Optoelektronika, fotonika,..(część 1) Zagadnienia

Wielkość: px
Rozpocząć pokaz od strony:

Download "Optoelektronika, fotonika,..(część 1) Zagadnienia"

Transkrypt

1 Optoelektronika, fotonika,..(część 1) Stare i nowe materiały a światło. Zagadnienia Podstawowe wielkości opisujące światło; Podstawowe wielkości opisujące oddziaływanie materiałów ze światłem; Niektóre zjawiska (rozpraszanie, luminescencja, fluorescencja); Niektóre zastosowania, a w szczególności lasery i światłowody; 1

2 Natura światła Światło jest falą elektromagnetyczną Rozchodzącą się w powietrzu z prędkością c=1/ (ε 0 µ 0 ) = 3 x 10 8 m/s Emisja i absorbcja światła Oba zjawiska wynikają z tych samych praw fizyki: 2

3 Pierwsza zasada termodynamiki Absorpcja światła polega pochłonięciu fotonu i wzbudzeniu wskutek tego np. elektronu do wyższego stanu energetycznego. 3 d 2 nd Pierwsza zasada termodynamiki First excited state Ground state Emisja światła następuje gdy np. elektron będący w stanie wzbudzonym powraca do stanu podstawowego. 3

4 Jak dany materiał absorbuje i emituje światło, czy.....nadaje się jako ośrodek, w którym zachodzi akcja laserowa,...nadaje się jako materiał, z którego wytwarza się światłowody,...można go wykorzystać jako zwierciadło, Itd., itd. Zależy wyłącznie od tego jak (wiązania) i z czego (atomy) zbudowany jest materiał. Właściwości optyczne materiału opisuje się za pomocą: Współczynnika absorpcji, załamania i odbicia. Wielkości te są od siebie wzajemnie zależne! 4

5 Współczynnik absorpcji Czasem potrzebny jest duży, czasem mały. Ogólny opis absorpcji I 0 = I T + I A + I R gdzie I o jest natężeniem (W/m 2 ) światła padającego, indeksy T, A i R odpowiadają odpowiednio światłu przechodzącemu, zaabsorbowanemu i odbitemu 5

6 Ogólny opis absorpcji Jeśli materiał nie jest przezroczysty, to natężenie przechodzącego światła maleje esponencjalnie z odległością I=I 0 exp( αx) Gdzie α jest współczynnikiem absorpcji. Mechanizmy absorpcji Foton może zostać pochłonięty przez elektron: przejście między stanami energetycznymi w atomie, między pasmami energetycznymi w ciele stałym, absorpcja przez elektron quasiswobodny w metalu, 6

7 Przykład: metale Puste stany T = 0K E F Zapełnione stany Elektrony w metalu mogą absorbować promieniowanie o praktycznie każdej częstotliwości. Elektron absorbuje foton, a następnie wraca do stanu podstawowego emitując identyczny foton metale prawie idealnie odbijają światło (95%).Metale stają się przezroczyste dopiero przy bardzo wysokich częstotliwościach. Przykład: półprzewodniki i dielektryki kowalencyjne Bardzo ważny mechanizm absorpcji: przejścia międzypasmowe E C E G E V dziura 7

8 Przykłady widm absorpcji dla różnych półprzewodników: Photon energy (ev) Ge In 0.7 Ga 0.3 As 0.64 P 0.36 α ( m - 1 ) Si a-si:h GaAs InP In 0.53 Ga 0.47 As Wavelength (µm) Fig. 9.19: Absorption coefficient (α) vs. wavelength (λ) for various semiconductors (Data selectively collected and combined from various sources.) From Principles of Electronic Materials and Devices, Second Edition, S.O. Ka s a p ( McGra w-hill, 2002) W przypadku półprzewodników domieszkowanych sytuacja jest bardziej skomplikowana: hf 1 fonon E C hf 2 E V 8

9 Mechanizmy absorpcji Foton może zostać pochłonięty przez atom jako całość: wzbudzenie drgań atomów (fonony), jakikolwiek ruch atomu lub cząsteczki. Przykład: kryształy jonowe Materiały o wiązaniu jonowym silnie oddziałują z polem elektrycznym promieniowania elektromagnetycznego, ponieważ jony o przeciwnym znaku przemieszczają się w przeciwnych kierunkach silna absorpcja w podczerwieni. 9

10 Przykład: kryształy molekularne Molekuły są słabo ze sobą związane, zatem absorpcja wynika głównie z budowy samych cząsteczek Np. woda: Widmo absorpcji wody 10

11 Współczynnik załamania Niezmiernie ważna właściwość materiału, np. dla takich zastosowań jak: Soczewki, Światłowody, lasery Współczynnik załamania c n = v 1 v = i c = εµ 1 ε µ gdzie µ (= µ r µ 0 )iµ 0 są odpowiednio magnetyczną przenikalnością ośrodka i próżni, a ε (= ε r ε 0 )iε 0 są odpowiednio dielektryczną przenikalnością ośrodka i próżni Wynika stąd, że n = (µ r ε r ) ( ε r w większości materiałów)

12 Współczynnik załamania Widać zatem, że współczynnik załamania światła wynika z własności dielektrycznych materiału. Np. dodatek ciężkiego ołowiu do szkła powoduje zwiększenie współczynnika załamania: szkło: n ~ 1.5 szkło z ołowiem: n ~ 2.1 Dodaniu germanu zamiast krzemu do szkła światłowodowego zwiększa współczynnik załamania światła (German ma o 18 elektronów więcej niż Si). Rozpraszanie światła Nawet jeśli światło rozchodzi się w danym materiale, to i tak może być rozpraszane wewnątrz niego. W ten sposób niesiona przez światło informacja może zaniknąć. 12

13 Rozpraszanie światła Światło może być rozpraszane przez: Granice międzyziarnowe w materiałach polikrystalicznych; Pory w ceramikach; Inne fazy; Małe, przypadkowo rozłożone różnice współczynnika załamania spowodowane np. zmianą gęstości, struktury lub składu, drganiami cieplnymi atomów (rozpraszanie Rayleigha). Rozpraszanie Rayleigha Rozpraszanie światła na przeszkodach mniejszych niż długość fali. A dielectric particle smaller than wavelength Incident wave Through wave Scattered waves 13

14 A dielectric particle smaller than wavelength Incident wave Through wave Scattered waves Światło padając na małą cząstkę dielektryka pobudza ja do drgań, co z kolei, powoduje emisję promieniowania elektromagnetycznego we wszystkich kierunkach. Tzn. część energii fali padającej jest rozpraszana w kierunkach różnych niż fala padająca. Na marginesie: Rozpraszanie Rayleigha jest przyczyną, dlaczego niebo jest niebieskie rozpraszanie jest proporcjonalne do λ -4 ponieważ λ czerw ~ 2λ nieb niebieskie światło jest około~16 razy silniej rozpraszanie niż niebieskie Zjawisko to ma bardzo duże znaczenie w technologii światłowodowej (szkło jest bardzo czyste i przezroczyste, dlatego tak subtelne efekty mają znaczenie). 14

