Astrofizyka1 fizyka układu słonecznego

Wielkość: px
Rozpocząć pokaz od strony:

Download "Astrofizyka1 fizyka układu słonecznego"

Transkrypt

1 Krzysztof Gęsicki Astrofizyka1 fizyka układu słonecznego Wykładkursowydla2r.studiówAS1 wykład 5: młode Słońce i Ziemia

2 bez wątpienia chcemy poznać przeszłość naszego Słońca obecne Słońce jest chłodną gwiazdą magnetyczną wielewskazujenatoże jego aktywność magnetyczna kiedyś była większa młode Słońce wyglądało inaczej od współczesnego większe było jego oddziaływanie na młode planety

3 gwiazdy słońcopodobne SłońcejestgwiazdątypuG2Vztemperaturąefektywną5780K wiemy,żewciąguewolucjiodzams rozgrzało się o kilkaset stopni pojaśniało o ok. 40% poszukujemy odpowiedników(analogów) młodego Słońca wśród wczesnych i pośrednich typów G Słońce przed ciągiem głównym(pms) było gwiazdą pośredniego typu K(K5 IV) poszukujemy odpowiedników PMS Słońca wśród gwiazd mas słonecznych, otypachwidmowychodwczesnegogpopóźnek wczesnem badania gwiazd słońcopodobnych pozwalają na rekonstrukcję historii Słońca

4 badania odpowiedników słonecznych pokazały, że dla gwiazd mniej masywnych niż 1.5 masy słonecznej i o wieku conajmniej kilkaset milionów lat utrata momentu pędu przez wiatr gwiazdowy wyhamowuje rotację w sposób jednoznacznie określony wiekiem gwiazdy jedna niezależna zmienna wiek gwiazdy wyznacza okres rotacji, a przez mechanizm dynama aktywność magnetyczną na wszystkich poziomach atmosfery

5 można rekonstruować rozkład plam na powierzchni młodych słońc powszechna jest aktywność na wysokich szerokościach plamy biegunowe

6 można rekonstruować rozkład aktywności na powierzchni wykorzystując obserwacje zaćmienia

7 można rekonstruować pola magnetyczne fotosfery w oparciu o obserwacje obrazów Zeemana-Dopplera i modelowanie numeryczne

8 obserwacje ilości plam na Słońcu sięgają setek lat okres aktywności to 11 lat pełny cykl magnetyczny to 22 lata podobne cykle aktywności stwierdzono u wielu odpowiedników słonecznych zobserwacjichromosferycznychliniicaiih&k z obserwacji cykli plam gwiazdowych wydedukowanych z krzywych blasku

9 można wyznaczać tempa utraty masy w funkcji aktywności gwiazdowej reprezentowanej przez strumień rentgenowski

10 emisja UV pochodzi z chromosfery i warstwy przejściowej otemperaturach K

11 porównanie obecnego Słońca z młodymi odpowiednikami prowadzi do wniosku że magnetyczna aktywność młodych słońc jest o rzędy wielkości większa od obecnej słonecznej zczasem maleje rotacja napędzająca dynamo słabnie tempo utraty masy przez wiatr

12 problem z młodym Słońcem i młodą Ziemią młode Słońce mimo większej aktywności świeciło wyraźnie słabiej niż dzisiejsze wzrost jasności Słońca z wiekiem jest prostą konsekwencją sposobu wytwarzania energii w jego wnętrzu: zupływemczasugromadząsięwsłońcujądrahelu powiększając średnią masę molekularną wnętrza powiększa się energia potencjalna zgodnie z twierdzeniem o wiriale zwiększa się też energia cieplna, wzrasta temperatura, wzrasta tempo reakcji jądrowych, wzrasta jasność całkowita jest to nieuniknione 2E therm +E grav =0

13 modele ewolucji gwiazd typu słonecznego przewidują dla młodej Ziemi że otrzymywała od Słońca około 25% mniej energii niż dzisiaj powodowałoby to całkowite zamarznięcie Ziemi przez pierwsze 2 miliardy lat ale mamy dowody na występowanie płynej wody na powierzchni weoniearchaiku3.8do2.5miliardalattemu(rys.zwikipedii) dla wyjaśnienia problemu możemy: modyfikować model Słońca analizować reakcję młodej Ziemi na promieniowanie młodego Słońca

14 modyfikowanie standardowego modelu Słońca wydaje się że model budowy Słońca i jego ewolucji jest poprawny od czasu problemu neutrin modele słoneczne były bardzo starannie sprawdzane problem neutrin rozwiązano modyfikując standardowy model fizyki cząstek aniemodelsłońca

15 jedynym możliwym sposobem na zmianę tendencji stałego wzrostu jasności słonecznej wydaje się być zmiana(utrata) masy jasność gwiazdy zależy od tempa reakcji syntezy wodoru w hel tempo to silnie rośnie z masą gwiazdy L M η gdzieη 2 4,dlaSłońcazwykleprzyjmujesię4 obecne Słońce traci masę na dwa sposoby: masa wytworzonego helu jest mniejsza od sumy mas łączonych protonów z górnych rejonów atmosfery wieje wiatr słoneczny

16 znamy wartości dla obu procesów M fuzja M rok 1 M wiatr M rok 1 wiedząc,żedzisiejszesłońcemamasę kg obliczymy, że 4.57 mld lat temu miało masę 0.05% większą co miało zaniedbywalny wpływ na jego jasność

17 wiemy jednak że wiatr słoneczny w młodości był silniejszy choćby z powodu większej aktywności słonecznej możnaoszacować,żemłodesłońcezmasąok.4%większąodobecnej byłoby wystarczająco jasne by tłumaczyć obecność ciekłej wody na Marsie przy masywniejszym, więc i jaśniejszym, Słońcu Ziemia krążyła by po ciaśniejszej orbicie co zwiększałoby jej ogrzewanie

18 są ograniczenia na masę młodego Słońca przy zbyt dużej jasności Słońca efekt cieplarniany narastałby lawinowo oceany odparowałyby i rozeszły się w przestrzeń kosmiczną w ten właśnie sposób straciła swoją wodę Wenus szacuje się że 10% wzrost jasności Słońca doprowadziłby do utraty wody przez Ziemię odpowiada to 7% wzrostowi masy Słońca

19 wzmożone tempo utraty masy przez młode Słońce jest w sprzeczności z badaniami heliosejsmologicznymi bardzo długi okres wzmożonej utraty masy prowadziłby do zmian w rozkładzie cięższych pierwiastków poniżej warstwy konwektywnej, a w konsekwencji do innych niż obserwowane częstości oscylacji granicą takiej wzmożonej utraty masy jest pierwsze 0.2 mld lat zamało potrzebujemyok.1 2mldlat alewydajesięże7%większamasasłońca jest jeszcze zgodna z danymi heliosejsmologicznymi

20 obserwacje innych młodych gwiazd podobnych do Słońca pokazują że większość traconej masy przypada na pierwsze 0.1 mld lat co ważniejsze obserwowane odpowiedniki Słońca wykazują znacznie mniejszą skumulowaną utratę masy niż potrzebna do zrównoważenia małej jasności młodego Słońca rozwiązania problemu trzeba szukać na Ziemi a nie w Słońcu

21 słabe młode Słońce musiało spowodować silną epokę lodowcową wczasiepomiędzypowstaniemziemi4.5mldlattemua3mldlattemu występuje sprzężenie zwrotne między zlodowaceniem a albedo modele klimatyczne potwierdzają ten efekt, choć też wskazują na możliwość wystąpienia wąskiego niezamarzniętego pasa w rejonach tropikalnych, spowodowanego zmniejszoną powłoką chmur w tym rejonie Ziemia kiedy już zamarzła to potrzebowała dużego stężenia gazów cieplarnianych by wrócić do stanu cieplejszego oceany mogły nie zamarznąć do dna ze względu na ciepło geotermalne z wnętrza Ziemi

22 młoda Ziemia eony nie są precyzyjnie zdefiniowane logiczne jest założenie że archaik liczymy od zakończenia intensywnego bombardowania meteorytami ok mld lat temu już wcześniej, w hadeiku, mamy podejrzenia na obecność ciekłej wody świadczą o tym ziarenka cyrkonu zakonserwowane od czasu hadeiku w młodszych skałach

23 ocean hadeiku wyglądał inaczej od naszego Ziemia wytworzyła się z grawitacyjnej akrecji planetezymali wielkie zderzenie tworzące Księżyc miało miejsce po kolejnych 50 mln lat, blisko końca tego etapu akrecji

