Adam Meissner SZTUCZNA INTELIGENCJA. Architektury systemów eksperckich

Wielkość: px
Rozpocząć pokaz od strony:

Download "Adam Meissner SZTUCZNA INTELIGENCJA. Architektury systemów eksperckich"

Transkrypt

1 Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner SZTUCZNA INTELIGENCJA Architektury systemów eksperckich Literatura [1] Chwiałkowska E., Sztuczna inteligencja w systemach eksperckich, Wyd. MIKOM, Warszawa, [2] Cichosz P., Systemy uczące się, WNT, Warszawa, [3] Lebowitz J., The Handbook of Applied Expert Systems, CRC Press, [4] Martinek J., Materiały do wykładów z przedmiotu sztuczna inteligencja, prowadzonych w latach na Wydz. Elektrycznym Politechniki Poznańskiej. [5] Puppe F., Systematic Introduction to Expert Systems, Springer-Verlag, [6] Russell S.J., Norvig P., Artificial Intelligence: A Modern Approach, Prentice Hall, New Jersey,

2 1.Wprowadzenie Adam Meissner Plan wykładu 2.Metody pozyskiwania (akwizycji) wiedzy od ekspertów. 3.Metody reprezentowania i przetwarzania wiedzy. 4.Zagadnienia komunikacji z użytkownikiem i udzielania objaśnień. 5.Środowiska do tworzenia systemów eksperckich. 6.Podsumowanie. Wprowadzenie znaczenie terminu system ekspercki System ekspercki to program komputerowy wyposażony w wiedzę i umiejętności wnioskowania właściwe dla specjalistów z pewnej dziedziny [5] typowa architektura systemu eksperckiego (wg. [5]) użytkownik ekspert przypadki specyficzne, dotyczące analizowanego problemu interfejs z użytkownikiem moduł udzielania objaśnień mechanizm wnioskujący moduł akwizycji wiedzy wiedza dziedzinowa eksperta wyniki pośrednie oraz rozwiązanie problemu 2

3 rys historyczny lata 50-te: rozwój teorii gier, zdefiniowanie podstawowych strategii prowadzenia gier dwuosobowych (np. strategia minimaksowa), badania nad algorytmami przeszukiwania heurystycznego (np. algorytm A*), lata 60-te: skonstruowanie pierwszych systemów rozwiązujących proste problemy, np. GPS (Newell A, Simon H.) oraz SHRDLU (Winograd T.), badania nad automatycznym wnioskowaniem zdefiniowanie reguły rezolucji (Robinson J.R.), lata 70-te: ukształtowanie się koncepcji systemu eksperckiego, powstanie pierwszych systemów eksperckich, takich jak: MYCIN (Feigenbaum E., 1976) diagnozowanie bakteryjnych zakażeń krwi, regułowa reprezentacja wiedzy, wnioskowanie na podstawie współczynników pewności, CADUCEUS (Uniw. Pittsburgh, ok. 1985) diagnozowanie chorób wewnętrznych, zaimplementowany w języku INTERLISP, rozpoznaje ok tj. 75% wszystkich znanych jednostek chorobowych, problem współwystępowania chorób, PUFF (1979) system diagnozowania chorób płuc, zaimplementowany z wykorzystaniem powłoki EMY CIN, duża trafność postawionych diagnoz (ok. 85%), 3

4 DENDRAL (Feigenbaum E., Buchanan B., Lederberg J.) określanie struktury związku chemicznego na podstawie analizy spektralnej, zaimplementowany w INTERLISPie, generowanie i testowanie hipotez, PROSPECTOR (SRI Int., przełom lat 70/80) interpretowanie map geologicznych, odkrycie bogatych złóż rudy molibdenu w stanie Washington (wartych ok. 1 mld USD), MACSYMA (MIT, początek lat 70-tych) wykonywanie obliczeń symbolicznych, zaimplementowany w języku LISP, popularny wśród matematyków i inżynierów, HERSAY I i II (Uniw. Carnegie-Mellon) rozpoznawanie mowy, pionierskie rozwiązania z zakresu architektur tablicowych. kryteria klasyfikowania systemów eksperckich ([1]) dziedzina zastosowań (np. medycyna, inżynieria, matematyka, chemia, fizyka, geologia, meteorologia, rolnictwo, prawo, zarządzanie, doradztwo finansowe, wojskowość, transport, kosmonautyka, sterowanie produkcją) przeznaczenie: s. kontrolne sterowanie złożonymi procesami (np. produkcją), s. diagnostyczne rozpoznawanie i klasyfikowanie przypadków, systemy te są szeroko stosowane w technice, medycynie, analizie chemicznej i wielu innych dziedzinach, 4

5 s. testujące wykrywanie wad w badanych wyrobach, ich rozszerzeniem są systemy naprawcze, proponujące metody usuwania usterek, s. projektujące (np. CAD, CAM) wspomaganie procesów projektowania, stosowane np. w elektronice, mechanice i inżynierii budowlanej, s. edukacyjne (Intelligent Computer Aided Instruction), wspomaganie nauczania, s. interpretujące interpretowanie danych, np. system PROSPECTOR, s. planistyczne wspomaganie konstruowania planów działań, systemy te są wykorzystywane m. in. przez strategów wojskowych, s. prognostyczne przewidywanie zachowań układów dynamicznych na podstawie stanów wcześniejszych, systemy te wykorzystuje się np. do prognozowania pogody. sposób reprezentowania wiedzy i metody jej przetwarzania [5] logika pierwszego rzędu i jej podzbiory (np. logika klauzul Horna, język Prolog), reguły JEŻELI-TO, wnioskowanie progresywne (ang. forward chaining), wnioskowanie regresywne (ang. backward chaining), ramy i obiekty, logiki nieklasyczne - np. modalne, temporalne, wnioskowanie niemonotoniczne, algorytmy utrzy-mywania wiarygodności. 5

6 Metody pozyskiwania wiedzy od ekspertów metody manualne kluczowa rola inżyniera wiedzy, prowadzenie wywiadów z ekspertem, wykorzystanie kwestionariuszy i diagramów, analiza raportów eksperta, obserwowanie pracy eksperta, zalety w porównaniu z metodami automatycznymi: większe możliwość porozumiewania się eksperta i inżyniera wiedzy, możliwość uwzględnienia w modelu specyficznych aspektów rozpatrywanych zagadnień, wady: niechęć ekspertów do współpracy, problemy z werbalizowaniem wiedzy przez eksperta, przekłamania wynikające z udziału inżyniera wiedzy, czasochłonność, metody automatyczne i półautomatyczne środowiska do pozyskiwania wiedzy od eksperta, np. systemy TEIRESIAS, ACQUIST, KNACK, KRITON, KSSO "odkrywanie" wiedzy na podstawie decyzji eksperta - algorytmy uczenia maszynowego. 6

7 konstruowanie drzew decyzyjnych założenia: dany jest zbiór D decyzji eksperta, klasyfikujących podany zbiór przykładów S na podstawie wartości wyróżnionych cech, zadanie: skonstruować drzewo, którego wierzchołki wiszące reprezentują elementy zbioru D, a wierzchołki wewnętrzne odpowiadają cechom; każda krawędź wychodząca z wierzchołka wewnętrznego reprezentuje jedną z możliwych wartości cechy przypisanej temu wierzchołkowi, ww. zadanie jest przykładem problemu indukowania pojęć, który wchodzi w zakres uczenia maszynowego [2], do najpopularniejszych metod konstruowania drzew decyzyjnych należy algorytm ID3 Rossa Quinlanna (1979) oraz jego warianty i udoskonalenia. Algorytm ID3 Dane: zbiór przykładów S. Wynik: korzeń w drzewa decyzyjnego dla S. Metoda: 1. Utworzyć wierzchołek w. 2. Jeżeli zbiór S zawiera wyłącznie przykłady pozytywne, to w jest liściem o etykiecie 1; stop. 3. Jeżeli zbiór S zawiera wyłącznie przykłady negatywne, to w jest liściem o etykiecie 0; stop. 4. Wśród wszystkich cech występujących w zbiorze S znaleźć cechę c o maksymalnym zysku informacyjnym. 5. Podzielić zbiór S na podzbiory S 1,..., S n w których cecha c ma odpowiednio tę samą wartość; n jest liczbą wartości cechy c. 6. Nadać wierzchołkowi w etykietę c. 7. Dla każdego zbioru S i (i = 1,..., n) skonstruować drzewo decyzyjne ID3(S i ) i połączyć jego korzeń z wierzchołkiem w krawędzią o etykiecie reprezentującej wartość cechy c w zbiorze S i. 7

