej. 3. Własności
Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym
Ćwiczenie E6 Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym E6.1. Cel ćwiczenia Na zamkniętą pętlę przewodnika z prądem, umieszczoną w jednorodnym polu magnetycznym, działa skręcający moment
Pompy ciepła powietrze woda WPL 13/18/23 E/cool
European Quality Label for Heat Pumps powietrze woda WPL 1/1/ E/cool WPL 1 E WPL 1 E Do pracy pojedynczej lub w kaskadach (maksymalnie sztuk w kaskadzie dla c.o. przy zastosowaniu regulatorów WPMWII i
2
1 2 4 5 6 7 8 9 SmartPlus J.M. G5+ G6+ G8+ G+ G12+ G14+ G16+ Moc grzewcza* Moc chłodnicza Moc elektryczna sprężarki Moc elektryczna dodatkowej grzałki elektrycznej Liczba faz Napięcie Częstotliwość Prąd
Instrukcja do ćwiczenia laboratoryjnego nr 9
Instrukcja do ćwiczenia laboratoryjnego nr 9 Temat: Charakterystyki i parametry tranzystorów PNFET Cel ćwiczenia. Celem ćwiczenia jest poznanie charakterystyk statycznych oraz parametrów tranzystorów PNFET.
EFEKT FOTOELEKTRYCZNY ZEWNĘTRZNY
ĆWICZENIE 91 EFEKT FOTOELEKTRYCZNY ZEWNĘTRZNY Instrukcja wykonawcza 1. Wykaz przyrządów 1. Monochromator 5. Zasilacz stabilizowany oświetlacza. Oświetlacz 6. Zasilacz fotokomórki 3. Woltomierz napięcia
1. Wprowadzenie: dt q = - λ dx. q = lim F
PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W PILE INSTYTUT POLITECHNICZNY Zakład Budowy i Eksploatacji Maszyn PRACOWNIA TERMODYNAMIKI TECHNICZNEJ INSTRUKCJA Temat ćwiczenia: WYZNACZANIE WSPÓŁCZYNNIKA PRZEWODNOŚCI
BADANIE CHARAKTERYSTYK FOTOELEMENTU
Ćwiczenie E7 BADANIE CHARAKTERYSTYK FOTOELEMENTU Przyrzady: Przyrząd do badania zjawiska fotoelektrycznego, płytki absorbenta suwmiarka, fotoelementy (fotoopór, fotodioda, lub fototranzystor). Zjawisko
EKSPERYMENTALNE OKREŚLENIE WPŁYWU DOBORU CZYNNIKA CHŁODNICZEGO NA MOC CIEPLNĄ CHŁODZIARKI SPRĘŻARKOWEJ**
Górnictwo i Geoinżynieria Rok 30 Zeszyt 2 2006 Krzysztof Filek*, Bernard Nowak* EKSPERYMENTALNE OKREŚLENIE WPŁYWU DOBORU CZYNNIKA CHŁODNICZEGO NA MOC CIEPLNĄ CHŁODZIARKI SPRĘŻARKOWEJ** 1. Wstęp Urządzenia
Ćwiczenie 5. Pomiary parametrów sygnałów napięciowych. Program ćwiczenia:
Ćwiczenie 5 Pomiary parametrów sygnałów napięciowych Program ćwiczenia: 1. Pomiar wartości skutecznej, średniej wyprostowanej i maksymalnej sygnałów napięciowych o kształcie sinusoidalnym, prostokątnym
Inżynieria Bezpieczeństwa I stopień ogólnoakademicki studia stacjonarne wszystkie Katedra Mechaniki Dr hab. inż. Robert Pastuszko
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2014/2015 Podstawy Techniki Cieplnej Fundamentals of Thermal Engineering A. USYTUOWANIE
LABORATORIUM MECHANIKI PŁYNÓW
Ćwiczenie numer 5 Wyznaczanie rozkładu prędkości przy przepływie przez kanał 1. Wprowadzenie Stanowisko umożliwia w eksperymentalny sposób zademonstrowanie prawa Bernoulliego. Układ wyposażony jest w dyszę
LABORATORIUM MECHANIKI PŁYNÓW
Ćwiczenie numer 3 Pomiar współczynnika oporu lokalnego 1 Wprowadzenie Stanowisko umożliwia wykonanie szeregu eksperymentów związanych z pomiarami oporów przepływu w różnych elementach rzeczywistych układów
Badanie rozkładu pola elektrycznego
Ćwiczenie E1 Badanie rozkładu pola elektrycznego E1.1. Cel ćwiczenia Celem ćwiczenia jest zbadanie rozkładu pola elektrycznego dla różnych układów elektrod i ciał nieprzewodzących i przewodzących umieszczonych
Pomiar podstawowych parametrów liniowych układów scalonych
Instytut Fizyki ul Wielkopolska 15 70-451 Szczecin 5 Pracownia Elektroniki Pomiar podstawowych parametrów liniowych układów scalonych Zakres materiału obowiązujący do ćwiczenia: wzmacniacz operacyjny,
