Laboratorium mikrokontrolerów

Wielkość: px
Rozpocząć pokaz od strony:

Download "Laboratorium mikrokontrolerów"

Transkrypt

1 Akademia Górniczo-Hutnicza w Krakowie Katedra Elektroniki WIET Laboratorium mikrokontrolerów Ćwiczenie 3 Fast GPIO, magistrale i zegar Autor: Paweł Russek ver /12

2 1. Cel ćwiczenia Celem tego ćwiczenia jest zapoznanie studenta z budową i celem stosowania architektury wielomagistralowej mikrokontrolerów z rodziny Kinetis L. Zalety tej architektury zostaną zaprezentowane poprzez porównanie modułów peryferyjnych GPIO i Fast GPIO. Następnie student zapozna się ze sposobem użytkowania wielofunkcyjnego urządzenia laboratoryjnego Analog Discovery. Urządzenie Analog Discovery pozwala na pomiary wartości analogowych i cyfrowych, wizualizację i zapis mierzonych wartości, oraz generowanie zaprogramowanych przebiegów. Na zakończenie student dokona pomiarów mocy elektrycznej i wydajności mikrokontrolerów w różnych trybach konfiguracji zegara systemowego i dla różnych modułów peryferyjnych GPIO. 2. Moduł Fast GPIO Architektura układów ARM składa się z dwóch magistral: APB (Advanced Peripheral Bus) i AHB (Advanced High-Performance Bus). Magistrala AHB jest znacznie szybsza od magistrali APB, ponieważ pozwala CPU na wykonanie cyklu dostępu (zapisu/odczytu) do modułów peryferyjnych w jednym cyklu zegara. Magistrala APB jest wolniejsza i potrzebuje na dostęp dwóch cykli zegara. Magistrala AHB jest bezpośrednio podłączona do CPU, a APB jest połączone z CPU poprzez AHB (patrz rys. poniżej). Schemat blokowy architektury Cortex-M0 wraz z modułami Fast GPIO (Low Latency GPIO), oraz magistralami AHB i APB W Kinetis L każdy z portów we/wy (Porty A-E) posiada dwa modułu poprzez które można się do niego odwoływać. Jeden moduł jest adresowany, jak pozostałe urządzenia peryferyjne, poprzez APB, a drugi przez AHB. 2/12

3 Zauważ, że w dokumentacji moduły, które są odpowiedzialne za dostęp do GPIO poprzez magistralę AHB są nazwane FGPIO (Fast GPIO). Port A jest nazywany FGPIOA, port B to FGPIOB itd. W nagłówku MKL25Z4.h nazwy odpowiednich struktur to FPTA, FPTB, FPTC, FPTD i FPTE. Ważnym praktycznym wnioskiem, który można wysnuć z tego paragrafu instrukcji jest to, że w prosty sposób można przyśpieszyć działanie aplikacji na Kineti L poprzez prostą zmianę nazw PTAx na FPTAx w kodzie programu. Ćwiczenie 2.1 Wyszukaj adresy bazowe modułów FAST GPIOx w nagłówku MKL25Z4.h FPTA FPTB FPTC FPTD FPTE 3. Zegar systemowy, a wydajność mikrokontrolera Typowo zegar systemowy mikrokontrolera może być generowany na kilku rożnych sposobów. Źródłem zegara mogą być: wewnętrzny oscylator RC, który dostarcza sygnału o nieprecyzyjnej i niestabilnej częstotliwości, ale nie wymaga żadnych elementów zewnętrznych, zewnętrzny oscylator kwarcowy, który oferuje bardzo stabilną i precyzyjną częstotliwość, ale jest rozwiązaniem drogim (w szczególności przy częstotliwościach w okolicy 100 MHz), wewnętrzna pętla fazowa PLL, która jest kompromisowym rozwiązaniem wobec bardzo taniego oscylatora RC i kwarcu o bardzo dobrych parametrach. W tym rozwiązaniu stosuje się niedrogi kwarc jako źródło sygnału o niskiej częstotliwości, który jest następnie powielany za pomocą pętli fazowej. To rozwiązanie jest szeroko stosowane w systemach mikroprocesorowych pracujących z częstotliwościami ponad 20 MHz. Dodatkową zaletą jest to, że PLL pozwala na programowanie wartości częstotliwości zegara. Dzięki temu, można na przykład stosować szybki zegar podczas wykonywania złożonych obliczeniowo zadań, a zegar powolny kiedy można oszczędzać energię. Mikrokontroler na płytce FRDM-KL25Z jest wyposażony w kwarc o częstotliwości 8 MHz, co umożliwia programowanie zegara systemowego na kilka sposobów. Kiedy programista tworzy nowy projekt w Keil uvision5 system automatycznie dodaje kod startowy, który jest wykonywany po uruchomieniu mikrokontrolera, zanim jeszcze zostanie uruchomiona funkcja main(). Częścią kodu startowego jest opisana w pliku system_mkl25z4.c. Plik nagłówkowy system_mkl25z4.h udostępnia rożne tryby konfiguracji zegara poprzez definicję symbolu CLOCK_MODE. 3/12

4 CLOCK_SETUP MODE Reference clock CPU clock Bus clock 0 FLL Engaged Internal mode (FEI) 32 khz Slow Internal Reference Clock MHz MHz 1 (Max. clock freq.) PLL Engaged External (PEE) 2 Bypassed Low Power Internal (BLPI) 3 Bypassed Low Power External (BLPE) External External crystal 8 MHz 4 MHz Fast Internal Reference Clock External crystal 8 MHz 48 MHz 24 MHz 4 MHz 0.8 MHz 4 MHz 1 MHz Jako domyślny jest ustawiony tryb 0, ale można także wybrać inny tryb zmieniając wartość definicji #define CLOCK_SETUP w pliku system_mkl25z4.h. Wydajność mikrokontrolera zależy od częstotliwości zegara systemowego oraz od pracy kompilatora. Kiedy mikrokontroler współpracuje z urządzeniami peryferyjnymi szybkość pracy zależy również od szybkości magistrali systemowej. W tym ćwiczeniu kompilatorem nie będzie my się zajmować, zbadamy natomiast wpływ zegara. 4. Analog Discovery Urządzenie wielofunkcyjne Analog Discovery firmy Digilent pozwala na przeprowadzanie pomiarów, wizualizację wyników, generowanie przebiegów, zapisywanie zebranych danych i kontrolowanie urządzeń analogowych i cyfrowych różnego rodzaju. Urządzenie jest małe, ale oferuje ogromne możliwości studentom, którzy chcą samodzielnie eksperymentować z układami elektronicznymi. Wejścia analogowe i cyfrowe mogą być podłączane za pomocą krótkich uniwersalnych przewodów, które można łatwo podłączyć do złącz typu goldpin. Komputer PC współpracuje z Analog Discovery za pomocą złącza USB i jest kontrolowany poprzez oprogramowanie WaveForm WaveForm pozwala na konfigurację urządzenia i prowadzenie eksperymentów. 4/12

