Informatyka 2. Wykład nr 10 ( ) Plan wykładu nr 10. Politechnika Białostocka. - Wydział Elektryczny. ext2. ext2. dr inŝ.
|
|
- Błażej Krawczyk
- 8 lat temu
- Przeglądów:
Transkrypt
1 Rok akademicki 2008/2009, Wykład nr 10 2/32 Plan wykładu nr 10 Informatyka 2 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr III, studia niestacjonarne I stopnia Rok akademicki 2008/2009 Systemy plików Zarządzanie pamięcią operacyjną: partycjonowanie statyczne i dynamiczne proste stronicowanie prosta segmentacja pamięć wirtualna stronicowanie pamięci wirtualnej segmentacja pamięci wirtualnej Wykład nr 10 ( ) Rok akademicki 2008/2009, Wykład nr 10 3/32 Rok akademicki 2008/2009, Wykład nr 10 4/32 pierwszy system plików w Linuxie: Minix (14-znakowe nazwy plików i maksymalny rozmiar wynoszący 64 MB) Boot Sector (blok startowy) przechowuje informacje wykorzystywane przez system operacyjny podczas jego uruchamiania system Minix zastąpiono nowym systemem nazwanym rozszerzonym systemem plików - ext (ang. extended file system), a ten, w styczniu 1993 r., systemem (ang. second extended file system) w systemie podstawowym elementem podziału dysku jest blok wielkość bloku jest stała w ramach całego systemu plików, określana na etapie jego tworzenia i moŝe wynosić 1024, 2048 lub 4096 bajtów w celu zwiększenia bezpieczeństwa i optymalizacji zapisu na dysku posługujemy się nie pojedynczymi blokami, a grupami bloków na poziomie logicznym grupę bloków tworzą: deskryptor grupy (32 bajty) blok z mapą zajętości bloków danych (1 blok dyskowy) blok z mapą zajętości i-węzłów (1 blok dyskowy) bloki z tablicą i-węzłów bloki danych Boot Sector Bloki grupy 1 Bloki grupy 2... Bloki grupy N
2 Rok akademicki 2008/2009, Wykład nr 10 5/32 Rok akademicki 2008/2009, Wykład nr 10 6/32 kaŝda grupa fizyczna bloków zawiera informacje o jednej grupie logicznej, a ponadto pewne informacje o całym systemie plików w kaŝdej grupie fizycznej bloków znajduje się kopia tego samego bloku identyfikacyjnego oraz kopia bloków z deskryptorami wszystkich grup blok identyfikacyjny zawiera informacje na temat systemu plików: numer urządzenia, na którym jest super-block rodzaj systemu plików rozmiar bloku struktury do synchronizacji dostępu czas dokonanej ostatnio zmiany informacje specyficzne dla konkretnej implementacji w deskryptorach grupy znajdują się informacje na temat grupy bloków: numer bloku z bitmapą zajętości bloków grupy numer bloku z bitmapą zajętości i-węzłów numer pierwszego bloku z tablicą i-węzłów liczba wolnych bloków liczba wolnych i-węzłów w grupie liczba katalogów w grupie Rok akademicki 2008/2009, Wykład nr 10 7/32 Rok akademicki 2008/2009, Wykład nr 10 8/32 blok z mapą bitową zajętości bloków danej grupy jest tablicą bitów o rozmiarze jednego bloku jeśli blok ma rozmiar 1 kb to pojedynczą mapą moŝna opisać fizyczna grupę 8096 bloków czyli 8 MB danych jeśli natomiast blok ma rozmiar 4 kb, to fizyczna grupa bloków zajmuje 128 MB danych przed tablicą i-węzłów znajduje się blok z mapą bitową zajętości i-węzłów danej grupy - jest to tablica bitów, z których kaŝdy zawiera informację czy dany i-węzeł jest wolny czy zajęty pliki na dysku reprezentowane są przez i-węzły (ang. i-node) kaŝdemu plikowi odpowiada dokładnie jeden i-węzeł znajdujący się w tablicy i-węzłów i zawierający m.in. numer i-węzła w dyskowej tablicy i-węzłów typ pliku: zwykły, katalog, łącze nazwane, specjalny, znakowy prawa dostępu do pliku: dla wszystkich, grupy, uŝytkownika liczba dowiązań do pliku identyfikator właściciela pliku i identyfikator grupy właściciela pliku rozmiar pliku w bajtach (max. 4 GB) czas utworzenia, ostatniego dostępu, ostatniej modyfikacji pliku liczba bloków dyskowych zajmowanych przez plik
3 Rok akademicki 2008/2009, Wykład nr 10 9/32 Rok akademicki 2008/2009, Wykład nr 10 10/32 - i-węzeł połoŝenie pliku na dysku określają w i-węźle pola: 12 adresów bloków zawierających dane (w systemie Unix jest ich 10) - bloki bezpośrednie 1 adres bloku zawierającego adresy bloków zawierających dane - blok jednopośredni (ang. single indirect block) 1 adres bloku zawierającego adresy bloków jednopośrednich - blok dwupośredni (ang. double indirect block) 1 adres bloku zawierającego adresy bloków dwupośrednich - blok trójpośredni (ang. triple indirect block) /* Structure of an inode on the disk */ struct _inode {... u16 i_mode; /* File mode */ u16 i_uid; /* Owner Uid */ u32 i_size; /* Size in bytes */ u32 i_atime; /* Access time */ u32 i_ctime; /* Creation time */ u32 i_mtime; /* Modification time */ u32 i_dtime; /* Deletion Time */ u16 i_gid; /* Group Id */ u16 i_links_count; /* Links count */ u32 i_blocks; /* Blocks count */ u32 i_flags; /* File flags */ union { struct { u32 l_i_reserved1; } linux1; struct { u32 h_i_translator; } hurd1; struct { u32 m_i_reserved1; } masix1; } osd1; /* OS dependent 1 */ Rok akademicki 2008/2009, Wykład nr 10 11/32 Rok akademicki 2008/2009, Wykład nr 10 12/32 Zarządzanie pamięci cią nazwy plików przechowywane są w katalogach, które w systemie Linux są plikami, ale o specjalnej strukturze w systemie komputerowym moŝe być uruchomionych jednocześnie wiele