Termodynamika Thermodynamics
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014
Ćwiczenie nr 82: Efekt fotoelektryczny
Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Rok Grupa Zespół Nr ćwiczenia Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr 82: Efekt fotoelektryczny
Ćwiczenie 9. Mostki prądu stałego. Zakres wymaganych wiadomości do kolokwium wstępnego: Program ćwiczenia:
Ćwiczenie 9 Mostki prądu stałego Program ćwiczenia: 1. Pomiar rezystancji laboratoryjnym mostkiem Wheatsone'a 2. Pomiar rezystancji technicznym mostkiem Wheatsone'a. Pomiar rezystancji technicznym mostkiem
Pomiary elektryczne wielkości nieelektrycznych
Wydział Elektryczny, Katedra Maszyn, Napędów i Pomiarów Elektrycznych Laboratorium Przetwarzania i Analizy Sygnałów Elektrycznych (bud A5, sala 31) I Instrukcja dla studentów kierunku Elektrotechnika do
Licznik Geigera - Mülera
Detektory gazowe promieniowania jonizującego. Licznik Geigera - Mülera Instrukcję przygotował: dr, inż. Zbigniew Górski Poznań, grudzień, 2004. s.1/7 ` Politechnika Poznańska, Instytut Chemii i Elektrochemii
INSTRUKCJA OBSŁUGI. MINI MULTIMETR CYFROWY M M
INSTRUKCJA OBSŁUGI MINI MULTIMETR CYFROWY M - 838 M - 838+ www.atel.com.pl/produkt.php?hash=02915! 1 2 I. WPROWADZENIE Przed przystąpieniem do normalnej eksploatacji miernika, prosimy zapoznać się z możliwościami
Termodynamika I Thermodynamics I
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014 Termodynamika I Thermodynamics I A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW
DOZYMETRIA I BADANIE WPŁYWU PROMIENIOWANIA X NA MEDIA BIOLOGICZNE
X3 DOZYMETRIA I BADANIE WPŁYWU PROMIENIOWANIA X NA MEDIA BIOLOGICZNE Tematyka ćwiczenia Promieniowanie X wykazuje właściwości jonizujące. W związku z tym powietrze naświetlane promieniowaniem X jest elektrycznie
Zakład Podstaw Konstrukcji i Maszyn Przepływowych. Instytut Inżynierii Lotniczej, Procesowej i Maszyn Energetycznych. Politechnika Wrocławska
Zakład Podstaw Konstrukcji i Maszyn Przepływowych Instytut Inżynierii Lotniczej, Procesowej i Maszyn Energetycznych Politechnika Wrocławska Wydział Mechaniczno-Energetyczny INSTRUKCJA 3.b. WPŁYW ŚREDNICY
RÓWNOWAGA CIECZ PARA W UKŁADZIE DWUSKŁADNIKOWYM
RÓWNOWAGA CIECZ PARA W UKŁADZIE DWUSKŁADNIKOWYM Cel ćwiczenia: wyznaczenie diagramu fazowego ciecz para w warunkach izobarycznych. Układ pomiarowy i opis metody: Pomiary wykonywane są metodą recyrkulacyjną
prędkości przy przepływie przez kanał
Ćwiczenie numer 5 Wyznaczanie rozkładu prędkości przy przepływie przez kanał 1. Wprowadzenie Stanowisko umożliwia w eksperymentalny sposób zademonstrowanie prawa Bernoulliego. Układ wyposażony jest w dyszę
E 6.1. Wyznaczanie elementów LC obwodu metodą rezonansu
E 6.1. Wyznaczanie elementów LC obwodu metodą rezonansu Obowiązujące zagadnienia teoretyczne: INSTRUKACJA WYKONANIA ZADANIA 1. Pojemność elektryczna, indukcyjność 2. Kondensator, cewka 3. Wielkości opisujące
Wyznaczanie przenikalności magnetycznej i krzywej histerezy
Ćwiczenie E8 Wyznaczanie przenikalności magnetycznej i krzywej histerezy E8.1. Cel ćwiczenia Celem ćwiczenia jest pomiar zależności B(I) dla cewki z rdzeniem stalowym lub żelaznym, wykreślenie krzywej
Piezorezystancyjny czujnik ciśnienia: pomiar i wyznaczenie parametrów metrologicznych czujnika i przetwornika ciśnienia
MIKROSYSTEMY - laboratorium Ćwiczenie 3 Piezorezystancyjny czujnik ciśnienia: pomiar i wyznaczenie parametrów metrologicznych czujnika i przetwornika ciśnienia Zadania i cel ćwiczenia. W ćwiczeniu zostaną