5 Najprostszą metodą korzystania z Analog Discovery jest użycie aplikacji WaveForm. Aplikację należy uruchomić, kiedy urządzenie jest już podpięte do złącza USB komputera. WaveForm automatycznie wykryje urządzenie i się skonfiguruje. Jeżeli uruchomienie przebiegnie poprawnie, to w głównym oknie aplikacji, w pasku statusu po prawej stronie, pojawi się numer seryjny Analog Discovery. 5. Pomiar zużycia energii na płytce FRDM-25Z Złącze J4 na płytce FRDM-KL25Z umożliwia wygodne przeprowadzenie pomiaru prądu pobieranego przez mikrokontroler, a pośrednio także wartości rozpraszanej mocy. 5/12

6 Pomiar spadek napięcia na zworze J4 jest proporcjonalny do prądu pobieranego przez mikrokontoler. Opornik połączony równolegle do zwory J4 to 10 ohm. Ćwiczenie 5.1 Zapisz wzór na moc rozpraszaną przez mikrokontroler w funkcji napięcia na zworze J4. P(U J4 )=??? 6. Wydajność mikrokontrolera, czas odpowiedzi i moc. W następnym ćwiczeniu zbadamy jak zmienia się wydajność mikrokontrolera. Będziemy mierzyć czas odpowiedzi mikrokontrolera w różnych konfiguracjach częstotliwości zegara. Mikrokontroler będzie wykonywał aplikację, która będzie sprawdzała stan logiczny na jednym z wejść GPIO. W momencie zmiany stanu wejścia z poziomu niskiego na wysoki, aplikacja wykona zmianę stanu na innym wyjściu GPIO. Jako wejście użyjemy pin 0 portu D, a jako wyjście pin 0 portu B. Mierzony czas odpowiedzi to czas pomiędzy zmianą sygnału na wejściu i wyjściu układu. Ćwiczenie Podłącz FRDM-25Z do Analog Discovery 2 zgodnie z diagramem 2. Uruchom WaveForms i skonfiguruj Analog Discovery. 2A. Ustaw przebieg prostokątny na wyjściu cyfrowym IO1 (podłączone do PTD0). Kliknij Patterns w głównym oknie. 6/12

7 Wybierz Add channels->signal->dio1 i kliknij Add (Uwaga: Na rysunku pokazano DIO0.) Aby skonfigurować dodane wyjście kliknij ikonę w polu IO sygnału DIO1. Następnie w oknie Edit wybierz Clock w polu Type i 10 khz w polu Frequency. Kliknij Close 7/12

8 Na końcu kliknij przycisk Run, aby uruchomić przebieg prostokątny na wyjściu DIO1. 2B. Skonfiguruj podgląd stanów logicznych na wejściach cyfrowych IO0 i IO1 (podłączone do PTB0 i PTD0). Wybierz Logic w oknie Welcome. Wybierz Add channels->signal->dio0 i kliknij Add 8/12

9 Powtórz procedurę dodanie sygnału dla sygnału DIO1. 3B. Aby dokonać pomiaru różnicowego na zworze J4, skonfiguruj oscyloskop Wybierz okno Welcome i kliknij przycisk Scope. Wybierz Channel 1 i ustaw wzmocnienie sygnału wejściowego w polu Range na 20mV/div. Uwaga. Podczas wykonywania ćwiczenia dobieraj wartość wzmocnienia w taki sposób 9/12

10 aby maksymalnie wzmocnić sygnał i aby pomiar był możliwie najdokładniejszy. 3. Według kodu podanego poniżej, uruchom aplikację na płytce FRDM-25Z. /* * Name: main.c * Purpose: Toggling_LEDs application * Author: Student * */ #include "MKL25Z4.h" /*Device header*/ #define LED_1 0 #define SW_1 0 int main() { //Enable clock for Port B and Port D SIM->SCGC5 =SIM_SCGC5_PORTB(1) SIM_SCGC5_PORTD(1); //Configure Port B pin 0 as GPIO, Output PORTB->PCR[LED_1] =PORT_PCR_MUX(1); PTB->PDDR =(1<<LED_1); //Configure Port D pin 0 as GPIO, Input, Pull-up resistor PORTD->PCR[SW_1] =PORT_PCR_MUX(1) PORT_PCR_PE(1) PORT_PCR_PS(0); PTD->PDDR&=~(1<<SW_1); while(1){ if( (PTD->PDIR & (1<<SW_1))==0){ if(ptb->pdor & (1<<LED_1)) PTB->PDOR&=~(1<<LED_1); else 10/12

11 FPTB->PDOR =(1<<LED_1); } } } while((ptd->pdir & (1<<SW_1))==0); //Wait for SW_1 release 4. Uruchom pomiar poprzez naciśnięcie przycisku Single w zakładce Logic. Pamiętaj, aby dostosować ustawienie szybkości próbkowania w polu 'Base w taki sposób, aby najlepiej odpowiadała ona spodziewanemu opóźnieniu. Wartość przedstawiona na rysunku poniżej jest jedynie orientacyjna. Na podstawie uzyskanego przebiegu odczytaj opóźnienie. 5. Oblicz moc mikrokontrolera na podstawie odczytu napięcia na zworze J4 w oknie Scope. 6. Zmień konfigurację zegara poprzez edycję definicji CLOCK_MODE w pliku system_mkl25z.h. #define CLOCK_SETUP 1 /* Define clock source values */ #define CPU_XTAL_CLK_HZ u /* Value of the external crystal or oscillator clock frequency in Hz */ #define CPU_INT_SLOW_CLK_HZ 32768u /* Value of the slow internal oscillator clock frequency in Hz */ #define CPU_INT_FAST_CLK_HZ u /* Value of the fast internal oscillator clock frequency in Hz */ /* RTC oscillator setting */ /* Low power mode enable */ /* SMC_PMPROT: AVLP=1,ALLS=1,AVLLS=1 */ 11/12

