Przeprowadź analizę diagramu słupkowego i uzupełnij tabelę. powietrze woda lód beton szkło Ośrodki

Wielkość: px
Rozpocząć pokaz od strony:

Download "Przeprowadź analizę diagramu słupkowego i uzupełnij tabelę. powietrze woda lód beton szkło Ośrodki"

Transkrypt

1 zadania treningowe z matematyki Akcja edukacja ZESTAW 2. Zadanie 1. Przeprowadź analizę diagramu słupkowego i uzupełnij tabelę Prędkość, m s powietrze woda lód beton szkło Ośrodki Prędkość rozchodzenia się Ośrodek dźwięku, m s Powietrze 340 Woda Lód Beton Szkło Zadanie 2. Dźwięk rozchodzi się w powietrzu z prędkością 340 m s. Oznacza to, że jeżeli usłyszysz echo po dwóch sekundach od okrzyku, to przeszkoda, od której dźwięk się odbił, znajduje się w odległości A. 170 m. B. 340 m. C. 680 m. 1

2 Zadanie 3. Odczytaj temperatury powietrza, które wskazują termometry. Wpisz w każdą lukę pod rysunkiem odpowiednią wartość wybraną z podanych Zadanie C C C Oblicz w pamięci i wpisz odpowiedź. a) rowerzysta jechał z prędkością 15 km h. Ile kilometrów przejechał w czasie 3 godzin? km b) Samolot leciał z prędkością 850 km h. Ile kilometrów przeleciał w czasie 4 godzin? km c) Pan Wojtek jechał samochodem drogą szybkiego ruchu ze średnią prędkością 120 km h. Ile kilometrów przejechał w czasie 2 godzin? km d) dziadkowie Basi mieszkają w odległości 240 km od miejscowości, w której mieszka Basia. Basia z rodzicami jechała samochodem w odwiedziny do dziadków 4 godziny. Z jaką średnią prędkością jechali? km h 2

3 Zadanie 5. 7 Przeczytaj informacje zapisane przy ilustracjach zwierząt. Uzupełnij zdania. Przeczytaj informacje zapisane przy ilustracjach zwierząt. Uzupełnij zdania. Najszybszym owadem jest konik polny, który osiąga prędkość 54 km h. Najszybciej biegającym ssakiem jest gepard. Może osiągnąć prędkość 112 km h. Struś może biec z prędkością 70 km h. Słonie mogą galopować z prędkością 35 km h. Najszybszą rybą jest tuńczyk. Na długich dystansach płynie z prędkością 77 km h. Najszybsze węże pełzają z prędkością 12 km h. 22 a) Z wymienionych zwierząt najszybszy jest..., a) Z wymienionych zwierząt najszybszy jest , a najwolniejszy a najwolniejszy b) Gepard jest szybszy od konika polnego o... km h. b) Gepard jest szybszy od konika polnego o km h. c) Słoń może uzyskać prędkość... razy mniejszą od strusia. c) Słoń może uzyskać prędkość razy mniejszą od strusia. d) Gdyby kolarz jechał z prędkością, z jaką może galopować słoń, to d) gdyby kolarz jechał z prędkością, z jaką może galopować słoń, to w czasie 5 godzin w czasie 5 godzin przejechałby... km. przejechałby km. e) Gdyby samochód jechał z prędkością, jaką osiąga konik polny, to e) Gdyby samochód jechał z prędkością, jaką osiąga konik polny, to w czasie 3 godzin w czasie 3 godzin przejechałby... km. przejechałby km. 3

4 7 Akcja EDUKACJA Zadania treningowe z matematyki Zadanie 6. Jakie powiększenie uzyskuje się pod mikroskopem w każdym z poniższych wypadków? Podkreśl w każdej parze jedną z wyróżnionych informacji. Okular powiększa 10 razy, a obiektyw 20 razy. Obraz pod mikroskopem jest powiększony 2 / 200 razy. Okular powiększa 5 razy, a obiektyw 40 razy. Obraz pod mikroskopem jest powiększony 8 / 200 razy. Zadanie 7. Skorzystaj z planu Wawelu w Krakowie i rozwiąż zadania Uzupełnij zdania. Uzupełnij zdania. a) Plan Wawelu jest wykonany w skali a) Plan Wawelu jest wykonany w skali... b) 1 cm na planie to cm w rzeczywistości. b) 1 cm na planie to... cm w rzeczywistości. c) 1 cm na planie to m w rzeczywistości. c) 1 cm na planie to... m w rzeczywistości. Oblicz, w jakiej odległości od Baszty Złodziejskiej stoi pomnik Kościuszki. 4

5 Zadanie 8. Oblicz odległość w terenie między miastami A i B, jeżeli na mapie w skali 1 : wynosi ona 12 cm. Zapisz wszystkie obliczenia i uzupełnij odpowiedź. Odpowiedź: Odległość w terenie między miastami wynosi km. Źródła zadań: Zad. 1.: Przyrodo, witaj! Zeszyt ćwiczeń do szkoły podstawowej. Klasa 5, s Zad. 2.: Przyroda z pomysłem. Ćwiczenia elektroniczne. Szkoła podstawowa. Część 2. Klasa 5, lekcja 40. Zad. 3.: Przyroda z pomysłem. Zeszyt ćwiczeń do szkoły podstawowej. Część 1. Klasa 4, s. 44. Zad. 4.: Matematyka wokół nas. Zeszyt ćwiczeń, część 1 do klasy piątej szkoły podstawowej, s. 7. Zad. 5.: Matematyka wokół nas. Zeszyt ćwiczeń, część 1 do klasy piątej szkoły podstawowej, s. 22. Zad. 6.: Przyrodo, witaj! Zeszyt ćwiczeń do szkoły podstawowej. Klasa 4, s. 15. Zad. 7.: Matematyka wokół nas. Zeszyt ćwiczeń, część 1 do klasy piątej szkoły podstawowej, s. 97. Zad. 8.: Przyrodo, witaj! Zeszyt ćwiczeń do szkoły podstawowej. Klasa 5, s. 9. 5

6 Schemat punktowania zadań i kartoteka Schemat punktowania Numer zadania Odpowiedź Zasady przyznawania punktów Punktacja 1 W kolejności: 1500, 3300, 3800, Poprawne uzupełnienie czterech komórek 1 punkt B Zaznaczenie poprawnego dokończenia zdania 1 punkt W kolejności: 26, 4, 12. Poprawne uzupełnienie jednej luki 1 punkt. 4 a) 45 b) 3400 c) 240 d) 60 Poprawne uzupełnienie jednej luki 1 punkt. 5 a) W kolejności: gepard, wąż. 0 6 b) 58 c) 2 lub dwa Poprawne uzupełnienie jednej luki 1 punkt. d) 175 e) , 200 Poprawne podkreślenie jednej informacji 1 punkt a) 1 : 5000 b) 5000 c) 50 Poprawne uzupełnienie jednej luki 1 punkt. 8 I Na przykład: ZESTAW 2. Zapisanie wyrażenia prowadzącego do obliczenia odległości w terenie 1 punkt. II cm Poprawne obliczenie odległości w terenie 1 punkt. III Na przykład: Poprawna zamiana jednostek w zadaniu i uzupełnienie cm = 60 km odpowiedzi 1 punkt