15 Luminescencja, fluorescencja, fosforescencja Luminescencja Luminescencja :emisja w postaci światła uprzednio zaabsorbowanej energii. W zależności od przyczyny świecenia może być foto-, elektro-, lub chemoluminescencja, Foto- spowodowana oświetleniem Elektro- polem elektrycznym (LED) Reakcją chemiczną. 15

16 Luminescencję można dalej podzielić na fluoro- (szybka: s) i fosforescencję (wolna: s), np.: E 2 incident E 1 fluor. flip flip phosp. phosp. E 3 phonon emission ~10-12 s per hop fluorescence, ~10-5 s W lampach fluorescencyjnych plazma generuje światło uv, a fluoryzujący materiał pokrywający ściany rury przetwarza je na światło widzialne. Aby wytwarzane światło było białe trzeba używać mieszaniny różnych fluorescencyjnych materiałów, każdy fluoryzujący w innej długości fali. Np. materiały najczęściej stosowane w kineskopach: ZnS domieszkowany Cu + daje światło zielone ZnS:Ag - niebieskie YVO 4 :Eu - czerwone 16

17 Laser: Light Amplification by Stimulated Emission of Radiation jeden z najpożyteczniejszych wynalazków XX wieku Światło laserowe jest: Monochromatyczne Koherentne Kierunkowe O dużej intensywności Działanie lasera 1. Materiał czynny lasera w stanie podstawowym 2. pompowanie w celu wzbudzenia atomów materiału lasera do stanu wzbudzonego (np. Za pomocą intensywnego impulsu światła). 17

18 Działanie lasera 3, 4. Osiągnięcie inwersji obsadzeń, emisja spontaniczna, początek emisji wymuszonej. Wciąż jeszcze za mało fotonów, aby w całym ośrodku wymusić emisję. Działanie lasera 5. Pełna emisja wymuszona 18

19 Laser rubinowy Rodzaje laserów 19

20 holografia holografia 20

21 Światłowody i zaawansowane materiały w technologii światłowodowej Światłowody Dawniej w technologii światłowodowej wykorzystywano światło widzialne. Obecnie: podczerwień. 21

22 Wytwarzanie światłowodów Bezpośrednie wyciąganie włókien Wyciąganie włókna z preformy Bezpośrednie wyciąganie włókien Metoda podwójnego tygla Stopione szkło na rdzeń w tyglu wewnętrznym Szkło na płaszcz: w tyglu zewnętrznym Włókno wyciąga się przez otwory w dnach tygli 22

23 Bezpośrednie wyciąganie włókien Metoda: pręt w rurce Całość jest ogrzewana; oba szkła miękną i łączą się ze sobą w trakcie wyciągania włókna. Oba szkła powinny mieć zbliżone temperatury mięknięcia. Wytwarzanie światłowodów z preformy 23

24 Preforma Preformy wytwarza się stosując różne metody osadzania, domieszkowania itp. z fazy gazowej. Wykorzystuje się reakcje: 1. SiCl 4 + O 2 SiO 2 + 2Cl 2 2. GeCl 4 + O 2 GeO 2 + 2Cl POCl 3 + 3O 2 2P 2 O 5 + 6Cl BCl 3 + 3O 2 2B 2 O 3 + 6Cl 2 MVCD, PMVCD SiO 2 w postaci bardzo drobnych cząstek osiada na chłodnych ściankach. Cząstki łączą się ze sobą tworząc amorficzną warstwę. Skład gazu jest w sposób ciągły zmieniany, tak że współczynnik załamania światła również odpowiednio się zmienia. Gdy proces nanoszenia się kończy, temperatura pieca rośnie do 1800 o C i rurka stapia się w litą preformę. (M=modified) SiCl 4 + O 2 SiO 2 + 2Cl 2 24

25 PVCD W rurce powstaje plazma ułatwiająca zajście reakcji. Szkło powstające wewnątrz jest od razu w postaci jednolitego materiału. Domieszkowanie z zewnątrz Pary chlorków podlegają reakcji hydrolizy w piecu. SiO 2 osadza się w materiale porowatej preformy od zewnątrz. Następnie preformę stapia się w wysokiej temperaturze (przy okazji ucieka z niej woda). 25

26 Wyciąganie włókna Preformy o średnicy rzędu cm i długości kilku cm rozciąga się tak, że ich średnica wynosi 125 µm Wyciąganie przebiega w temperaturze 2200 C Inne elementy światłowodowe 26

27 FIBER BRAGG GRATINGS Co to jest FBG: periodyczne zaburzenie współczynnika załamania światła rdzenia jednomodowego światłowodu. FIBER BRAGG GRATINGS Gdy światło pada na taka siatkę Bragga, tylko bardzo wąski zakres długości fali odbija się od siatki (~0.2 nm). Pozostale przechodzą. Selektywne zwierciadło 27

28 Wytwarzanie FBG Mechanizm Różnica współczynnika załamania wynosi tylko 10-4 Wykorzystuje się fakt, że włókno krzemianowe domieszkowane Ge jest fotoczułe. Pod wpływem silnego swiatła zrywane sa wiazania Ge-Ge Do czego mogą służyć FBG Np. dwie siatki Bragga tworzą rezonator optyczny w pewnym obszarze światłowodu. 28

29 Wzmacniacze optyczne Po co są potrzebne? Światło, rozchodząc się w ośrodku ulega tłumieniu. Informacja zawarta w sygnale może zaniknąć. Straty Źródła strat energii: 29

30 Straty Najniższe do tej pory uzyskane straty w światłowodzie szklanym: 0,2 db/km (λ=1500 nm) Połączenia między światłowodami: 0,1-0,3 db/km Wzmacniacze optyczne 30

31 Wzmacniacz wykorzystujący domieszkowanie erbem Rdzeń światłowodu krzemianowogermanowego jest domieszkowany erbem (albo neodymem). Ważnym czynnikiem jest to, że można osiągnąć dosyć duży stopień domieszkowania (do 1000 ppm). Działanie EFDA: dokładniej Energy of the Er 3+ ion in the glass fiber 1.54 ev 1.27 ev E 3 E 3 Non-radiative decay 980 nm 0 Pump 0.80 ev E nm In E nm Out Energy diagram for the Er 3+ ion in the glass fiber medium and light amplification by stimulated emission from E 2 to E 1. Dashed arrows indicate radiationless transitions (energy emission by lattice vibrations) 1999 S.O. Kasap, Optoelectronics (Prentice Hall) 31

32 Signal in Optical isolator Er 3+ -doped fiber (10-20 m) Wavelength-selective coupler Splice Splice Optical isolator Signal out λ = 1550 nm λ = 1550 nm Pump laser diode λ = 980 nm Termination A simplified schematic illustration of an EDFA (optical amplifier). The erbium-ion doped fiber is pumped by feeding the light from a laser pump diode, through a coupler, into the erbium ion doped fiber S.O. Kasap, Optoelectronics (Prentice Hall) Światłowody krzemowe? Dzisiejsze urządzenia fotoniczne wykorzystują drogie związki półprzewodnikowe takie jak GaAs, GaP. Z drugiej strony, w telekomunikacji wykorzystuje się światło o długości fali µm. Dla takiego światła krzem jest praktycznie przezroczysty. 32