12 #define SYSTEM_SMC_PMPROT_VALUE 0x2AU /* SMC_PMPROT */ /* Internal reference clock trim */ /* #undef SLOW_TRIM_ADDRESS */ /* Slow oscillator not trimmed. Commented out for MISRA compliance. */ /* #undef SLOW_FINE_TRIM_ADDRESS */ /* Slow oscillator not trimmed. Commented out for MISRA compliance. */ /* #undef FAST_TRIM_ADDRESS */ /* Fast oscillator not trimmed. Commented out for MISRA compliance. */ /* #undef FAST_FINE_TRIM_ADDRESS */ /* Fast oscillator not trimmed. Commented out for MISRA compliance. */ #ifdef CLOCK_SETUP #if (CLOCK_SETUP == 0) #define DEFAULT_SYSTEM_CLOCK u /* Default System clock value */ #define MCG_MODE MCG_MODE_FEI /* Clock generator mode */ /* MCG_C1: CLKS=0,FRDIV=0,IREFS=1,IRCLKEN=1,IREFSTEN=0 */ 6. Zamiast GPIO użyj Fast GPIO. W tym celu zmień PTB na FPTB i PTD na FPTD w kodzie programu. 7. Powtarzaj czynności 4-6 tak aby wypełnić tablę poniżej. MODE CPU Frequency Bus Frequency Port type Response time Power 0 GPIO Fast GPIO 1 2 GPIO Fast GPIO GPIO Fast GPIO 12/12

TECHNIKA MIKROPROCESOROWA II

TECHNIKA MIKROPROCESOROWA II Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie Wydział IEiT Katedra Elektroniki TECHNIKA MIKROPROCESOROWA II LAB 6a Wykorzystanie USB do komunikacji z komputerem PC Mariusz Sokołowski http://www.fpga.agh.edu.pl/upt2

Bardziej szczegółowo

Laboratorium Procesorów Sygnałowych

Laboratorium Procesorów Sygnałowych Laboratorium Procesorów Sygnałowych Moduł STM32F407 Discovery GPIO, C/A, akcelerometr I. Informacje wstępne Celem ćwiczenia jest zapoznanie z: Budową i programowaniem modułu STM32 F4 Discovery Korzystaniem

Bardziej szczegółowo

Parametryzacja przetworników analogowocyfrowych

Parametryzacja przetworników analogowocyfrowych Parametryzacja przetworników analogowocyfrowych wersja: 05.2015 1. Cel ćwiczenia Celem ćwiczenia jest zaprezentowanie istoty działania przetworników analogowo-cyfrowych (ADC analog-to-digital converter),

Bardziej szczegółowo

Laboratorium mikrokontrolerów

Laboratorium mikrokontrolerów Akademia Górniczo-Hutnicza w Krakowie Katedra Elektroniki WIET Laboratorium mikrokontrolerów Ćwiczenie 4A Klawiatura matrycowa - projekt Autor: Paweł Russek http://www.fpga.agh.edu.pl/pm ver. 23.10.16

Bardziej szczegółowo

MARM. Laboratorium 1 system zegarów, porty wejścia/wyjścia. M. Suchenek

MARM. Laboratorium 1 system zegarów, porty wejścia/wyjścia. M. Suchenek MARM M. Suchenek Laboratorium 1 system zegarów, porty wejścia/wyjścia Celem laboratorium jest zapoznanie się ze środowiskiem uruchomieniowym Keil µvision, w tym konfiguracja środowiska, systemu zegarów,

Bardziej szczegółowo

SigmaDSP - zestaw uruchomieniowy dla procesora ADAU1701. SigmaDSP - zestaw uruchomieniowy dla procesora ADAU1701.

SigmaDSP - zestaw uruchomieniowy dla procesora ADAU1701. SigmaDSP - zestaw uruchomieniowy dla procesora ADAU1701. SigmaDSP - zestaw uruchomieniowy. SigmaDSP jest niedrogim zestawem uruchomieniowym dla procesora DSP ADAU1701 z rodziny SigmaDSP firmy Analog Devices, który wraz z programatorem USBi i darmowym środowiskiem

Bardziej szczegółowo

Instrukcja podstawowego uruchomienia sterownika PLC LSIS serii XGB XBC-DR20SU

Instrukcja podstawowego uruchomienia sterownika PLC LSIS serii XGB XBC-DR20SU Instrukcja podstawowego uruchomienia sterownika PLC LSIS serii XGB XBC-DR20SU Spis treści: 1. Instalacja oprogramowania XG5000 3 2. Tworzenie nowego projektu i ustawienia sterownika 7 3. Podłączenie sterownika

Bardziej szczegółowo

Instytut Teleinformatyki

Instytut Teleinformatyki Instytut Teleinformatyki Wydział Fizyki, Matematyki i Informatyki Politechnika Krakowska Mikrokontrolery i Mikroprocesory Zapoznanie się ze środowiskiem IAR Embedded Workbench; kompilacja, debuggowanie,

Bardziej szczegółowo

TECHNIKA MIKROPROCESOROWA II

TECHNIKA MIKROPROCESOROWA II Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie Wydział IEiT Katedra Elektroniki TECHNIKA MIKROPROCESOROWA II LAB 5 Przetwornik A/C i układ PWM - współpraca Mariusz Sokołowski http://www.fpga.agh.edu.pl/upt2

Bardziej szczegółowo

Laboratorium mikrokontrolerów

Laboratorium mikrokontrolerów Akademia Górniczo-Hutnicza w Krakowie Katedra Elektroniki WIET Laboratorium mikrokontrolerów Ćwiczenie 2 Programowania GPIO Autor: Paweł Russek http://www.fpga.agh.edu.pl/pm ver. 26.10.16 1/12 1. Cel ćwiczenia

Bardziej szczegółowo

Laboratorium mikrokontrolerów

Laboratorium mikrokontrolerów Akademia Górniczo-Hutnicza w Krakowie Katedra Elektroniki WIET Laboratorium mikrokontrolerów Ćwiczenie 1 Podstawy programowania mikrokontrolerów w języku C Autor: Paweł Russek http://www.fpga.agh.edu.pl/lm