7 Kartoteka Numer zadania Umiejętność ogólna 1 II. Wykorzystanie i tworzenie informacji Uczeń interpretuje [ ] informacje [ ] graficzne [ ] i prawidłowo zapisuje wyniki. 2 I. Sprawność rachunkowa Uczeń wykonuje proste działania pamięciowe na liczbach naturalnych [ ] oraz potrafi wykorzystać te umiejętności w sytuacjach praktycznych. 3 II. Wykorzystanie i tworzenie informacji Uczeń interpretuje [ ] informacje [ ] graficzne [ ] i prawidłowo zapisuje wyniki. 4 I. Sprawność rachunkowa Uczeń wykonuje proste działania pamięciowe na liczbach naturalnych [ ] oraz potrafi wykorzystać te umiejętności w sytuacjach praktycznych. 5 I. Sprawność rachunkowa Uczeń wykonuje proste działania pamięciowe na liczbach naturalnych [ ] oraz potrafi wykorzystać te umiejętności w sytuacjach praktycznych. 6 II. Wykorzystanie i tworzenie informacji Uczeń interpretuje i przetwarza informacje tekstowe [ ] formułuje odpowiedzi i prawidłowo zapisuje wyniki. 7 III. Modelowanie matematyczne Uczeń [ ] stosuje poznane wzory zależności, przetwarza tekst zadania na działania arytmetyczne [ ] 8 III. Modelowanie matematyczne Uczeń [ ] stosuje poznane wzory zależności, przetwarza tekst zadania na działania arytmetyczne [ ] Umiejętność szczegółowa Uczeń: odczytuje i interpretuje dane przedstawione w [ ] diagramach i na wykresach w sytuacji praktycznej oblicza: drogę przy danej prędkości i danym czasie [ ] Punktacja odczytuje temperaturę (dodatnią i ujemną) w sytuacji praktycznej oblicza: drogę przy danej prędkości i danym czasie, prędkość przy danej drodze i danym czasie [...] odczytuje i interpretuje dane przedstawione w [ ] diagramach i na wykresach w sytuacji praktycznej oblicza: drogę przy danej prędkości i danym czasie [ ] mnoży i dzieli liczbę naturalną przez liczbę naturalną jednocyfrową, dwucyfrową lub trzycyfrową pisemnie, w pamięci (w najprostszych przykładach) i za pomocą kalkulatora (w trudniejszych przykładach) oblicza rzeczywistą długość odcinka, gdy dana jest jego długość w skali [ ] zamienia i prawidłowo stosuje jednostki długości: metr, centymetr, decymetr, milimetr, kilometr oblicza rzeczywistą długość odcinka, gdy dana jest jego długość w skali [ ]

Przeprowadź analizę diagramu słupkowego i uzupełnij tabelę. powietrze woda lód beton szkło Ośrodki

Przeprowadź analizę diagramu słupkowego i uzupełnij tabelę. powietrze woda lód beton szkło Ośrodki zadania treningowe z matematyki Akcja edukacja ZESTAW 2. Zadanie 1. Przeprowadź analizę diagramu słupkowego i uzupełnij tabelę Prędkość, m s 6000 5500 5000 4500 4000 3500 3000 2500 2000 1500 1000 500 0

Bardziej szczegółowo

MATEMATYKA KLASA IV. Podstawa programowa przedmiotu SZKOŁY BENEDYKTA

MATEMATYKA KLASA IV. Podstawa programowa przedmiotu SZKOŁY BENEDYKTA 2016-09-01 MATEMATYKA KLASA IV Podstawa programowa przedmiotu SZKOŁY BENEDYKTA Cele kształcenia wymagania ogólne I. Sprawność rachunkowa. Uczeń wykonuje proste działania pamięciowe na liczbach naturalnych,

Bardziej szczegółowo

Rozkład materiału nauczania z odniesieniami do wymagań z podstawy programowej. Matematyka wokół nas

Rozkład materiału nauczania z odniesieniami do wymagań z podstawy programowej. Matematyka wokół nas 22 Rozkład materiału nauczania z odniesieniami do wymagań z podstawy programowej. Matematyka wokół nas KLASA 5 Nr lekcji Temat lekcji 1 2 Wakacje, wakacje... i po wakacjach 3 Systemy zapisywania liczb

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne. Matematyka

Wymagania na poszczególne oceny szkolne. Matematyka Wymagania na poszczególne oceny szkolne Matematyka Klasa IV Wymagania Wymagania ponad Dział 1. Liczby naturalne Zbieranie i prezentowanie danych gromadzi dane (13.1); odczytuje dane przedstawione w tekstach,

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności

Bardziej szczegółowo

Uczeń wykonuje proste działania pamięciowe na liczbach naturalnych, całkowitych i ułamkach, zna i stosuje algorytmy działań pisemnych oraz potrafi

Uczeń wykonuje proste działania pamięciowe na liczbach naturalnych, całkowitych i ułamkach, zna i stosuje algorytmy działań pisemnych oraz potrafi Rozkład materiału nauczania. Matematyka wokół nas Klasa 4 DZIAŁANIA NA LICZBACH NATURALNYCH (22 h) 1 Liczby naturalne. Oś liczbowa 1. 1 ) odczytuje i zapisuje liczby naturalne wielocyfrowe 1. 2 ) interpretuje

Bardziej szczegółowo

Matematyka Fragmenty programu nauczania dla szkoły podstawowej klasy 4

Matematyka Fragmenty programu nauczania dla szkoły podstawowej klasy 4 Matematyka Fragmenty programu nauczania dla szkoły podstawowej klasy 4 Anna Konstantynowicz, Adam Konstantynowicz, Bożena Kiljańska, Małgorzata Pająk, Grażyna Ukleja [ ] 2. Szczegółowe cele kształcenia

Bardziej szczegółowo

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6 Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności

Bardziej szczegółowo

Wymagania edukacyjne z matematyki- klasa 4

Wymagania edukacyjne z matematyki- klasa 4 Wymagania edukacyjne z matematyki- klasa 4 Rozdział Wymagania podstawowe konieczne (ocena dopuszczająca) Podstawowe (ocena dostateczna) rozszerzające (ocena dobra) Wymagania ponadpodstawowe dopełniające

Bardziej szczegółowo

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6 Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności

Bardziej szczegółowo

podstawowe (ocena dostateczna) 3 Dział 1. Liczby naturalne i dziesiętne. Działania na liczbach naturalnych i dziesiętnych Uczeń:

podstawowe (ocena dostateczna) 3 Dział 1. Liczby naturalne i dziesiętne. Działania na liczbach naturalnych i dziesiętnych Uczeń: Klasa V Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem

Bardziej szczegółowo

MATEMATYKA KLASA VI. Podstawa programowa przedmiotu SZKOŁY BENEDYKTA

MATEMATYKA KLASA VI. Podstawa programowa przedmiotu SZKOŁY BENEDYKTA 2016-09-01 MATEMATYKA KLASA VI Podstawa programowa przedmiotu SZKOŁY BENEDYKTA I. Sprawność rachunkowa. Cele kształcenia wymagania ogólne Uczeń wykonuje proste działania pamięciowe na liczbach naturalnych,