programów (wiele procesów) katalogi składają się z ciągu tzw. pozycji katalogowych o nieustalonej z góry długości kaŝda pozycja opisuje dowiązanie do jednego pliku i zawiera: numer i-węzła (4 bajty) rozmiar pozycji katalogowej (2 bajty) długość nazwy (2 bajty) nazwa (od 1 do 255 znaków) rozmiar pamięci operacyjnej jest ograniczony i niewystarczający, aby przechowywać wszystkie programy oraz struktury danych potrzebne aktywnym procesom oraz systemowi operacyjnemu z powyŝszego powodu niektóre procesy (lub ich część) przechowywane są w pamięci pomocniczej (na dysku twardym) zadaniem systemu operacyjnego jest więc wydajne przenoszenie programów i danych do i z pamięci operacyjnej czyli zarządzanie pamięcią struct _dir_entry { _u32 inode /* numer i-wezla */ _u16 rec_len /* dlugosc pozycji katalogowej */ _u16 name_len /* dlugosc nazwy */ char name[ext2_name_len] /* nazwa */ }
4 Rok akademicki 2008/2009, Wykład nr 10 13/32 Rok akademicki 2008/2009, Wykład nr 10 14/32 Zarządzanie pamięci cią (relokacja) Zarządzanie pamięci cią (sprzętowa obsługa relokacji) program przenoszony z dysku za kaŝdym razem umieszczany jest w innym obszarze pamięci operacyjnej, dlatego konieczna jest relokacja procesu do tego obszaru pamięci w uproszczeniu proces w pamięci komputera ma składnię pokazaną na rysunku po załadowaniu procesu do pamięci system operacyjny zna połoŝenie: bloku kontrolnego procesu, punktu wejścia do procesu oraz stosu w przypadku rozgałęzień rozkazów oraz odwołań do danych, system operacyjny oraz procesor muszą konwertować odwołania do pamięci znalezione w kodzie programu na rzeczywiste adresy pamięci fizycznej adres względny (relative address) - adres logiczny wyraŝony jako lokalizacja względna wobec jakiegoś znanego punktu (zazwyczaj wartości w rejestrze) adres fizyczny (physical address) - rzeczywista lokalizacja w pamięci operacyjnej adres bezwzględny powstaje poprzez sumowanie adresu względnego i wartości z rejestru bazowego jeśli adres bezwzględny mieści się wewnątrz obszaru programu, to rozkaz moŝe być wykonany, w przeciwnym wypadku generowane jest przerwanie z informacją o błędzie Rok akademicki 2008/2009, Wykład nr 10 15/32 Rok akademicki 2008/2009, Wykład nr 10 16/32 Zarządzanie pamięci cią Partycjonowanie statyczne w nowoczesnych wieloprogramowych systemach operacyjnych zarządzanie pamięcią opiera się na bardzo zaawansowanych schematach nazywanych pamięcią wirtualną pamięć wirtualna bazuje na wykorzystaniu jednego lub obu podstawowych metod: segmentacji i stronicowania w systemach komputerowych stosowane były/są następujące metody zarządzania pamięcią: partycjonowanie statyczne partycjonowanie dynamiczne proste stronicowanie prosta segmentacja stronicowanie pamięci wirtualnej segmentacja pamięci wirtualnej metoda polegająca na podziale pamięci operacyjnej na obszary o takim samym lub róŝnym rozmiarze, ale ustalanym podczas generowania systemu w przypadku takiego samego rozmiaru partycji kaŝdy proces, którego rozmiar jest równy lub mniejszy od rozmiaru partycji moŝe zostać załadowany do dowolnej partycji zbyt duŝe procesy mogą nie zmieścić się w partycji o stałym rozmiarze - rozwiązanie: nakładkowanie występuje fragmentacja wewnętrzna (proces 2 MB zajmuje partycję 8 MB) powyŝszym problemom moŝna zaradzić stosując partycje o róŝnych rozmiarach
5 Rok akademicki 2008/2009, Wykład nr 10 17/32 Rok akademicki 2008/2009, Wykład nr 10 18/32 Partycjonowanie statyczne Partycjonowanie dynamiczne metoda polegająca na podziale pamięci operacyjnej na obszary o takim samym lub róŝnym rozmiarze, ale ustalanym podczas generowania systemu partycje są tworzone dynamicznie w ten sposób, Ŝe kaŝdy proces jest ładowany do partycji o rozmiarze równym rozmiarowi procesu w przypadku partycji o róŝnych rozmiarach najprostszy algorytm rozmieszczenia polega na przypisaniu kaŝdego procesu do najmniejszej partycji, w której się zmieści partycje mają róŝną długość, moŝe zmieniać się takŝe ich liczba przykład - w systemie działa 5 procesów: 20 MB, 14 MB, 18 MB, 8 MB, 8 MB w takim przypadku dla kaŝdej partycji stosowana jest kolejka procesów przeniesionych do pamięci pomocniczej wady partycjonowania statycznego: ograniczona liczba partycji a więc i procesów w systemie niewielkie zadania powodują nieefektywne wykorzystanie pamięci Rok akademicki 2008/2009, Wykład nr 10 19/32 Rok akademicki 2008/2009, Wykład nr 10 20/32 Partycjonowanie dynamiczne Proste stronicowanie Zalety: brak fragmentacji wew., wydajniejsze wykorzystanie pamięci Wady: fragmentacja zewnętrzna rozwiązaniem problemu fragmentacji zewnętrznej jest upakowanie - co pewien czas system operacyjny przemieszcza tak procesy, aby wolne obszary stanowiły jeden blok w metodzie partycjonowania dynamicznego stosowane są trzy algorytmy rozmieszczenia procesów/partycji: najlepsze dopasowanie (best-fit) - wybierany jest blok najbliŝszy rozmiarowi procesu w pamięci (najgorsza metoda) pamięć operacyjna podzielona jest na jednakowe bloki o stałym niewielkim rozmiarze nazywane ramkami lub ramkami stron (page frames) do tych ramek wstawiane są fragmenty procesu zwane stronami (pages) aby proces mógł zostać uruchomiony wszystkie jego strony muszą znajdować się w pamięci operacyjnej pierwsze dopasowanie (first-fit) - wybierany jest pierwszy blok od początku pamięci, w którym moŝe zmieścić się dany proces (najprostsza, najlepsza, najszybsza metoda) kolejne dopasowanie (next-fit) - wybierany jest pierwszy blok, w którym moŝe zmieścić się dany proces, ale jego poszukiwanie rozpoczyna się poniŝej miejsca, w którym proces był ostatnio wstawiony