24 Ziemia pozostawała otoczona oparami skalnymi przez ok lat silny efekt cieplarniany(dwutlenek węgla i woda odparowujące z płaszcza) oraz ogrzewanie pływowe przez krążący wówczas blisko Księżyc, utrzymywały powierzchnię w stanie płynnej magmy przez kilka milionów lat następnie skorupa stwardniała wytworzyłsięoceangorącejwodyok.500k pod gęstą atmosferą od ciśnieniem 100 bar dwutlenku węgla CO 2 zostałwciągnięty(subdukcja)dopłaszczawczasiedziesiątekmlnlat, zanim ostatnie wielkie bombardowanie uformowało początek eonu archaik

25 dowody geologiczne obecności wód powierzchniowych w archaiku to głównie skały osadowe brak dowodów na powszechne zlodowacenie w całym archaiku

26 są dowody na mikroorganizmy w archaiku, mikroskamieniałości z czasów 2.5 do 3.5 mld lat temu sama obecność życia nie jest silnym argumentem przeciw powłoce lodowej ale obecność fotosyntezujących cyjanobakterii jest dodatkowym argumentem przeciw Ziemi okrytej całkowicie i nieustannie lodem znane jest wiele innych niezależnych przejawów występowania ciekłej wody w eonie archaiku kiedy Słońce było znacznie słabsze od dzisiejszego mamy dowody na występowanie ciekłej wody w pewnych okresach historii Marsa jego ciepła powierzchnia jest jeszcze ciekawszym problemem

27 zakładając dzisiejszą zawartość gazów cieplarnianych i albedo modele wykazywały zamarzniętą wodę przez pierwsze 2 mld lat Ziemi Sagan i Mullen zakwestionowali jako naiwne założenie że w archaiku na klimat wpływały te same czynniki co obecnie jako pierwsi zasugerowali rozwiązanie sprzeczności przez wzmocniony efekt cieplarniany z obecnością innych gazów

28 modyfikowanie efektu cieplarnianego Ziemi obecnie temperatura troposfery wzrasta dzięki absorpcji długofalowego promieniowaniapowierzchniprzezgazyatmosferycznejakparawodna,co 2,metanCH 4 na młodej Ziemi na efekt cieplarniany oddziaływały: amoniaknh 3 bardzosilnyczynnikcieplarniany z silną i szeroką absorpcją na 10 mikronach maksimum emisji Ziemi jednak silne promieniowanie UV młodego Słońca rozkładałoby amoniak a woda wypłukiwałaby rozpuszczalny amoniak z atmosfery metanch 4 trudniejniżamoniakrozkładanypromieniowaniemuv dzisiaj metan jest produkowany biologicznie w archaiku źródłem metanu były meteoryty i komety, wyziewy wulkaniczne i źródła geotermalne, ewentualnie anaerobowe ekosystemy

29 szacunki zawartości metanu w różnych epokach wychodzi go jednak za mało

30 dwutlenekwęglaco 2 bierze udział w reakcjach nieorganicznych z krzemianami, węglan wapnia osadza się na dnie oceanów, z ruchami tektonicznymi trafia w głąb Ziemi, częściowo powraca do atmosfery dzięki wulkanom, ale w rezultacie jego zawartość w atmosferze maleje ponadtoanalizygeochemicznewykazująwartościco 2 za małe do rozwiązania paradoksu młodego Słońca co pokazuje rysunek

31

32 wzmożony efekt cieplarniany wydaje się mimo wszystko najlepszym rozwiązaniem problemów z młodym Słońcem ostateczne rozstrzygnięcie problemu jest utrudniane przez niepewności w opisie przepływu promieniowania oraz przez brak dobrego modelu klimatycznego młodej Ziemi do tego mogą dochodzić inne czynniki jak zmienność pokrycia chmurami

33 rotacja i nachylenie osi obrotu Ziemi nie zmieniają bezpośrednio bilansu energetycznego ale mogą zmieniać dystrybucję energii w systemie klimatycznym duże nachylenie osi powoduje cieplejszy klimat ale badania paleomagnetyczne wykazały stabilność osi w ostatnich 2.5 mld lat udowodniono też, że Księżyc stabilizuje oś Ziemi tarcie pływowe spowalnia obrót Ziemii oddala Księżyc obrótziemi4mldlattemutrwał14godzin krótszy dzień może zwiększać gradient temperatury między równikiem a biegunami zmniejszać globalne pokrycie chmurami powodując wzrost temperatury o 2 K

34 w archaiku kontynenty zajmowały ok. 10% dzisiejszej powierzchni co modyfikowało albedo i obieg ciepła

35 być może ocean archaiku był bardziej słony od dzisiejszego mogło to mieć wpływ na cyrkulację termohalinową w oceanach pływy kiedyś też były znaczniejsze bo Księżyc był bliżej te efekty oczekują badań

36 wysokoenergetyczne promieniowanie oddziałujące na planety bolometryczna jasność Słońca ma maksimum w zakresie widzialnym promieniowania, powstającym w dolnej atmosferze, która mało reaguje na aktywność słoneczną irradiancja obecnego Słońca zmienia się o ok. 0.1% w ciągu 11-letniego cyklu oprócz zmiany jasności bolometrycznej w skali miliarda lat Słońce wykazuje zmienność w skalach do tysiąca lat będącą rezultatem aktywności powiązanej z polami magnetycznymi promieniowanie UV Słońca pochodzi głównie z gorących górnych warstw atmosfery i wykazuje znacznie większą zmienność zmienność Słońca, w tym jego jasności UV, była kiedyś większa

37 o ile jasność bolometryczna Słońca wzrasta to zachodzi stały spadek aktywności magnetycznej spowodowany stopniowym spowalnianiem rotacji Słońca, która jest motorem dynama magnetohydrodynamicznego wiatr słoneczny był silniejszy w młodym Słońcu co miało konsekwencje dla młodej Ziemi dlajejmagnetosferyidlautratygazówiwody pole magnetyczne młodej Ziemi wynosiło 50 70% obecnego więc było słabszą barierą ochronną

38 młode gwiazdy w gromadach otwartych, będące odpowiednikami młodego Słońca, przewyższają obecną magnetyczną aktywność Słońca i wynikające z niej promieniowanie o rzędy wielkości w zakresie rentgenowskim słońce ZAMS świeciło 1000 razy silniej od obecnego podobnie jest z wysokoenergetycznymi cząstkami widocznymi w emisji radiowej podobnie jest z wiatrem gwiazdowym

39 wysokoenergetyczne cząstki i fotony są absorbowane w górnych warstwach atmosfer planet, jonizują i ogrzewają, prowadządozłożonychreakcjiłańcuchowych(np.produkcjao 3 ) młode Słońce było aktywniejsze magnetycznie z powodu szybszej rotacji mogłorotowaći10razyszybciejemitując100razywięcejwzakresiex znamy oddziaływanie obecnego Słońca na obecne planety, trudno jest oszacować warunki panujące na planetach miliardy lat temu aktywność magnetyczna Słońca jest kluczem do lepszego zrozumienia ewolucji całego układu

40 ewolucja powierzchni i atmosfer planet musi być rozpatrywana z uwzględnieniem słonecznego strumienia wysokoenergetycznych cząstek i fotonów diagram przedstawia ewolucję Ziemi nadmiar wody w początkowych etapach późniejszą ucieczkę wody biologicznąprodukcjęo 2

41

42 w 2011/12 konkluzjami artykułu przeglądowego było, że po kilkudziesięciu latach analiz problem z młodym Słońcem i młodą Ziemią nie jest rozwiązany geochemia eonów archaiku i proterozoiku dokonała postępu dopiero w ostatniej dekadzie oczekiwane są rozdzielone przestrzennie modele klimatyczne, które będą mogły zastąpić modele jednowymiarowe czy proste obliczenia bilansowe

43 już w 2013 były publikowane pierwsze rezultaty trójwymiarowych modeli klimatycznych Ziemi ogrzewanej młodym Słońcem rozważano wpływ: gazówcieplarnianychco 2 orazch 4 ciśnienia atmosferycznego rozmiaru kropelek cieczy w obłokach rozkładu kontynentów tempa rotacji Ziemi pierwszy model testowy dla obecnych kontynentów i obecnego składu atmosfery pokazał, że pod Słońcem ciemniejszym o 20% Ziemiazamienisiękulęlodowąwciąguzaledwie23lat