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne w klasie V

Wymagania na poszczególne oceny szkolne w klasie V Wymagania na poszczególne oceny szkolne w klasie V Wymagania Dział 1. Liczby naturalne i dziesiętne. Działania na liczbach naturalnych i dziesiętnych Uczeń: Zastosowania matematyki praktycznych liczbę

Bardziej szczegółowo

TEMAT 1. LICZBY I DZIAŁANIA Rachunki pamięciowe, dodawanie i odejmowanie. 2. O ile więcej, o ile mniej 2 LICZBA GODZIN LEKCYJNYCH

TEMAT 1. LICZBY I DZIAŁANIA Rachunki pamięciowe, dodawanie i odejmowanie. 2. O ile więcej, o ile mniej 2 LICZBA GODZIN LEKCYJNYCH TEMAT 1. LICZBY I DZIAŁANIA 1. Rachunki pamięciowe, dodawanie i odejmowanie LICZBA GODZIN LEKCYJNYCH. O ile więcej, o ile mniej WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. Liczby naturalne w dziesiątkowym

Bardziej szczegółowo

DZIAŁ 1. LICZBY NATURALNE I DZIESIĘTNE. DZIAŁANIA NA LICZBACH NATURALNYCH I DZIESIĘTNYCH (40 GODZ.)

DZIAŁ 1. LICZBY NATURALNE I DZIESIĘTNE. DZIAŁANIA NA LICZBACH NATURALNYCH I DZIESIĘTNYCH (40 GODZ.) Matematyka w otaczającym nas świecie Gra tabliczka mnożenia Karta pracy 1 Po IV klasie szkoły podstawowej Ślimak gra edukacyjna z tabliczką mnożenia 1. Zastosowania matematyki w sytuacjach praktycznych

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne KLASA VI

Wymagania na poszczególne oceny szkolne KLASA VI Matematyka Matematyka z pomysłem Klasa Szkoła podstawowa Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych.

Bardziej szczegółowo

16. CO TU PASUJE CZYLI O DOSTRZEGANIU ZWIĄZKÓW, PODOBIEŃSTW I RÓŻNIC, CZ. II

16. CO TU PASUJE CZYLI O DOSTRZEGANIU ZWIĄZKÓW, PODOBIEŃSTW I RÓŻNIC, CZ. II 80 Mirosław Dąbrowski 16. CO TU PASUJE CZYLI O DOSTRZEGANIU ZWIĄZKÓW, PODOBIEŃSTW I RÓŻNIC, CZ. II Cele ogólne w szkole podstawowej: zdobycie przez uczniów umiejętności wykorzystywania posiadanych wiadomości

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne Wymagania na poszczególne oceny szkolne Klasa V Rozdział Wymagania podstawowe Wymagania ponadpodstawowe konieczne (ocena dopuszczająca) 2 podstawowe (ocena dostateczna) 3 rozszerzające (ocena dobra) 4

Bardziej szczegółowo

Wymagania edukacyjne niezbędne do otrzymania przez ucznia poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych.

Wymagania edukacyjne niezbędne do otrzymania przez ucznia poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych. Wymagania edukacyjne niezbędne do otrzymania przez ucznia poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych. TEMAT Z PODRĘCZNIKA 1. Rachunki pamięciowe, dodawanie i odejmowanie 2. O ile więcej,

Bardziej szczegółowo

DZIAŁ 1. LICZBY NATURALNE W DZIESIĄTKOWYM UKŁADZIE POZYCYJNYM. (32 GODZ.)

DZIAŁ 1. LICZBY NATURALNE W DZIESIĄTKOWYM UKŁADZIE POZYCYJNYM. (32 GODZ.) DZIAŁ 1. LICZBY NATURALNE W DZIESIĄTKOWYM UKŁADZIE POZYCYJNYM. (32 GODZ.) 1 PSO i kontrakt z uczniami. 1 Matematyka w otaczającym nas świecie 1 Karta pracy 1 Po I etapie edukacyjnym 1 Ślimak gra edukacyjna

Bardziej szczegółowo

TEMAT 1. LICZBY I DZIAŁANIA Rachunki pamięciowe, dodawanie i odejmowanie. 2. O ile więcej, o ile mniej 2 LICZBA GODZIN LEKCYJNYCH

TEMAT 1. LICZBY I DZIAŁANIA Rachunki pamięciowe, dodawanie i odejmowanie. 2. O ile więcej, o ile mniej 2 LICZBA GODZIN LEKCYJNYCH TEMAT 1. LICZBY I DZIAŁANIA 3 1. Rachunki pamięciowe, dodawanie i odejmowanie LICZBA GODZIN LEKCYJNYCH. O ile więcej, o ile mniej WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. Liczby naturalne w dziesiątkowym

Bardziej szczegółowo

1. Zapisywanie i porównywanie liczb. 2. Rachunki pamięciowe Kolejność działań Sprytne rachunki. 1 1.

1. Zapisywanie i porównywanie liczb. 2. Rachunki pamięciowe Kolejność działań Sprytne rachunki. 1 1. TEMAT.LICZBY I DZIAŁANIA LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z XII 008 R.. Zapisywanie i porównywanie liczb.. Rachunki pamięciowe. 3. Kolejność działań. 4. Sprytne rachunki..

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie 5

Wymagania edukacyjne z matematyki w klasie 5 Wymagania edukacyjne z matematyki w klasie 5 Wymagania podstawowe Wymagania ponadpodstawowe Rozdział konieczne (ocena dopuszczająca) 2 podstawowe (ocena dostateczna) 3 rozszerzające (ocena dobra) 4 dopełniające

Bardziej szczegółowo

LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI TEMAT 1. LICZBY I DZIAŁANIA 23

LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI TEMAT 1. LICZBY I DZIAŁANIA 23 TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI 1. LICZBY I DZIAŁANIA 3 1. Rachunki pamięciowe, dodawanie i odejmowanie. O ile więcej, o ile mniej 3. Rachunki pamięciowe,

Bardziej szczegółowo

WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z XII 2008 R. TEMAT 1.LICZBY I DZIAŁANIA

WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z XII 2008 R. TEMAT 1.LICZBY I DZIAŁANIA TEMAT.LICZBY I DZIAŁANIA LICZBA GODZIN LEKCYJNYCH. Zapisywanie i porównywanie liczb.. Rachunki pamięciowe. 3. Sprytne rachunki. 4. Szacowanie wyników działań. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ

Bardziej szczegółowo

MATEMATYKA KLASA VI Uczeń kończący klasę VI powinien umieć:

MATEMATYKA KLASA VI Uczeń kończący klasę VI powinien umieć: MATEMATYKA KLASA VI Uczeń kończący klasę VI powinien umieć: dodawać, odejmować, mnożyć i dzielić liczby naturalne, ułamki zwykłe oraz ułamki dziesiętne, obliczać wartości wyrażeń arytmetycznych i algebraicznych

Bardziej szczegółowo

Matematyka Matematyka z pomysłem Klasy 4 6. Wymagania podstawowe Uczeń: DZIAŁ 1. LICZBY NATURALNE W DZIESIĄTKOWYM UKŁADZIE POZYCYJNYM