6 Rok akademicki 2008/2009, Wykład nr 10 21/32 Rok akademicki 2008/2009, Wykład nr 10 22/32 Proste stronicowanie Proste stronicowanie dla kaŝdego procesu przechowywana jest tablica strony (page table) zawierająca lokalizację ramki dla kaŝdej strony procesu aby mechanizm stronicowania był wygodny ustala się, Ŝe rozmiar strony jest liczbą podniesioną do potęgi drugiej - dzięki temu adres względny oraz adres logiczny (numer strony + jej przesunięcie) są takie same Przykład: 16-bitowy adres logiczny 6 bitów: nr strony (0-63), max. 2 6 = 64 strony 10 bitów: przesunięcie w ramach strony (0-1023), rozmiar strony wynosi: 2 10 = 1024 bajty = 1 kb Rok akademicki 2008/2009, Wykład nr 10 23/32 Rok akademicki 2008/2009, Wykład nr 10 24/32 Proste stronicowanie Prosta segmentacja zalety: brak fragmentacji zewnętrznej, stronicowanie nie jest widoczne dla programisty polega na podzieleniu programu i skojarzonych z nim danych na odpowiednią liczbę segmentów wady: niewielki stopień fragmentacji wewnętrznej segmenty mogą mieć róŝną długość, ale określony jest ich maksymalny rozmiar proces jest ładowany do pamięci poprzez wczytanie wszystkich jego segmentów do partycji dynamicznych, które nie muszą być partycjami ciągłymi segmentacja jest widoczna dla programisty i ma na celu wygodniejszą organizację programów i danych (programista decyduje o wielkości segmentu) adres logiczny wykorzystujący segmentację składa się z dwóch części: numeru segmentu przesunięcia dla kaŝdego procesu określana jest tablica segmentu procesu zawierająca: długość danego segmentu adres początkowy danego segmentu w pamięci operacyjnej
7 Rok akademicki 2008/2009, Wykład nr 10 25/32 Rok akademicki 2008/2009, Wykład nr 10 26/32 Prosta segmentacja Prosta segmentacja Przykład: 16-bitowy adres logiczny 4 bity: nr segmentu (0-15), max. 2 4 = 16 segmentów 12 bitów: przesunięcie w ramach segmentu (0-4095), rozmiar segmentu wynosi: 2 12 = 4096 bajtów = 4 kb do zmiany adresu logicznego na fizyczne potrzebne są następujące kroki: z adresu logicznego pobieramy numer segmentu wykorzystując numer segmentu jako indeks tablicy segmentu procesu odczytujemy początkowy fizyczny adres segmentu oraz jego długość porównujemy przesunięcie z adresu logicznego z długością segmentu - jeśli przesunięcie jest większe lub równe długości segmentu to adres jest błędny adres fizyczny jest sumą początkowego fizycznego adresu segmentu oraz przesunięcia Rok akademicki 2008/2009, Wykład nr 10 27/32 Rok akademicki 2008/2009, Wykład nr 10 28/32 Pamięć wirtualna pamięć wirtualna umoŝliwia przechowywanie stron/segmentów wykonywanego procesu w pamięci dodatkowej - pomocniczej (na dysku twardym) Co się dzieje, gdy procesor chce odczytać stronę z pamięci dodatkowej? kiedy procesor napotyka na adres logiczny nie znajdujący się w pamięci operacyjnej to generuje przerwanie sygnalizujące błąd w dostępie do pamięci system operacyjny zmienia stan procesu na zablokowany, wstawia do pamięci operacyjnej fragment procesu zawierający adres logiczny, który był przyczyną błędu, a następnie zmienia stan procesu na uruchomiony Dzięki zastosowaniu pamięci wirtualnej: Pamięć wirtualna w przypadku stronicowania i segmentacji pamięci wirtualnej nie wszystkie strony/segmenty procesu muszą znajdować się w pamięci operacyjnej, aby proces mógł być uruchomiony - strony/segmenty mogą być odczytywane w miarę potrzeby odczytanie strony/segmentu i przeniesienie do pamięci operacyjnej moŝe wymagać przeniesienia innej strony/segmentu do pamięci pomocniczej jeśli będzie dotyczyć to fragmentu, który miał być właśnie uŝyty, to będzie on musiał zostać przeniesiony z powrotem do pamięci operacyjnej zbyt częste powtarzanie takich operacji prowadzi do tzw. migotania - system operacyjny przeznacza większość czasu procesora na realizację operacji wymiany zamiast na wykonywanie rozkazów w pamięci operacyjnej moŝe być przechowywanych więcej procesów proces moŝe być większy od całej pamięci operacyjnej aby mechanizm pamięci wirtualnej był wydajny potrzebne są dwa składniki: wsparcie sprzętowe stronicowania i/lub segmentacji umieszczenie w systemie operacyjnym oprogramowania zarządzającego przenoszeniem stron/segmentów pomiędzy pamięcią operacyjną a pomocniczą