8 Przykład 1 (wg. [2]) 2015 Adam Meissner Dany jest zbiór przykładowych decyzji eksperta w kwestii, czy przy danym stanie pogody można (d(x) = 1) albo nie można (d(x) = 0) grać w tenisa. x aura temperatura wilgotność wiatr d(x) 1 słoneczna wysoka duża słaby 0 2 słoneczna wysoka duża silny 0 3 pochmurna wysoka duża słaby 1 4 deszczowa umiarkowana duża słaby 1 5 deszczowa niska normalna słaby 1 6 deszczowa niska normalna silny 0 7 pochmurna niska normalna silny 1 8 słoneczna umiarkowana duża słaby 0 9 słoneczna niska normalna słaby 1 10 deszczowa umiarkowana normalna słaby 1 11 słoneczna umiarkowana normalna silny 1 12 pochmurna umiarkowana duża silny 1 13 pochmurna wysoka normalna słaby 1 14 deszczowa umiarkowana duża silny 0 drzewo decyzyjne {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14} aura słoneczna pochmurna deszczowa {1, 2, 8, 9, 11} {3, 7, 12, 13} {4, 5, 6, 10, 14} wilgotność 1 wiatr normalna duża słaby silny {9, 11} {1, 2, 8} {4, 5, 10} {6, 14}

9 Metody reprezentowania i przetwarzania wiedzy regułowa reprezentacja wiedzy wiedza dziedzinowa na temat rozpatrywanego wycinka rzeczywistości (tzw. świata) jest skończonym zbiorem reguł, każda reguła ma ogólną postać JEŻELI Warunek TO Akcja wyrażenie Warunek jest zazwyczaj koniunkcją literałów, np. pacjent_skarży_się_na(ból_gardła) Temperatura > 37,5, wyrażenie Akcja jest skończonym, niepustym ciągiem, w którym wyróżnia się wnioski (ang. implications), czyli implikowane formuły np. stwierdzona_dolegliwość(angina), instrukcje, czyli działania zmieniające stan świata, np. zaaplikować_pacejntowi(aspiryna) Przykład 2 (wg. [2]) Drzewo decyzyjne z przykładu 1 można reprezentować w postaci następującego zbioru reguł. JEŻELI aura(słoneczna) wilgotność(duża) TO 0 JEŻELI aura(słoneczna) wilgotność(normalna) TO 1 JEŻELI aura(pochmurna) TO 1 JEŻELI aura(deszczowa) wiatr(silny) TO 0 JEŻELI aura(deszczowa) wiatr(słaby) TO 1 9

10 przetwarzenie wiedzy regułowej istnieją dwie, podstawowe metody przetwarzania wiedzy regułowej wnioskowanie progresywne (ang. forward chaining), wnioskowanie regresywne (ang. backward chaining), jednym z elementarnych działań, wykonywanych w ramach obu ww. metod jest porównywanie wyrażeń; wykorzystuje się do tego celu algorytm unifikacji, dopasowania wyrażenia do wzorca (ang. pattern matching) wnioskowanie progresywne [5] Algorytm FC Dane: baza wiedzy KB obejmująca zbiór reguł R i zbiór faktów F oraz hipoteza H. Wynik: sygnał tak, jeżeli KB H albo sygnał nie w przeciwnym wypadku; nowy zbiór F. Metoda: 1. Jeżeli H F to stop(tak). 2. Skonstruować zbiór C złożony ze wszystkich reguł ze zbioru R, których warunki są spełnione, tj. dla dowolnej reguły postaci L 1... L n A ze zbioru C, L i F gdzie i = 1, n. 3. Jeżeli C = to stop(nie), w przeciwnym wypadku uszeregować zbiór C zgodnie z przyjętymi kryteriami. 4. Wykonać akcję A pierwszej reguły ze zbioru C; jeżeli akcja A jest wnioskiem to dołączyć A do zbioru F. 5. Przejść do kroku 1. 10

11 Popularne strategie szeregowania zbioru C: przyjąć naturalny porządek w zbiorze, uszeregować zbiór począwszy od reguł, których warunki odnoszą się do przypadków wprowadzonych do bazy wiedzy jako ostatnie (tj. najpóźniej), uszeregować zbiór począwszy od reguł o najbardziej złożonych warunkach, uszeregować zbiór z wykorzystaniem wiedzy dodatkowej, np. przypisującej regułom priorytety. Udoskonalenia algorytmu ogólnego klasyfikowanie reguł ze względu na podobieństwo warunków, przyrostowe konstruowanie zbioru C, indeksowanie reguł ze względu na zmienne występujące w warunkach. Powyższe udoskonalenia zrealizowano w algorytmie RETE (C.L. Forgy, 1974) wykorzystywanym w wielu popularnych systemach eksperckich (np. CLIPS) i w środowiskach do ich konstruowania (np. OPS5). 11

12 wnioskowanie regresywne [5] Algorytm BC Dane: baza wiedzy KB obejmująca zbiór reguł R i zbiór faktów F oraz hipoteza H. Wynik: sygnał tak, jeżeli KB H albo sygnał nie w przeciwnym wypadku. Metoda: 1. Jeżeli H F to stop(tak). 2. Skonstruować zbiór C złożony ze wszystkich reguł ze zbioru R postaci W A, takich że A = H (W jest dowolną koniunkcją literałów). 3. Jeżeli C = to stop(nie), w przeciwnym wypadku ze zbioru C wybrać dowolną regułę L 1... L n A. 4. Wykonać algorytm BC dla każdego L i, gdzie i = 1, n. Jeżeli każdą z uzyskanych odpowiedzi jest tak to stop(tak), w przeciwnym wypadku usunąć wybraną regułę ze zbioru C. 5. Przejść do kroku 3. 12

13 reprezentowanie wiedzy za pomocą ram koncepcja reprezentowania wiedzy za pomocą ram (ang. frames) pochodzi od Marvina Minskyego (1975), baza wiedzy jest zbiorem klas i ich wystąpień (czyli obiektów), definicja klasy obejmuje atrybuty, ich wartości domyślne (opcjonalnie) i metody, wśród których można wyróżnić tzw. demony, w zbiorze klas określa się relację dziedziczenia, atrybuty obiektu mają wartości określone ("konkretne"), do reprezentowania klas, jak również obiektów, służą ramy, elementami ramy są klatki (ang. slots), które wypełnia się fasetami (ang. facets), faseta jest parą nazwa:wartość; za pomocą faset określa się m. in. wartości przechowywane w klatce i ich typy. Przykład 3 (wg. [5]) Reprezentacja klasy i obiektów za pomocą ram w języku FRL Frame: expert system Slots: AKO: $value: program Programming environment: $require: (LISP, PROLOG, OPS5, C) $default: LISP $if-needed: "look up references". Frame: Slots: MYCIN AKO: $value: expert system. 13