Bardziej szczegółowo

Układy zegarowe w systemie mikroprocesorowym

Układy zegarowe w systemie mikroprocesorowym Układy zegarowe w systemie mikroprocesorowym 1 Sygnał zegarowy, sygnał taktujący W każdym systemie mikroprocesorowym jest wymagane źródło sygnałów zegarowych. Wszystkie operacje wewnątrz jednostki centralnej

Bardziej szczegółowo

Podstawy Elektroniki dla Informatyki. Pętla fazowa

Podstawy Elektroniki dla Informatyki. Pętla fazowa AGH Katedra Elektroniki Podstawy Elektroniki dla Informatyki Pętla fazowa Ćwiczenie 6 2015 r. 1. Wstęp Celem ćwiczenia jest zapoznanie się, poprzez badania symulacyjne, z działaniem pętli fazowej. 2. Konspekt

Bardziej szczegółowo

TECHNIKA MIKROPROCESOROWA II

TECHNIKA MIKROPROCESOROWA II Akademia Górniczo Hutnicza im. Stanisława Staszica w Krakowie Wydział IEiT Katedra Elektroniki TECHNIKA MIKROPROCESOROWA II LAB 1 Wprowadzenie do środowiska Keil i rodziny Kinetis Sebastian Koryciak http://www.fpga.agh.edu.pl/tm2

Bardziej szczegółowo

TECHNIKA MIKROPROCESOROWA II

TECHNIKA MIKROPROCESOROWA II Akademia Górniczo Hutnicza im. Stanisława Staszica w Krakowie Wydział IEiT Katedra Elektroniki TECHNIKA MIKROPROCESOROWA II PRE LAB Instalacja środowiska Keil i konfigurowanie zestawu FRDM-KL46Z Sebastian

Bardziej szczegółowo

Gromadzenie danych. Przybliżony czas ćwiczenia. Wstęp. Przegląd ćwiczenia. Poniższe ćwiczenie ukończysz w czasie 15 minut.

Gromadzenie danych. Przybliżony czas ćwiczenia. Wstęp. Przegląd ćwiczenia. Poniższe ćwiczenie ukończysz w czasie 15 minut. Gromadzenie danych Przybliżony czas ćwiczenia Poniższe ćwiczenie ukończysz w czasie 15 minut. Wstęp NI-DAQmx to interfejs służący do komunikacji z urządzeniami wspomagającymi gromadzenie danych. Narzędzie

Bardziej szczegółowo

Programowanie mikrokontrolerów 2.0

Programowanie mikrokontrolerów 2.0 4.1 Programowanie mikrokontrolerów 2.0 Taktowanie Marcin Engel Marcin Peczarski Instytut Informatyki Uniwersytetu Warszawskiego 22 listopada 2016 4.2 Drzewo taktowania w STM32F411 Źródło: RM0383 Reference

Bardziej szczegółowo

Instrukcja obsługi programatora AVR Prog USB v2

Instrukcja obsługi programatora AVR Prog USB v2 Instrukcja obsługi programatora AVR Prog USB v2 Instrukcja obsługi programatora AVR Prog USB v2, STK500 v2 Strona 1 Zawartość 1. Instalacja... 3 2. Instalacja sterowników w trybie HID.... 3 3. Programowanie

Bardziej szczegółowo

Sprzęt i architektura komputerów

Sprzęt i architektura komputerów Krzysztof Makles Sprzęt i architektura komputerów Laboratorium Temat: Elementy i układy półprzewodnikowe Katedra Architektury Komputerów i Telekomunikacji Zakład Systemów i Sieci Komputerowych SPIS TREŚCI

Bardziej szczegółowo

LabVIEW PLATFORMA EDUKACYJNA Lekcja 5 LabVIEW i Arduino konfiguracja środowiska i pierwszy program

LabVIEW PLATFORMA EDUKACYJNA Lekcja 5 LabVIEW i Arduino konfiguracja środowiska i pierwszy program LabVIEW PLATFORMA EDUKACYJNA Lekcja 5 LabVIEW i Arduino konfiguracja środowiska i pierwszy program Przygotował: Jakub Wawrzeńczak 1. Wprowadzenie Lekcja przedstawia wykorzystanie środowiska LabVIEW 2016

Bardziej szczegółowo

Podstawowe urządzenia peryferyjne mikrokontrolera ATmega8 Spis treści

Podstawowe urządzenia peryferyjne mikrokontrolera ATmega8 Spis treści Podstawowe urządzenia peryferyjne mikrokontrolera ATmega8 Spis treści 1. Konfiguracja pinów2 2. ISP..2 3. I/O Ports..3 4. External Interrupts..4 5. Analog Comparator5 6. Analog-to-Digital Converter.6 7.

Bardziej szczegółowo

Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7

Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi zastosowaniami wzmacniacza operacyjnego, poznanie jego charakterystyki przejściowej

Bardziej szczegółowo

Instrukcja obsługi programatora AVR Prog USB v2

Instrukcja obsługi programatora AVR Prog USB v2 Instrukcja obsługi programatora AVR Prog USB v2 Instrukcja obsługi programatora AVR Prog USB v2, STK500 v2 www.and-tech.pl Strona 1 Zawartość Instrukcja obsługi programatora AVR Prog USB v2, STK500 v2

Bardziej szczegółowo

2. Architektura mikrokontrolerów PIC16F8x... 13

2. Architektura mikrokontrolerów PIC16F8x... 13 Spis treści 3 Spis treœci 1. Informacje wstępne... 9 2. Architektura mikrokontrolerów PIC16F8x... 13 2.1. Budowa wewnętrzna mikrokontrolerów PIC16F8x... 14 2.2. Napięcie zasilania... 17 2.3. Generator

Bardziej szczegółowo

Ćwiczenia z S7-1200. S7-1200 jako Profinet-IO Controller. FAQ Marzec 2012

Ćwiczenia z S7-1200. S7-1200 jako Profinet-IO Controller. FAQ Marzec 2012 Ćwiczenia z S7-1200 S7-1200 jako Profinet-IO Controller FAQ Marzec 2012 Spis treści 1 Opis zagadnienie poruszanego w ćwiczeniu. 3 1.1 Wykaz urządzeń..... 3 2 KONFIGURACJA S7-1200 PLC.. 4 2.1 Nowy projekt.