44

45

46 otrzymano,żeodpowiedniamieszankaco 2 orazch 4 jestwstaniezapewnićklimatumiarkowany(10 20 C) wepocearchaikuod3.8do2.5mldlattemu w okolicach równikowych

47 przy czym taka mieszanka nie jest w sprzeczności z danymi geologicznymi pozostałe czynniki mają znacznie mniejszy wpływ na klimat

48 Konkuzje w 2013 były następujące: dla młodego Słońca otrzymanie pasów ciekłej wody w chłodnym klimacie nie jest bardzo trudnym zadaniem imożnatozrobićnawielesposobów tym niemniej potrzeba więcej danych geologicznych z epoki wczesnego Archaiku w szczególności dotyczących ciśnienia gazów cieplarnianych by odtworzyć poprawnie atmosferę Ziemi w tamtym czasie

49 alternatywne teorie cały czas publikowane są prace proponujące wyjaśnienie paradoksu przez modyfikowanie teorii grawitacji, w szczególności: malejąca z czasem stała G(wystarczy 1%) może powodować większą jasność młodego Słońca ciemna energia powodująca ekspansję wszechświata może działać lokalnie oddalając Ziemię od Słońca promień orbity Ziemi może być powiększany przez coś w rodzaju ciśnienia wynikającego z odpowiednio zmodyfikowanej teorii grawitacji itp.

50 literatura THE FAINT YOUNG SUN PROBLEM G.Feulner, Reviews of Geophysics, 50, RG2006/ 2012 The Sun in Time: Activity and Environment M.Guedel, Living Rev. Solar Phys., 4,(2007), 3 Exploring the faint young Sun problem andthepossibleclimatesofthearcheanearthwitha3-dgcm Charnayetal,JGR118,10414(2013)

51 zagadnienia wymagane na egzaminie główna przyczyna zmian jasności bolometrycznej Słońca w skali miliardów lat porównanie magnetyczej aktywności Słońca młodego i obecnego problem słabego młodego Słońca pierwsze miliardy lat życia Ziemi

Studia Podyplomowe z Astronomii i Nauk Przyrodniczych. Fizykagwiazd. Krzysztof Gęsicki wykład 5: MŁODOŚĆ I EWOLUCJA SŁOŃCA

Studia Podyplomowe z Astronomii i Nauk Przyrodniczych. Fizykagwiazd. Krzysztof Gęsicki wykład 5: MŁODOŚĆ I EWOLUCJA SŁOŃCA Studia Podyplomowe z Astronomii i Nauk Przyrodniczych Fizykagwiazd Krzysztof Gęsicki wykład 5: MŁODOŚĆ I EWOLUCJA SŁOŃCA problem z młodym Słońcem i młodą Ziemią młode Słońce świeciło wyraźnie słabiej niż

Bardziej szczegółowo

Życie w Układzie Słonecznym I

Życie w Układzie Słonecznym I Astrobiologia Życie w Układzie Słonecznym I Wykład 4 Wczesne Słońce Moc promieniowania Słońca rośnie wraz z wiekiem Wczesne Słońce Ilość energii, jaką otrzymuje Ziemia w jednostce czasu P in = π R 2 S(1

Bardziej szczegółowo

Odczarujmy mity II: Kto naprawdę zmienia ziemski klimat i dlaczego akurat Słooce?

Odczarujmy mity II: Kto naprawdę zmienia ziemski klimat i dlaczego akurat Słooce? Odczarujmy mity II: Kto naprawdę zmienia ziemski klimat i dlaczego akurat Słooce? Kilka pytao na początek Czy obecnie obserwujemy zmiany klimatu? Co, poza działaniem człowieka, może wpływad na zmiany klimatu?

Bardziej szczegółowo

Synteza jądrowa (fuzja) FIZYKA 3 MICHAŁ MARZANTOWICZ

Synteza jądrowa (fuzja) FIZYKA 3 MICHAŁ MARZANTOWICZ Synteza jądrowa (fuzja) Cykl życia gwiazd Narodziny gwiazd: obłok molekularny Rozmiary obłoków (Giant Molecular Cloud) są rzędu setek lat świetlnych. Masa na ogół pomiędzy 10 5 a 10 7 mas Słońca. W obłoku

Bardziej szczegółowo

Układ Słoneczny. Powstanie Układu Słonecznego. Dysk protoplanetarny

Układ Słoneczny. Powstanie Układu Słonecznego. Dysk protoplanetarny Układ Słoneczny Powstanie Układu Słonecznego Układ Słoneczny uformował się około 4,6 mld lat temu w wyniku zagęszczania się obłoku materii składającego się głównie z gazów oraz nielicznych atomów pierwiastków

Bardziej szczegółowo

EFEKT CIEPLARNIANY. Efekt cieplarniany występuje, gdy atmosfera zawiera gazy pochłaniające promieniowanie termiczne (podczerwone).

EFEKT CIEPLARNIANY. Efekt cieplarniany występuje, gdy atmosfera zawiera gazy pochłaniające promieniowanie termiczne (podczerwone). Efekt cieplarniany występuje, gdy atmosfera zawiera gazy pochłaniające promieniowanie termiczne (podczerwone). Promieniowanie termiczne emitowane z powierzchni planety nie może wydostać się bezpośrednio

Bardziej szczegółowo

Promieniowanie jonizujące

Promieniowanie jonizujące Promieniowanie jonizujące Wykład III Krzysztof Golec-Biernat Reakcje jądrowe Uniwersytet Rzeszowski, 8 listopada 2017 Wykład III Krzysztof Golec-Biernat Promieniowanie jonizujące 1 / 12 Energia wiązania

Bardziej szczegółowo

Grawitacja - powtórka

Grawitacja - powtórka Grawitacja - powtórka 1. Oceń prawdziwość każdego zdania. Zaznacz, jeśli zdanie jest prawdziwe, lub, jeśli jest A. Jednorodne pole grawitacyjne istniejące w obszarze sali lekcyjnej jest wycinkiem centralnego

Bardziej szczegółowo

Klimat na planetach. Szkoła Podstawowa Klasy VII-VIII Gimnazjum Klasa III Doświadczenie konkursowe 2

Klimat na planetach. Szkoła Podstawowa Klasy VII-VIII Gimnazjum Klasa III Doświadczenie konkursowe 2 Szkoła Podstawowa Klasy VII-VIII Gimnazjum Klasa III Doświadczenie konkursowe Rok 019 1. Wstęp teoretyczny Podstawowym źródłem ciepła na powierzchni planet Układu Słonecznego, w tym Ziemi, jest dochodzące

Bardziej szczegółowo

Aktywność Słońca. dr Szymon Gburek Centrum Badań Kosmicznych PAN : 17:00

Aktywność Słońca. dr Szymon Gburek Centrum Badań Kosmicznych PAN : 17:00 Aktywność Słońca dr Szymon Gburek Centrum Badań Kosmicznych PAN 2017-09-22: 17:00 Słońce Skład hemiczny 75% wodór, 23% hel. 2% cięższe pierwiastki, tlen, węgiel, neon, żelazo Symbol Promień Odległość od

Bardziej szczegółowo

Budowa i ewolucja gwiazd I. Skale czasowe Równania budowy wewnętrznej Modele Diagram H-R Ewolucja gwiazd

Budowa i ewolucja gwiazd I. Skale czasowe Równania budowy wewnętrznej Modele Diagram H-R Ewolucja gwiazd Budowa i ewolucja gwiazd I Skale czasowe Równania budowy wewnętrznej Modele Diagram H-R Ewolucja gwiazd Dynamiczna skala czasowa Dla Słońca: 3 h Twierdzenie o wiriale Temperatura wewnętrzna Cieplna skala

Bardziej szczegółowo

Fizyka Procesów Klimatycznych Wykład 1

Fizyka Procesów Klimatycznych Wykład 1 Fizyka Procesów Klimatycznych Wykład 1 prof. dr hab. Szymon Malinowski Instytut Geofizyki, Wydział Fizyki Uniwersytet Warszawski malina@igf.fuw.edu.pl dr hab. Krzysztof Markowicz Instytut Geofizyki, Wydział

Bardziej szczegółowo

Teoria Wielkiego Wybuchu FIZYKA 3 MICHAŁ MARZANTOWICZ

Teoria Wielkiego Wybuchu FIZYKA 3 MICHAŁ MARZANTOWICZ Teoria Wielkiego Wybuchu Epoki rozwoju Wszechświata Wczesny Wszechświat Epoka Plancka (10-43 s): jedno podstawowe oddziaływanie Wielka Unifikacja (10-36 s): oddzielenie siły grawitacji od reszty oddziaływań