14 komunikacja z użytkownikiem i udzielanie objaśnień ogólne metody komunikowania się systemu z użytkownikiem język stylizowany na naturalny (wykorzystywany w tzw. systemach dialogowych), język symboli graficznych (piktogramy, ikony), metody udzielania objaśnień objaśnianie przez retrospekcję (ang. retrospective explanation), objaśnianie kontrfaktyczne (ang. counterfactual explanation) [1], udzielanie odpowiedzi intensjonalnych (ang. intensional answers). środowiska do tworzenia systemów eksperckich języki programowania: PROLOG, LISP, powłoki (ang. shells) EMYCIN, KAS (powłoka systemu PROSPECTOR), AGE (powłoka systemu HERSAY), środowiska narzędziowe (ang. toolkits) Personal Consultant Plus, produkt firmy Texas Instruments, zaprogramowany w języku IQLISP, reprezentowanie wiedzy w postaci reguł lub ram, możliwość wnioskowania progresywnego i regresywnego, przetwarzanie informacji niepewnej, edytor bazy wiedzy, moduł udzielania objaśnień (język stylizowany na angielski), 14

15 OPS5, system opracowany i zaprogramowany na Uniwersytecie Carnegie Mellon (początkowo) w języku LISP, reprezentowanie wiedzy w postaci reguł, wnioskowanie progresywne, edytor bazy wiedzy wyposażony w mechanizm usuwania błędów, KES, produkt firmy Software Architecture & Engineering Inc., zaprogramowany w języki FRANZ LISP, konstruowanie systemu na podstawie wymagań sformułowanych w języku stylizowanym na naturalny, reprezentowanie wiedzy za pomocą reguł i ram, wnioskowanie regresywne, przetwarzanie informacji niepewnej, KEE, system opracowany przez firmę IntelliCorp, zaprogramowany w języku INTERLISP, przeznaczony do wspomagania tworzenia baz wiedzy z wykorzystaniem ram, SRL, opracowany przez Instytut Robotyki Uniwersytetu Carnegie Mellon, zaprogramowany w języku FRANZ LISP, przeznaczony do wspomagania tworzenia baz wiedzy z wykorzystaniem ram, umożliwia posługiwanie się metawiedzą, RULEMASTER, system opracowany przez Radian Corporation, przeznaczony do wspomagania tworzenia systemów eksperckich z regułową reprezentacją wiedzy, zawiera m.in. interpreter języka RADIAL służącego do wyrażania reguł (wnioskowanie progresywne i regresywne) oraz kompilator RADIAL C, moduł indukowania reguł na podstawie przykładów moduł udzielania objaśnień w języku stylizowanym na angielski. 15

16 Podsumowanie weryfikowanie i testowanie systemów eksperckich kryteria formalne: niesprzeczność i pełność zgromadzonej wiedzy, kryteria nieformalne: np. konsekwencja, użyteczność, zagadnienia istotne przy budowaniu systemów eksperckich skuteczne pozyskiwanie wiedzy od ekspertów, zapewnienie niesprzeczności, pełności i użyteczności wiedzy zgromadzonej w bazie, konieczność udzielania zrozumiałych i wyczerpujących odpowiedzi użytkownikowi, trudności z realizacją wnioskowania na podstawie wiedzy zdroworozsądkowej (ang. commonsense knowledge) kierunki rozwoju systemów eksperckich nowe rozwiązania w zakresie komunikowanie się systemu z użytkownikiem (system przyjazny użytkownikowi ), poszukiwanie rozwiązań problemu dużych baz wiedzy, badania nad metodami reprezentowania wiedzy niepełnej, niepewnej i zmieniającej się w czasie. 16

Uczenie się maszyn. Dariusz Banasiak. Katedra Informatyki Technicznej Wydział Elektroniki

Uczenie się maszyn. Dariusz Banasiak. Katedra Informatyki Technicznej Wydział Elektroniki Dariusz Banasiak Katedra Informatyki Technicznej Wydział Elektroniki Machine Learning (uczenie maszynowe, uczenie się maszyn, systemy uczące się) interdyscyplinarna nauka, której celem jest stworzenie

Bardziej szczegółowo

Systemy ekspertowe i ich zastosowania. Katarzyna Karp Marek Grabowski

Systemy ekspertowe i ich zastosowania. Katarzyna Karp Marek Grabowski Systemy ekspertowe i ich zastosowania Katarzyna Karp Marek Grabowski Plan prezentacji Wstęp Własności systemów ekspertowych Rodzaje baz wiedzy Metody reprezentacji wiedzy Metody wnioskowania Języki do

Bardziej szczegółowo

Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej. Adam Meissner. Elementy uczenia maszynowego

Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej. Adam Meissner. Elementy uczenia maszynowego Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis Elementy uczenia maszynowego Literatura [1] Bolc L., Zaremba

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Systemy ekspertowe w zarządzaniu firmą Expert systems in enterprise management Kierunek: Zarządzanie i Inżynieria Produkcji Rodzaj przedmiotu: Rodzaj zajęć: Wyk. Ćwicz. Lab. Sem. Proj.

Bardziej szczegółowo

PODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu "Podstawy baz danych"

PODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu Podstawy baz danych PODSTAWY BAZ DANYCH 19. Perspektywy baz danych 1 Perspektywy baz danych Temporalna baza danych Temporalna baza danych - baza danych posiadająca informację o czasie wprowadzenia lub czasie ważności zawartych

Bardziej szczegółowo

SYSTEMY EKSPERTOWE. Anna Matysek IBiIN UŚ 2008

SYSTEMY EKSPERTOWE. Anna Matysek IBiIN UŚ 2008 SYSTEMY EKSPERTOWE Anna Matysek IBiIN UŚ 2008 DEFINICJE SE System ekspertowy to program komputerowy, który wykonuje złożone zadania o dużych wymaganiach intelektualnych i robi to tak dobrze jak człowiek

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Systemy ekspertowe Expert systems Kierunek: Zarządzanie i Inżynieria Produkcji Rodzaj przedmiotu: Rodzaj zajęć: Wyk. Ćwicz. Lab. Sem. Proj. Poziom studiów: studia I stopnia forma studiów:

Bardziej szczegółowo

Systemy ekspertowe Część siódma Realizacja dziedzinowego systemu ekspertowego Roman Simiński

Systemy ekspertowe Część siódma Realizacja dziedzinowego systemu ekspertowego Roman Simiński Część siódma Autor Roman Simiński Kontakt roman.siminski@us.edu.pl www.us.edu.pl/~siminski Realizacja dziedzinowego systemu ekspertowego Niniejsze opracowanie zawiera skrót treści wykładu, lektura tych

Bardziej szczegółowo

Elementy kognitywistyki II: Sztuczna inteligencja

Elementy kognitywistyki II: Sztuczna inteligencja Elementy kognitywistyki II: Sztuczna inteligencja Piotr Konderak Zakład Logiki i Filozofii Nauki p.203b, Collegium Humanicum konsultacje: wtorki, 16:00-17:00 kondorp@bacon.umcs.lublin.pl http://konderak.eu

Bardziej szczegółowo

Adam Meissner. SZTUCZNA INTELIGENCJA Gry dwuosobowe

Adam Meissner. SZTUCZNA INTELIGENCJA Gry dwuosobowe Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis SZTUCZNA INTELIGENCJA Gry dwuosobowe Literatura [1] Sterling

Bardziej szczegółowo

Systemy ekspertowe : program PCShell

Systemy ekspertowe : program PCShell Instytut Informatyki Uniwersytetu Śląskiego lab 1 Opis sytemu ekspertowego Metody wnioskowania System PcShell Projekt System ekspertowy - system ekspertowy to system komputerowy zawierający w sobie wyspecjalizowaną

Bardziej szczegółowo

Wstęp do Sztucznej Inteligencji

Wstęp do Sztucznej Inteligencji Wstęp do Sztucznej Inteligencji Rozwiązywanie problemów-i Joanna Kołodziej Politechnika Krakowska Wydział Fizyki, Matematyki i Informatyki Rozwiązywanie problemów Podstawowe fazy: Sformułowanie celu -

Bardziej szczegółowo

O badaniach nad SZTUCZNĄ INTELIGENCJĄ

O badaniach nad SZTUCZNĄ INTELIGENCJĄ O badaniach nad SZTUCZNĄ INTELIGENCJĄ Jak określa się inteligencję naturalną? Jak określa się inteligencję naturalną? Inteligencja wg psychologów to: Przyrodzona, choć rozwijana w toku dojrzewania i uczenia

Bardziej szczegółowo

Sztuczna inteligencja - wprowadzenie

Sztuczna inteligencja - wprowadzenie Sztuczna inteligencja - wprowadzenie Dariusz Banasiak Katedra Informatyki Technicznej W4/K9 Politechnika Wrocławska Sztuczna inteligencja komputerów - wprowadzenie Kontakt: dr inż. Dariusz Banasiak, pok.