33 Światłowody krzemowe? Zatem, potrzeba tańszych urządzeń spowodowała rozwój fotoniki krzemowej. W szczególności: wzmacniacze i generatory światła; modulatory światła; Laser Ramana Rozpraszanie Ramana: Światło o długości fali λ 1 wzbudza drgania atomów materiału (fonony) oraz emisję światła o długości fali λ 2. 33

34 Laser Ramana Wymuszone rozpraszanie Ramana: Normalnie, intensywność promieniowania rozproszonego (λ 2 ) jest znacznie mniejsza niż intensywność promieniowania padającego. Jeżeli światło padające jest wystarczająco intensywne, a materiał umieszczony jest we wnęce rezonansowej, wówczas może nastąpić wzmocnienie (wzmocnienie Ramana) oraz akcja laserowa. Laser Ramana Wymuszone rozpraszanie Ramana: Największe wzmocnienie następuje, gdy różnica długości fali promieniowania pompującego i emitowanego wynosi: 34

35 Laser Ramana Technologia SOI (silicon on insulator). Przekrój poprzeczny warstwy Si ma około 1.6 µm 2, a długość 4.8 cm. Cienka warstwa krystalicznego krzemu (n=3.6) jest osadzona na warstwie SiO 2 (n=1.5). Dzięki tak dużej różnicy współczynników załamania, światło może być bardzo skutecznie ograniczone w przestrzeni. Stąd wynika duże wzmocnienie Ramana. Laser Ramana Przednia i tylna ścianki falowodu są pokryte warstwą o dużym współczynniku odbicia dla wiązek: pompującej i wychodzącej. Światło pompujące ma 1540 nm, wychodzące: 1650 nm. Możliwa jest praca ciągła lasera. Pierwsze doniesienie o krzemowym laserze Ramana: luty

36 Laser Ramana Pulsed operation OE 2004 paper CW operation H. Rong et al., Nature 2005 Modulatory światła Pierwszy krzemowy GHz-owy modulator Modulatory optyczne wykorzystuje się do kodowania i dekodowania danych poprzez odpowiednie włączanie i wyłączanie wiązki światła (zera i jedynki). Do 2004 roku krzemowe modulatory działały powoli (20 MHz). Obecnie: GHz. 36

37 . Dzisiejsze światłowody bardziej skomplikowane profile rdzeń o wyższym n n ~ 1.46 straty ~ 0.2 db/km dla λ=1.55µm (wzmacniacz co km) krzemianowa warstwa ewnętrzna o niższym n n ~ 1.45 polimerowa warstwa granice możliwoś ochronna [ R. Ramaswami & K. N. Sivarajan, Optical Networks: A Practical Perspective ] Przezroczystość szkła stosowanego do wytwarzania światłowodów ma podstawowe znacznie. Obecnie, jakość szkła jest taka, że 10km włókna absorbuje światło mniej więcej tak samo jak 25mm zwykłej szyby okiennej! W tak czystym szkle, rozpraszanie Rayleigha jest głównym mechanizmem rozpraszania światła water OH - absorption peaks i Rayleigh scattering 1310 nm 1550 nm Lattice absorption Wavelength (µm) 37

38 Lepszym materiałem od obecnego szkła światłowodowego jest... powietrze 1000x mniejsze straty i nieliniowość Photonic Crystal Literatura P.E. Bagnoli et al., Dipartimento di Fisica Enrico Fermi, Universita di Pisa. S.G. Johnson, Applied Mathematics, MIT. Ertan Salik, OAO Corporation. Andrea Macella, Università degli Studi di Lecce 38

Wykład XIV: Właściwości optyczne. JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Technologii Ceramiki i Materiałów Ogniotrwałych

Wykład XIV: Właściwości optyczne. JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Technologii Ceramiki i Materiałów Ogniotrwałych Wykład XIV: Właściwości optyczne JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Technologii Ceramiki i Materiałów Ogniotrwałych Treść wykładu: Treść wykładu: 1. Wiadomości wstępne: a) Załamanie

Bardziej szczegółowo

Właściwości optyczne. Oddziaływanie światła z materiałem. Widmo światła widzialnego MATERIAŁ

Właściwości optyczne. Oddziaływanie światła z materiałem. Widmo światła widzialnego MATERIAŁ Właściwości optyczne Oddziaływanie światła z materiałem hν MATERIAŁ Transmisja Odbicie Adsorpcja Załamanie Efekt fotoelektryczny Tradycyjnie właściwości optyczne wiążą się z zachowaniem się materiałów

Bardziej szczegółowo

Fotonika,.. Stare i nowe materiały a światło.

Fotonika,.. Stare i nowe materiały a światło. Fotonika,.. Stare i nowe materiały a światło. Zagadnienia Nieuporządkowana mieszanina wszystkiego, a w szczególności niektóre obecne i przyszłe zastosowania: Hologramy (nie tylko gadgety, ale również detektory,

Bardziej szczegółowo

Wzmacniacze optyczne

Wzmacniacze optyczne Wzmacniacze optyczne Wzmocnienie sygnału optycznego bez konwersji na sygnał elektryczny. Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze opracowanie chronione jest prawem autorskim.

Bardziej szczegółowo

Trzy rodzaje przejść elektronowych między poziomami energetycznymi

Trzy rodzaje przejść elektronowych między poziomami energetycznymi Trzy rodzaje przejść elektronowych między poziomami energetycznymi absorpcja elektron przechodzi na wyższy poziom energetyczny dzięki pochłonięciu kwantu o energii równej różnicy energetycznej poziomów

Bardziej szczegółowo

LASERY NA CIELE STAŁYM BERNARD ZIĘTEK

LASERY NA CIELE STAŁYM BERNARD ZIĘTEK LASERY NA CIELE STAŁYM BERNARD ZIĘTEK TEK Lasery na ciele stałym lasery, których ośrodek czynny jest: -kryształem i ciałem amorficznym (również proszkiem), - dielektrykiem i półprzewodnikiem. 2 Podział

Bardziej szczegółowo

Lasery. Własności światła laserowego Zasada działania Rodzaje laserów

Lasery. Własności światła laserowego Zasada działania Rodzaje laserów Lasery Własności światła laserowego Zasada działania Rodzaje laserów Lasery Laser - nazwa utworzona jako akronim od Light Amplification by Stimulated Emission of Radiation - wzmocnienie światła poprzez

Bardziej szczegółowo

Wzmacniacze optyczne ZARYS PODSTAW

Wzmacniacze optyczne ZARYS PODSTAW Wzmacniacze optyczne ZARYS PODSTAW REGENERATOR konwertuje sygnał optyczny na elektryczny, wzmacnia sygnał elektryczny, a następnie konwertuje wzmocniony sygnał elektryczny z powrotem na sygnał optyczny

Bardziej szczegółowo

Kryształy fotonowe (fotoniczne) KRYSZTAŁY FOTONICZNE I METAMATERIAŁY. Kryształy

Kryształy fotonowe (fotoniczne) KRYSZTAŁY FOTONICZNE I METAMATERIAŁY. Kryształy Kryształy fotonowe (fotoniczne) Materiały dydaktyczne, tylko do wykorzystania w celach edukacyjnych KRYSZTAŁY FOTONICZNE I METAMATERIAŁY Kryształy Kryształ: periodyczne uporządkowanie jonów w sieci krystalicznej.