Bardziej szczegółowo

Budowa i ewolucja gwiazd I. Skale czasowe Równania budowy wewnętrznej Modele Diagram H-R Ewolucja gwiazd

Budowa i ewolucja gwiazd I. Skale czasowe Równania budowy wewnętrznej Modele Diagram H-R Ewolucja gwiazd Budowa i ewolucja gwiazd I Skale czasowe Równania budowy wewnętrznej Modele Diagram H-R Ewolucja gwiazd Dynamiczna skala czasowa Dla Słońca: 3 h Twierdzenie o wiriale Temperatura wewnętrzna Cieplna skala

Bardziej szczegółowo

O aktywności słonecznej i zorzach polarnych część I

O aktywności słonecznej i zorzach polarnych część I O aktywności słonecznej i zorzach polarnych część I dr Tomasz Mrozek Instytut Astronomiczny Uniwersytet Wrocławski Słooce Protuberancja Fotosfera Plama Chromosfera Włókno Dziura koronalna Proporzec koronalny

Bardziej szczegółowo

Ewolucja w układach podwójnych

Ewolucja w układach podwójnych Ewolucja w układach podwójnych Tylko światło Temperatura = barwa różnica dodatnia różnica równa 0 różnica ujemna Jasnośd absolutna m M 5 log R 10 pc Diagram H-R Powstawanie gwiazd Powstawanie gwiazd ciśnienie

Bardziej szczegółowo

Następnie powstały trwały izotop - azot-14 - reaguje z trzecim protonem, przekształcając się w nietrwały tlen-15:

Następnie powstały trwały izotop - azot-14 - reaguje z trzecim protonem, przekształcając się w nietrwały tlen-15: Reakcje syntezy lekkich jąder są podstawowym źródłem energii wszechświata. Słońce - gwiazda, która dostarcza energii niezbędnej do życia na naszej planecie Ziemi, i w której 94% masy stanowi wodór i hel

Bardziej szczegółowo

RUCH ROTACYJNY ZIEMI. Geodezja Satelitarna

RUCH ROTACYJNY ZIEMI. Geodezja Satelitarna RUCH ROTACYJNY ZIEMI Geodezja Satelitarna ROTACJA ZIEMI Niejednostajność ruchu (spowalnianie obrotu wydłużanie długości dnia) Zmienność położenia osi rotacji - ruch względem inercjalnego układu współrzędnych

Bardziej szczegółowo

1. Obserwacje nieba 2. Gwiazdozbiór na północnej strefie niebieskiej 3. Gwiazdozbiór na południowej strefie niebieskiej 4. Ruch gwiazd 5.

1. Obserwacje nieba 2. Gwiazdozbiór na północnej strefie niebieskiej 3. Gwiazdozbiór na południowej strefie niebieskiej 4. Ruch gwiazd 5. Budowa i ewolucja Wszechświata Autor: Weronika Gawrych Spis treści: 1. Obserwacje nieba 2. Gwiazdozbiór na północnej strefie niebieskiej 3. Gwiazdozbiór na południowej strefie niebieskiej 4. Ruch gwiazd

Bardziej szczegółowo

Tworzenie protonów neutronów oraz jąder atomowych

Tworzenie protonów neutronów oraz jąder atomowych Tworzenie protonów neutronów oraz jąder atomowych kwarki, elektrony, neutrina oraz ich antycząstki anihilują aby stać się cząstkami 10-10 s światła fotonami energia kwarków jest już wystarczająco mała

Bardziej szczegółowo

Aktywne Słońce. Tomasz Mrozek. Instytut Astronomiczny. Uniwersytet Wrocławski

Aktywne Słońce. Tomasz Mrozek. Instytut Astronomiczny. Uniwersytet Wrocławski Aktywne Słońce Tomasz Mrozek Instytut Astronomiczny Uniwersytet Wrocławski Heliofizyka XXI w Źródło energii słonecznej 600 mln ton wodoru zamienia się w hel w każdej sekundzie 4 mln ton jest przekształcane

Bardziej szczegółowo

BUDOWA I EWOLUCJA GWIAZD. Jadwiga Daszyńska-Daszkiewicz

BUDOWA I EWOLUCJA GWIAZD. Jadwiga Daszyńska-Daszkiewicz BUDOWA I EWOLUCJA GWIAZD Jadwiga Daszyńska-Daszkiewicz Semestr letni, 2018/2019 równania budowy wewnętrznej (ogólne równania hydrodynamiki) własności materii (mikrofizyka) ograniczenia z obserwacji MODEL

Bardziej szczegółowo

Układ klimatyczny. kriosfera. atmosfera. biosfera. geosfera. hydrosfera

Układ klimatyczny. kriosfera. atmosfera. biosfera. geosfera. hydrosfera Układ klimatyczny kriosfera atmosfera biosfera geosfera hydrosfera 1 Klimat, bilans energetyczny 30% 66% T=15oC Bez efektu cieplarnianego T=-18oC 2 Przyczyny zmian klimatycznych Przyczyny zewnętrzne: Zmiana

Bardziej szczegółowo

Rotacja. W układzie związanym z planetą: siła odśrodkowa i siła Coroilisa. Potencjał efektywny w najprostszym przypadku (przybliżenie Roche a):

Rotacja. W układzie związanym z planetą: siła odśrodkowa i siła Coroilisa. Potencjał efektywny w najprostszym przypadku (przybliżenie Roche a): Rotacja W układzie związanym z planetą: siła odśrodkowa i siła Coroilisa. Potencjał efektywny w najprostszym przypadku (przybliżenie Roche a): Φ = ω2 r 2 sin 2 (θ) 2 GM r Z porównania wartości potencjału

Bardziej szczegółowo

Wykłady z Geochemii Ogólnej

Wykłady z Geochemii Ogólnej Wykłady z Geochemii Ogólnej III rok WGGiOŚ AGH 2010/11 dr hab. inż. Maciej Manecki A-0 p.24 www.geol.agh.edu.pl/~mmanecki ELEMENTY KOSMOCHEMII Nasza wiedza o składzie materii Wszechświata pochodzi z dwóch

Bardziej szczegółowo

Liceum dla Dorosłych semestr 1 FIZYKA MAŁGORZATA OLĘDZKA

Liceum dla Dorosłych semestr 1 FIZYKA MAŁGORZATA OLĘDZKA Liceum dla Dorosłych semestr 1 FIZYKA MAŁGORZATA OLĘDZKA Temat 10 : PRAWO HUBBLE A. TEORIA WIELKIEGO WYBUCHU. 1) Prawo Hubble a [czyt. habla] 1929r. Edwin Hubble, USA, (1889-1953) Jedno z największych

Bardziej szczegółowo

Galaktyka. Rysunek: Pas Drogi Mlecznej

Galaktyka. Rysunek: Pas Drogi Mlecznej Galaktyka Rysunek: Pas Drogi Mlecznej Galaktyka Ośrodek międzygwiazdowy - obłoki molekularne - możliwość formowania się nowych gwiazd. - ekstynkcja i poczerwienienie (diagramy dwuwskaźnikowe E(U-B)/E(B-V)=0.7,

Bardziej szczegółowo

LX Olimpiada Astronomiczna 2016/2017 Zadania z zawodów III stopnia. S= L 4π r L

LX Olimpiada Astronomiczna 2016/2017 Zadania z zawodów III stopnia. S= L 4π r L LX Olimpiada Astronomiczna 2016/2017 Zadania z zawodów III stopnia 1. Przyjmij, że prędkość rotacji różnicowej Słońca, wyrażoną w stopniach na dobę, można opisać wzorem: gdzie φ jest szerokością heliograficzną.