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy w ramach treści kierunkowych Rodzaj zajęć: wykład, laboratorium BAZY DANYCH I SYSTEMY EKSPERTOWE Database and expert systems Forma

Bardziej szczegółowo

Wykład 4 Ramy, wektory wiedzy, drzewa decyzyjne

Wykład 4 Ramy, wektory wiedzy, drzewa decyzyjne Systemy ekspertowe Wykład 4 Ramy, wektory wiedzy, drzewa decyzyjne 1 RAMY 2 Ramy (ang. frames) geneza i założenia Geneza: 1. chęć wyjaśnienia efektywności rozumowania naturalnego w odniesieniu do problemów

Bardziej szczegółowo

Praca dyplomowa magisterska

Praca dyplomowa magisterska KATEDRA WYTRZYMAŁOŚCI MATERIAŁÓW I METOD KOMPUTEROWYCH MECHANIKI Wydział Mechaniczny Technologiczny POLITECHNIKA ŚLĄSKA W GLIWICACH Praca dyplomowa magisterska Temat: Komputerowy system wspomagania wiedzy:

Bardziej szczegółowo

Systemy ekspertowe Część siódma Realizacja dziedzinowego systemu ekspertowego Roman Simiński

Systemy ekspertowe Część siódma Realizacja dziedzinowego systemu ekspertowego Roman Simiński Część siódma Autor Roman Simiński Kontakt roman.siminski@us.edu.pl www.us.edu.pl/~siminski Realizacja dziedzinowego systemu ekspertowego Niniejsze opracowanie zawiera skrót treści wykładu, lektura tych

Bardziej szczegółowo

Kilka zagadnień dotyczących Sztucznej inteligencji.

Kilka zagadnień dotyczących Sztucznej inteligencji. Kilka zagadnień dotyczących Sztucznej inteligencji. Artykuł pobrano ze strony eioba.pl Jest tu kilka zagadnień dotyczących SI. Autor przygotowania: Magister inżynier Ireneusz Łukasz Dzitkowski Wałcz, dnia:

Bardziej szczegółowo

Analiza i projektowanie oprogramowania. Analiza i projektowanie oprogramowania 1/32

Analiza i projektowanie oprogramowania. Analiza i projektowanie oprogramowania 1/32 Analiza i projektowanie oprogramowania Analiza i projektowanie oprogramowania 1/32 Analiza i projektowanie oprogramowania 2/32 Cel analizy Celem fazy określania wymagań jest udzielenie odpowiedzi na pytanie:

Bardziej szczegółowo

Uchwała obowiązuje od dnia podjęcia przez Senat. Traci moc Uchwała nr 144/06/2013 Senatu Uniwersytetu Rzeszowskiego z 27 czerwca 2013 r.

Uchwała obowiązuje od dnia podjęcia przez Senat. Traci moc Uchwała nr 144/06/2013 Senatu Uniwersytetu Rzeszowskiego z 27 czerwca 2013 r. Rektor Uniwersytetu Rzeszowskiego al. Rejtana 16c; 35-959 Rzeszów tel.: + 48 17 872 10 00 (centrala) + 48 17 872 10 10 fax: + 48 17 872 12 65 e-mail: rektorur@ur.edu.pl Uchwała nr 282/03/2014 Senatu Uniwersytetu

Bardziej szczegółowo

Elementy kognitywistyki III: Modele i architektury poznawcze

Elementy kognitywistyki III: Modele i architektury poznawcze Elementy kognitywistyki III: Modele i architektury poznawcze Wykład I: Pomieszanie z modelem w środku Czym jest kognitywistyka? Dziedzina zainteresowana zrozumieniem procesów, dzięki którym mózg (zwł.

Bardziej szczegółowo

Efekty kształcenia dla kierunku studiów INFORMATYKA, Absolwent studiów I stopnia kierunku Informatyka WIEDZA

Efekty kształcenia dla kierunku studiów INFORMATYKA, Absolwent studiów I stopnia kierunku Informatyka WIEDZA Symbol Efekty kształcenia dla kierunku studiów INFORMATYKA, specjalność: 1) Sieciowe systemy informatyczne. 2) Bazy danych Absolwent studiów I stopnia kierunku Informatyka WIEDZA Ma wiedzę z matematyki

Bardziej szczegółowo

Adam Meissner SZTUCZNA INTELIGENCJA. Reprezentowanie i przetwarzanie wiedzy o czasie

Adam Meissner SZTUCZNA INTELIGENCJA. Reprezentowanie i przetwarzanie wiedzy o czasie 2015 Adam Meissner Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis SZTUCZNA INTELIGENCJA Reprezentowanie

Bardziej szczegółowo

T2A_W01 T2A_W01 T2A_W02 3 SI_W03 Posiada szeroką wiedzę w zakresie teorii grafów T2A_W01

T2A_W01 T2A_W01 T2A_W02 3 SI_W03 Posiada szeroką wiedzę w zakresie teorii grafów T2A_W01 Efekty dla studiów drugiego stopnia profil ogólnoakademicki, na kierunku Informatyka w języku polskim, na specjalnościach Metody sztucznej inteligencji oraz Projektowanie systemów CAD/CAM, na Wydziale

Bardziej szczegółowo

Adam Meissner.

Adam Meissner. Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis SZTUCZNA INTELIGENCJA Podstawy logiki pierwszego rzędu

Bardziej szczegółowo

Efekty kształcenia wymagane do podjęcia studiów 2 stopnia na kierunku Informatyka

Efekty kształcenia wymagane do podjęcia studiów 2 stopnia na kierunku Informatyka Efekty kształcenia wymagane do podjęcia studiów 2 stopnia na kierunku Informatyka Test kwalifikacyjny obejmuje weryfikację efektów kształcenia oznaczonych kolorem szarym, efektów: K_W4 (!), K_W11-12, K_W15-16,

Bardziej szczegółowo

I rok. semestr 1 semestr 2 15 tyg. 15 tyg. Razem ECTS. laborat. semin. ECTS. konwer. wykł. I rok. w tym. Razem ECTS. laborat. semin. ECTS. konwer.

I rok. semestr 1 semestr 2 15 tyg. 15 tyg. Razem ECTS. laborat. semin. ECTS. konwer. wykł. I rok. w tym. Razem ECTS. laborat. semin. ECTS. konwer. Wydział Informatyki i Nauki o Materiałach Kierunek Informatyka studia I stopnia inżynierskie studia stacjonarne 08- IO1S-13 od roku akademickiego 2015/2016 A Lp GRUPA TREŚCI PODSTAWOWYCH kod Nazwa modułu

Bardziej szczegółowo

Nowe narzędzia zarządzania jakością

Nowe narzędzia zarządzania jakością Nowe narzędzia zarządzania jakością Agnieszka Michalak 106947 Piotr Michalak 106928 Filip Najdek 106946 Co to jest? Nowe narzędzia jakości - grupa siedmiu nowych narzędzi zarządzania jakością, które mają

Bardziej szczegółowo

Symbol efektu kształcenia

Symbol efektu kształcenia Efekty dla studiów drugiego stopnia - profil ogólnoakademicki, na kierunku Informatyka, na specjalnościach Metody sztucznej inteligencji (Tabela 1), Projektowanie systemów CAD/CAM (Tabela 2) oraz Przetwarzanie

Bardziej szczegółowo

Sztuczna inteligencja Definicja Sztuczna inteligencja (AI - ang. artificial inteligence) lub krótko SI jest stosunkowo nową interdyscyplinarną dziedziną nauki, przedmiotem wielkich oczekiwań i ożywionych

Bardziej szczegółowo

Język opisu sprzętu VHDL

Język opisu sprzętu VHDL Język opisu sprzętu VHDL dr inż. Adam Klimowicz Seminarium dydaktyczne Katedra Mediów Cyfrowych i Grafiki Komputerowej Informacje ogólne Język opisu sprzętu VHDL Przedmiot obieralny dla studentów studiów

Bardziej szczegółowo

Co to jest jest oprogramowanie? 8. Co to jest inżynieria oprogramowania? 9. Jaka jest różnica pomiędzy inżynierią oprogramowania a informatyką?