Bardziej szczegółowo

TECHNIKA MIKROPROCESOROWA II

TECHNIKA MIKROPROCESOROWA II Akademia Górniczo Hutnicza im. Stanisława Staszica w Krakowie Wydział IEiT Katedra Elektroniki TECHNIKA MIKROPROCESOROWA II LAB 2 Human-Machine Interface, czyli obsługa wyświetlacza slcd Sebastian Koryciak

Bardziej szczegółowo

Sterownik Spid Pant 8 i Ant 8. Podręcznik użytkowania

Sterownik Spid Pant 8 i Ant 8. Podręcznik użytkowania Sterownik Spid Pant 8 i Ant 8 Podręcznik użytkowania Spis treści Spis treści...2 Wprowadzenie...3 Komplet...3 Dane techniczne...3 Panel sterujący...4 Panel tylny...5 Obsługa sterownika...6 Zmiana trybu

Bardziej szczegółowo

Ćwiczenia z S7-1200. Komunikacja S7-1200 z miernikiem parametrów sieci PAC 3200 za pośrednictwem protokołu Modbus/TCP.

Ćwiczenia z S7-1200. Komunikacja S7-1200 z miernikiem parametrów sieci PAC 3200 za pośrednictwem protokołu Modbus/TCP. Ćwiczenia z S7-1200 Komunikacja S7-1200 z miernikiem parametrów sieci PAC 3200 za pośrednictwem protokołu Modbus/TCP FAQ Marzec 2012 Spis treści 1 Opis zagadnienie poruszanego w ćwiczeniu. 3 1.1 Wykaz

Bardziej szczegółowo

LABORATORIUM UKŁADÓW PROGRAMOWALNYCH. PROCESORY OSADZONE kod kursu: ETD 7211 SEMESTR ZIMOWY 2017

LABORATORIUM UKŁADÓW PROGRAMOWALNYCH. PROCESORY OSADZONE kod kursu: ETD 7211 SEMESTR ZIMOWY 2017 Politechnika Wrocławska, Wydział Elektroniki Mikrosystemów i Fotoniki Wydziałowy Zakład Metrologii Mikro- i Nanostruktur LABORATORIUM UKŁADÓW PROGRAMOWALNYCH PROCESORY OSADZONE kod kursu: ETD 7211 SEMESTR

Bardziej szczegółowo

Instrukcja obsługi programatora AVR Prog USB v2

Instrukcja obsługi programatora AVR Prog USB v2 Instrukcja obsługi programatora AVR Prog USB v2 Strona 1 Spis treści 1. Instalacja...3 2. Instalacja sterowników w trybie HID....3 3. Programowanie w trybie HID...4 4. Instalacja w trybie COM....5 5. Programowanie

Bardziej szczegółowo

TECHNIKA MIKROPROCESOROWA II

TECHNIKA MIKROPROCESOROWA II Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie Wydział IEiT Katedra Elektroniki TECHNIKA MIKROPROCESOROWA II LAB 6 Moduł UART - współpraca z komputerem poprzez BlueTooth Mariusz Sokołowski

Bardziej szczegółowo

Generator funkcyjny. Spis treści. Działanie. Interfejs. Adam Miarka Maksymilian Szczepanik

Generator funkcyjny. Spis treści. Działanie. Interfejs. Adam Miarka Maksymilian Szczepanik Generator funkcyjny Wykonany przez Data wykonania Paweł Białas Adam Miarka Maksymilian Szczepanik 13 czerwca 2015 r. Generator został zbudowany w ramach XI Prezentacji Aplikacji Mikrokontrolerów Freescale.

Bardziej szczegółowo

Zaliczenie Termin zaliczenia: Sala IE 415 Termin poprawkowy: > (informacja na stronie:

Zaliczenie Termin zaliczenia: Sala IE 415 Termin poprawkowy: > (informacja na stronie: Zaliczenie Termin zaliczenia: 14.06.2007 Sala IE 415 Termin poprawkowy: >18.06.2007 (informacja na stronie: http://neo.dmcs.p.lodz.pl/tm/index.html) 1 Współpraca procesora z urządzeniami peryferyjnymi

Bardziej szczegółowo

Cwiczenie nr 1 Pierwszy program w języku C na mikrokontroler AVR

Cwiczenie nr 1 Pierwszy program w języku C na mikrokontroler AVR Cwiczenie nr 1 Pierwszy program w języku C na mikrokontroler AVR Zadanie polega na napisaniu pierwszego programu w języku C, jego poprawnej kompilacji i wgraniu na mikrokontroler. W tym celu należy zapoznać

Bardziej szczegółowo

Projektowania Układów Elektronicznych CAD Laboratorium

Projektowania Układów Elektronicznych CAD Laboratorium Projektowania Układów Elektronicznych CAD Laboratorium ĆWICZENIE NR 3 Temat: Symulacja układów cyfrowych. Ćwiczenie demonstruje podstawowe zasady analizy układów cyfrowych przy wykorzystaniu programu PSpice.

Bardziej szczegółowo

Laboratorium Analogowych Układów Elektronicznych Laboratorium 6

Laboratorium Analogowych Układów Elektronicznych Laboratorium 6 Laboratorium Analogowych Układów Elektronicznych Laboratorium 6 1/6 Pętla synchronizacji fazowej W tym ćwiczeniu badany będzie układ pętli synchronizacji fazowej jako układu generującego przebieg o zadanej

Bardziej szczegółowo

LABORATORIUM INTELIGENTNYCH SYSTEMÓW ELEKTRYCZNYCH

LABORATORIUM INTELIGENTNYCH SYSTEMÓW ELEKTRYCZNYCH LABORATORIUM INTELIGENTNYCH SYSTEMÓW ELEKTRYCZNYCH Ćwiczenie 2 URUCHAMIANIE - ZAŁĄCZANIE OŚWIETLENIA POPRZEZ EIB Katedra Inżynierii Komputerowej i Elektrycznej 2 1. Wiadomości ogólne. Urządzenie magistralne

Bardziej szczegółowo

RPTC CONTROLLER (v1.11) STEROWNIK PRZEMIENNIKA RADIOWEGO OBSŁUGA KOMUNIKATÓW GŁOSOWYCH OBSŁUGA KOMUNIKATÓW IDCW OPCJONALNY MODUŁ GSM