Bardziej szczegółowo

Od Wielkiego Wybuchu do Gór Izerskich. Tomasz Mrozek Instytut Astronomiczny UWr Zakład Fizyki Słońca CBK PAN

Od Wielkiego Wybuchu do Gór Izerskich. Tomasz Mrozek Instytut Astronomiczny UWr Zakład Fizyki Słońca CBK PAN Od Wielkiego Wybuchu do Gór Izerskich Tomasz Mrozek Instytut Astronomiczny UWr Zakład Fizyki Słońca CBK PAN Góry Izerskie Góry Izerskie Góry Izerskie Góry Izerskie Góry Izerskie Góry Izerskie Góry Izerskie

Bardziej szczegółowo

Układ słoneczny, jego planety, księżyce i planetoidy

Układ słoneczny, jego planety, księżyce i planetoidy Układ słoneczny, jego planety, księżyce i planetoidy Układ słoneczny składa się z ośmiu planet, ich księżyców, komet, planetoid i planet karłowatych. Ma on około 4,6 x10 9 lat. W Układzie słonecznym wszystkie

Bardziej szczegółowo

Fizyka układów planetarnych. Wenus. Wykład 3

Fizyka układów planetarnych. Wenus. Wykład 3 Fizyka układów planetarnych Wenus Wykład 3 parametr wartość okres synodyczny 583 d (1 rok i 7 mies) rozm. kątowy 10 66 WENUS MERKURY HORYZONT Słońce pod horyzontem Źródło: NASA Źródło: NASA Źródło: Wordpress

Bardziej szczegółowo

Oddziaływanie podstawowe rodzaj oddziaływania występującego w przyrodzie i nie dającego sprowadzić się do innych oddziaływań.

Oddziaływanie podstawowe rodzaj oddziaływania występującego w przyrodzie i nie dającego sprowadzić się do innych oddziaływań. 1 Oddziaływanie podstawowe rodzaj oddziaływania występującego w przyrodzie i nie dającego sprowadzić się do innych oddziaływań. Wyróżniamy cztery rodzaje oddziaływań (sił) podstawowych: oddziaływania silne

Bardziej szczegółowo

Wykład 9 - Ewolucja przed ciągiem głównym. Ciąg główny wieku zerowego (ZAMS)

Wykład 9 - Ewolucja przed ciągiem głównym. Ciąg główny wieku zerowego (ZAMS) Wykład 9 - Ewolucja przed ciągiem głównym. Ciąg główny wieku zerowego (ZAMS) 30.11.2017 Masa Jeansa Załóżmy, że mamy jednorodny, kulisty obłok gazu o masie M, średniej masie cząsteczkowej µ, promieniu

Bardziej szczegółowo

ENCELADUS KSIĘŻYC SATURNA. Wojciech Wróblewski Źródło: en.wikipedia.org

ENCELADUS KSIĘŻYC SATURNA. Wojciech Wróblewski Źródło: en.wikipedia.org ENCELADUS KSIĘŻYC SATURNA Źródło: en.wikipedia.org Wojciech Wróblewski 2017 PODSTAWOWE DANE DOTYCZĄCE ENCELADUSA Odkryty w 1789 r. Przez Williama Herschela Odległość od Saturna (perycentrum): 237378 km

Bardziej szczegółowo

LIV Olimpiada Astronomiczna 2010 / 2011 Zawody III stopnia

LIV Olimpiada Astronomiczna 2010 / 2011 Zawody III stopnia LIV Olimpiada Astronomiczna 2010 / 2011 Zawody III stopnia 1. Wskutek efektów relatywistycznych mierzony całkowity strumień promieniowania od gwiazdy, która porusza się w kierunku obserwatora z prędkością

Bardziej szczegółowo

Układ słoneczny. Rozpocznij

Układ słoneczny. Rozpocznij Układ słoneczny Rozpocznij Planety układu słonecznego Mapa Merkury Wenus Ziemia Mars Jowisz Saturn Neptun Uran Sprawdź co wiesz Merkury najmniejsza i najbliższa Słońcu planeta Układu Słonecznego. Jako

Bardziej szczegółowo

Oddziaływania fundamentalne

Oddziaływania fundamentalne Oddziaływania fundamentalne Silne: krótkozasięgowe (10-15 m). Siła rośnie ze wzrostem odległości. Znaczna siła oddziaływania. Elektromagnetyczne: nieskończony zasięg, siła maleje z kwadratem odległości.

Bardziej szczegółowo

Ekspansja Wszechświata

Ekspansja Wszechświata Ekspansja Wszechświata Odkrycie Hubble a w 1929 r. Galaktyki oddalają się od nas z prędkościami wprost proporcjonalnymi do odległości. Prędkości mierzymy za pomocą przesunięcia ku czerwieni efekt Dopplera

Bardziej szczegółowo

FIZYKA I CHEMIA GLEB. Literatura przedmiotu: Zawadzki S. red. Gleboznastwo, PWRiL 1999 Kowalik P. Ochrona środowiska glebowego, PWN, Warszawa 2001

FIZYKA I CHEMIA GLEB. Literatura przedmiotu: Zawadzki S. red. Gleboznastwo, PWRiL 1999 Kowalik P. Ochrona środowiska glebowego, PWN, Warszawa 2001 FIZYKA I CHEMIA GLEB Literatura przedmiotu: Zawadzki S. red. Gleboznastwo, PWRiL 1999 Kowalik P. Ochrona środowiska glebowego, PWN, Warszawa 2001 Tematyka wykładów Bilans wodny i cieplny gleb, właściwości

Bardziej szczegółowo

Efekt cieplarniany i warstwa ozonowa

Efekt cieplarniany i warstwa ozonowa Efekt cieplarniany i warstwa ozonowa Promieniowanie ciała doskonale czarnego Ciało doskonale czarne ciało pochłaniające całkowicie każde promieniowanie, które padnie na jego powierzchnię, niezależnie od

Bardziej szczegółowo

I etap ewolucji :od ciągu głównego do olbrzyma

I etap ewolucji :od ciągu głównego do olbrzyma I etap ewolucji :od ciągu głównego do olbrzyma Spalanie wodoru a następnie helu i cięższych jąder doprowadza do zmiany składu gwiazdy i do przesunięcia gwiazdy na wykresie H-R II etap ewolucji: od olbrzyma

Bardziej szczegółowo

Astronomia. Znając przyspieszenie grawitacyjne planety (ciała), obliczyć możemy ciężar ciała drugiego.

Astronomia. Znając przyspieszenie grawitacyjne planety (ciała), obliczyć możemy ciężar ciała drugiego. Astronomia M = masa ciała G = stała grawitacji (6,67 10-11 [N m 2 /kg 2 ]) R, r = odległość dwóch ciał/promień Fg = ciężar ciała g = przyspieszenie grawitacyjne ( 9,8 m/s²) V I = pierwsza prędkość kosmiczna

Bardziej szczegółowo

Skala jasności w astronomii. Krzysztof Kamiński

Skala jasności w astronomii. Krzysztof Kamiński Skala jasności w astronomii Krzysztof Kamiński Obserwowana wielkość gwiazdowa (magnitudo) Skala wymyślona prawdopodobnie przez Hipparcha, który podzielił gwiazdy pod względem jasności na 6 grup (najjaśniejsze:

Bardziej szczegółowo

Słońce a sprawa ziemskiego klimatu

Słońce a sprawa ziemskiego klimatu Słońce a sprawa ziemskiego klimatu Słońce - gwiazda Promień 696 000 km (109 promieni ziemskich) Okres obrotu 27 dni (równik) do 31 dni (okolice biegunów) Temperatura powierzchni 5 800 K (średnia) Masa

Bardziej szczegółowo

Tajemnice Srebrnego Globu

Tajemnice Srebrnego Globu Tajemnice Srebrnego Globu Teorie powstania Księżyca Księżyc powstał w wyniku zderzenia pra Ziemi z ciałem niebieskim o rozmiarach zbliżonych do ziemskich Ziemia i Księżyc powstały równocześnie, na początku

Bardziej szczegółowo

Kolokwium zaliczeniowe Informatyczne Podstawy Projektowania 1

Kolokwium zaliczeniowe Informatyczne Podstawy Projektowania 1 2016 Kolokwium zaliczeniowe Informatyczne Podstawy Projektowania 1 Elżbieta Niemierka Wydział Inżynierii Środowiska Politechniki Wrocławskiej 2016-01-07 1. SPIS TREŚCI 2. Gaz cieplarniany - definicja...