Matematyka Matematyka z pomysłem Klasy 4 6. Wymagania podstawowe Uczeń: DZIAŁ 1. LICZBY NATURALNE W DZIESIĄTKOWYM UKŁADZIE POZYCYJNYM Opis założonych osiągnięć ucznia Wymagania programowe, które stanowią oczekiwane osiągnięcia uczniów zostały podzielone na wymagania podstawowe (bazowe dla przedmiotu) i wymagania ponadpodstawowe (rozszerzające

Bardziej szczegółowo

P L A N R E A L I Z A C J I M A T E R I A Ł U Z M A T E M A T Y K I D L A K L A S Y I V d r o k s z k o l n y 2 0 1 5 / 2 0 1 6

P L A N R E A L I Z A C J I M A T E R I A Ł U Z M A T E M A T Y K I D L A K L A S Y I V d r o k s z k o l n y 2 0 1 5 / 2 0 1 6 P L A N R E A L I Z A C J I M A T E R I A Ł U Z M A T E M A T Y K I D L A K L A S Y I V d r o k s z k o l n y 0 1 5 / 0 1 6 Program nauczania: Matematyka z pomysłem, numery dopuszczenia podręczników 687/1/014,

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DLA VI KLASY SZKOŁY PODSTAWOWEJ

ROZKŁAD MATERIAŁU DLA VI KLASY SZKOŁY PODSTAWOWEJ ROZKŁAD MATERIAŁU DLA VI KLASY SZKOŁY PODSTAWOWEJ TEMAT 1. Rachunki pamięciowe na liczbach naturalnych i ułamkach dziesiętnych. LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z XII

Bardziej szczegółowo

Wyniki procentowe poszczególnych uczniów

Wyniki procentowe poszczególnych uczniów K la s a 6 c Próbny sprawdzian w szóstej klasie Klasa 6c Wyniki procentowe poszczególnych uczniów 70% 60% 50% Polska (52%) 40% 30% 20% 10% 0% nr ucznia 2 3 4 5 6 7 8 9 10 11 12 13 14 16 18 wynik w % 51

Bardziej szczegółowo

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6 Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności

Bardziej szczegółowo

Trenuj przed sprawdzianem! Matematyka

Trenuj przed sprawdzianem! Matematyka Imię i nazwisko ucznia...................................................................... Klasa............... Numer w dzienniku.............. Informacja do zadań od 1. do 4. Szlak rowerowy Dolina Dolnej

Bardziej szczegółowo

SPRAWDZIAN WIADOMOŚCI I UMIEJĘTNOŚCI MATEMATYCZNYCH W KLASIE CZWARTEJ PO I SEMESTRZE NAUKI

SPRAWDZIAN WIADOMOŚCI I UMIEJĘTNOŚCI MATEMATYCZNYCH W KLASIE CZWARTEJ PO I SEMESTRZE NAUKI SRAWDZIAN WIADOMOŚI I UMIEJĘTNOŚI MATEMATYZNYH W KLASIE ZWARTEJ O I SEMESTRZE NAUKI Opracowały: Wioleta Żebrowska Dorota Załuska-Jeżak Małgorzata awłowska Joanna Bagińska SRAWDZIAN O I SEMESTRZE NAUKI

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA W KLASIE IV MATEMATYKA Z KLASĄ

PRZEDMIOTOWY SYSTEM OCENIANIA W KLASIE IV MATEMATYKA Z KLASĄ PRZEDMIOTOWY SYSTEM OCENIANIA W KLASIE IV MATEMATYKA Z KLASĄ Na ocenę niedostateczną: nie spełnia kryteriów oceny dopuszczającej. 1. Liczby naturalne w dziesiątkowym układzie pozycyjnym 1) odczytuje i

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne Wymagania na poszczególne oceny szkolne Klasa IV Rozdział Wymagania podstawowe Wymagania ponadpodstawowe konieczne (ocena dopuszczająca) podstawowe (ocena dostateczna) rozszerzające (ocena dobra) dopełniające

Bardziej szczegółowo

KARTA ODPOWIEDZI UZUPEŁNIA UCZEŃ

KARTA ODPOWIEDZI UZUPEŁNIA UCZEŃ KARTA ODPOWIEDZI UZUPEŁNIA UCZEŃ KOD UCZNIA PESEL Nr zad. MATEMATYKA Odpowiedzi 1 AC. AD. BC. BD. 2 AC. AD. BC. BD. 3 A. B. C. D. 4 AC. AD. BC. BD. 5 A. B. C. D. 6 PP. PF. FP. FF. 7 A. B. C. D. 8 PP. PF.

Bardziej szczegółowo

układzie pozycyjnym. Uczeń: 1) odczytuje i zapisuje liczby naturalne wielocyfrowe układzie pozycyjnym. Uczeń: 1) odczytuje i zapisuje liczby

układzie pozycyjnym. Uczeń: 1) odczytuje i zapisuje liczby naturalne wielocyfrowe układzie pozycyjnym. Uczeń: 1) odczytuje i zapisuje liczby Numer lekcji Temat lekcji Zagadnienia wg podstawy programowej DZIAŁANIA NA LICZBACH 3 NATURALNYCH, SYSTEM DZIESIĄTKOWY Wędrówka po liczbach. Własności liczb w zakresie 00.. Liczby naturalne w dziesiątkowym

Bardziej szczegółowo

Wymagania podstawowe i ponadpodstawowe z matematyki w SP9 Klasa IV

Wymagania podstawowe i ponadpodstawowe z matematyki w SP9 Klasa IV i ponadpodstawowe z matematyki w SP9 Klasa IV Rozdział DZIAŁ 1. LICZBY NATURALNE W DZIESIĄTKOWYM UKŁADZIE POZYCYJNYM 1. Zbieranie i prezentowanie danych 2. Rzymski system zapisu liczb 3. Obliczenia kalendarzowe

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA 4. Ocena śródroczna

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA 4. Ocena śródroczna WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA 4 (do programu nauczania Matematyka z pomysłem, WSiP) Otrzymanie oceny wyższej oznacza spełnienie wymagań także na ocenę niższą Ocena śródroczna

Bardziej szczegółowo

PODSTAWA PROGRAMOWA MATEMATYKI DLA KLAS IV VI SZKOŁY PODSTAWOWEJ PODPISANA PRZEZ MINISTRA EDUKACJI NARODOWEJ. W DNIU 27 SIERPNIA 2012 r.

PODSTAWA PROGRAMOWA MATEMATYKI DLA KLAS IV VI SZKOŁY PODSTAWOWEJ PODPISANA PRZEZ MINISTRA EDUKACJI NARODOWEJ. W DNIU 27 SIERPNIA 2012 r. PODSTAWA PROGRAMOWA MATEMATYKI DLA KLAS IV VI SZKOŁY PODSTAWOWEJ PODPISANA PRZEZ MINISTRA EDUKACJI NARODOWEJ W DNIU 27 SIERPNIA 2012 r. (ze zmianami) Cele kształcenia wymagania ogólne I. Sprawność rachunkowa.

Bardziej szczegółowo

Wymagania edukacyjne niezbędne do otrzymania przez ucznia poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych.