RPTC CONTROLLER (v1.11) STEROWNIK PRZEMIENNIKA RADIOWEGO OBSŁUGA KOMUNIKATÓW GŁOSOWYCH OBSŁUGA KOMUNIKATÓW IDCW OPCJONALNY MODUŁ GSM RPTC CONTROLLER (v1.11) STEROWNIK PRZEMIENNIKA RADIOWEGO OBSŁUGA KOMUNIKATÓW GŁOSOWYCH OBSŁUGA KOMUNIKATÓW IDCW OPCJONALNY MODUŁ GSM Instrukcja użytkownika Instrukcja oprogramowania konfiguracyjnego Designer:

Bardziej szczegółowo

DOKUMENTACJA PROJEKTU

DOKUMENTACJA PROJEKTU Warszawa, dn. 16.12.2015r. Student: Artur Tynecki (E.EIM) atynecki@stud.elka.pw.edu.pl Prowadzący: dr inż. Mariusz Jarosław Suchenek DOKUMENTACJA PROJEKTU Projekt wykonany w ramach przedmiotu Mikrokontrolery

Bardziej szczegółowo

Przetwarzanie A/C i C/A

Przetwarzanie A/C i C/A Przetwarzanie A/C i C/A Instrukcja do ćwiczenia laboratoryjnego opracował: Łukasz Buczek 05.2015 Rev. 204.2018 (KS) 1 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z przetwornikami: analogowo-cyfrowym

Bardziej szczegółowo

APPLICATION OF ADUC MICROCONTROLLER MANUFACTURED BY ANALOG DEVICES FOR PRECISION TENSOMETER MEASUREMENT

APPLICATION OF ADUC MICROCONTROLLER MANUFACTURED BY ANALOG DEVICES FOR PRECISION TENSOMETER MEASUREMENT Sławomir Marczak - IV rok Koło Naukowe Techniki Cyfrowej dr inż. Wojciech Mysiński - opiekun naukowy APPLICATION OF ADUC MICROCONTROLLER MANUFACTURED BY ANALOG DEVICES FOR PRECISION TENSOMETER MEASUREMENT

Bardziej szczegółowo

Warsztaty AVR. Instalacja i konfiguracja środowiska Eclipse dla mikrokontrolerów AVR. Dariusz Wika

Warsztaty AVR. Instalacja i konfiguracja środowiska Eclipse dla mikrokontrolerów AVR. Dariusz Wika Warsztaty AVR Instalacja i konfiguracja środowiska Eclipse dla mikrokontrolerów AVR Dariusz Wika 1.Krótki wstęp: Eclipse to rozbudowane środowisko programistyczne, które dzięki możliwości instalowania

Bardziej szczegółowo

Przetwarzanie AC i CA

Przetwarzanie AC i CA 1 Elektroniki Elektroniki Elektroniki Elektroniki Elektroniki Katedr Przetwarzanie AC i CA Instrukcja do ćwiczenia laboratoryjnego opracował: Łukasz Buczek 05.2015 1. Cel ćwiczenia 2 Celem ćwiczenia jest

Bardziej szczegółowo

Porty GPIO w mikrokontrolerach STM32F3

Porty GPIO w mikrokontrolerach STM32F3 Zachodniopomorski Uniwersytet Technologiczny WYDZIAŁ ELEKTRYCZNY Katedra Inżynierii Systemów, Sygnałów i Elektroniki LABORATORIUM Podstawy Programowania Mikroprocesorów i Procesorów DSP Porty GPIO w mikrokontrolerach

Bardziej szczegółowo

Zmierzyć się z żywiołami, czyli jak zbudować własną stację badawczą! Zaczynamy! Pole komunikatów programu. Nawigacja w programie Arduino

Zmierzyć się z żywiołami, czyli jak zbudować własną stację badawczą! Zaczynamy! Pole komunikatów programu. Nawigacja w programie Arduino Zaczynamy! Lista zadań Menu programu sprawdzanie kodu Skróty wybranych poleceń wgrywanie kodu nowy program otwieranie zapisanych prog. Pole do wprowadzania kodu zapisywanie zmian wywołanie podglądu portu

Bardziej szczegółowo

MultiTool instrukcja użytkownika 2010 SFAR

MultiTool instrukcja użytkownika 2010 SFAR MultiTool instrukcja użytkownika 2010 SFAR Tytuł dokumentu: MultiTool instrukcja użytkownika Wersja dokumentu: V1.0 Data: 21.06.2010 Wersja urządzenia którego dotyczy dokumentacja: MultiTool ver. 1.00

Bardziej szczegółowo

Edukacyjny sterownik silnika krokowego z mikrokontrolerem AT90S1200 na płycie E100. Zestaw do samodzielnego montażu.

Edukacyjny sterownik silnika krokowego z mikrokontrolerem AT90S1200 na płycie E100. Zestaw do samodzielnego montażu. E113 microkit Edukacyjny sterownik silnika krokowego z mikrokontrolerem AT90S1200 na płycie E100 1.Opis ogólny. Zestaw do samodzielnego montażu. Edukacyjny sterownik silnika krokowego przeznaczony jest

Bardziej szczegółowo

Instytut Teleinformatyki

Instytut Teleinformatyki Instytut Teleinformatyki Wydział Fizyki, Matematyki i Informatyki Politechnika Krakowska Mikrokontrolery i Mikroprocesory Przetwornik ADC laboratorium: 04 autor: mgr inż. Katarzyna Smelcerz Kraków, 2016

Bardziej szczegółowo

Konfigurowanie sterownika BX9000 firmy Beckhoff wprowadzenie. 1. Konfiguracja pakietu TwinCAT do współpracy ze sterownikiem BX9000

Konfigurowanie sterownika BX9000 firmy Beckhoff wprowadzenie. 1. Konfiguracja pakietu TwinCAT do współpracy ze sterownikiem BX9000 Konfigurowanie sterownika BX9000 firmy Beckhoff wprowadzenie 1. Konfiguracja pakietu TwinCAT do współpracy ze sterownikiem BX9000 Stanowisko laboratoryjne ze sterownikiem BX9000 Sterownik BX9000 należy

Bardziej szczegółowo

OPTIMA PC v2.2.1. Program konfiguracyjny dla cyfrowych paneli domofonowy serii OPTIMA 255 2011 ELFON. Instrukcja obsługi. Rev 1