Bardziej szczegółowo

Egzamin maturalny z fizyki i astronomii 5 Poziom podstawowy

Egzamin maturalny z fizyki i astronomii 5 Poziom podstawowy Egzamin maturalny z fizyki i astronomii 5 Poziom podstawowy 14. Kule (3 pkt) Dwie małe jednorodne kule A i B o jednakowych masach umieszczono w odległości 10 cm od siebie. Kule te oddziaływały wówczas

Bardziej szczegółowo

Ekosfery. Gimnazjum Klasy I III Doświadczenie konkursowe nr 5

Ekosfery. Gimnazjum Klasy I III Doświadczenie konkursowe nr 5 Gimnazjum Klasy I III Doświadczenie konkursowe nr 5 Rok 017 1. Wstęp teoretyczny Badanie planet pozasłonecznych (zwanych inaczej egzoplanetami) jest aktualnie jednym z najbardziej dynamicznie rozwijających

Bardziej szczegółowo

Wykres Herzsprunga-Russela (H-R) Reakcje termojądrowe - B.Kamys 1

Wykres Herzsprunga-Russela (H-R) Reakcje termojądrowe - B.Kamys 1 Wykres Herzsprunga-Russela (H-R) 2012-06-07 Reakcje termojądrowe - B.Kamys 1 Proto-gwiazdy na wykresie H-R 2012-06-07 Reakcje termojądrowe - B.Kamys 2 Masa-jasność, temperatura-jasność n=3.5 2012-06-07

Bardziej szczegółowo

Teoria ewolucji gwiazd (najpiękniejsza z teorii) dr Tomasz Mrozek Instytut Astronomiczny Uniwersytetu Wrocławskiego

Teoria ewolucji gwiazd (najpiękniejsza z teorii) dr Tomasz Mrozek Instytut Astronomiczny Uniwersytetu Wrocławskiego Teoria ewolucji gwiazd (najpiękniejsza z teorii) dr Tomasz Mrozek Instytut Astronomiczny Uniwersytetu Wrocławskiego Prolog Teoria z niczego Dla danego obiektu możemy określić: - Ilość światła - widmo -

Bardziej szczegółowo

Praca kontrolna semestr IV Przyroda... imię i nazwisko słuchacza

Praca kontrolna semestr IV Przyroda... imię i nazwisko słuchacza Praca kontrolna semestr IV Przyroda.... imię i nazwisko słuchacza semestr 1. Ilustracja przedstawia oświetlenie Ziemi w pierwszym dniu jednej z astronomicznych pór roku. Uzupełnij zdania brakującymi informacjami,

Bardziej szczegółowo

Dlaczego wyginęło życie na Marsie? A może nigdy go tam nie było?

Dlaczego wyginęło życie na Marsie? A może nigdy go tam nie było? Dlaczego wyginęło życie na Marsie? A może nigdy go tam nie było? Zakład Dydaktyki Fizyki i Pracowania Pokazów Fizycznych Instytut Fizyki, UMK Toruń, 19.02.2019 r. Grzegorz Karwasz, Kamil Fedus, Andrzej

Bardziej szczegółowo

EKOLOGIA OGÓLNA WBNZ 884. Wykład 2 Ziemia jako środowisko życia

EKOLOGIA OGÓLNA WBNZ 884. Wykład 2 Ziemia jako środowisko życia EKOLOGIA OGÓLNA WBNZ 884 Wykład 2 Ziemia jako środowisko życia Mars Ziemia Życie na Ziemi widać z daleka CO TO JEST ŻYCIE?? PYTANIE ZASADNICZE: Co to jest życie? kłopoty z definicją (co to jest definicja?)

Bardziej szczegółowo

SPIS TREŚCI KSIĄŻKI NAUKA O KLIMACIE

SPIS TREŚCI KSIĄŻKI NAUKA O KLIMACIE SPIS TREŚCI KSIĄŻKI NAUKA O KLIMACIE 1. WPROWADZENIE.. 9 1.1. Klimatyczne kontrowersje i metoda naukowa..10 Stanowisko nauki odnośnie obecnej zmiany klimatu i jej przyczyn. Metoda naukowa, literatura recenzowana

Bardziej szczegółowo

Słońce i jego miejsce we Wszechświecie. Urszula Bąk-Stęślicka, Marek Stęślicki Instytut Astronomiczny Uniwersytetu Wrocławskiego

Słońce i jego miejsce we Wszechświecie. Urszula Bąk-Stęślicka, Marek Stęślicki Instytut Astronomiczny Uniwersytetu Wrocławskiego Słońce i jego miejsce we Wszechświecie Urszula Bąk-Stęślicka, Marek Stęślicki Instytut Astronomiczny Uniwersytetu Wrocławskiego Dlaczego badamy Słońce? Wpływ Słońca na klimat Pogoda kosmiczna Słońce jako

Bardziej szczegółowo

Globalne ocieplenie okiem fizyka

Globalne ocieplenie okiem fizyka Globalne ocieplenie okiem fizyka Szymon Malinowski Wydział Fizyki Uniwersytetu Warszawskiego oraz naukaoklimacie.pl 29 września 2016 Zmiany średniej temperatury powierzchni Ziemi (GISTEMP) Zmiany rozkładu

Bardziej szczegółowo

Od centrum Słońca do zmian klimatycznych na Ziemi

Od centrum Słońca do zmian klimatycznych na Ziemi Od centrum Słońca do zmian klimatycznych na Ziemi Źródło energii słonecznej 600 mln ton wodoru zamienia się w hel w każdej sekundzie 4 mln ton jest przekształcane w energię: 3.6*10 26 W Ciągłe rozpraszanie,

Bardziej szczegółowo

Globalne ocieplenie, mechanizm, symptomy w Polsce i na świecie

Globalne ocieplenie, mechanizm, symptomy w Polsce i na świecie Zmiany klimatyczne a rolnictwo w Polsce ocena zagrożeń i sposoby adaptacji Warszawa, 30.09.2009 r. Globalne ocieplenie, mechanizm, symptomy w Polsce i na świecie Jerzy Kozyra Instytut Uprawy Nawożenia

Bardziej szczegółowo

Oddziaływanie cząstek z materią

Oddziaływanie cząstek z materią Oddziaływanie cząstek z materią Trzy główne typy mechanizmów reprezentowane przez Ciężkie cząstki naładowane (cięższe od elektronów) Elektrony Kwanty gamma Ciężkie cząstki naładowane (miony, p, cząstki

Bardziej szczegółowo

W poszukiwaniu nowej Ziemi. Andrzej Udalski Obserwatorium Astronomiczne Uniwersytetu Warszawskiego

W poszukiwaniu nowej Ziemi. Andrzej Udalski Obserwatorium Astronomiczne Uniwersytetu Warszawskiego W poszukiwaniu nowej Ziemi Andrzej Udalski Obserwatorium Astronomiczne Uniwersytetu Warszawskiego Gdzie mieszkamy? Ziemia: Masa = 1 M E Średnica = 1 R E Słońce: 1 M S = 333950 M E Średnica = 109 R E Jowisz

Bardziej szczegółowo

Cząstki elementarne z głębin kosmosu

Cząstki elementarne z głębin kosmosu Cząstki elementarne z głębin kosmosu Grzegorz Brona Zakład Cząstek i Oddziaływań Fundamentalnych, Uniwersytet Warszawski 24.09.2005 IX Festiwal Nauki Co widzimy na niebie? - gwiazdy - planety - galaktyki

Bardziej szczegółowo

ETAP II. Astronomia to nauka. pochodzeniem i ewolucją. planet i gwiazd. na wydarzenia na Ziemi.

ETAP II. Astronomia to nauka. pochodzeniem i ewolucją. planet i gwiazd. na wydarzenia na Ziemi. ETAP II Konkurencja I Ach te definicje! (każda poprawnie ułożona definicja warta jest aż dwa punkty) Astronomia to nauka o ciałach niebieskich zajmująca się badaniem ich położenia, ruchów, odległości i

Bardziej szczegółowo

Prezentacja grupy A ZAPRASZAMY

Prezentacja grupy A ZAPRASZAMY Prezentacja grupy A Pojecie kluczowe: Globalne i lokalne problemy środowiska. Temat: Jaki wpływ mają nasze działania na globalne ocieplenie? Problem badawczy: Jaki wpływ ma zużycie wody na globalne ocieplenie?

Bardziej szczegółowo

Od redakcji. Symbolem oznaczono zadania wykraczające poza zakres materiału omówionego w podręczniku Fizyka z plusem cz. 2.

Od redakcji. Symbolem oznaczono zadania wykraczające poza zakres materiału omówionego w podręczniku Fizyka z plusem cz. 2. Od redakcji Niniejszy zbiór zadań powstał z myślą o tych wszystkich, dla których rozwiązanie zadania z fizyki nie polega wyłącznie na mechanicznym przekształceniu wzorów i podstawieniu do nich danych.