Bardziej szczegółowo

PODSTAWY FIZYKI LASERÓW Wstęp

PODSTAWY FIZYKI LASERÓW Wstęp PODSTAWY FIZYKI LASERÓW Wstęp LASER Light Amplification by Stimulation Emission of Radiation Składa się z: 1. ośrodka czynnego. układu pompującego 3.Rezonator optyczny - wnęka rezonansowa Generatory: liniowe

Bardziej szczegółowo

Własności optyczne półprzewodników

Własności optyczne półprzewodników Własności optyczne półprzewodników Andrzej Wysmołek Wykład przygotowany w oparciu o wykłady prowadzone na Wydziale Fizyki UW przez prof. Mariana Grynberga oraz prof. Romana Stępniewskiego Klasyfikacja

Bardziej szczegółowo

n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A / B 2 1 hν exp( ) 1 kt (24)

n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A / B 2 1 hν exp( ) 1 kt (24) n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A 1 2 / B hν exp( ) 1 kt (24) Powyższe równanie określające gęstość widmową energii promieniowania

Bardziej szczegółowo

Lasery budowa, rodzaje, zastosowanie. Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego.

Lasery budowa, rodzaje, zastosowanie. Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego. Lasery budowa, rodzaje, zastosowanie Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego. Budowa i zasada działania lasera Laser (Light Amplification by Stimulated

Bardziej szczegółowo

Instytut Mikroelektroniki i Optoelektroniki Politechniki Warszawskiej. Zakład Optoelektroniki

Instytut Mikroelektroniki i Optoelektroniki Politechniki Warszawskiej. Zakład Optoelektroniki Instytut Mikroelektroniki i Optoelektroniki Politechniki Warszawskiej Zakład Optoelektroniki Instrukcja do ćwiczenia: Badanie parametrów wzmacniacza światłowodowego EDFA Ostatnie dwie dekady to okres niezwykle

Bardziej szczegółowo

I. PROMIENIOWANIE CIEPLNE

I. PROMIENIOWANIE CIEPLNE I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.

Bardziej szczegółowo

Laser pikselowy i frakselowy różnice i zastosowanie w kosmetologii. Barbara Kierlik Gr. 39Z

Laser pikselowy i frakselowy różnice i zastosowanie w kosmetologii. Barbara Kierlik Gr. 39Z Laser pikselowy i frakselowy różnice i zastosowanie w kosmetologii Barbara Kierlik Gr. 39Z Light Amplification by Stimulated Emission of Radiation Wzmocnienie światła poprzez wymuszoną emisję Laser to

Bardziej szczegółowo

Technologia światłowodów włóknistych Kable światłowodowe

Technologia światłowodów włóknistych Kable światłowodowe Technologia światłowodów włóknistych Kable światłowodowe Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze opracowanie chronione jest prawem autorskim. Wykorzystanie niekomercyjne dozwolone

Bardziej szczegółowo

Lasery. Własności światła laserowego Zasada działania Rodzaje laserów

Lasery. Własności światła laserowego Zasada działania Rodzaje laserów Lasery Własności światła laserowego Zasada działania Rodzaje laserów Lasery Laser - nazwa utworzona jako akronim od Light Amplification by Stimulated Emission of Radiation - wzmocnienie światła poprzez

Bardziej szczegółowo

Przejścia promieniste

Przejścia promieniste Przejście promieniste proces rekombinacji elektronu i dziury (przejście ze stanu o większej energii do stanu o energii mniejszej), w wyniku którego następuje emisja promieniowania. E Długość wyemitowanej

Bardziej szczegółowo

!!!DEL są źródłami światła niespójnego.

!!!DEL są źródłami światła niespójnego. Dioda elektroluminescencyjna DEL Element czynny DEL to złącze p-n. Gdy zostanie ono spolaryzowane w kierunku przewodzenia, to w obszarze typu p, w warstwie o grubości rzędu 1µm, wytwarza się stan inwersji

Bardziej szczegółowo

Wzbudzony stan energetyczny atomu

Wzbudzony stan energetyczny atomu LASERY Wzbudzony stan energetyczny atomu Z III postulatu Bohra kj E k E h j Emisja spontaniczna Atom absorbuje tylko określone kwanty energii przechodząc ze stanu podstawowego do wzbudzonego. Zaabsorbowana

Bardziej szczegółowo

Niezwykłe światło. ultrakrótkie impulsy laserowe. Piotr Fita

Niezwykłe światło. ultrakrótkie impulsy laserowe. Piotr Fita Niezwykłe światło ultrakrótkie impulsy laserowe Laboratorium Procesów Ultraszybkich Zakład Optyki Wydział Fizyki Uniwersytetu Warszawskiego Światło Fala elektromagnetyczna Dla światła widzialnego długość

Bardziej szczegółowo

Ponadto, jeśli fala charakteryzuje się sferycznym czołem falowym, powyższy wzór można zapisać w następujący sposób:

Ponadto, jeśli fala charakteryzuje się sferycznym czołem falowym, powyższy wzór można zapisać w następujący sposób: Zastosowanie laserów w Obrazowaniu Medycznym Spis treści 1 Powtórka z fizyki Zjawisko Interferencji 1.1 Koherencja czasowa i przestrzenna 1.2 Droga i czas koherencji 2 Lasery 2.1 Emisja Spontaniczna 2.2

Bardziej szczegółowo

Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne.

Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. DUALIZM ŚWIATŁA fala interferencja, dyfrakcja, polaryzacja,... kwant, foton promieniowanie ciała doskonale

Bardziej szczegółowo

Wykład IV. Dioda elektroluminescencyjna Laser półprzewodnikowy

Wykład IV. Dioda elektroluminescencyjna Laser półprzewodnikowy Wykład IV Dioda elektroluminescencyjna Laser półprzewodnikowy Półprzewodniki - diagram pasmowy Kryształ Si, Ge, GaAs Struktura krystaliczna prowadzi do relacji dyspersji E(k). Krzywizna pasm decyduje o

Bardziej szczegółowo

Spektroskopia Ramanowska

Spektroskopia Ramanowska Spektroskopia Ramanowska Część A 1.Krótki wstęp historyczny 2.Oddziaływanie światła z osrodkiem materialnym (rozpraszanie światła) 3.Opis klasyczny zjawiska Ramana 4. Widmo ramanowskie. 5. Opis półklasyczny

Bardziej szczegółowo

IV. Transmisja. /~bezet

IV. Transmisja.  /~bezet Światłowody IV. Transmisja BERNARD ZIĘTEK http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet 1. Tłumienność 10 7 10 6 Tłumienność [db/km] 10 5 10 4 10 3 10 2 10 SiO 2 Tłumienność szkła w latach (za A.