Co to jest jest oprogramowanie? 8. Co to jest inżynieria oprogramowania? 9. Jaka jest różnica pomiędzy inżynierią oprogramowania a informatyką? ROZDZIAŁ1 Podstawy inżynierii oprogramowania: - Cele 2 - Zawartość 3 - Inżynieria oprogramowania 4 - Koszty oprogramowania 5 - FAQ o inżynierii oprogramowania: Co to jest jest oprogramowanie? 8 Co to jest

Bardziej szczegółowo

Inteligentne Multimedialne Systemy Uczące

Inteligentne Multimedialne Systemy Uczące Działanie realizowane w ramach projektu Absolwent informatyki lub matematyki specjalistą na rynku pracy Matematyka i informatyka może i trudne, ale nie nudne Inteligentne Multimedialne Systemy Uczące dr

Bardziej szczegółowo

Adam Meissner SZTUCZNA INTELIGANCJA

Adam Meissner SZTUCZNA INTELIGANCJA Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis SZTUCZNA INTELIGANCJA Podstawy programowania z ograniczeniami

Bardziej szczegółowo

Projektowanie Systemów Informatycznych SYSTEMY EKSPERTOWE. wykład nr 9

Projektowanie Systemów Informatycznych SYSTEMY EKSPERTOWE. wykład nr 9 Projektowanie Systemów Informatycznych SYSTEMY EKSPERTOWE wykład nr 9 Uniwersytet Zielonogórski Instytut Informatyki i Elektroniki Inteligencja czyli z czym komputery mają problemy? Zasadniczy problem

Bardziej szczegółowo

CLP Programowanie logiczne z ograniczeniami.

CLP Programowanie logiczne z ograniczeniami. CLP Programowanie logiczne z ograniczeniami. Wstęp Programowanie z ograniczeniami (Constraint Programming CP) stało się w ostatnich latach popularnym sposobem modelowania i rozwiązywania wielu problemów

Bardziej szczegółowo

Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2012/2013 http://www.wilno.uwb.edu.

Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2012/2013 http://www.wilno.uwb.edu. SYLLABUS na rok akademicki 01/013 Tryb studiów Studia stacjonarne Kierunek studiów Informatyka Poziom studiów Pierwszego stopnia Rok studiów/ semestr /3 Specjalność Bez specjalności Kod katedry/zakładu

Bardziej szczegółowo

Informatyka, studia I stopnia (profil ogólnoakademicki) - wersja

Informatyka, studia I stopnia (profil ogólnoakademicki) - wersja Informatyka, studia I stopnia (profil ogólnoakademicki) - wersja 120327 Obszar kształcenia: nauki techniczne. Dziedzina: nauki techniczne. Dyscyplina: Informatyka. MNiSW WI PP Symb. Efekty kształcenia

Bardziej szczegółowo

Adam Meissner STUCZNA INTELIGENCJA

Adam Meissner STUCZNA INTELIGENCJA Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis STUCZNA INTELIGENCJA Elementy programowania w logice Literatura

Bardziej szczegółowo

Zalew danych skąd się biorą dane? są generowane przez banki, ubezpieczalnie, sieci handlowe, dane eksperymentalne, Web, tekst, e_handel

Zalew danych skąd się biorą dane? są generowane przez banki, ubezpieczalnie, sieci handlowe, dane eksperymentalne, Web, tekst, e_handel według przewidywań internetowego magazynu ZDNET News z 8 lutego 2001 roku eksploracja danych (ang. data mining ) będzie jednym z najbardziej rewolucyjnych osiągnięć następnej dekady. Rzeczywiście MIT Technology

Bardziej szczegółowo

UCHWAŁA NR 26/2016. SENATU AKADEMII MARYNARKI WOJENNEJ im. Bohaterów Westerplatte z dnia 02 czerwca 2016 roku

UCHWAŁA NR 26/2016. SENATU AKADEMII MARYNARKI WOJENNEJ im. Bohaterów Westerplatte z dnia 02 czerwca 2016 roku UCHWAŁA NR 26/2016 SENATU AKADEMII MARYNARKI WOJENNEJ im. Bohaterów Westerplatte z dnia 02 czerwca 2016 roku w sprawie: określenia efektów kształcenia dla kierunku Mechatronika studia II stopnia o profilu

Bardziej szczegółowo

Data Mining Wykład 9. Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster. Plan wykładu. Sformułowanie problemu

Data Mining Wykład 9. Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster. Plan wykładu. Sformułowanie problemu Data Mining Wykład 9 Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster Plan wykładu Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne Sformułowanie problemu

Bardziej szczegółowo

KIERUNKOWE EFEKTY KSZTAŁCENIA

KIERUNKOWE EFEKTY KSZTAŁCENIA WYDZIAŁ INFORMATYKI I ZARZĄDZANIA Kierunek studiów: INFORMATYKA Stopień studiów: STUDIA II STOPNIA Obszar Wiedzy/Kształcenia: OBSZAR NAUK TECHNICZNYCH Obszar nauki: DZIEDZINA NAUK TECHNICZNYCH Dyscyplina

Bardziej szczegółowo

Transformacja wiedzy w budowie i eksploatacji maszyn

Transformacja wiedzy w budowie i eksploatacji maszyn Uniwersytet Technologiczno Przyrodniczy im. Jana i Jędrzeja Śniadeckich w Bydgoszczy Wydział Mechaniczny Transformacja wiedzy w budowie i eksploatacji maszyn Bogdan ŻÓŁTOWSKI W pracy przedstawiono proces

Bardziej szczegółowo

Informatyka w medycynie Punkt widzenia kardiologa

Informatyka w medycynie Punkt widzenia kardiologa Informatyka w medycynie Punkt widzenia kardiologa Lech Poloński Mariusz Gąsior Informatyka medyczna Dział informatyki zajmujący się jej zastosowaniem w ochronie zdrowia (medycynie) Stymulacja rozwoju informatyki

Bardziej szczegółowo

ALGORYTM RANDOM FOREST

ALGORYTM RANDOM FOREST SKRYPT PRZYGOTOWANY NA ZAJĘCIA INDUKOWANYCH REGUŁ DECYZYJNYCH PROWADZONYCH PRZEZ PANA PAWŁA WOJTKIEWICZA ALGORYTM RANDOM FOREST Katarzyna Graboś 56397 Aleksandra Mańko 56699 2015-01-26, Warszawa ALGORYTM

Bardziej szczegółowo

Systemy ekspertowe w medycynie

Systemy ekspertowe w medycynie Systemy ekspertowe w medycynie Jerzy Stefanowski Instytut Informatyki Politechnika Poznańska Wiosna 2007 - aktualizacja 2011 Sztuczna inteligencja Inne definicje i opinie: Głównym zadaniem sztucznej inteligencji

Bardziej szczegółowo

WYKŁAD 6. Reguły decyzyjne

WYKŁAD 6. Reguły decyzyjne Wrocław University of Technology WYKŁAD 6 Reguły decyzyjne autor: Maciej Zięba Politechnika Wrocławska Reprezentacje wiedzy Wiedza w postaci reguł decyzyjnych Wiedza reprezentowania jest w postaci reguł

Bardziej szczegółowo

Odniesienie do obszarowych efektów kształcenia 1 2 3. Kierunkowe efekty kształcenia WIEDZA (W)