Bardziej szczegółowo

Zmiany w środowisku naturalnym

Zmiany w środowisku naturalnym Zmiany w środowisku naturalnym Plan gospodarki niskoemisyjnej jedną z form dążenia do czystszego środowiska naturalnego Opracował: Romuald Meyer PGK SA Czym jest efekt cieplarniany? Ziemia posiada atmosferę

Bardziej szczegółowo

Nasza Galaktyka

Nasza Galaktyka 13.1.1 Nasza Galaktyka Skupisko ok. 100 miliardów gwiazd oraz materii międzygwiazdowej składa się na naszą Galaktykę (w odróżnieniu od innych pisaną wielką literą). Większość gwiazd (podobnie zresztą jak

Bardziej szczegółowo

Układ Słoneczny. Szkoła Podstawowa Klasy IV VI Doświadczenie konkursowe nr 2

Układ Słoneczny. Szkoła Podstawowa Klasy IV VI Doświadczenie konkursowe nr 2 Szkoła Podstawowa Klasy IV VI Doświadczenie konkursowe nr 2 Rok 2019 1. Wstęp teoretyczny Wszyscy ludzie zamieszkują wspólną planetę Ziemię. Nasza planeta, tak jak siedem pozostałych, obiega Słońce dookoła.

Bardziej szczegółowo

FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych

FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych Wykład 13 Początki Wszechświata c.d. Nukleosynteza czas Przebieg pierwotnej nukleosyntezy w czasie pierwszych kilkunastu minut. Krzywe ukazują stopniowy

Bardziej szczegółowo

Wykład 5 - całki ruchu zagadnienia n ciał i perturbacje ruchu keplerowskiego

Wykład 5 - całki ruchu zagadnienia n ciał i perturbacje ruchu keplerowskiego Wykład 5 - całki ruchu zagadnienia n ciał i perturbacje ruchu keplerowskiego 20.03.2013 Układ n ciał przyciągających się siłami grawitacji Mamy n ciał przyciągających się siłami grawitacji. Masy ciał oznaczamy

Bardziej szczegółowo

Czarna dziura obszar czasoprzestrzeni, którego, z uwagi na wpływ grawitacji, nic, łącznie ze światłem, nie może opuścić.

Czarna dziura obszar czasoprzestrzeni, którego, z uwagi na wpływ grawitacji, nic, łącznie ze światłem, nie może opuścić. Czarna dziura obszar czasoprzestrzeni, którego, z uwagi na wpływ grawitacji, nic, łącznie ze światłem, nie może opuścić. Czarne dziury są to obiekty nie do końca nam zrozumiałe. Dlatego budzą ciekawość

Bardziej szczegółowo

GEOGRAFIA FIZYCZNA ŚWIATA. Tomasz Kalicki.

GEOGRAFIA FIZYCZNA ŚWIATA. Tomasz Kalicki. GEOGRAFIA FIZYCZNA ŚWIATA Tomasz Kalicki tomaszkalicki@ymail.com http://www.ujk.edu.pl www.ujk.edu.pl/zgks/ Podstawowe: Andel T. H. van, 2010, Nowe spojrzenie na starą planetę, PWN, Warszawa. Armand D.,

Bardziej szczegółowo

Uniwersytet Mikołaja Kopernika Toruń 6 XII 2013 W POSZUKIWANIU ŚLADÓW NASZYCH PRAPOCZĄTKÓW

Uniwersytet Mikołaja Kopernika Toruń 6 XII 2013 W POSZUKIWANIU ŚLADÓW NASZYCH PRAPOCZĄTKÓW Uniwersytet Mikołaja Kopernika Toruń 6 XII 2013 W POSZUKIWANIU ŚLADÓW NASZYCH PRAPOCZĄTKÓW Prof. Henryk Drozdowski Wydział Fizyki UAM Dedykuję ten wykład o pochodzeniu materii wszystkim czułym sercom,

Bardziej szczegółowo

Budowa Galaktyki. Materia rozproszona Rozkład przestrzenny materii Krzywa rotacji i ramiona spiralne

Budowa Galaktyki. Materia rozproszona Rozkład przestrzenny materii Krzywa rotacji i ramiona spiralne Budowa Galaktyki Materia rozproszona Rozkład przestrzenny materii Krzywa rotacji i ramiona spiralne Gwiazdy w otoczeniu Słońca Gaz międzygwiazdowy Hartmann (1904) Delta Orionis (gwiazda podwójna) obserwowana

Bardziej szczegółowo

Człowiek a środowisko

Człowiek a środowisko 90-242 ŁÓDŹ ul. Kopcińskiego 5/11 tel: 0-42 678-19-20; 0-42 678-57-22 http://zsp15.ldi.pl ZESPÓŁ SZKÓŁ PONADGIMNAZJALNYCH NR 15 Człowiek a środowisko 90-242 ŁÓDŹ ul. Kopcińskiego 5/11 tel: 0-42 678-19-20;

Bardziej szczegółowo

Materia i jej powstanie Wykłady z chemii Jan Drzymała

Materia i jej powstanie Wykłady z chemii Jan Drzymała Materia i jej powstanie Wykłady z chemii Jan Drzymała Przyjmuje się, że wszystko zaczęło się od Wielkiego Wybuchu, który nastąpił około 15 miliardów lat temu. Model Wielkiego Wybuch wynika z rozwiązań

Bardziej szczegółowo

Odległość mierzy się zerami

Odległość mierzy się zerami Odległość mierzy się zerami Jednostki odległości w astronomii jednostka astronomiczna AU, j.a. rok świetlny l.y., r.św. parsek pc średnia odległość Ziemi od Słońca odległość przebyta przez światło w próżni

Bardziej szczegółowo

Fizyka i Chemia Ziemi

Fizyka i Chemia Ziemi Fizyka i Chemia Ziemi Temat 5: Zjawiska w układzie Ziemia - Księżyc T.J. Jopek jopek@amu.edu.pl IOA UAM 2012-01-26 T.J.Jopek, Fizyka i chemia Ziemi 1 Ruch orbitalny Księżyca Obserwowane tarcze Księżyca

Bardziej szczegółowo

Fizyka i Chemia Ziemi

Fizyka i Chemia Ziemi Fizyka i Chemia Ziemi Układ Ziemia - Księżyc T.J. Jopek jopek@amu.edu.pl IOA UAM 2013-01-24 T.J.Jopek, Fizyka i chemia Ziemi 1 Ruch orbitalny Księżyca Obserwowane tarcze Księżyca 2013-01-24 T.J.Jopek,

Bardziej szczegółowo

Pozorne orbity planet Z notatek prof. Antoniego Opolskiego. Tomasz Mrozek Instytut Astronomiczny UWr Zakład Fizyki Słońca CBK PAN

Pozorne orbity planet Z notatek prof. Antoniego Opolskiego. Tomasz Mrozek Instytut Astronomiczny UWr Zakład Fizyki Słońca CBK PAN Pozorne orbity planet Z notatek prof. Antoniego Opolskiego Tomasz Mrozek Instytut Astronomiczny UWr Zakład Fizyki Słońca CBK PAN Początek Młody miłośnik astronomii patrzy w niebo Młody miłośnik astronomii

Bardziej szczegółowo

Fizyka 3. Konsultacje: p. 329, Mechatronika

Fizyka 3. Konsultacje: p. 329, Mechatronika Fizyka 3 Konsultacje: p. 329, Mechatronika marzan@mech.pw.edu.pl Zaliczenie: 2 sprawdziany (10 pkt każdy) lub egzamin (2 części po 10 punktów) 10.1 12 3.0 12.1 14 3.5 14.1 16 4.0 16.1 18 4.5 18.1 20 5.0

Bardziej szczegółowo

Krzysztof Gęsicki. Astrofizyka1. fizyka układu słonecznego. Wykładkursowydla2r.studiówAS1. wykład 1: współczesne obserwacje Słońca

Krzysztof Gęsicki. Astrofizyka1. fizyka układu słonecznego. Wykładkursowydla2r.studiówAS1. wykład 1: współczesne obserwacje Słońca Krzysztof Gęsicki Astrofizyka1 fizyka układu słonecznego Wykładkursowydla2r.studiówAS1 wykład 1: współczesne obserwacje Słońca nasza najbliższa gwiazda sporo możemy wypatrzyć własnym okiem przy pomocy

Bardziej szczegółowo

Słońce to juŝ polska specjalność

Słońce to juŝ polska specjalność Słońce to juŝ polska specjalność 9 sierpnia 2005 r. Słońce - wielka elektrownia termojądrowa - produkuje nieustannie, od prawie pięciu miliardów lat, niewyobraŝalne ilości energii. "Jego moc, czyli całkowita

Bardziej szczegółowo

Dlaczego klimat się zmienia?