Wymagania edukacyjne niezbędne do otrzymania przez ucznia poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych. Wymagania edukacyjne niezbędne do otrzymania przez ucznia poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych. TEMAT Z PODRĘCZNIKA 1. Zapisywanie i porównywanie liczb. 2. Rachunki pamięciowe.

Bardziej szczegółowo

Rozkład materiału nauczania z odniesieniami do wymagań z podstawy programowej. Matematyka wokół nas

Rozkład materiału nauczania z odniesieniami do wymagań z podstawy programowej. Matematyka wokół nas 1 Rozkład materiału nauczania z odniesieniami do wymagań z podstawy programowej. Matematyka wokół nas KLASA 6 Nr lekcji Temat lekcji Zagadnienie do realizacji wg podstawy programowej LICZBY NATURALNE (8

Bardziej szczegółowo

MATEMATYKA. Cele kształcenia wymagania ogólne. I. Sprawność rachunkowa.

MATEMATYKA. Cele kształcenia wymagania ogólne. I. Sprawność rachunkowa. MATEMATYKA Cele kształcenia wymagania ogólne I. Sprawność rachunkowa. Uczeń wykonuje proste działania pamięciowe na liczbach naturalnych, całkowitych i ułamkach, zna i stosuje algorytmy działań pisemnych

Bardziej szczegółowo

MATEMATYKA SZKOŁA PODSTAWOWA TEST CAŁOROCZNY PO KLASIE PIĄTEJ

MATEMATYKA SZKOŁA PODSTAWOWA TEST CAŁOROCZNY PO KLASIE PIĄTEJ MATEMATYKA SZKOŁA PODSTAWOWA TEST CAŁOROCZNY PO KLASIE PIĄTEJ Drogi uczniu, przed Tobą test sprawdzający wiadomości i umiejętności matematyczne po klasie V. Rozwiązując zadania dowiesz się, co z matematyki

Bardziej szczegółowo

Trenuj przed sprawdzianem! Matematyka Test 3

Trenuj przed sprawdzianem! Matematyka Test 3 mię i nazwisko ucznia...................................................................... Klasa............... Numer w dzienniku.............. 1. Dom państwa Wiśniewskich stoi na działce o powierzchni

Bardziej szczegółowo

1. Zapisywanie i porównywanie liczb. 2. Rachunki pamięciowe. 3. Kolejność działań. 1.LICZBY I DZIAŁANIA

1. Zapisywanie i porównywanie liczb. 2. Rachunki pamięciowe. 3. Kolejność działań. 1.LICZBY I DZIAŁANIA Wymagania edukacyjne niezbędne do otrzymania przez ucznia klasy 5 poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych w roku szkolnym2016/2017. TEMAT 1.LICZBY I DZIAŁANIA 1. Zapisywanie i porównywanie

Bardziej szczegółowo

Przedmiotowy System Oceniania z Matematyki w SP 12 we Wrocławiu kl. IV-VI

Przedmiotowy System Oceniania z Matematyki w SP 12 we Wrocławiu kl. IV-VI Przedmiotowy System Oceniania z Matematyki w SP 12 we Wrocławiu kl. IV-VI I WYMAGANIA EDUKACYJNE Cele kształcenia wymagania ogólne I. Sprawność rachunkowa. Uczeń wykonuje proste działania pamięciowe na

Bardziej szczegółowo

PROGRAM NAUCZANIA 12 1. Wprowadzenie 12 2. Cele edukacyjne (cele kształcenia ogólnego)

PROGRAM NAUCZANIA 12 1. Wprowadzenie 12 2. Cele edukacyjne (cele kształcenia ogólnego) PROGRAM NAUCZANIA 12 1. Wprowadzenie 12 2. Cele edukacyjne (cele kształcenia ogólnego) 13 3. Program a cele kształcenia 14 37 4. Propozycje kryteriów oceny i metod sprawdzania osiągnięć ucznia a) Ramowy

Bardziej szczegółowo

Szkoła Podstawowa nr 43 im. I. J. Paderewskiego w Lublinie

Szkoła Podstawowa nr 43 im. I. J. Paderewskiego w Lublinie Szkoła Podstawowa nr 43 im. I. J. Paderewskiego w Lublinie ZAKRES MATERIAŁU KONKURS MATEMATYCZNY DLA UCZNIÓW SZKOŁY PODSTAWOWEJ W ROKU SZKOLNYM 2016/2017 ETAP SZKOLNY Cele edukacyjne: Rozwijanie zdolności

Bardziej szczegółowo

SPRAWDZIAN OD ROKU SZKOLNEGO 2014/2015 CZĘŚĆ 1. JĘZYK POLSKI I MATEMATYKA

SPRAWDZIAN OD ROKU SZKOLNEGO 2014/2015 CZĘŚĆ 1. JĘZYK POLSKI I MATEMATYKA SPRAWDZIAN OD ROKU SZKOLNEGO 2014/2015 CZĘŚĆ 1. JĘZYK POLSKI I MATEMATYKA ROZWIĄZANIA ZADAŃ I SCHEMAT PUNKTOWANIA PRZYKŁADOWY ZESTAW ZADAŃ DLA UCZNIÓW Z UPOŚLEDZENIEM UMYSŁOWYM W STOPNIU LEKKIM (S8) GRUDZIEŃ

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny

Wymagania edukacyjne na poszczególne oceny Wymaganiach edukacyjne niezbędne do otrzymania przez ucznia klasy 4 Szkoły Podstawowej poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki, wynikające z programu nauczania: Matematyka

Bardziej szczegółowo

PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI DLA KLASY PIĄTEJ

PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI DLA KLASY PIĄTEJ PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI DLA KLASY PIĄTEJ 1 PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI DLA KLASY V SZKOŁY PODSTAWOWEJ Materiał przedstawia Przedmiotowe Zasady Oceniania z matematyki dla

Bardziej szczegółowo

Sprawdzian wiadomości i umiejętności matematycznych w klasie szóstej za I semestr

Sprawdzian wiadomości i umiejętności matematycznych w klasie szóstej za I semestr Sprawdzian wiadomości i umiejętności matematycznych w klasie szóstej za I semestr Opracowały: Grala Ewa Sylwia Filipkowska Jadwiga Potaś Janina Rydzewska Agnieszka Sienkiewicz Bożena Sprawdzian wiadomości

Bardziej szczegółowo

PRZEDMIOTOWE ZASADY OCENIANIA MATEMATYKA KLASA 4 SZKOŁA PODSTAWOWA NR 3 IM. SENATU RP W BRANIEWIE

PRZEDMIOTOWE ZASADY OCENIANIA MATEMATYKA KLASA 4 SZKOŁA PODSTAWOWA NR 3 IM. SENATU RP W BRANIEWIE PRZEDMIOTOWE ZASADY OCENIANIA MATEMATYKA KLASA 4 SZKOŁA PODSTAWOWA NR 3 IM. SENATU RP W BRANIEWIE Zasady oceniania przedmiotowego opracowane zostały w oparciu o: 1. Wewnątrzszkolne Zasady Oceniania w Szkole

Bardziej szczegółowo

Trenuj przed sprawdzianem! Matematyka

Trenuj przed sprawdzianem! Matematyka mię i nazwisko ucznia...................................................................... Klasa............... Numer w dzienniku.............. 1. Zestaw komputerowy kosztuje 3200 zł. Pan Janusz, kupując