Odniesienie do obszarowych efektów kształcenia 1 2 3. Kierunkowe efekty kształcenia WIEDZA (W) EFEKTY KSZTAŁCENIA NA KIERUNKU "MECHATRONIKA" nazwa kierunku studiów: Mechatronika poziom kształcenia: studia pierwszego stopnia profil kształcenia: ogólnoakademicki symbol kierunkowych efektów kształcenia

Bardziej szczegółowo

Metody Programowania

Metody Programowania POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Metody Programowania www.pk.edu.pl/~zk/mp_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 8: Wyszukiwanie

Bardziej szczegółowo

Wybrane zagadnienia uczenia maszynowego. Zastosowania Informatyki w Informatyce W2 Krzysztof Krawiec

Wybrane zagadnienia uczenia maszynowego. Zastosowania Informatyki w Informatyce W2 Krzysztof Krawiec Wybrane zagadnienia uczenia maszynowego Zastosowania Informatyki w Informatyce W2 Krzysztof Krawiec Przygotowane na podstawie T. Mitchell, Machine Learning S.J. Russel, P. Norvig, Artificial Intelligence

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne 1 Nazwa modułu kształcenia Sztuczna inteligencja 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu (wypełnia

Bardziej szczegółowo

Inteligentne wydobywanie informacji z internetowych serwisów społecznościowych

Inteligentne wydobywanie informacji z internetowych serwisów społecznościowych Inteligentne wydobywanie informacji z internetowych serwisów społecznościowych AUTOMATYKA INFORMATYKA Technologie Informacyjne Sieć Semantyczna Przetwarzanie Języka Naturalnego Internet Edytor Serii: Zdzisław

Bardziej szczegółowo

DOKUMENTACJA PROGRAMU KSZTAŁCENIA DLA KIERUNKU STUDIÓW: MECHATRONIKA

DOKUMENTACJA PROGRAMU KSZTAŁCENIA DLA KIERUNKU STUDIÓW: MECHATRONIKA DOKUMENTACJA PROGRAMU KSZTAŁCENIA DLA KIERUNKU STUDIÓW: MECHATRONIKA Spis treści: 1. Ogólna charakterystyka prowadzonych studiów 2. Efekty kształcenia 3. Program studiów 4. Warunki realizacji programu

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści wspólnych z kierunkiem Matematyka, moduł kierunku obowiązkowy Rodzaj zajęć: wykład, ćwiczenia I KARTA PRZEDMIOTU CEL

Bardziej szczegółowo

Diagramy ERD. Model struktury danych jest najczęściej tworzony z wykorzystaniem diagramów pojęciowych (konceptualnych). Najpopularniejszym

Diagramy ERD. Model struktury danych jest najczęściej tworzony z wykorzystaniem diagramów pojęciowych (konceptualnych). Najpopularniejszym Diagramy ERD. Model struktury danych jest najczęściej tworzony z wykorzystaniem diagramów pojęciowych (konceptualnych). Najpopularniejszym konceptualnym modelem danych jest tzw. model związków encji (ERM

Bardziej szczegółowo

Załącznik 2 Tabela odniesień efektów kierunkowych do efektów obszarowych

Załącznik 2 Tabela odniesień efektów kierunkowych do efektów obszarowych Załącznik 2 Tabela odniesień efektów kierunkowych do efektów obszarowych Tabela odniesień efektów kierunkowych do efektów obszarowych (tabele odniesień efektów kształcenia) Nazwa kierunku studiów: Automatyka

Bardziej szczegółowo

EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW INFORMATYKA. STUDIA PIERWSZEGO STOPNIA - PROFIL OGÓLNOAKADEMICKI

EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW INFORMATYKA. STUDIA PIERWSZEGO STOPNIA - PROFIL OGÓLNOAKADEMICKI EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW INFORMATYKA. STUDIA PIERWSZEGO STOPNIA - PROFIL OGÓLNOAKADEMICKI Umiejscowienie kierunku w obszarze kształcenia: Kierunek studiów informatyka należy do obszaru kształcenia

Bardziej szczegółowo

Sztuczna inteligencja - mity i rzeczywistość. Sztuczna inteligencja. Plan zajęć z przedmiotu. Plan wykładów. Literatura.

Sztuczna inteligencja - mity i rzeczywistość. Sztuczna inteligencja. Plan zajęć z przedmiotu. Plan wykładów. Literatura. Sztuczna inteligencja dr hab. inż. Joanna Józefowska, prof. PP http://www.cs.put.poznan.pl/jjozefowska w2005 Dyżur: środa 11.30-13.00, p. 436WE Plan zajęć z przedmiotu Wykład 30 godzin Projekt 30 godzin

Bardziej szczegółowo

STUDIA I MONOGRAFIE NR

STUDIA I MONOGRAFIE NR STUDIA I MONOGRAFIE NR 21 WYBRANE ZAGADNIENIA INŻYNIERII WIEDZY Redakcja naukowa: Andrzej Cader Jacek M. Żurada Krzysztof Przybyszewski Łódź 2008 3 SPIS TREŚCI WPROWADZENIE 7 SYSTEMY AGENTOWE W E-LEARNINGU

Bardziej szczegółowo

Podstawy diagnostyki środków transportu

Podstawy diagnostyki środków transportu Podstawy diagnostyki środków transportu Diagnostyka techniczna Termin "diagnostyka" pochodzi z języka greckiego, gdzie diagnosis rozróżnianie, osądzanie. Ukształtowana już w obrębie nauk eksploatacyjnych

Bardziej szczegółowo

Komputerowe Systemy Przemysłowe: Modelowanie - UML. Arkadiusz Banasik arkadiusz.banasik@polsl.pl

Komputerowe Systemy Przemysłowe: Modelowanie - UML. Arkadiusz Banasik arkadiusz.banasik@polsl.pl Komputerowe Systemy Przemysłowe: Modelowanie - UML Arkadiusz Banasik arkadiusz.banasik@polsl.pl Plan prezentacji Wprowadzenie UML Diagram przypadków użycia Diagram klas Podsumowanie Wprowadzenie Języki

Bardziej szczegółowo

Projekt i implementacja systemu wspomagania planowania w języku Prolog

Projekt i implementacja systemu wspomagania planowania w języku Prolog Projekt i implementacja systemu wspomagania planowania w języku Prolog Kraków, 29 maja 2007 Plan prezentacji 1 Wstęp Czym jest planowanie? Charakterystyka procesu planowania 2 Przeglad istniejacych rozwiazań

Bardziej szczegółowo

Opis. Wymagania wstępne (tzw. sekwencyjny system zajęć i egzaminów) Liczba godzin zajęć dydaktycznych z podziałem na formy prowadzenia zajęć

Opis. Wymagania wstępne (tzw. sekwencyjny system zajęć i egzaminów) Liczba godzin zajęć dydaktycznych z podziałem na formy prowadzenia zajęć Załącznik nr 5 do Uchwały nr 1202 Senatu UwB z dnia 29 lutego 2012 r. nazwa SYLABUS A. Informacje ogólne Tę część wypełnia koordynator (w porozumieniu ze wszystkimi prowadzącymi dany przedmiot w jednostce)

Bardziej szczegółowo

Kierunek: Mechatronika Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. Wykład Ćwiczenia

Kierunek: Mechatronika Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. Wykład Ćwiczenia Wydział: Inżynierii Mechanicznej i Robotyki Kierunek: Mechatronika Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne Rocznik: 2015/2016 Język wykładowy: Polski Semestr 1 RME-1-103-s Podstawy

Bardziej szczegółowo

Sztuczna Inteligencja i Systemy Doradcze

Sztuczna Inteligencja i Systemy Doradcze Sztuczna Inteligencja i Systemy Doradcze Wprowadzenie Wprowadzenie 1 Program przedmiotu Poszukiwanie rozwiązań w przestrzeni stanów Strategie w grach Systemy decyzyjne i uczenie maszynowe Wnioskowanie