8 Rok akademicki 2008/2009, Wykład nr 10 29/32 Rok akademicki 2008/2009, Wykład nr 10 30/32 Stronicowanie pamięci wirtualnej Stronicowanie pamięci wirtualnej przy zastosowaniu stronicowania, adres wirtualny ma postać: odczytanie strony z pamięci wymaga translacji adresu wirtualnego na fizyczny Numer strony Przesunięcie mechanizm pamięci wirtualnej bazującej na stronicowaniu wymaga równieŝ tablicy stron, ale zapisy do tej tablicy są bardziej złoŝone niŝ w przypadku prostego stronicowania P - bit określający, czy strona znajduje się w pamięci operacyjnej, jeśli tak, to zapis zawiera numer ramki tej strony M - bit określający, czy zawartość strony skojarzonej z tą tablicą została zmodyfikowana od ostatniego załadowania tej strony do pamięci - jeśli nie, to nie trzeba tej strony zapisywać, gdy ma być ona przeniesiona do pamięci pomocniczej Rok akademicki 2008/2009, Wykład nr 10 31/32 Rok akademicki 2008/2009, Wykład nr 10 32/32 Segmentacja pamięci wirtualnej Segmentacja pamięci wirtualnej w przypadku segmentacji, adres wirtualny ma postać: mechanizm odczytania słowa z pamięci obejmuje translację adresu wirtualnego na fizyczny za pomocą tablicy segmentu mechanizm pamięci wirtualnej wykorzystujący segmentację wymaga tablicy segmentu zawierającej więcej pól P - bit określający, czy segment znajduje się w pamięci operacyjnej M - bit określający, czy zawartość segmentu skojarzonego z tablicą została zmodyfikowana od ostatniego załadowania tego segmentu do pamięci
dr inż. Jarosław Forenc
Informatyka 2 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr III, studia stacjonarne I stopnia Rok akademicki 2016/2017 Wykład nr 7 (11.01.2017) Rok akademicki 2016/2017, Wykład
Zarządzanie dyskowymi operacjami we-wy. Zarządzanie pamięcią operacyjną. dr inż. Jarosław Forenc. systemy plików (NTFS, ext2)
Rok akademicki 2014/2015, Wykład nr 7 2/42 Plan wykładu nr 7 Informatyka 1 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia niestacjonarne I stopnia Rok akademicki 2014/2015
dr inż. Jarosław Forenc
Informatyka 2 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr III, studia stacjonarne I stopnia Rok akademicki 2010/2011 Wykład nr 7 (24.01.2011) dr inż. Jarosław Forenc Rok akademicki
Informatyka 2. Wykład nr 7 ( ) Politechnika Białostocka. - Wydział Elektryczny. dr inŝ. Jarosław Forenc
Informatyka 2 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr III, studia stacjonarne I stopnia Rok akademicki 2008/2009 Wykład nr 7 (21.01.2009) Rok akademicki 2008/2009, Wykład
dr inŝ. Jarosław Forenc
Rok akademicki 2009/2010, Wykład nr 6 2/52 Plan wykładu nr 6 Informatyka 2 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr III, studia stacjonarne I stopnia Rok akademicki 2009/2010
Zarządzanie dyskowymi operacjami we-wy. Zarządzanie pamięcią operacyjną. dr inż. Jarosław Forenc
Rok akademicki 2013/2014, Wykład nr 6 2/56 Plan wykładu nr 6 Informatyka 2 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr III, studia stacjonarne I stopnia Rok akademicki 2013/2014
dr inż. Jarosław Forenc
Informatyka 1 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia niestacjonarne I stopnia Rok akademicki 2015/2016 Wykład nr 7 (21.05.2016) Rok akademicki 2015/2016, Wykład
Zarządzanie dyskowymi operacjami we/wy. Zarządzanie pamięcią operacyjną. dr inż. Jarosław Forenc. Algorytm FIFO (First-In-First-Out)
Rok akademicki 2012/2013, Wykład nr 7 2/41 Plan wykładu nr 7 Informatyka 1 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia niestacjonarne I stopnia Rok akademicki 2012/2013
dr inż. Jarosław Forenc
Informatyka 1 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia niestacjonarne I stopnia Rok akademicki 2012/2013 Wykład nr 7 (11.05.2013) dr inż. Jarosław Forenc Rok akademicki
dr inŝ. Jarosław Forenc
Rok akademicki 2009/2010, Wykład nr 8 2/19 Plan wykładu nr 8 Informatyka 2 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr III, studia stacjonarne I stopnia Rok akademicki 2009/2010
dr inż. Jarosław Forenc
Informatyka 2 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr III, studia stacjonarne I stopnia Rok akademicki 2009/2010 Wykład nr 8 (29.01.2009) dr inż. Jarosław Forenc Rok akademicki
Zarządzanie pamięcią operacyjną
Dariusz Wawrzyniak Plan wykładu Pamięć jako zasób systemu komputerowego hierarchia pamięci przestrzeń owa Wsparcie dla zarządzania pamięcią na poziomie architektury komputera Podział i przydział pamięci
SYSTEMY OPERACYJNE WYKLAD 4 - zarządzanie pamięcią
Wrocław 2007 SYSTEMY OPERACYJNE WYKLAD 4 - zarządzanie pamięcią Paweł Skrobanek C-3, pok. 323 e-mail: pawel.skrobanek@pwr.wroc.pl www.equus.wroc.pl/studia.html 1 PLAN: 2. Pamięć rzeczywista 3. Pamięć wirtualna
Zarządzanie pamięcią operacyjną zagadnienia podstawowe
Zarządzanie pamięcią operacyjną zagadnienia podstawowe Pamięć jako zasób systemu komputerowego Pamięć jest zasobem służący do przechowywania danych. Z punktu widzenia systemu pamięć jest zasobem o strukturze
Zarządzanie pamięcią operacyjną
SOE Systemy Operacyjne Wykład 7 Zarządzanie pamięcią operacyjną dr inż. Andrzej Wielgus Instytut Mikroelektroniki i Optoelektroniki WEiTI PW Hierarchia pamięci czas dostępu Rejestry Pamięć podręczna koszt
Wykład 7. Zarządzanie pamięcią
Wykład 7 Zarządzanie pamięcią -1- Świat idealny a świat rzeczywisty W idealnym świecie pamięć powinna Mieć bardzo dużą pojemność Mieć bardzo krótki czas dostępu Być nieulotna (zawartość nie jest tracona
Architektura komputerów
Architektura komputerów Tydzień 12 Wspomaganie systemu operacyjnego: pamięć wirtualna Partycjonowanie Pamięć jest dzielona, aby mogło korzystać z niej wiele procesów. Dla jednego procesu przydzielana jest