Bardziej szczegółowo

VI. Elementy techniki, lasery

VI. Elementy techniki, lasery Światłowody VI. Elementy techniki, lasery BERNARD ZIĘTEK http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet a) Sprzęgacze czołowe 1. Sprzęgacze światłowodowe (czołowe, boczne, stałe, rozłączalne) Złącza,

Bardziej szczegółowo

Rezonatory ze zwierciadłem Bragga

Rezonatory ze zwierciadłem Bragga Rezonatory ze zwierciadłem Bragga Siatki dyfrakcyjne stanowiące zwierciadła laserowe (zwierciadła Bragga) są powszechnie stosowane w laserach VCSEL, ale i w laserach z rezonatorem prostopadłym do płaszczyzny

Bardziej szczegółowo

Ogólne cechy ośrodków laserowych

Ogólne cechy ośrodków laserowych Ogólne cechy ośrodków laserowych Gazowe Cieczowe Na ciele stałym Naturalna jednorodność Duże długości rezonatora Małe wzmocnienia na jednostkę długości ośrodka czynnego Pompowanie prądem (wzdłużne i poprzeczne)

Bardziej szczegółowo

Właściwości transmisyjne

Właściwości transmisyjne Właściwości transmisyjne Straty (tłumienność) Tłumienność np. szkła technicznego: około 1000 db/km, szkło czyszczone 300 db/km Do 1967 r. tłumienność ok. 1000 db/km. Problem Na wyjściu światłowodu chcemy

Bardziej szczegółowo

Właściwości optyczne. Właściwości dielektryczne, elektryczne i optyczne

Właściwości optyczne. Właściwości dielektryczne, elektryczne i optyczne Właściwości optyczne Właściwości dielektryczne, elektryczne i optyczne Właściwości dielektryczne, elektryczne i optyczne są od siebie wzajemnie zależne. ż Wszystkie zapisuje się jako wielkości lkś i zespolone.

Bardziej szczegółowo

Własności optyczne półprzewodników

Własności optyczne półprzewodników Własności optyczne półprzewodników Andrzej Wysmołek Wykład przygotowany w oparciu o wykłady prowadzone na Wydziale Fizyki Uniwersytetu Warszawakiego przez prof. Mariana Grynberga oraz prof. Romana Stępniewskiego

Bardziej szczegółowo

Właściwości światła laserowego

Właściwości światła laserowego Właściwości światła laserowego Cechy charakterystyczne światła laserowego: rozbieżność (równoległość) wiązki, pasmo spektralne, gęstość mocy spójność (koherencja). Równoległość wiązki Dyfrakcyjną rozbieżność

Bardziej szczegółowo

Systemy laserowe. dr inż. Adrian Zakrzewski dr inż. Tomasz Baraniecki

Systemy laserowe. dr inż. Adrian Zakrzewski dr inż. Tomasz Baraniecki Systemy laserowe dr inż. Adrian Zakrzewski dr inż. Tomasz Baraniecki Lasery światłowodowe Źródło: www.jakubduba.pl Światłowód płaszcz n 2 n 1 > n 2 rdzeń n 1 zjawisko całkowitego wewnętrznego odbicia Źródło:

Bardziej szczegółowo

Technika falo- i światłowodowa

Technika falo- i światłowodowa Technika falo- i światłowodowa Falowody elementy planarne (płytki, paski) Światłowody elementy cylindryczne (włókna światłowodowe) płytkowy paskowy włókno optyczne Rdzeń o wyższym współczynniku załamania

Bardziej szczegółowo

Oddziaływanie cząstek z materią

Oddziaływanie cząstek z materią Oddziaływanie cząstek z materią Trzy główne typy mechanizmów reprezentowane przez Ciężkie cząstki naładowane (cięższe od elektronów) Elektrony Kwanty gamma Ciężkie cząstki naładowane (miony, p, cząstki

Bardziej szczegółowo

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Absorpcja promieniowania w ośrodku Promieniowanie elektromagnetyczne przy przejściu przez ośrodek

Bardziej szczegółowo

Optotelekomunikacja. dr inż. Piotr Stępczak 1

Optotelekomunikacja. dr inż. Piotr Stępczak 1 Optotelekomunikacja dr inż. Piotr Stępczak 1 dr inż. Piotr Stępczak Falowa natura światła () ( ) () ( ) z t j jm z z z t j jm z z e e r H H e e r E E β ω β ω Θ ± Θ ± 1 0 0 1 0 1 1 zatem 0 n n n n gr λ

Bardziej szczegółowo

ZASADY ZALICZENIA PRZEDMIOTU MBS

ZASADY ZALICZENIA PRZEDMIOTU MBS ZASADY ZALICZENIA PRZEDMIOTU MBS LABORATORIUM - MBS 1. ROZWIĄZYWANIE WIDM kolokwium NMR 25 kwietnia 2016 IR 30 maja 2016 złożone 13 czerwca 2016 wtorek 6.04 13.04 20.04 11.05 18.05 1.06 8.06 coll coll

Bardziej szczegółowo

PDF stworzony przez wersję demonstracyjną pdffactory

PDF stworzony przez wersję demonstracyjną pdffactory Promieniowanie elektromagnetyczne (fala elektromagnetyczna) rozchodzące się w przestrzeni zaburzenie pola elektromagnetycznego. Zaburzenie to ma charakter fali poprzecznej, w której składowa elektryczna

Bardziej szczegółowo

Rozszczepienie poziomów atomowych

Rozszczepienie poziomów atomowych Rozszczepienie poziomów atomowych Poziomy energetyczne w pojedynczym atomie Gdy zbliżamy atomy chmury elektronowe nachodzą na siebie (inaczej: funkcje falowe elektronów zaczynają się przekrywać) Na skutek

Bardziej szczegółowo

I.4 Promieniowanie rentgenowskie. Efekt Comptona. Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona

I.4 Promieniowanie rentgenowskie. Efekt Comptona. Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona r. akad. 004/005 I.4 Promieniowanie rentgenowskie. Efekt Comptona Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona Jan Królikowski Fizyka IVBC 1 r. akad. 004/005 0.01 nm=0.1 A

Bardziej szczegółowo

ĆWICZENIE Nr 4 LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH. Badanie krawędzi absorpcji podstawowej w kryształach półprzewodników POLITECHNIKA ŁÓDZKA

ĆWICZENIE Nr 4 LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH. Badanie krawędzi absorpcji podstawowej w kryształach półprzewodników POLITECHNIKA ŁÓDZKA POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH ĆWICZENIE Nr 4 Badanie krawędzi absorpcji podstawowej w kryształach półprzewodników I. Cześć doświadczalna. 1. Uruchomić Spekol

Bardziej szczegółowo

Ekspansja plazmy i wpływ atmosfery reaktywnej na osadzanie cienkich warstw hydroksyapatytu. Marcin Jedyński

Ekspansja plazmy i wpływ atmosfery reaktywnej na osadzanie cienkich warstw hydroksyapatytu. Marcin Jedyński Ekspansja plazmy i wpływ atmosfery reaktywnej na osadzanie cienkich warstw hydroksyapatytu. Marcin Jedyński Metoda PLD (Pulsed Laser Deposition) PLD jest nowoczesną metodą inżynierii powierzchni, umożliwiającą

Bardziej szczegółowo

Własności optyczne materii. Jak zachowuje się światło w zetknięciu z materią?