OPTIMA PC v2.2.1. Program konfiguracyjny dla cyfrowych paneli domofonowy serii OPTIMA 255 2011 ELFON. Instrukcja obsługi. Rev 1 OPTIMA PC v2.2.1 Program konfiguracyjny dla cyfrowych paneli domofonowy serii OPTIMA 255 Instrukcja obsługi Rev 1 2011 ELFON Wprowadzenie OPTIMA PC jest programem, który w wygodny sposób umożliwia konfigurację

Bardziej szczegółowo

STM32 Butterfly. Zestaw uruchomieniowy dla mikrokontrolerów STM32F107

STM32 Butterfly. Zestaw uruchomieniowy dla mikrokontrolerów STM32F107 Zestaw uruchomieniowy dla mikrokontrolerów STM32F107 STM32 Butterfly Zestaw STM32 Butterfly jest platformą sprzętową pozwalającą poznać i przetestować możliwości mikrokontrolerów z rodziny STM32 Connectivity

Bardziej szczegółowo

Komputerowe projektowanie układów ćwiczenia uzupełniające z wykorzystaniem Multisim/myDAQ. Katedra Mikroelektroniki i Technik Informatycznych PŁ

Komputerowe projektowanie układów ćwiczenia uzupełniające z wykorzystaniem Multisim/myDAQ. Katedra Mikroelektroniki i Technik Informatycznych PŁ Katedra Mikroelektroniki i Technik Informatycznych PŁ Laboratorium Komputerowe projektowanie układów Ćwiczenia uzupełniające z wykorzystaniem oprogramowania Multisim oraz sprzętu mydaq National Instruments

Bardziej szczegółowo

MOD Xmega explore z ATXmega256A3BU. sklep.modulowo.pl akademia.modulowo.pl zestawy.modulowo.pl app.modulowo.pl blog.modulowo.

MOD Xmega explore z ATXmega256A3BU. sklep.modulowo.pl akademia.modulowo.pl zestawy.modulowo.pl app.modulowo.pl blog.modulowo. MOD - 11 Xmega explore z ATXmega256A3BU Sklep firmowy: Kursy i instrukcje: Dokumentacje techniczne: Aplikacje i projekty: Aktualności: sklep.modulowo.pl akademia.modulowo.pl zestawy.modulowo.pl app.modulowo.pl

Bardziej szczegółowo

TECHNIKA MIKROPROCESOROWA II

TECHNIKA MIKROPROCESOROWA II Akademia Górniczo Hutnicza im. Stanisława Staszica w Krakowie Wydział IEiT Katedra Elektroniki TECHNIKA MIKROPROCESOROWA II LAB 4 Timery Michał Karwatowski http://www.fpga.agh.edu.pl/upt2 05.11.2014 WSTĘP

Bardziej szczegółowo

start Program mikroprocesorowego miernika mocy generowanej $crystal = deklaracja

start Program mikroprocesorowego miernika mocy generowanej $crystal = deklaracja ----------------------------start---------------------------- Program mikroprocesorowego miernika mocy generowanej $crystal = 8000000 deklaracja częstotliwości kwarcu taktującego uc $regfile "m8def.dat"

Bardziej szczegółowo

Electronic Infosystems

Electronic Infosystems Department of Optoelectronics and Electronic Systems Faculty of Electronics, Telecommunications and Informatics Gdansk University of Technology Electronic Infosystems Microserver TCP/IP with CS8900A Ethernet

Bardziej szczegółowo

Technika Mikroprocesorowa

Technika Mikroprocesorowa Technika Mikroprocesorowa Dariusz Makowski Katedra Mikroelektroniki i Technik Informatycznych tel. 631 2648 dmakow@dmcs.pl http://neo.dmcs.p.lodz.pl/tm 1 System mikroprocesorowy? (1) Magistrala adresowa

Bardziej szczegółowo

AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ

AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ ELEMETY ELEKTRONIKI LABORATORIUM Kierunek NAWIGACJA Specjalność Transport morski Semestr II Ćw. 1 Poznawanie i posługiwanie się programem Multisim 2001 Wersja

Bardziej szczegółowo

ZL17PRG. Programator ICP dla mikrokontrolerów ST7F Flash

ZL17PRG. Programator ICP dla mikrokontrolerów ST7F Flash ZL17PRG Programator ICP dla mikrokontrolerów ST7F Flash Programator ZL17PRG umożliwia programowanie mikrokontrolerów z rodziny ST7 firmy STMicroelectronics. Programator pracuje w oparciu o protokół ICC

Bardziej szczegółowo

Wzmacniacze napięciowe i ograniczniki dynamiki

Wzmacniacze napięciowe i ograniczniki dynamiki LABORATORIUM INśYNIERII DŹWIĘKU 2 ĆWICZENIE NR 1 Wzmacniacze napięciowe i ograniczniki dynamiki Cel ćwiczenia Celem ćwiczenia jest zapoznanie się ze sposobem pomiarów i parametrami wzmacniaczy napięciowych

Bardziej szczegółowo

Ćwicz. 4 Elementy wykonawcze EWA/PP

Ćwicz. 4 Elementy wykonawcze EWA/PP 1. Wprowadzenie Temat ćwiczenia: Przekaźniki półprzewodnikowe Istnieje kilka rodzajów przekaźników półprzewodnikowych. Zazwyczaj są one sterowane optoelektrycznie z pełną izolacja galwaniczną napięcia

Bardziej szczegółowo

Opis ultradźwiękowego generatora mocy UG-500

Opis ultradźwiękowego generatora mocy UG-500 R&D: Ultrasonic Technology / Fingerprint Recognition Przedsiębiorstwo Badawczo-Produkcyjne OPTEL Sp. z o.o. ul. Otwarta 10a PL-50-212 Wrocław tel.: +48 71 3296853 fax.: 3296852 e-mail: optel@optel.pl NIP

Bardziej szczegółowo

Instrukcja obsługi programatora AVR Prog USB v2

Instrukcja obsługi programatora AVR Prog USB v2 Instrukcja obsługi programatora AVR Prog USB v2 Instrukcja obsługi programatora AVR Prog USB v2, STK500 v2 www.and-tech.pl Strona 1 Zawartość Instrukcja obsługi programatora AVR Prog USB v2, STK500 v2

Bardziej szczegółowo

AVR DRAGON. INSTRUKCJA OBSŁUGI (wersja 1.0)