Bardziej szczegółowo

SYSTEM EKSPERTOWY DO PLANOWANIA PROCESÓW TECHNOLOGICZNYCH OBRÓBKI SKRAWANIEM

SYSTEM EKSPERTOWY DO PLANOWANIA PROCESÓW TECHNOLOGICZNYCH OBRÓBKI SKRAWANIEM SYSTEM EKSPERTOWY DO PLANOWANIA PROCESÓW TECHNOLOGICZNYCH OBRÓBKI SKRAWANIEM Edward CHLEBUS, Kamil KROT, Michał KULIBERDA Streszczenie: W przedstawionym artykule opisano szkieletowy system ekspertowy do

Bardziej szczegółowo

Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle

Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle Paweł Szołtysek 12 czerwca 2008 Streszczenie Planowanie produkcji jest jednym z problemów optymalizacji dyskretnej,

Bardziej szczegółowo

T2A_W03 T2A_W07 K2INF_W04 Ma uporządkowaną, podbudowaną teoretycznie kluczową wiedzę w zakresie realizacji informacyjnych systemów rozproszonych

T2A_W03 T2A_W07 K2INF_W04 Ma uporządkowaną, podbudowaną teoretycznie kluczową wiedzę w zakresie realizacji informacyjnych systemów rozproszonych KIERUNKOWE EFEKTY KSZTAŁCENIA Wydział Informatyki i Zarządzania Kierunek studiów INFORMATYKA (INF) Stopień studiów - drugi Profil studiów - ogólnoakademicki Symbol EFEKTY KSZTAŁCENIA Odniesienie do efektów

Bardziej szczegółowo

Data Mining Kopalnie Wiedzy

Data Mining Kopalnie Wiedzy Data Mining Kopalnie Wiedzy Janusz z Będzina Instytut Informatyki i Nauki o Materiałach Sosnowiec, 30 listopada 2006 Kopalnie złota XIX Wiek. Odkrycie pokładów złota spowodowało napływ poszukiwaczy. Przeczesywali

Bardziej szczegółowo

Sylabus modułu kształcenia na studiach wyższych. Nazwa Wydziału. Nazwa jednostki prowadzącej moduł Nazwa modułu kształcenia

Sylabus modułu kształcenia na studiach wyższych. Nazwa Wydziału. Nazwa jednostki prowadzącej moduł Nazwa modułu kształcenia Załącznik nr 4 do zarządzenia nr 12 Rektora UJ z 15 lutego 2012 r. Sylabus modułu kształcenia na studiach wyższych Nazwa Wydziału Nazwa jednostki prowadzącej moduł Nazwa modułu kształcenia Wydział Matematyki

Bardziej szczegółowo

Systemy ekspertowe. dr inż.marcin Blachnik. marcin.blachnik@polsl.pl http://mblachnik.pl

Systemy ekspertowe. dr inż.marcin Blachnik. marcin.blachnik@polsl.pl http://mblachnik.pl Systemy ekspertowe dr inż.marcin Blachnik marcin.blachnik@polsl.pl http://mblachnik.pl Literatura A. Niederliński Regułowo - modelowe systemy ekspertowe rmse, Wyd. SKALMIERSKI P. Cichosz, Systemy uczące

Bardziej szczegółowo

Wykład 1 Inżynieria Oprogramowania

Wykład 1 Inżynieria Oprogramowania Wykład 1 Inżynieria Oprogramowania Wstęp do inżynierii oprogramowania. Cykle rozwoju oprogramowaniaiteracyjno-rozwojowy cykl oprogramowania Autor: Zofia Kruczkiewicz System Informacyjny =Techniczny SI

Bardziej szczegółowo

LEMRG algorytm generowania pokoleń reguł decyzji dla baz danych z dużą liczbą atrybutów

LEMRG algorytm generowania pokoleń reguł decyzji dla baz danych z dużą liczbą atrybutów LEMRG algorytm generowania pokoleń reguł decyzji dla baz danych z dużą liczbą atrybutów Łukasz Piątek, Jerzy W. Grzymała-Busse Katedra Systemów Ekspertowych i Sztucznej Inteligencji, Wydział Informatyki

Bardziej szczegółowo

Współczesna problematyka klasyfikacji Informatyki

Współczesna problematyka klasyfikacji Informatyki Współczesna problematyka klasyfikacji Informatyki Nazwa pojawiła się na przełomie lat 50-60-tych i przyjęła się na dobre w Europie Jedna z definicji (z Wikipedii): Informatyka dziedzina nauki i techniki

Bardziej szczegółowo

5. Wprowadzenie do prawdopodobieństwa Wprowadzenie Wyniki i zdarzenia Różne podejścia do prawdopodobieństwa Zdarzenia wzajemnie wykluczające się i

5. Wprowadzenie do prawdopodobieństwa Wprowadzenie Wyniki i zdarzenia Różne podejścia do prawdopodobieństwa Zdarzenia wzajemnie wykluczające się i Spis treści Przedmowa do wydania polskiego - Tadeusz Tyszka Słowo wstępne - Lawrence D. Phillips Przedmowa 1. : rola i zastosowanie analizy decyzyjnej Decyzje złożone Rola analizy decyzyjnej Zastosowanie

Bardziej szczegółowo

EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW INFORMATYKA

EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW INFORMATYKA EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW INFORMATYKA poziom kształcenia profil kształcenia tytuł zawodowy uzyskiwany przez absolwenta studia drugiego stopnia ogólnoakademicki magister inżynier 1. Umiejscowienie

Bardziej szczegółowo

Programowanie komputerów

Programowanie komputerów Programowanie komputerów Wykład 1-2. Podstawowe pojęcia Plan wykładu Omówienie programu wykładów, laboratoriów oraz egzaminu Etapy rozwiązywania problemów dr Helena Dudycz Katedra Technologii Informacyjnych

Bardziej szczegółowo

Algorytm. Krótka historia algorytmów

Algorytm. Krótka historia algorytmów Algorytm znaczenie cybernetyczne Jest to dokładny przepis wykonania w określonym porządku skończonej liczby operacji, pozwalający na rozwiązanie zbliżonych do siebie klas problemów. znaczenie matematyczne

Bardziej szczegółowo

Okręgowa Komisja Egzaminacyjna w Krakowie 1

Okręgowa Komisja Egzaminacyjna w Krakowie 1 Okręgowa Komisja Egzaminacyjna w Krakowie 1 Egzamin maturalny Egzamin maturalny, zastąpi dotychczasowy egzamin dojrzałości, czyli tzw. starą maturę i przeprowadzany będzie: od roku 2005 dla absolwentów

Bardziej szczegółowo

INŻYNIERIA OPROGRAMOWANIA

INŻYNIERIA OPROGRAMOWANIA INSTYTUT INFORMATYKI STOSOWANEJ 2013 INŻYNIERIA OPROGRAMOWANIA Inżynieria Oprogramowania Proces ukierunkowany na wytworzenie oprogramowania Jak? Kto? Kiedy? Co? W jaki sposób? Metodyka Zespół Narzędzia

Bardziej szczegółowo

INFORMATYKA Pytania ogólne na egzamin dyplomowy

INFORMATYKA Pytania ogólne na egzamin dyplomowy INFORMATYKA Pytania ogólne na egzamin dyplomowy 1. Wyjaśnić pojęcia problem, algorytm. 2. Podać definicję złożoności czasowej. 3. Podać definicję złożoności pamięciowej. 4. Typy danych w języku C. 5. Instrukcja

Bardziej szczegółowo

WYDZIAŁ TRANSPORTU I INFORMATYKI INFORMATYKA I STOPIEŃ PRAKTYCZNY

WYDZIAŁ TRANSPORTU I INFORMATYKI INFORMATYKA I STOPIEŃ PRAKTYCZNY WYDZIAŁ TRANSPORTU I INFORMATYKI Nazwa kierunku Poziom kształcenia Profil kształcenia Symbole efektów kształcenia na kierunku INFORMATYKA I STOPIEŃ PRAKTYCZNY Efekty kształcenia - opis słowny Po ukończeniu

Bardziej szczegółowo

Tabela odniesień efektów kierunkowych do efektów obszarowych

Tabela odniesień efektów kierunkowych do efektów obszarowych Umiejscowienie kierunku w obszarze kształcenia Kierunek studiów automatyka i robotyka należy do obszaru kształcenia w zakresie nauk technicznych i jest powiązany z takimi kierunkami studiów jak: mechanika

Bardziej szczegółowo

Państwowa Wyższa Szkoła Techniczno-Ekonomiczna w Jarosławiu

Państwowa Wyższa Szkoła Techniczno-Ekonomiczna w Jarosławiu Załącznik nr 1 do Uchwały nr 9/12 Rady Instytutu Inżynierii Technicznej PWSTE w Jarosławiu z dnia 30 marca 2012r Państwowa Wyższa Szkoła Techniczno-Ekonomiczna w Jarosławiu EFEKTY KSZTAŁCENIA DLA KIERUNKU

Bardziej szczegółowo

UCHWAŁA Nr 56/VI/II/2016 SENATU PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W KONINIE z dnia 23 lutego 2016 r.