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki w klasach IV VI

Przedmiotowy system oceniania z matematyki w klasach IV VI Przedmiotowy system oceniania z matematyki w klasach IV VI Przedmiotowy system oceniania ( w skrócie PSO ) jest zgodny z Ustawą o systemie oświaty z dnia 7 września 1991 roku ( ze zmianami), oraz Rozporządzeniem

Bardziej szczegółowo

Temat Rozwiązywanie zadań tekstowych związanych z działaniami na liczbach dziesiętnych

Temat Rozwiązywanie zadań tekstowych związanych z działaniami na liczbach dziesiętnych Konspekt lekcji w klasie IV Temat Rozwiązywanie zadań tekstowych związanych z działaniami na liczbach dziesiętnych Cel ogólny Uczeń wykonuje podstawowe operacje na ułamkach dziesiętnych z zastosowaniem

Bardziej szczegółowo

UMIEJĘTNOŚCI TRZECIOKLASISTÓW OBUT 2013, TIMSS, PIRLS

UMIEJĘTNOŚCI TRZECIOKLASISTÓW OBUT 2013, TIMSS, PIRLS UMIEJĘTNOŚCI TRZECIOKLASISTÓW OBUT 2013, TIMSS, PIRLS Po co OBUT Cele OBUT dostarczenie szkołom: profesjonalnych narzędzi badania umiejętności językowych i matematycznych trzecioklasistów danych pozwalających

Bardziej szczegółowo

Wymagania szczegółowe treści nauczania edukacji matematycznej dla I etapu edukacyjnego (klasy I-III szkoły podstawowej edukacja wczesnoszkolna)

Wymagania szczegółowe treści nauczania edukacji matematycznej dla I etapu edukacyjnego (klasy I-III szkoły podstawowej edukacja wczesnoszkolna) Wymagania szczegółowe treści nauczania edukacji matematycznej dla I etapu edukacyjnego (klasy I-III szkoły podstawowej edukacja wczesnoszkolna) Uczeń: 1) klasyfikuje obiekty i tworzy proste serie; dostrzega

Bardziej szczegółowo

Trenuj przed sprawdzianem! Matematyka

Trenuj przed sprawdzianem! Matematyka mię i nazwisko ucznia...................................................................... Klasa............... Numer w dzienniku.............. 1. Rodzina Kowalskich: pan Jan, pani Maria i syn Karol postanowili

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności

Bardziej szczegółowo

Pokoloruj schody, na których wszystkie liczby zapisano rosnąco. Podkreśl wszystkie liczby, które powinny się znaleźć w podanej tabeli.

Pokoloruj schody, na których wszystkie liczby zapisano rosnąco. Podkreśl wszystkie liczby, które powinny się znaleźć w podanej tabeli. Imię nazwisko, numer dziennika Imię i nazwisko, numer z dziennika LUTY Grupa A 1. Pokoloruj schody, na których wszystkie liczby zapisano rosnąco. 61 27 54 53 72 32 35 46 28 34 25 51 12 1 26 2. Podkreśl

Bardziej szczegółowo

PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI DLA KL. IV- VI ROK SZKOLNY 2015/2016

PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI DLA KL. IV- VI ROK SZKOLNY 2015/2016 PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI DLA KL. IV- VI ROK SZKOLNY 2015/2016 Przedmiotowe zasady oceniania zawierają: 1. Kryteria oceniania na poszczególne oceny. Kryteria oceniania punktowanych sprawdzianów

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY IV REALIZOWANE WEDŁUG

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY IV REALIZOWANE WEDŁUG WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY IV REALIZOWANE WEDŁUG PROGRAMU MATEMATYKA Z PLUSEM Poziom podstawowy Poziom ponadpodstawowy Uczeń potrafi na: Uczeń potrafi na: ocenę dopuszczającą ocenę dostateczną

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie IV

Wymagania edukacyjne z matematyki w klasie IV Wymagania edukacyjne z matematyki w klasie IV Na ocenę dopuszczającą uczeń potrafi: Dodawać i odejmować w pamięci liczby dwucyfrowe. Obliczyć wartości wyrażeń arytmetycznych z zachowaniem kolejności wykonywania

Bardziej szczegółowo

KWIECIEŃ Grupa A 73, 70, 63, 60, 53, 50,, 70 > > 49. : = Sprawdzenie:

KWIECIEŃ Grupa A 73, 70, 63, 60, 53, 50,, 70 > > 49. : = Sprawdzenie: Imię nazwisko, numer dziennika Imię i nazwisko, numer z dziennika KWIECIEŃ Grupa A 1. Podane liczby zapisano według pewnej zasady. Zapisz dwie kolejne liczby. 73, 70, 63, 60, 53, 50,, 2. Otocz pętlą liczbę,

Bardziej szczegółowo

BADANIE DIAGNOSTYCZNE W KLASIE SZÓSTEJ SZKOŁY PODSTAWOWEJ W ROKU SZKOLNYM 2014/2015 CZĘŚĆ 1. JĘZYK POLSKI I MATEMATYKA

BADANIE DIAGNOSTYCZNE W KLASIE SZÓSTEJ SZKOŁY PODSTAWOWEJ W ROKU SZKOLNYM 2014/2015 CZĘŚĆ 1. JĘZYK POLSKI I MATEMATYKA DNIE DIGNOSTYZNE W KLSIE SZÓSTEJ SZKOŁY PODSTWOWEJ W ROKU SZKOLNYM 2014/2015 ZĘŚĆ 1. JĘZYK POLSKI I MTEMTYK ROZWIĄZNI ZDŃ I SHEMTY PUNKTOWNI RKUSZ S8 dla uczniów z upośledzeniem umysłowym w stopniu lekkim

Bardziej szczegółowo

Wymagania programowe na poszczególne stopnie szkolne klasa 4

Wymagania programowe na poszczególne stopnie szkolne klasa 4 Wymagania programowe na poszczególne stopnie szkolne klasa 4 Nauczyciel matematyki ocenia osiągnięcia ucznia, wykorzystując następujące formy: prace pisemne (prace klasowe, sprawdziany, kartkówki) odpowiedzi

Bardziej szczegółowo

Osiągnięcia opisane w podstawie programowej obowiązujące do sprawdzianu klas VI:

Osiągnięcia opisane w podstawie programowej obowiązujące do sprawdzianu klas VI: Hanna MAREK Samorządowy Ośrodek Doradztwa Metodycznego i Doskonalenia Nauczycieli w Łomży Materiał uzupełniający dotyczący monitorowania osiągnięć uczniów Przykład sprawdzianu łącznie z obudową dla nauczyciela

Bardziej szczegółowo

Katalog wymagań programowych z matematyki na poszczególne stopnie szkolne. Matematyka wokół nas klasa 4

Katalog wymagań programowych z matematyki na poszczególne stopnie szkolne. Matematyka wokół nas klasa 4 Katalog wymagań programowych z matematyki na poszczególne stopnie szkolne. Matematyka wokół nas klasa 4 Kategorie zostały określone następująco: dotyczy wiadomości uczeń zna uczeń rozumie dotyczy przetwarzania

Bardziej szczegółowo

Okręgowa Komisja Egzaminacyjna w Gdańsku, listopad 2013. Matematyka w nowej formule egzaminacyjnej

Okręgowa Komisja Egzaminacyjna w Gdańsku, listopad 2013. Matematyka w nowej formule egzaminacyjnej , Matematyka w nowej formule egzaminacyjnej Podstawa programowa z komentarzami Edukacja matematyczna i techniczna Podstawa programowa zawiera zakres wiadomości i umiejętności sprawdzanych na sprawdzianie.