architektura komputerów w. 8 Zarządzanie pamięcią
architektura komputerów w. 8 Zarządzanie pamięcią Zarządzanie pamięcią Jednostka centralna dysponuje zwykle duża mocą obliczeniową. Sprawne wykorzystanie możliwości jednostki przetwarzającej wymaga obecności
Schematy zarzadzania pamięcia
Schematy zarzadzania pamięcia Segmentacja podział obszaru pamięci procesu na logiczne jednostki segmenty o dowolnej długości. Postać adresu logicznego: [nr segmentu, przesunięcie]. Zwykle przechowywana
Pamięć. Jan Tuziemski Źródło części materiałów: os-book.com
Pamięć Jan Tuziemski Źródło części materiałów: os-book.com Cele wykładu Przedstawienie sposobów organizacji pamięci komputera Przedstawienie technik zarządzania pamięcią Podstawy Przed uruchomieniem program
Struktura i funkcjonowanie komputera pamięć komputerowa, hierarchia pamięci pamięć podręczna. System operacyjny. Zarządzanie procesami
Rok akademicki 2015/2016, Wykład nr 6 2/21 Plan wykładu nr 6 Informatyka 1 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia niestacjonarne I stopnia Rok akademicki 2015/2016
Stronicowanie w systemie pamięci wirtualnej
Pamięć wirtualna Stronicowanie w systemie pamięci wirtualnej Stronicowanie z wymianą stron pomiędzy pamięcią pierwszego i drugiego rzędu. Zalety w porównaniu z prostym stronicowaniem: rozszerzenie przestrzeni
Zarządzanie pamięcią w systemie operacyjnym
Zarządzanie pamięcią w systemie operacyjnym Cele: przydział zasobów pamięciowych wykonywanym programom, zapewnienie bezpieczeństwa wykonywanych procesów (ochrona pamięci), efektywne wykorzystanie dostępnej
Systemy operacyjne III
Systemy operacyjne III WYKŁAD Jan Kazimirski Pamięć wirtualna Stronicowanie Pamięć podzielona na niewielki bloki Bloki procesu to strony a bloki fizyczne to ramki System operacyjny przechowuje dla każdego
Systemy plików i zarządzanie pamięcią pomocniczą. Struktura pliku. Koncepcja pliku. Atrybuty pliku
Systemy plików i zarządzanie pamięcią pomocniczą Koncepcja pliku Metody dostępu Organizacja systemu plików Metody alokacji Struktura dysku Zarządzanie dyskiem Struktura pliku Prosta sekwencja słów lub
System plików Linuksa
Łódzka Grupa Użytkowników Linuksa Studenckie Koło Naukowe PŁ Strona 1 z 15 System plików Linuksa Bartłomiej Świercz 20 maja 2002 roku Strona 1 z 15 1. Wstęp Podstawowymi składnikami jądra Linux a są: moduł
PRZYDZIAŁ PAMIĘCI OPERACYJNEJ
PRZYDZIAŁ PAMIĘCI OPERACYJNEJ dr inż. Krzysztof Patan Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski k.patan@issi.uz.zgora.pl Wstęp Pamięć komputera wielka tablica słów (bajtów)
Programowanie na poziomie sprzętu. Tryb chroniony cz. 1
Tryb chroniony cz. 1 Moduł zarządzania pamięcią w trybie chronionym (z ang. PM - Protected Mode) procesorów IA-32 udostępnia: - segmentację, - stronicowanie. Segmentacja mechanizm umożliwiający odizolowanie
SYSTEMY OPERACYJNE WYKLAD 5 - zarządzanie pamięcią pomocniczą
Wrocław 2007 SYSTEMY OPERACYJNE WYKLAD 5 - zarządzanie pamięcią pomocniczą Paweł Skrobanek C-3, pok. 323 e-mail: pawel.skrobanek@pwr.wroc.pl www.equus.wroc.pl/studia.html 1 PLAN: 3. Struktura katalogowa
Sektor. Systemy Operacyjne
Sektor Sektor najmniejsza jednostka zapisu danych na dyskach twardych, dyskietkach i itp. Sektor jest zapisywany i czytany zawsze w całości. Ze względów historycznych wielkość sektora wynosi 512 bajtów.
System plików. System plików. Operacje plikowe. Inne operacje. Typy plików. Typy dostępu do plików
System System Plik jest logiczną jednostką magazynowania informacji w pamięci nieulotnej Plik jest nazwanym zbiorem powiązanych ze sobą informacji, zapisanym w pamięci pomocniczej Plik jest ciągiem bitów,
System plików. Definicje:
System plików Definicje: System plików Plik jest logiczną jednostką magazynowania informacji w pamięci nieulotnej Plik jest nazwanym zbiorem powiązanych ze sobą informacji, zapisanym w pamięci pomocniczej
Zarządzanie dyskowymi operacjami we-wy. Zarządzanie pamięcią operacyjną
Rok akademicki 2015/2016, Wykład nr 7 2/83 Plan wykładu nr 7 Informatyka 2 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr III, studia stacjonarne I stopnia Rok akademicki 2015/2016
Zarządzanie zasobami pamięci
Zarządzanie zasobami pamięci System operacyjny wykonuje programy umieszczone w pamięci operacyjnej. W pamięci operacyjnej przechowywany jest obecnie wykonywany program (proces) oraz niezbędne dane. Jeżeli
System plików przykłady. implementacji
Dariusz Wawrzyniak Plan wykładu CP/M MS DOS ISO 9660 UNIX NTFS System plików (2) 1 Przykłady systemu plików (1) CP/M katalog zawiera blok kontrolny pliku (FCB), identyfikujący 16 jednostek alokacji (zawierający
Od programu źródłowego do procesu
Zarządzanie pamięcią Przed wykonaniem program musi być pobrany z dysku i załadowany do pamięci. Tam działa jako proces. Podczas wykonywania, proces pobiera rozkazy i dane z pamięci. Większość systemów
Systemy plików FAT, FAT32, NTFS
Systemy plików FAT, FAT32, NTFS SYSTEM PLIKÓW System plików to sposób zapisu informacji na dyskach komputera. System plików jest ogólną strukturą, w której pliki są nazywane, przechowywane i organizowane.