Własności optyczne materii. Jak zachowuje się światło w zetknięciu z materią? Własności optyczne materii Jak zachowuje się światło w zetknięciu z materią? Właściwości optyczne materiału wynikają ze zjawisk: Absorpcji Załamania Odbicia Rozpraszania Własności elektrycznych Refrakcja

Bardziej szczegółowo

wymiana energii ciepła

wymiana energii ciepła wymiana energii ciepła Karolina Kurtz-Orecka dr inż., arch. Wydział Budownictwa i Architektury Katedra Dróg, Mostów i Materiałów Budowlanych 1 rodzaje energii magnetyczna kinetyczna cieplna światło dźwięk

Bardziej szczegółowo

Stałe : h=6, Js h= 4, eVs 1eV= J nie zależy

Stałe : h=6, Js h= 4, eVs 1eV= J nie zależy T_atom-All 1 Nazwisko i imię klasa Stałe : h=6,626 10 34 Js h= 4,14 10 15 evs 1eV=1.60217657 10-19 J Zaznacz zjawiska świadczące o falowej naturze światła a) zjawisko fotoelektryczne b) interferencja c)

Bardziej szczegółowo

Widmo promieniowania elektromagnetycznego Czułość oka człowieka

Widmo promieniowania elektromagnetycznego Czułość oka człowieka dealna charakterystyka prądowonapięciowa złącza p-n ev ( V ) = 0 exp 1 kbt Przebicie złącza przy polaryzacji zaporowej Przebicie Zenera tunelowanie elektronów przez wąską warstwę zaporową w złączu silnie

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

Zjawiska nieliniowe w światłowodach Wykład 8 SMK Na podstawie: J. Siuzdak, Wstęp do współczesnej telekomunikacji światłowodowej

Zjawiska nieliniowe w światłowodach Wykład 8 SMK Na podstawie: J. Siuzdak, Wstęp do współczesnej telekomunikacji światłowodowej Zjawiska nieliniowe w światłowodach Wykład 8 SMK Na podstawie: J. Siuzdak, Wstęp do współczesnej telekomunikacji światłowodowej Dla dużych mocy świetlnych dochodzi do nieliniowego oddziaływania pomiędzy

Bardziej szczegółowo

Lasery. Własności światła laserowego Zasada działania Rodzaje laserów

Lasery. Własności światła laserowego Zasada działania Rodzaje laserów Lasery Własności światła laserowego Zasada działania Rodzaje laserów Lasery Laser - nazwa utworzona jako akronim od Light Amplification by Stimulated Emission of Radiation - wzmocnienie światła poprzez

Bardziej szczegółowo

Wzajemne relacje pomiędzy promieniowaniem a materią wynikają ze zjawisk związanych z oddziaływaniem promieniowania z materią. Do podstawowych zjawisk

Wzajemne relacje pomiędzy promieniowaniem a materią wynikają ze zjawisk związanych z oddziaływaniem promieniowania z materią. Do podstawowych zjawisk Wzajemne relacje pomiędzy promieniowaniem a materią wynikają ze zjawisk związanych z oddziaływaniem promieniowania z materią. Do podstawowych zjawisk fizycznych tego rodzaju należą zjawiska odbicia i załamania

Bardziej szczegółowo

Techniczne podstawy promienników

Techniczne podstawy promienników Techniczne podstawy promienników podczerwieni Technical Information,, 17.02.2009, Seite/Page 1 Podstawy techniczne Rozdz. 1 1 Rozdział 1 Zasady promieniowania podczerwonego - Podstawy fizyczne - Widmo,

Bardziej szczegółowo

M.A. Karpierz, Fizyka

M.A. Karpierz, Fizyka 7. Światło w ośrodkach materialnych Współczynnik załamania W ośrodkach materialnych dochodzi do oddziaływania pomiędzy falą elektromagnetyczną a ładunkami elektrycznymi, z których zbudowany jest ośrodek.

Bardziej szczegółowo

POLICJA KUJAWSKO-POMORSKA WYBRANE ZJAWISKA OPTYKI W BADANIACH KRYMINALISTYCZNYCH

POLICJA KUJAWSKO-POMORSKA WYBRANE ZJAWISKA OPTYKI W BADANIACH KRYMINALISTYCZNYCH POLICJA KUJAWSKO-POMORSKA Źródło: http://www.kujawsko-pomorska.policja.gov.pl/kb/dzialania-policji/kryminalistyka/aktualnosci/arciwmlb/2545,wybrane-zjawi SKA-OPTYKI-W-BADANIACH-KRYMINALISTYCZNYCH.html

Bardziej szczegółowo

Optyczne elementy aktywne

Optyczne elementy aktywne Optyczne elementy aktywne Źródła optyczne Diody elektroluminescencyjne Diody laserowe Odbiorniki optyczne Fotodioda PIN Fotodioda APD Generowanie światła kontakt metalowy typ n GaAs podłoże typ n typ n

Bardziej szczegółowo

Promieniowanie X. Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X

Promieniowanie X. Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X Promieniowanie X Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X Lampa rentgenowska Lampa rentgenowska Promieniowanie rentgenowskie

Bardziej szczegółowo

Źródła promieniowania optycznego problemy bezpieczeństwa pracy. Lab. Fiz. II

Źródła promieniowania optycznego problemy bezpieczeństwa pracy. Lab. Fiz. II Źródła promieniowania optycznego problemy bezpieczeństwa pracy Lab. Fiz. II Reakcje w tkankach wywołane przez promioniowanie optyczne (podczerwień, widzialne, ultrafiolet): Reakcje termiczne ze wzrostem

Bardziej szczegółowo

Spektroskopia ramanowska w badaniach powierzchni

Spektroskopia ramanowska w badaniach powierzchni Spektroskopia ramanowska w badaniach powierzchni z Efekt Ramana (1922, CV Raman) I, ν próbka y Chandra Shekhara Venketa Raman x I 0, ν 0 Monochromatyczne promieniowanie o częstości ν 0 ulega rozproszeniu

Bardziej szczegółowo

Oddziaływanie promieniowania X z materią. Podstawowe mechanizmy

Oddziaływanie promieniowania X z materią. Podstawowe mechanizmy Oddziaływanie promieniowania X z materią Podstawowe mechanizmy Promieniowanie od oscylującego elektronu Rozpraszanie Thomsona Dyspersja podejście klasyczne Fala padająca Wymuszony, tłumiony oscylator harmoniczny

Bardziej szczegółowo

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania (3.7), pomimo swojej prostoty, nie posiadają poza nielicznymi przypadkami ścisłych rozwiązań,

Bardziej szczegółowo

Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu

Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu Ruch falowy Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu Fala rozchodzi się w przestrzeni niosąc ze sobą energię, ale niekoniecznie musi

Bardziej szczegółowo

Źródła światła: Lampy (termiczne) na ogół wymagają filtrów. Wojciech Gawlik, Metody Optyczne w Medycynie 2010/11 - wykł. 3 1/18