Bardziej szczegółowo

KRYTERIA OCENIANIA W KLASACH CZWARTYCH - Matematyka. ocenę niedostateczną otrzymuje uczeń, który nie spełnia kryteriów na ocenę dopuszczającą;

KRYTERIA OCENIANIA W KLASACH CZWARTYCH - Matematyka. ocenę niedostateczną otrzymuje uczeń, który nie spełnia kryteriów na ocenę dopuszczającą; KRYTERIA OCENIANIA W KLASACH CZWARTYCH - Matematyka ocenę niedostateczną otrzymuje uczeń, który nie spełnia kryteriów na ocenę dopuszczającą; ocenę dopuszczającą otrzymuje uczeń, który: porównuje liczby

Bardziej szczegółowo

W jakim stopniu uczniowie opanowali umiejętność Wykorzystywania wiedzy w praktyce? Analiza zadań otwartych z arkusza Sprawdzian 2012

W jakim stopniu uczniowie opanowali umiejętność Wykorzystywania wiedzy w praktyce? Analiza zadań otwartych z arkusza Sprawdzian 2012 Jerzy Matwijko Okręgowa Komisja Egzaminacyjna w Krakowie W jakim stopniu uczniowie opanowali umiejętność Wykorzystywania wiedzy w praktyce? Analiza zadań otwartych z arkusza Sprawdzian 2012 W Pracowni

Bardziej szczegółowo

Matematyka Matematyka z pomysłem Klasa 4-6

Matematyka Matematyka z pomysłem Klasa 4-6 6. Procedury osiągania celów W rozdziale 3. niniejszego dokumentu zostały sformułowane cele realizowane podczas nauczania z programem Matematyka z pomysłem. Osiągnięciu tych celów mają służyć odpowiednie

Bardziej szczegółowo

DZIAŁ 1. Liczby naturalne i ułamki

DZIAŁ 1. Liczby naturalne i ułamki 1 kl. 6, Scenariusz lekcji Dzielenie pisemne DZIAŁ 1. Liczby naturalne i ułamki Temat w podręczniku: Dzielenie pisemne Temat jest przeznaczony do realizacji podczas 2 godzin lekcyjnych. Został zaplanowany

Bardziej szczegółowo

PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI KL. IV

PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI KL. IV PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI KL. IV 1) Oceny: Uczniowie oceniani są według skali określonej w przepisach ogólnych Wewnątrzszkolnego Systemu Oceniania. Oceny bieżące, semestralne oraz roczne

Bardziej szczegółowo

25. NIE TYLKO WORECZKI CZYLI O ROZUMIENIU SYSTEMU DZIESIĘTNEGO, CZ. I

25. NIE TYLKO WORECZKI CZYLI O ROZUMIENIU SYSTEMU DZIESIĘTNEGO, CZ. I 124 25. NIE TYLKO WORECZKI CZYLI O ROZUMIENIU SYSTEMU DZIESIĘTNEGO, CZ. I Mirosław Dąbrowski 25. NIE TYLKO WORECZKI CZYLI O ROZUMIENIU SYSTEMU DZIESIĘTNEGO, CZ. I Cele ogólne w szkole podstawowej: zdobycie

Bardziej szczegółowo

SZCZEGÓŁOWE KRYTERIA OCENIANIA UCZNIÓW W ZAKRESIE TREŚCI PROGRAMOWYCH Z MATEMATYKI W KLASACH IV i V ZESPOŁU SZKÓŁ W ŚWILCZY

SZCZEGÓŁOWE KRYTERIA OCENIANIA UCZNIÓW W ZAKRESIE TREŚCI PROGRAMOWYCH Z MATEMATYKI W KLASACH IV i V ZESPOŁU SZKÓŁ W ŚWILCZY SZCZEGÓŁOWE KRYTERIA OCENIANIA UCZNIÓW W ZAKRESIE TREŚCI PROGRAMOWYCH Z MATEMATYKI W KLASACH IV i V ZESPOŁU SZKÓŁ W ŚWILCZY KLASA IV Uczeń otrzymuje ocenę celującą gdy: potrafi samodzielnie wyciągać wnioski,

Bardziej szczegółowo

Matematyka z kluczem klasa 4. I. Wymagania edukacyjne z matematyki w klasie 4 szkoły podstawowej

Matematyka z kluczem klasa 4. I. Wymagania edukacyjne z matematyki w klasie 4 szkoły podstawowej Matematyka z kluczem klasa 4 I. Wymagania edukacyjne z matematyki w klasie 4 szkoły podstawowej 1. W zakresie sprawności rachunkowej uczeń: wykonuje proste działania pamięciowe na liczbach naturalnych,

Bardziej szczegółowo

Wymagania programowe na poszczególne stopnie szkolne klasa 5

Wymagania programowe na poszczególne stopnie szkolne klasa 5 Wymagania programowe na poszczególne stopnie szkolne klasa 5 Nauczyciel matematyki ocenia osiągnięcia ucznia, wykorzystując następujące formy: prace pisemne (prace klasowe, sprawdziany, kartkówki) odpowiedzi

Bardziej szczegółowo

BADANIE DIAGNOSTYCZNE W KLASIE SZÓSTEJ SZKOŁY PODSTAWOWEJ W ROKU SZKOLNYM 2014/2015

BADANIE DIAGNOSTYCZNE W KLASIE SZÓSTEJ SZKOŁY PODSTAWOWEJ W ROKU SZKOLNYM 2014/2015 BADANIE DIAGNOSTYCZNE W KLASIE SZÓSTEJ SZKOŁY PODSTAWOWEJ W ROKU SZKOLNYM 2014/2015 CZĘŚĆ 1. JĘZYK POLSKI I MATEMATYKA ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA ARKUSZ S7 dla uczniów słabosłyszących i niesłyszących

Bardziej szczegółowo

Edukacja matematyczna

Edukacja matematyczna Edukacja matematyczna 1 Klasa 1 Klasa 2 Klasa3 I półrocze I półrocze I półrocze posługuje się określeniami: mniej, więcej, tyle samo; porównuje liczby, wpisuje znaki , = wykonuje obliczenia z okienkami

Bardziej szczegółowo

Rozkład łatwości zadań

Rozkład łatwości zadań Klasa 1b średnia klasy: 11.00 pkt średnia szkoły: 13.55 pkt średnia ogólnopolska: 10.93 pkt Rozkład łatwości zadań 1 0.9 0.8 0.7 0.6 łatwość 0.5 0.4 0.3 0.2 0.1 0 1 2 3 4 5 6 7 8 9 10 11 12 Numer zadania