ang. file) Pojęcie pliku (ang( Typy plików Atrybuty pliku Fragmentacja wewnętrzna w systemie plików Struktura pliku
System plików 1. Pojęcie pliku 2. Typy i struktury plików 3. etody dostępu do plików 4. Katalogi 5. Budowa systemu plików Pojęcie pliku (ang( ang. file)! Plik jest abstrakcyjnym obrazem informacji gromadzonej
Zarządzanie pamięcią. Od programu źródłowego do procesu. Dołączanie dynamiczne. Powiązanie programu z adresami w pamięci
Zarządzanie pamięcią Przed wykonaniem program musi być pobrany z dysku i załadowany do pamięci. Tam działa jako proces. Podczas wykonywania, proces pobiera rozkazy i dane z pamięci. Większość systemów
System plików przykłady implementacji
System plików przykłady implementacji Dariusz Wawrzyniak CP/M MS DOS ISO 9660 UNIX NTFS Plan wykładu System plików (2) Przykłady implementacji systemu plików (1) Przykłady implementacji systemu plików
Pamięć wirtualna. Przygotował: Ryszard Kijaka. Wykład 4
Pamięć wirtualna Przygotował: Ryszard Kijaka Wykład 4 Wstęp główny podział to: PM- do pamięci masowych należą wszelkiego rodzaju pamięci na nośnikach magnetycznych, takie jak dyski twarde i elastyczne,
ZARZĄDZANIE PAMIĘCIĄ OPERACYJNĄ
ZARZĄDZANIE PAMIĘCIĄ OPERACYJNĄ Wiązanie adresów adr.symbol -> adr. względne ->adresy pamięci kompilacja; kod bezwzględny (*.com) ładowanie; kod przemieszczalny wykonanie adr.względne -> adr. bezwzględne
SOE Systemy Operacyjne Wykład 8 Pamięć wirtualna dr inż. Andrzej Wielgus
SOE Systemy Operacyjne Wykład 8 Pamięć wirtualna dr inż. Andrzej Wielgus Instytut Mikroelektroniki i Optoelektroniki WEiTI PW Pamięć wirtualna Stronicowanie na żądanie większość współczesnych systemów
dr inż. Jarosław Forenc
Informatyka 1 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia niestacjonarne I stopnia Rok akademicki 2012/2013 Wykład nr 8 (25.05.2013) dr inż. Jarosław Forenc Rok akademicki
System plików i zarządzanie pamięcią pomocniczą. Koncepcja pliku. Atrybuty pliku. Struktura pliku. Typ pliku nazwa, rozszerzenie (extension)
System plików i zarządzanie pamięcią pomocniczą Koncepcja pliku Ciągła logiczna przestrzeń adresowa Koncepcja pliku Metody dostępu Organizacja systemu plików Metody alokacji Struktura dysku Zarządzenie
wykład Organizacja plików Opracował: dr inż. Janusz DUDCZYK
wykład Organizacja plików Opracował: dr inż. Janusz DUDCZYK 1 2 3 Pamięć zewnętrzna Pamięć zewnętrzna organizacja plikowa. Pamięć operacyjna organizacja blokowa. 4 Bufory bazy danych. STRUKTURA PROSTA
16MB - 2GB 2MB - 128MB
FAT Wprowadzenie Historia FAT jest jednym z najstarszych spośród obecnie jeszcze używanych systemów plików. Pierwsza wersja (FAT12) powstała w 1980 roku. Wraz z wzrostem rozmiaru dysków i nowymi wymaganiami
3 Literatura. c Dr inż. Ignacy Pardyka (Inf.UJK) ASK SP.06 Rok akad. 2011/2012 2 / 22
ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH struktury procesorów ASK SP.06 c Dr inż. Ignacy Pardyka UNIWERSYTET JANA KOCHANOWSKIEGO w Kielcach Rok akad. 2011/2012 1 Maszyny wirtualne 2 3 Literatura c Dr inż. Ignacy
Tworzenie pliku Zapisywanie pliku Czytanie pliku Zmiana pozycji w pliku Usuwanie pliku Skracanie pliku
System plików Definicje: Plik jest logiczną jednostką magazynowania informacji w pamięci nieulotnej Plik jest nazwanym zbiorem powiązanych ze sobą informacji, zapisanym w pamięci pomocniczej Plik jest
Systemy Operacyjne Pamięć wirtualna cz. 2
Systemy Operacyjne Pamięć wirtualna cz. 2 Arkadiusz Chrobot Katedra Informatyki, Politechnika Świętokrzyska w Kielcach Kielce, 20 stycznia 2007 1 1 Wstęp 2 Minimalna liczba ramek 3 Algorytmy przydziału
Zarządzanie pamięcią. Zarządzanie pamięcią. Podstawy. Podsystem zarządzania pamięcią. Zadania podsystemu: W systemie wielozadaniowym:
W systemie wielozadaniowym: Wpamięci wiele procesów jednocześnie Każdy proces potrzebuje pamięci na: Instrukcje (kod lub tekst) Dane statyczne (w programie) Dane dynamiczne (sterta, stos). System operacyjny
Zarządzanie pamięcią. Podstawy Wymiana (swapping). Przydział ciągły pamięci. Stronicowanie. Segmentacja. Segmentacja ze stronicowaniem.
Zarządzanie pamięcią Podstawy Wymiana (swapping). Przydział ciągły pamięci. Stronicowanie. Segmentacja. Segmentacja ze stronicowaniem. Zarządzanie pamięcią podstawy pamięć operacyjna (główna) (main memory,
Dynamiczny przydział pamięci w języku C. Dynamiczne struktury danych. dr inż. Jarosław Forenc. Metoda 1 (wektor N M-elementowy)
Rok akademicki 2012/2013, Wykład nr 2 2/25 Plan wykładu nr 2 Informatyka 2 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr III, studia niestacjonarne I stopnia Rok akademicki 2012/2013
ARCHITEKTURA PROCESORA,
ARCHITEKTURA PROCESORA, poza blokami funkcjonalnymi, to przede wszystkim: a. formaty rozkazów, b. lista rozkazów, c. rejestry dostępne programowo, d. sposoby adresowania pamięci, e. sposoby współpracy
4. Procesy pojęcia podstawowe
4. Procesy pojęcia podstawowe 4.1 Czym jest proces? Proces jest czymś innym niż program. Program jest zapisem algorytmu wraz ze strukturami danych na których algorytm ten operuje. Algorytm zapisany bywa
Zaawansowane programowanie w języku C++ Zarządzanie pamięcią w C++
Zaawansowane programowanie w języku C++ Zarządzanie pamięcią w C++ Prezentacja jest współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie pt. Innowacyjna dydaktyka
Technologie informacyjne (2) Zdzisław Szyjewski
Technologie informacyjne (2) Zdzisław Szyjewski Technologie informacyjne Technologie pracy z komputerem Funkcje systemu operacyjnego Przykłady systemów operacyjnych Zarządzanie pamięcią Zarządzanie danymi
1. Rola pamięci operacyjnej
1. Rola pamięci operacyjnej Pamięć operacyjna jest jedną z podstawowych części systemu komputerowego. Do niej trafiają niemal wszystkie dane programów (a także i same programy - zostanie to wyjaśnione
Pytania do treści wykładów:
Pytania do treści wykładów: Wprowadzenie: 1. Jakie zadania zarządzania realizowane są dla następujących zasobów: a) procesor, b) pamięć, c) plik? 2. W jaki sposób przekazywane jest sterowanie do jądra
Podstawowe zagadnienia informatyki
Podstawowe zagadnienia informatyki Artur Opaliński (pokój E112) e-mail: (p. wykład administracyjny) URL: (p. wykład administracyjny) Obsługa pamięci Treść wykładu Adresowanie pamięci Architektury pamięci
Podstawy programowania. Wykład Funkcje. Krzysztof Banaś Podstawy programowania 1
Podstawy programowania. Wykład Funkcje Krzysztof Banaś Podstawy programowania 1 Programowanie proceduralne Pojęcie procedury (funkcji) programowanie proceduralne realizacja określonego zadania specyfikacja
Mikroprocesory rodziny INTEL 80x86
Mikroprocesory rodziny INTEL 80x86 Podstawowe wła ciwo ci procesora PENTIUM Rodzina procesorów INTEL 80x86 obejmuje mikroprocesory Intel 8086, 8088, 80286, 80386, 80486 oraz mikroprocesory PENTIUM. Wprowadzając
Systemy liczenia. 333= 3*100+3*10+3*1
Systemy liczenia. System dziesiętny jest systemem pozycyjnym, co oznacza, Ŝe wartość liczby zaleŝy od pozycji na której się ona znajduje np. w liczbie 333 kaŝda cyfra oznacza inną wartość bowiem: 333=
Wprowadzenie do informatyki i użytkowania komputerów. Kodowanie informacji System komputerowy
1 Wprowadzenie do informatyki i użytkowania komputerów Kodowanie informacji System komputerowy Kodowanie informacji 2 Co to jest? bit, bajt, kod ASCII. Jak działa system komputerowy? Co to jest? pamięć
Podstawy. Podsystem zarządzania pamięcią - zadania: Wiązanie (binding) rozkazów i danych z adresami pamięci. W systemie wielozadaniowym:
W systemie wielozadaniowym: W pamięci wiele procesów jednocześnie Każdy proces potrzebuje pamięci na: Instrukcje (kod lub tekst) Dane statyczne (w programie) Dane dynamiczne (sterta, stos). System operacyjny
Zarządzanie pamięcią operacyjną: Sieci komputerowe. dr inż. Jarosław Forenc
Rok akademicki 2012/2013, Wykład nr 8 2/59 Plan wykładu nr 8 Informatyka 1 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia niestacjonarne I stopnia Rok akademicki 2012/2013
PROJEKTOWANIE SYSTEMÓW KOMPUTEROWYCH
PROJEKTOWANIE SYSTEMÓW KOMPUTEROWYCH ĆWICZENIA NR 4 PRZYGOTOWANIE PAMIĘCI MASOWEJ PARTYCJONOWANIE dr Artur Woike Dyski HDD i SSD muszą być wstępnie przygotowane do pracy. Przygotowanie do pracy odbywa
Przed wykonaniem program musi być pobrany z dysku i. Tam działa a jako proces. Podczas wykonywania, proces pobiera rozkazy i dane z
Zarządzanie pamięcią Przed wykonaniem program musi być pobrany z dysku i załadowany adowany do pamięci. Tam działa a jako proces. Podczas wykonywania, proces pobiera rozkazy i dane z pamięci. Większo kszość
Ćwiczenie Nr 7 Instalacja oraz konfiguracja wskazanego systemu operacyjnego
Ćwiczenie Nr 7 Instalacja oraz konfiguracja wskazanego systemu operacyjnego Cel ćwiczenia: Celem zajęć jest zdobycie doświadczenia i umiejętności instalacji systemu operacyjnego z rodziny Unix bez wykorzystania
SYSTEMY OPERACYJNE WYKLAD 6 - procesy
Wrocław 2007 SYSTEMY OPERACYJNE WYKLAD 6 - procesy Paweł Skrobanek C-3, pok. 323 e-mail: pawel.skrobanek@pwr.wroc.pl www.equus.wroc.pl/studia.html 1 Zasoby: PROCES wykonujący się program ; instancja programu
Procesor ma architekturę rejestrową L/S. Wskaż rozkazy spoza listy tego procesora. bgt Rx, Ry, offset nand Rx, Ry, A add Rx, #1, Rz store Rx, [Rz]
Procesor ma architekturę akumulatorową. Wskaż rozkazy spoza listy tego procesora. bgt Rx, Ry, offset or Rx, Ry, A add Rx load A, [Rz] push Rx sub Rx, #3, A load Rx, [A] Procesor ma architekturę rejestrową
System plików. Warstwowy model systemu plików
System plików System plików struktura danych organizująca i porządkująca zasoby pamięci masowych w SO. Struktura ta ma charakter hierarchiczny: urządzenia fizyczne strefy (partycje) woluminy (w UNIXie:
Księgarnia PWN: Włodzimierz Stanisławski, Damian Raczyński - Programowanie systemowe mikroprocesorów rodziny x86
Księgarnia PWN: Włodzimierz Stanisławski, Damian Raczyński - Programowanie systemowe mikroprocesorów rodziny x86 Spis treści Wprowadzenie... 11 1. Architektura procesorów rodziny x86... 17 1.1. Model procesorów
Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii. Materiały pomocnicze do zajęć z przedmiotu SYSTEMY OPERACYJNE
Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Materiały pomocnicze do zajęć z przedmiotu SYSTEMY OPERACYJNE Kod przedmiotu: F***** Ćwiczenie pt. PODSTAWY
Systemy Operacyjne Zarządzanie pamięcią operacyjną
Katedra Informatyki, Politechnika Świętokrzyska w Kielcach Kielce, 4 stycznia 2007 1 Zagadnienia podstawowe 1 Wiązanie adresów 2 Ładowanie dynamiczne 3 Łączenie dynamiczne 4 Nakładki 2 3 Przydział ciągłych
System plików JFS. 1 Najważniejsze informacje. Mateusz Zakrzewski. 18 stycznia JFS to skrót od Journalled File System.
System plików JFS Mateusz Zakrzewski 18 stycznia 2004 1 Najważniejsze informacje. JFS to skrót od Journalled File System. Stworzony przez firmę IBM w 1990 roku. Jest niezawodny, dzięki księgowaniu. Zamiast
Programowanie Niskopoziomowe
Programowanie Niskopoziomowe Wykład 4: Architektura i zarządzanie pamięcią IA-32 Dr inż. Marek Mika Państwowa Wyższa Szkoła Zawodowa im. Jana Amosa Komeńskiego W Lesznie Plan Wstęp Tryby pracy Rejestry
dr inż. Jarosław Forenc
Informatyka 2 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr III, studia stacjonarne I stopnia Rok akademicki 2015/2016 Wykład nr 6 (30.11.2015) Rok akademicki 2015/2016, Wykład
MOŻLIWOŚCI PROGRAMOWE MIKROPROCESORÓW
MOŻLIWOŚCI PROGRAMOWE MIKROPROCESORÓW Projektowanie urządzeń cyfrowych przy użyciu układów TTL polegało na opracowaniu algorytmu i odpowiednim doborze i zestawieniu układów realizujących różnorodne funkcje
Podstawy informatyki. System operacyjny. dr inż. Adam Klimowicz
Podstawy informatyki System operacyjny dr inż. Adam Klimowicz System operacyjny OS (ang. Operating System) Program komputerowy bądź zbiór programów, który zarządza udostępnianiem zasobów komputera aplikacjom.