Źródła światła: Lampy (termiczne) na ogół wymagają filtrów. Wojciech Gawlik, Metody Optyczne w Medycynie 2010/11 - wykł. 3 1/18 Źródła światła: Lampy (termiczne) na ogół wymagają filtrów Wojciech Gawlik, Metody Optyczne w Medycynie 2010/11 - wykł. 3 1/18 Lampy: a) szerokopasmowe, rozkład Plancka 2hc I( λ) = 5 λ 2 e 1 hc λk T B

Bardziej szczegółowo

Wprowadzenie do światłowodowych systemów WDM

Wprowadzenie do światłowodowych systemów WDM Wprowadzenie do światłowodowych systemów WDM WDM Wavelength Division Multiplexing CWDM Coarse Wavelength Division Multiplexing DWDM Dense Wavelength Division Multiplexing Współczesny światłowodowy system

Bardziej szczegółowo

dr inż. Beata Brożek-Pluska SERS La boratorium La serowej

dr inż. Beata Brożek-Pluska SERS La boratorium La serowej dr inż. Beata Brożek-Pluska La boratorium La serowej Spektroskopii Molekularnej PŁ Powierzchniowo wzmocniona sp ektroskopia Ramana (Surface Enhanced Raman Spectroscopy) Cząsteczki zaadsorbowane na chropowatych

Bardziej szczegółowo

Kryształy fotonowe (fotoniczne) Kryształy

Kryształy fotonowe (fotoniczne) Kryształy Kryształy fotonowe (fotoniczne) Kryształy Kryształ: periodyczne uporządkowanie jonów w sieci krystalicznej. Elektron poruszjący się w krysztale może mieć PRAWIE WSZYSTKIE wartości pędu i energii ale nie

Bardziej szczegółowo

Światło fala, czy strumień cząstek?

Światło fala, czy strumień cząstek? 1 Światło fala, czy strumień cząstek? Teoria falowa wyjaśnia: Odbicie Załamanie Interferencję Dyfrakcję Polaryzację Efekt fotoelektryczny Efekt Comptona Teoria korpuskularna wyjaśnia: Odbicie Załamanie

Bardziej szczegółowo

Zespolona funkcja dielektryczna metalu

Zespolona funkcja dielektryczna metalu Zespolona funkcja dielektryczna metalu Przenikalność elektryczna ośrodków absorbujących promieniowanie elektromagnetyczne jest zespolona, a także zależna od częstości promieniowania, które przenika przez

Bardziej szczegółowo

Podstawy fizyki kwantowej

Podstawy fizyki kwantowej Podstawy fizyki kwantowej Fizyka kwantowa - co to jest? Światło to fala czy cząstka? promieniowanie termiczne efekt fotoelektryczny efekt Comptona fale materii de Broglie a równanie Schrodingera podstawa

Bardziej szczegółowo

Atom wodoru w mechanice kwantowej. Równanie Schrödingera

Atom wodoru w mechanice kwantowej. Równanie Schrödingera Fizyka atomowa Atom wodoru w mechanice kwantowej Moment pędu Funkcje falowe atomu wodoru Spin Liczby kwantowe Poprawki do równania Schrödingera: struktura subtelna i nadsubtelna; przesunięcie Lamba Zakaz

Bardziej szczegółowo

Laboratorium techniki laserowej. Ćwiczenie 5. Modulator PLZT

Laboratorium techniki laserowej. Ćwiczenie 5. Modulator PLZT Laboratorium techniki laserowej Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 006 1.Wstęp Rozwój techniki optoelektronicznej spowodował poszukiwania nowych materiałów

Bardziej szczegółowo

6. Emisja światła, diody LED i lasery polprzewodnikowe

6. Emisja światła, diody LED i lasery polprzewodnikowe 6. Emisja światła, diody LED i lasery polprzewodnikowe Typy rekombinacji Rekombinacja promienista Diody LED Lasery półprzewodnikowe Struktury niskowymiarowe OLEDy 1 Promieniowanie termiczne Rozkład Plancka

Bardziej szczegółowo

Elektryczne własności ciał stałych

Elektryczne własności ciał stałych Elektryczne własności ciał stałych Do sklasyfikowania różnych materiałów ze względu na ich własności elektryczne trzeba zdefiniować kilka wielkości Oporność właściwa (albo przewodność) ładunek [C] = 1/

Bardziej szczegółowo

Przemysłowe urządzenia elektrotermiczne działające w oparciu o pozostałe metody nagrzewania elektrycznego Prof. dr hab. inż.

Przemysłowe urządzenia elektrotermiczne działające w oparciu o pozostałe metody nagrzewania elektrycznego Prof. dr hab. inż. Studia Podyplomowe EFEKTYWNE UŻYTKOWANIE ENERGII ELEKTRYCZNEJ w ramach projektu Śląsko-Małopolskie Centrum Kompetencji Zarządzania Energią Przemysłowe urządzenia elektrotermiczne działające w oparciu o

Bardziej szczegółowo

WYBRANE TECHNIKI SPEKTROSKOPII LASEROWEJ ROZDZIELCZEJ W CZASIE prof. Halina Abramczyk Laboratory of Laser Molecular Spectroscopy

WYBRANE TECHNIKI SPEKTROSKOPII LASEROWEJ ROZDZIELCZEJ W CZASIE prof. Halina Abramczyk Laboratory of Laser Molecular Spectroscopy WYBRANE TECHNIKI SPEKTROSKOPII LASEROWEJ ROZDZIELCZEJ W CZASIE 1 Ze względu na rozdzielczość czasową metody, zależną od długości trwania impulsu, spektroskopię dzielimy na: nanosekundową (10-9 s) pikosekundową

Bardziej szczegółowo

Wprowadzenie do optyki nieliniowej

Wprowadzenie do optyki nieliniowej Wprowadzenie do optyki nieliniowej Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze opracowanie chronione jest prawem autorskim. Wykorzystanie niekomercyjne dozwolone pod warunkiem podania

Bardziej szczegółowo

OPTYKA. Leszek Błaszkieiwcz

OPTYKA. Leszek Błaszkieiwcz OPTYKA Leszek Błaszkieiwcz Ojcem optyki jest Witelon (1230-1314) Zjawisko odbicia fal promień odbity normalna promień padający Leszek Błaszkieiwcz Rys. Zjawisko załamania fal normalna promień padający

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 8 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

TŁUMIENIE ŚWIATŁA W OŚRODKACH OPTYCZNYCH

TŁUMIENIE ŚWIATŁA W OŚRODKACH OPTYCZNYCH TŁUMIENIE ŚWIATŁA W OŚRODKACH OPTYCZNYCH Jednym z parametrów opisujących właściwości optyczne światłowodów jest tłumienność. W wyniku zjawiska tłumienia, energia fali elektromagnetycznej niesionej w światłowodzie

Bardziej szczegółowo

Struktura pasmowa ciał stałych

Struktura pasmowa ciał stałych Struktura pasmowa ciał stałych dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Spis treści 1. Pasmowa teoria ciała stałego 2 1.1. Wstęp do teorii..............................................