Bardziej szczegółowo

Rozkład łatwości zadań

Rozkład łatwości zadań Klasa 1a średnia klasy: 17.13 pkt średnia szkoły: 17.36 pkt średnia ogólnopolska: 10.93 pkt Rozkład łatwości zadań 1 0.9 0.8 0.7 0.6 łatwość 0.5 0.4 0.3 0.2 0.1 0 1 2 3 4 5 6 7 8 9 10 11 12 Numer zadania

Bardziej szczegółowo

PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI W SZKOLE PODSTAWOWEJ NR 20!!! W KATOWICACH

PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI W SZKOLE PODSTAWOWEJ NR 20!!! W KATOWICACH PRZEDMIOTOWE ZASADY OCENIANIA W KATOWICACH Z MATEMATYKI W SZKOLE PODSTAWOWEJ NR 20 Spis treści 1.Kontrakt z uczniami. 2.Obszary aktywności ucznia a wymagania na ocenę. 3.Narzędzia i częstotliwość pomiaru

Bardziej szczegółowo

Zasady Oceniania Przedmiot: Matematyka

Zasady Oceniania Przedmiot: Matematyka I. Kontrakt między nauczycielem i uczniem Zasady Oceniania Przedmiot: Matematyka 1. Każdy uczeń jest oceniany zgodnie z zasadami sprawiedliwości. 2. Prace klasowe, sprawdziany i odpowiedzi ustne są obowiązkowe.

Bardziej szczegółowo

PODSTAWA PROGRAMOWA KSZTAŁCENIA OGÓLNEGO DLA SZKÓŁ PODSTAWOWYCH

PODSTAWA PROGRAMOWA KSZTAŁCENIA OGÓLNEGO DLA SZKÓŁ PODSTAWOWYCH PODSTAWA PROGRAMOWA KSZTAŁCENIA OGÓLNEGO DLA SZKÓŁ PODSTAWOWYCH Kształcenie ogólne w szkole podstawowej tworzy fundament wykształcenia szkoła łagodnie wprowadza uczniów w świat wiedzy, dbając o ich harmonijny

Bardziej szczegółowo

MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA EDUKACJA MATEMATYCZNA klasa II PŁOCK 2014

MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA EDUKACJA MATEMATYCZNA klasa II PŁOCK 2014 MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA EDUKACJA MATEMATYCZNA klasa II PŁOCK 204 KARTA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. Zad. 2 Zad. 3 Zad. 4 Zad. 5 Zad. 6 Zad. 7 SUMA PUNKTÓW Max

Bardziej szczegółowo

NA DOBRY START PORADNIK NAUCZYCIELA MATEMATYKA. ZRNyá QDV. v ho j - r o 7 v - o -

NA DOBRY START PORADNIK NAUCZYCIELA MATEMATYKA. ZRNyá QDV. v ho j - r o 7 v - o - NA DOBRY START PORADNIK NAUCZYCIELA MATEMATYKA ZRNyá QDV v ho j - r o 7 v - o - 4 Drodzy Nauczyciele Nowe prawo oświatowe zostało uchwalone. Przed nami wielka reforma całego systemu edukacji w Polsce,

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KL. 4

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KL. 4 WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KL. 4 Na ocenę niedostateczną (1) uczeń nie spełnia wymagań koniecznych. Na ocenę dopuszczającą (2) uczeń spełnia wymagania konieczne, tzn.: 1. posiada i

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA KL. 5

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA KL. 5 WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA KL. 5 Na ocenę niedostateczną (1) uczeń nie spełnia wymagań koniecznych. Na ocenę dopuszczającą (2) uczeń spełnia wymagania konieczne tzn.: 1. posiada i

Bardziej szczegółowo

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V Na ocenę wyższą uczeń powinien opanować wiedzę i umiejętności na ocenę (oceny) niższą. Dział programowy: LICZBY NATURALNE podać przykład liczby naturalnej czytać

Bardziej szczegółowo

Matematyka z klasą 4. wymagania na poszczególne oceny

Matematyka z klasą 4. wymagania na poszczególne oceny Matematyka z klasą wymagania na poszczególne Warunkiem otrzymania celującej jest spełnienie wymagań otrzymania bardzo dobrej, dobrej, dostatecznej i dopuszczającej. Uczeń otrzymuje ocenę bardzo dobrą,

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy pierwszej zasadniczej szkoły zawodowej

Wymagania edukacyjne z matematyki dla klasy pierwszej zasadniczej szkoły zawodowej Wymagania edukacyjne z matematyki dla klasy pierwszej zasadniczej szkoły zawodowej ocena dopuszczająca ocena dostateczna ocena dobra ocena bardzo dobra ocena celująca Dział I. LICZBY RZECZYWISTE I DZIALANIA

Bardziej szczegółowo

4. Program a treści nauczania

4. Program a treści nauczania Program nauczania Matematyka z pomysłem. Program a treści nauczania z podstawy programowej to - w grupowane w a - z z podstawy programowej. Prezentowany program nauczania jest przeznaczony do realizacji

Bardziej szczegółowo

Analiza i interpretacja próbnego sprawdzianu w klasie szóstej

Analiza i interpretacja próbnego sprawdzianu w klasie szóstej Analiza i interpretacja próbnego sprawdzianu w klasie szóstej 17 grudnia 2014 r. 1 Wprowadzenie Na podstawie rozporządzenia Ministra Edukacji Narodowej z dnia 30 kwietnia 2007 roku w sprawie warunków i

Bardziej szczegółowo

zadania treningowe z matematyki Akcja edukacja ZESTAW 8. Zadanie 1. Zapisz temperaturę wskazywaną przez termometr. ... ... ... ...

zadania treningowe z matematyki Akcja edukacja ZESTAW 8. Zadanie 1. Zapisz temperaturę wskazywaną przez termometr. ... ... ... ... zadania treningowe z matematyki Akcja edukacja ZESTAW 8. Zadanie 1. Zapisz temperaturę wskazywaną przez termometr. 1 Zadanie 2. Na termometrach zaznaczono temperatury zanotowane rano w kilku miastach Polski.

Bardziej szczegółowo

Zakres wiedzy i umiejętności oraz wykaz literatury

Zakres wiedzy i umiejętności oraz wykaz literatury ZAŁĄCZNIK NR 1 Zakres wiedzy i umiejętności oraz wykaz literatury I. Obszary umiejętności sprawdzane na każdym etapie Konkursu 1) Sprawność rachunkowa. Uczeń: 1) wykonuje działania na liczbach naturalnych,

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie 4 szkoły podstawowej

Wymagania edukacyjne z matematyki w klasie 4 szkoły podstawowej Wymagania edukacyjne z matematyki w klasie 4 szkoły podstawowej 1. W zakresie sprawności rachunkowej uczeń: wykonuje proste działania pamięciowe na liczbach naturalnych, zna i stosuje algorytmy działań

Bardziej szczegółowo

Analiza wyników sprawdzianu próbnego w kl.6a / r.szk. 2015/2016

Analiza wyników sprawdzianu próbnego w kl.6a / r.szk. 2015/2016 Analiza wyników sprawdzianu próbnego w kl.6a / r.szk. 2015/2016 Sprawdzian próbny napisało 19 uczniów klasy 6a, 1 uczeń nie przystąpił do sprawdzianu próbnego (nie był obecny w szkole). Jedna uczennica

Bardziej szczegółowo