UCHWAŁA Nr 56/VI/II/2016 SENATU PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W KONINIE z dnia 23 lutego 2016 r. UCHWAŁA Nr 56/VI/II/2016 SENATU PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W KONINIE z dnia 23 lutego 2016 r. w sprawie określenia efektów kształcenia dla przeznaczonego do prowadzenia na Wydziale Społeczno-Ekonomicznym

Bardziej szczegółowo

Jacek Skorupski pok. 251 tel konsultacje: poniedziałek , sobota zjazdowa

Jacek Skorupski pok. 251 tel konsultacje: poniedziałek , sobota zjazdowa Jacek Skorupski pok. 251 tel. 234-7339 jsk@wt.pw.edu.pl http://skorupski.waw.pl/mmt prezentacje ogłoszenia konsultacje: poniedziałek 16 15-18, sobota zjazdowa 9 40-10 25 Udział w zajęciach Kontrola wyników

Bardziej szczegółowo

MATEMATYCZNE METODY WSPOMAGANIA PROCESÓW DECYZYJNYCH

MATEMATYCZNE METODY WSPOMAGANIA PROCESÓW DECYZYJNYCH MATEMATYCZNE METODY WSPOMAGANIA PROCESÓW DECYZYJNYCH 1. Przedmiot nie wymaga przedmiotów poprzedzających 2. Treść przedmiotu Proces i cykl decyzyjny. Rola modelowania matematycznego w procesach decyzyjnych.

Bardziej szczegółowo

PREZENTACJA PRAC ÓSMEJ GRUPY PROBLEMOWEJ

PREZENTACJA PRAC ÓSMEJ GRUPY PROBLEMOWEJ PREZENTACJA PRAC ÓSMEJ GRUPY PROBLEMOWEJ Temat zadania problemowego Informatyczny system ekspertowy weryfikujący przystosowanie maszyn i urządzeń technicznych do minimalnych, ogólnych i branżowych wymagań

Bardziej szczegółowo

Efekty kształcenia dla kierunku inżynieria środowiska

Efekty kształcenia dla kierunku inżynieria środowiska Efekty kształcenia dla kierunku inżynieria Szkoła wyższa prowadząca kierunek studiów: Kierunek studiów: Poziom kształcenia: Profil kształcenia: Umiejscowienie kierunku w obszarze kształcenia w zakresie:

Bardziej szczegółowo

2/4. informatyka" studia I stopnia. Nazwa kierunku studiów i kod. Informatyka WM-I-N-1 programu wg USOS. Tytuł zawodowy uzyskiwany przez

2/4. informatyka studia I stopnia. Nazwa kierunku studiów i kod. Informatyka WM-I-N-1 programu wg USOS. Tytuł zawodowy uzyskiwany przez Załącznik Nr 5 do Uchwały Nr 67/2015 Senatu UKSW z dnia 22 maja 2015 r. Dokumentacja dotycząca opisu efektów kształcenia dla programu kształcenia na kierunku informatyka" studia I stopnia Nazwa kierunku

Bardziej szczegółowo

Automatyka i Robotyka, studia II stopnia (profil ogólnoakademicki)

Automatyka i Robotyka, studia II stopnia (profil ogólnoakademicki) Automatyka i Robotyka, studia II stopnia (profil ogólnoakademicki) Obszar kształcenia: nauki techniczne. Dziedzina: nauki techniczne. Dyscyplina: Automatyka i Robotyka MNiSW WI PP Symb. Efekt kształcenia

Bardziej szczegółowo

SYSTEMY UCZĄCE SIĘ WYKŁAD 3. DRZEWA DECYZYJNE. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.

SYSTEMY UCZĄCE SIĘ WYKŁAD 3. DRZEWA DECYZYJNE. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska. SYSTEMY UCZĄCE SIĘ WYKŁAD 3. DRZEWA DECYZYJNE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska BUDOWA DRZEW DECYZYJNYCH Drzewa decyzyjne są metodą indukcyjnego

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: KOMPUTEROWE WSPOMAGANIE WYTWARZANIA CAM Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: obowiązkowy na specjalności APWiR Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU

Bardziej szczegółowo

Tabela odniesień efektów kierunkowych do efektów obszarowych (tabele odniesień efektów kształcenia)

Tabela odniesień efektów kierunkowych do efektów obszarowych (tabele odniesień efektów kształcenia) Załącznik nr 7 do uchwały nr 514 Senatu Uniwersytetu Zielonogórskiego z dnia 25 kwietnia 2012 r. w sprawie określenia efektów kształcenia dla kierunków studiów pierwszego i drugiego stopnia prowadzonych

Bardziej szczegółowo

15 tyg. 15 tyg. w tym laborat. ECTS. laborat. semin. semin. ćwicz. ćwicz. wykł. ECTS. w tym laborat. 15 tyg. ECTS. laborat. semin. semin. ćwicz.

15 tyg. 15 tyg. w tym laborat. ECTS. laborat. semin. semin. ćwicz. ćwicz. wykł. ECTS. w tym laborat. 15 tyg. ECTS. laborat. semin. semin. ćwicz. Lp. Nazwa modułu Kod modułu E/Z I Treści podstawowe P 01 Matematyka 1 01 101P01 E 60 30 30 0 0 6 30 30 6 02 Matematyka 2 01 201P02 E 60 30 30 0 0 6 30 30 6 03 Fizyka z elementami biofizyki 02 102P03 E

Bardziej szczegółowo

Identyfikacja istotnych atrybutów za pomocą Baysowskich miar konfirmacji

Identyfikacja istotnych atrybutów za pomocą Baysowskich miar konfirmacji Identyfikacja istotnych atrybutów za pomocą Baysowskich miar konfirmacji Jacek Szcześniak Jerzy Błaszczyński Roman Słowiński Poznań, 5.XI.2013r. Konspekt Wstęp Wprowadzenie Metody typu wrapper Nowe metody

Bardziej szczegółowo

Efekty kształcenia dla kierunku studiów informatyka i agroinżynieria i ich odniesienie do efektów obszarowych

Efekty kształcenia dla kierunku studiów informatyka i agroinżynieria i ich odniesienie do efektów obszarowych Załącznik do uchwały nr 376/2012 Senatu UP Efekty kształcenia dla kierunku studiów informatyka i agroinżynieria i ich odniesienie do efektów obszarowych Wydział prowadzący kierunek: Wydział Rolnictwa i

Bardziej szczegółowo

Opracował: mgr inż. Marcin Olech

Opracował: mgr inż. Marcin Olech Laboratorium 1. i 2. Strona 1 z 8 Spis treści: 1. Podstawy pracy w zintegrowanym pakiecie sztucznej inteligencji AITECH Sphinx. 2. Szkieletowy system ekspertowy PC Shell 4.0 3. Tworzenie bazy wiedzy w

Bardziej szczegółowo