Bardziej szczegółowo

SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE

SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE 1 SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE 2 Promieniowanie o długości fali 2-50 μm nazywamy promieniowaniem podczerwonym. Absorpcja lub emisja promieniowania z tego zakresu jest

Bardziej szczegółowo

Politechnika Wrocławska Wydział Podstawowych Problemów Techniki

Politechnika Wrocławska Wydział Podstawowych Problemów Techniki Politechnika Wrocławska Wydział Podstawowych Problemów Techniki specjalność FOTONIKA 3,5-letnie studia stacjonarne I stopnia (studia inżynierskie) FIZYKA TECHNICZNA Charakterystyka wykształcenia: - dobre

Bardziej szczegółowo

UMO-2011/01/B/ST7/06234

UMO-2011/01/B/ST7/06234 Załącznik nr 7 do sprawozdania merytorycznego z realizacji projektu badawczego Szybka nieliniowość fotorefrakcyjna w światłowodach półprzewodnikowych do zastosowań w elementach optoelektroniki zintegrowanej

Bardziej szczegółowo

Wprowadzenie do technologii HDR

Wprowadzenie do technologii HDR Wprowadzenie do technologii HDR Konwersatorium 2 - inspiracje biologiczne mgr inż. Krzysztof Szwarc krzysztof@szwarc.net.pl Sosnowiec, 5 marca 2018 1 / 26 mgr inż. Krzysztof Szwarc Wprowadzenie do technologii

Bardziej szczegółowo

WYKŁAD 2 Podstawy spektroskopii wibracyjnej, model oscylatora harmonicznego i anharmonicznego. Częstość oscylacji a struktura molekuły Prof. dr hab.

WYKŁAD 2 Podstawy spektroskopii wibracyjnej, model oscylatora harmonicznego i anharmonicznego. Częstość oscylacji a struktura molekuły Prof. dr hab. WYKŁAD 2 Podstawy spektroskopii wibracyjnej, model oscylatora harmonicznego i anharmonicznego. Częstość oscylacji a struktura molekuły Prof. dr hab. Halina Abramczyk POLITECHNIKA ŁÓDZKA Wydział Chemiczny

Bardziej szczegółowo

Optyczna spektroskopia oscylacyjna. w badaniach powierzchni

Optyczna spektroskopia oscylacyjna. w badaniach powierzchni Optyczna spektroskopia oscylacyjna w badaniach powierzchni Zalety oscylacyjnej spektroskopii optycznej uŝycie fotonów jako cząsteczek wzbudzających i rejestrowanych nie wymaga uŝycia próŝni (moŝliwość

Bardziej szczegółowo

SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE

SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE Promieniowanie o długości fali 2-50 μm nazywamy promieniowaniem podczerwonym. Absorpcja lub emisja promieniowania z tego zakresu jest

Bardziej szczegółowo

Fala elektromagnetyczna Linie transmisyjne. Telekomunikacja plik nr 2

Fala elektromagnetyczna Linie transmisyjne. Telekomunikacja plik nr 2 Fala elektromagnetyczna Linie transmisyjne Telekomunikacja plik nr 2 Fale elektromagnetyczne Zaburzenie pola elektromagnetycznego rozchodzące się w przestrzeni ze skończoną prędkością. Są to fale poprzeczne

Bardziej szczegółowo

Teoria pasmowa. Anna Pietnoczka

Teoria pasmowa. Anna Pietnoczka Teoria pasmowa Anna Pietnoczka Opis struktury pasmowej we współrzędnych r, E Zmiana stanu elektronów przy zbliżeniu się atomów: (a) schemat energetyczny dla atomów sodu znajdujących się w odległościach

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka, Michał Karpiński Wydział

Bardziej szczegółowo

Wykład 17: Optyka falowa cz.2.

Wykład 17: Optyka falowa cz.2. Wykład 17: Optyka falowa cz.2. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Interferencja w cienkich warstwach Załamanie

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 7 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

Promieniowanie rentgenowskie. Podstawowe pojęcia krystalograficzne

Promieniowanie rentgenowskie. Podstawowe pojęcia krystalograficzne Promieniowanie rentgenowskie Podstawowe pojęcia krystalograficzne Krystalografia - podstawowe pojęcia Komórka elementarna (zasadnicza): najmniejszy, charakterystyczny fragment sieci przestrzennej (lub

Bardziej szczegółowo

Projekt NCN DEC-2013/09/D/ST8/ Kierownik: dr inż. Marcin Kochanowicz

Projekt NCN DEC-2013/09/D/ST8/ Kierownik: dr inż. Marcin Kochanowicz Realizowane cele Projekt pt. Badanie mechanizmów wpływających na różnice we właściwościach luminescencyjnych szkieł i wytworzonych z nich światłowodów domieszkowanych lantanowcami dotyczy badań związanych

Bardziej szczegółowo

Przewodność elektryczna ciał stałych. Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki

Przewodność elektryczna ciał stałych. Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki Przewodność elektryczna ciał stałych Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki Elektryczne własności ciał stałych Do sklasyfikowania różnych materiałów ze względu na ich własności

Bardziej szczegółowo

III. METODY OTRZYMYWANIA MATERIAŁÓW PÓŁPRZEWODNIKOWYCH Janusz Adamowski

III. METODY OTRZYMYWANIA MATERIAŁÓW PÓŁPRZEWODNIKOWYCH Janusz Adamowski III. METODY OTRZYMYWANIA MATERIAŁÓW PÓŁPRZEWODNIKOWYCH Janusz Adamowski 1 1 Wstęp Materiały półprzewodnikowe, otrzymywane obecnie w warunkach laboratoryjnych, charakteryzują się niezwykle wysoką czystością.

Bardziej szczegółowo

ĆWICZENIE 9 WŁASNOŚCI OPTYCZNE MATERIAŁÓW CERAMICZNYCH. (1) gdzie υ prędkość rozchodzenia się światła (w próżni wynosi 3 10 8 m/s). 1.

ĆWICZENIE 9 WŁASNOŚCI OPTYCZNE MATERIAŁÓW CERAMICZNYCH. (1) gdzie υ prędkość rozchodzenia się światła (w próżni wynosi 3 10 8 m/s). 1. ĆWICZENIE 9 WŁASNOŚCI OPTYCZNE MATERIAŁÓW CERAMICZNYCH 1. CEL ĆWICZENIA 1. Wyznaczenie dla wybranych materiałów widm absorpcyjnych dla światła o długości fali od 200 do 800 nm. 2. Określenie długości fali

Bardziej szczegółowo

Falowa natura światła

Falowa natura światła Falowa natura światła Christiaan Huygens Thomas Young James Clerk Maxwell Światło jest falą elektromagnetyczną Barwa światło zależy od jej długości (częstości). Optyka geometryczna Optyka geometryczna

Bardziej szczegółowo

Zaznacz prawdziwą odpowiedź: Fale elektromagnetyczne do rozchodzenia się... ośrodka materialnego A. B.

Zaznacz prawdziwą odpowiedź: Fale elektromagnetyczne do rozchodzenia się... ośrodka materialnego A. B. Imię i nazwisko Pytanie 1/ Zaznacz właściwą odpowiedź: Fale elektromagnetyczne są falami poprzecznymi podłużnymi Pytanie 2/ Zaznacz prawdziwą odpowiedź: Fale elektromagnetyczne do rozchodzenia się... ośrodka

Bardziej szczegółowo