System plików warstwa fizyczna
System plików warstwa fizyczna Dariusz Wawrzyniak Plan wykładu Przydział miejsca na dysku Zarządzanie wolną przestrzenią Implementacja katalogu Przechowywanie podręczne Integralność systemu plików Semantyka
System plików warstwa fizyczna
System plików warstwa fizyczna Dariusz Wawrzyniak Przydział miejsca na dysku Zarządzanie wolną przestrzenią Implementacja katalogu Przechowywanie podręczne Integralność systemu plików Semantyka spójności
System plików warstwa fizyczna
System plików warstwa fizyczna Dariusz Wawrzyniak Przydział miejsca na dysku Przydział ciągły (ang. contiguous allocation) cały plik zajmuje ciąg kolejnych bloków Przydział listowy (łańcuchowy, ang. linked
Dodatek B. Zasady komunikacji z otoczeniem w typowych systemach komputerowych
Dodatek B. Zasady komunikacji z otoczeniem w typowych systemach komputerowych B.1. Dostęp do urządzeń komunikacyjnych Sterowniki urządzeń zewnętrznych widziane są przez procesor jako zestawy rejestrów
Mikroinformatyka. Tryb wirtualny
Mikroinformatyka Tryb wirtualny Tryb wirtualny z ochroną Wprowadzony w 80286. Rozbudowany w 80386. - 4 GB pamięci fizycznej, - 64 TB przestrzeni wirtualnej, - pamięć podzielona na segmenty o rozmiarze
Sprzętowe wspomaganie pamięci wirtualnej
Sprzętowe wspomaganie pamięci wirtualnej Stanisław Skonieczny 6 grudnia 2002 Spis treści 1 Intel 2 1.1 Tryby pracy procesora............................... 2 1.2 Adresowanie liniowe................................
Systemy Operacyjne Pamięć wirtualna cz. 1
Systemy Operacyjne Pamięć wirtualna cz. 1 Arkadiusz Chrobot Katedra Informatyki, Politechnika Świętokrzyska w Kielcach Kielce, 4 stycznia 2007 1 1 Zasady lokalności czasowej i przestrzennej 2 Pamięć wirtualna
Mikroinformatyka. Wielozadaniowość
Mikroinformatyka Wielozadaniowość Zadanie Tryb chroniony przynajmniej jedno zadanie (task). Segment stanu zadania TSS (Task State Segment). Przestrzeń zadania (Execution Space). - segment kodu, - segment
Podstawy. Pamięć wirtualna. (demand paging)
Pamięć wirtualna Podstawy Podstawy Stronicowanie na żądanie Wymiana strony Przydział ramek Szamotanie (thrashing) Pamięć wirtualna (virtual memory) oddzielenie pamięci logicznej użytkownika od fizycznej.
ZADANIE nr 4 Sprawdzian z informatyki
Rafał Siczek Uniwersytet Wrocławski Studia Podyplomowe z Informatyki dla Nauczycieli SPI51 ZADANIE nr 4 Sprawdzian z informatyki Tematyka sprawdzianu: Systemy operacyjne Czas sprawdzianu: 25 min SPI51
Struktury systemów operacyjnych
Struktury systemów operacyjnych Jan Tuziemski Część slajdów to zmodyfiowane slajdy ze strony os-booi.com copyright Silberschatz, Galvin and Gagne, 2013 Cele wykładu 1. Opis usług dostarczanych przez OS
Zarządzanie pamięcią operacyjną i pamięć wirtualna
Zarządzanie pamięcią operacyjną i pamięć wirtualna Pamięć jako zasób systemu komputerowego. Wsparcie dla zarządzania pamięcią na poziomie architektury komputera. Podział i przydział pamięci. Obraz procesu
Administracja bazy danych Oracle 10g
Administracja bazy danych Oracle 10g Oracle Database Administration część 5 Zmiana przestrzeni tabel użytkownika Za pomocą SQL*Plus alter user USER_NAME temporary tablespace TEMPOR_NAME; gdzie: USER_NAME
System plików warstwa logiczna
Dariusz Wawrzyniak Pojęcie u Plik jest abstrakcyjnym obrazem informacji gromadzonej i udostępnianej przez system komputerowy. Plik jest podstawową jednostką logiczną magazynowania informacji w systemie
1. Pliki i ich organizacja
1. Pliki i ich organizacja (1.1) Pojęcie pliku Dane bezpośrednio potrzebne procesorowi do wykonywania jego zadań są umieszczane w pamięci operacyjnej systemu. Jest to jednak pamięć ulotna i dane w niej
Zaawansowane funkcje systemów plików. Ewa Przybyłowicz
Zaawansowane funkcje systemów plików. Ewa Przybyłowicz Agenda: 1. Idea journalingu. 2. NTFS. 3. ext4. 4. exfat. 5. Porównanie systemów. Idea journalingu. Dziennik systemu plików zapewnia możliwość odzyskiwania
Pamięć wirtualna. Jan Tuziemski Źródło części materiałów: os-book.com
Pamięć wirtualna Jan Tuziemski Źródło części materiałów: os-book.com Pamięć wirtualna Na poprzednich wykładach omówiono sposoby zarządzania pamięcią Są one potrzebne ponieważ wykonywane rozkazy procesów
Logiczny model komputera i działanie procesora. Część 1.
Logiczny model komputera i działanie procesora. Część 1. Klasyczny komputer o architekturze podanej przez von Neumana składa się z trzech podstawowych bloków: procesora pamięci operacyjnej urządzeń wejścia/wyjścia.
Działanie systemu operacyjnego
Budowa systemu komputerowego Działanie systemu operacyjnego Jednostka centralna dysku Szyna systemowa (magistrala danych) drukarki pamięci operacyjnej I NIC sieci Pamięć operacyjna Przerwania Przerwania
2009-03-21. Paweł Skrobanek. C-3, pok. 321 e-mail: pawel.skrobanek@pwr.wroc.pl pawel.skrobanek.staff.iiar.pwr.wroc.pl
Wrocław 2007-09 SYSTEMY OPERACYJNE WPROWADZENIE Paweł Skrobanek C-3, pok. 321 e-mail: pawel.skrobanek@pwr.wroc.pl pawel.skrobanek.staff.iiar.pwr.wroc.pl 1 PLAN: 1. Komputer (przypomnienie) 2. System operacyjny