Dlaczego klimat się zmienia? Dlaczego klimat się zmienia? WSTĘP Pogoda i klimat są nierozerwalnie związane ze wszystkimi procesami zachodzącymi w atmosferze, których siłą napędową jest energia słoneczna. Ziemia zachowuje równowagę

Bardziej szczegółowo

Zapisy podstawy programowej Uczeń: 2. 1) wyjaśnia cechy budowy i określa położenie różnych ciał niebieskich we Wszechświecie;

Zapisy podstawy programowej Uczeń: 2. 1) wyjaśnia cechy budowy i określa położenie różnych ciał niebieskich we Wszechświecie; Geografia listopad Liceum klasa I, poziom rozszerzony XI Ziemia we wszechświecie Zapisy podstawy programowej Uczeń: 2. 1) wyjaśnia cechy budowy i określa położenie różnych ciał niebieskich we Wszechświecie;

Bardziej szczegółowo

Globalne ocieplenie okiem fizyka

Globalne ocieplenie okiem fizyka Globalne ocieplenie okiem fizyka Szymon Malinowski Wydział Fizyki Uniwersytetu Warszawskiego oraz naukaoklimacie.pl 29 września 2016 Zmiany średniej temperatury powierzchni Ziemi (GISTEMP) Zmiany rozkładu

Bardziej szczegółowo

W poszukiwaniu życia pozaziemskiego

W poszukiwaniu życia pozaziemskiego W poszukiwaniu życia pozaziemskiego Czy istnieje życie we Wszechświecie? 1473 1543 r. TAK, bo: zasada kopernikaoska mówi, że Ziemia nie jest wyróżnionym miejscem we Wszechświecie Biblioteka Uniwersytetu

Bardziej szczegółowo

Sztuczny satelita Ziemi. Ruch w polu grawitacyjnym

Sztuczny satelita Ziemi. Ruch w polu grawitacyjnym Sztuczny satelita Ziemi Ruch w polu grawitacyjnym Sztuczny satelita Ziemi Jest to obiekt, któremu na pewnej wysokości nad powierzchnią Ziemi nadano prędkość wystarczającą do uzyskania przez niego ruchu

Bardziej szczegółowo

PROSZĘ UWAŻNIE SŁUCHAĆ NA KOŃCU PREZENTACJI BĘDZIE TEST SPRAWDZAJĄCY

PROSZĘ UWAŻNIE SŁUCHAĆ NA KOŃCU PREZENTACJI BĘDZIE TEST SPRAWDZAJĄCY PROSZĘ UWAŻNIE SŁUCHAĆ NA KOŃCU PREZENTACJI BĘDZIE TEST SPRAWDZAJĄCY RUCH OBROTOWY ZIEMI Ruch obrotowy to ruch Ziemi wokół własnej osi. Oś Ziemi jest teoretyczną linią prostą, która przechodzi przez Biegun

Bardziej szczegółowo

Jest jedną z podstawowych w termodynamice wielkości fizycznych będąca miarą stopnia nagrzania ciał, jest wielkością reprezentującą wspólną własność

Jest jedną z podstawowych w termodynamice wielkości fizycznych będąca miarą stopnia nagrzania ciał, jest wielkością reprezentującą wspólną własność TEMPERATURA Jest jedną z podstawowych w termodynamice wielkości fizycznych będąca miarą stopnia nagrzania ciał, jest wielkością reprezentującą wspólną własność dwóch układów pozostających w równowadze

Bardziej szczegółowo

Prezentacja. Układ Słoneczny

Prezentacja. Układ Słoneczny Prezentacja Układ Słoneczny Układ Słoneczny Układ Słoneczny układ planetarny składający się ze Słońca i powiązanych z nim grawitacyjnie ciał niebieskich. Ciała te to osiem planet, 166 znanych księżyców

Bardziej szczegółowo

Analiza spektralna widma gwiezdnego

Analiza spektralna widma gwiezdnego Analiza spektralna widma gwiezdnego JG &WJ 13 kwietnia 2007 Wprowadzenie Wprowadzenie- światło- podstawowe źródło informacji Wprowadzenie- światło- podstawowe źródło informacji Wprowadzenie- światło- podstawowe

Bardziej szczegółowo

Sprawdzian Na rysunku przedstawiono siłę, którą kula o masie m przyciąga kulę o masie 2m.

Sprawdzian Na rysunku przedstawiono siłę, którą kula o masie m przyciąga kulę o masie 2m. Imię i nazwisko Data Klasa Wersja A Sprawdzian 1. 1. Orbita każdej planety jest elipsą, a Słońce znajduje się w jednym z jej ognisk. Treść tego prawa podał a) Kopernik. b) Newton. c) Galileusz. d) Kepler..

Bardziej szczegółowo

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania fizyka, wzory fizyka, matura fizyka

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania fizyka, wzory fizyka, matura fizyka 4. Pole grawitacyjne. Praca. Moc.Energia zadania z arkusza I 4.8 4.1 4.9 4.2 4.10 4.3 4.4 4.11 4.12 4.5 4.13 4.14 4.6 4.15 4.7 4.16 4.17 4. Pole grawitacyjne. Praca. Moc.Energia - 1 - 4.18 4.27 4.19 4.20

Bardziej szczegółowo

Gimnazjum klasy I-III

Gimnazjum klasy I-III Tytuł pokazu /filmu ASTRONAWIGATORZY doświadczenia wiąże przyczynę ze skutkiem; - uczeń podaje przybliżoną prędkość światła w próżni, wskazuje prędkość światła jako - nazywa rodzaje fal elektromagnetycznych;

Bardziej szczegółowo

Tomasz Mrozek 1,2, Sylwester Kołomański 1 1. Instytut Astronomiczny UWr 2. Zakład Fizyki Słońca CBK PAN. Astro Izery

Tomasz Mrozek 1,2, Sylwester Kołomański 1 1. Instytut Astronomiczny UWr 2. Zakład Fizyki Słońca CBK PAN. Astro Izery Tomasz Mrozek 1,2, Sylwester Kołomański 1 1. Instytut Astronomiczny UWr 2. Zakład Fizyki Słońca CBK PAN Astro Izery Po co nam Wszechświat? Podstawowe założenie OTW: sformułować prawa fizyczne i opis ruchu

Bardziej szczegółowo

Układ Słoneczny Pytania:

Układ Słoneczny Pytania: Układ Słoneczny Pytania: Co to jest Układ Słoneczny? Czy znasz nazwy planet? Co jeszcze znajduje się w Układzie Słonecznym poza planetami? Co to jest Układ Słoneczny Układ Słoneczny to układ ciał niebieskich,

Bardziej szczegółowo

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM Fizyka Poziom rozszerzony. Listopad 2015

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM Fizyka Poziom rozszerzony. Listopad 2015 kod wewnątrz Zadanie 1. (0 1) KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM Fizyka Poziom rozszerzony Listopad 2015 Vademecum Fizyka fizyka ZAKRES ROZSZERZONY VADEMECUM MATURA 2016 Zacznij przygotowania

Bardziej szczegółowo

Wszechświat cząstek elementarnych WYKŁAD 5

Wszechświat cząstek elementarnych WYKŁAD 5 Wszechświat cząstek elementarnych WYKŁAD 5 Maria Krawczyk, Wydział Fizyki UW 17.III.2010 Oddziaływania: elektromagnetyczne i grawitacyjne elektromagnetyczne i silne (kolorowe) Biegnące stałe sprzężenia:

Bardziej szczegółowo

Szkolny konkurs chemiczny Grupa B. Czas pracy 80 minut

Szkolny konkurs chemiczny Grupa B. Czas pracy 80 minut Szkolny konkurs chemiczny Grupa B Czas pracy 80 minut Piła 1 czerwca 2017 1 Zadanie 1. (0 3) Z konfiguracji elektronowej atomu (w stanie podstawowym) pierwiastka X wynika, że w tym atomie: elektrony rozmieszczone

Bardziej szczegółowo

ZAŁĄCZNIK 7 - Lotnicza Pogoda w pytaniach i odpowiedziach.

ZAŁĄCZNIK 7 - Lotnicza Pogoda w pytaniach i odpowiedziach. Prąd strumieniowy (jet stream) jest wąskim pasem bardzo silnego wiatru na dużej wysokości (prędkość wiatru jest > 60 kts, czyli 30 m/s). Możemy go sobie wyobrazić jako rurę, która jest spłaszczona w pionie

Bardziej szczegółowo