AVR DRAGON. INSTRUKCJA OBSŁUGI (wersja 1.0) AVR DRAGON INSTRUKCJA OBSŁUGI (wersja 1.0) ROZDZIAŁ 1. WSTĘP... 3 ROZDZIAŁ 2. ROZPOCZĘCIE PRACY Z AVR DRAGON... 5 ROZDZIAŁ 3. PROGRAMOWANIE... 8 ROZDZIAŁ 4. DEBUGOWANIE... 10 ROZDZIAŁ 5. SCHEMATY PODŁĄCZEŃ

Bardziej szczegółowo

LABORATORIUM - ELEKTRONIKI Układy mikroprocesorowe cz.2

LABORATORIUM - ELEKTRONIKI Układy mikroprocesorowe cz.2 LABORATORIUM - ELEKTRONIKI Układy mikroprocesorowe cz.2 PRZEBIEG ĆWICZENIA 1. Wybrać z dostarczonych przez prowadzącego następujące elementy Układ Arduino Mega Płytka prototypowa Wyświetlacz 2X16 Potencjometr

Bardziej szczegółowo

TwinCAT 3 konfiguracja i uruchomienie programu w języku ST lokalnie

TwinCAT 3 konfiguracja i uruchomienie programu w języku ST lokalnie TwinCAT 3 konfiguracja i uruchomienie programu w języku ST lokalnie 1. Uruchomienie programu TwinCAT 3: a) Kliknąć w start i wpisać wpisać frazę twincat. b) Kliknąć w ikonę jak poniżej: 2. Wybrać w menu

Bardziej szczegółowo

TECHNIKA MIKROPROCESOROWA II

TECHNIKA MIKROPROCESOROWA II Akademia Górniczo Hutnicza im. Stanisława Staszica w Krakowie Wydział IEiT Katedra Elektroniki TECHNIKA MIKROPROCESOROWA II LAB 2 Human-Machine Interface, czyli obsługa wyświetlacza slcd Sebastian Koryciak

Bardziej szczegółowo

1 Badanie aplikacji timera 555

1 Badanie aplikacji timera 555 1 Badanie aplikacji timera 555 Celem ćwiczenia jest zapoznanie studenta z podstawowymi aplikacjami układu 555 oraz jego działaniem i właściwościami. Do badania wybrane zostały trzy podstawowe aplikacje

Bardziej szczegółowo

Politechnika Łódzka. Instytut Systemów Inżynierii Elektrycznej

Politechnika Łódzka. Instytut Systemów Inżynierii Elektrycznej Politechnika Łódzka Instytut Systemów Inżynierii Elektrycznej Laboratorium komputerowych systemów pomiarowych Ćwiczenie 8 Wykorzystanie modułów FieldPoint w komputerowych systemach pomiarowych 1. Wprowadzenie

Bardziej szczegółowo

Programator procesorów rodziny AVR AVR-T910

Programator procesorów rodziny AVR AVR-T910 Programator procesorów rodziny AVR AVR-T910 Instrukcja obsługi Opis urządzenia AVR-T910 jest urządzeniem przeznaczonym do programowania mikrokontrolerów rodziny AVR firmy ATMEL. Programator podłączany

Bardziej szczegółowo

Instytut Teleinformatyki

Instytut Teleinformatyki Instytut Teleinformatyki Wydział Fizyki, Matematyki i Informatyki Politechnika Krakowska Mikrokontrolery i Mikroprocesory Zapoznanie się ze środowiskiem CUBE, obsługa portów I/O laboratorium: 02 autor:

Bardziej szczegółowo

UKŁADY Z PĘTLĄ SPRZĘŻENIA FAZOWEGO (wkładki DA171A i DA171B) 1. OPIS TECHNICZNY UKŁADÓW BADANYCH

UKŁADY Z PĘTLĄ SPRZĘŻENIA FAZOWEGO (wkładki DA171A i DA171B) 1. OPIS TECHNICZNY UKŁADÓW BADANYCH UKŁADY Z PĘTLĄ SPRZĘŻENIA FAZOWEGO (wkładki DA171A i DA171B) WSTĘP Układy z pętlą sprzężenia fazowego (ang. phase-locked loop, skrót PLL) tworzą dynamicznie rozwijającą się klasę układów, stosowanych głównie

Bardziej szczegółowo

Laboratorium Komputerowe Systemy Pomiarowe

Laboratorium Komputerowe Systemy Pomiarowe Jarosław Gliwiński, Łukasz Rogacz Laboratorium Komputerowe Systemy Pomiarowe ćw. Zastosowania wielofunkcyjnej karty pomiarowej Data wykonania: 06.03.08 Data oddania: 19.03.08 Celem ćwiczenia było poznanie

Bardziej szczegółowo

MOD - 11. Xmega explore z ATXmega256A3BU. sklep.modulowo.pl akademia.modulowo.pl zestawy.modulowo.pl app.modulowo.pl blog.modulowo.

MOD - 11. Xmega explore z ATXmega256A3BU. sklep.modulowo.pl akademia.modulowo.pl zestawy.modulowo.pl app.modulowo.pl blog.modulowo. MOD - 11 Xmega explore z ATXmega256A3BU Sklep firmowy: Kursy i instrukcje: Dokumentacje techniczne: Aplikacje i projekty: Aktualności: sklep.modulowo.pl akademia.modulowo.pl zestawy.modulowo.pl app.modulowo.pl

Bardziej szczegółowo

Instrukcja obsługi. PROGRAMATOR dualavr. redflu Tarnów

Instrukcja obsługi. PROGRAMATOR dualavr. redflu Tarnów 2008 Instrukcja obsługi PROGRAMATOR dualavr redflu Tarnów 1. Instalacja. Do podłączenia programatora z PC wykorzystywany jest przewód USB A-B (często spotykany przy drukarkach). Zalecane jest wykorzystanie

Bardziej szczegółowo

1.1 Co to jest USBasp?... 3 1.2 Parametry techniczne... 3 1.3 Obsługiwane procesory... 3 1.4 Zawartość zestawu... 4

1.1 Co to jest USBasp?... 3 1.2 Parametry techniczne... 3 1.3 Obsługiwane procesory... 3 1.4 Zawartość zestawu... 4 2012 Programator AVR USBasp Instrukcja obsługi 2012-02-11 2 SPIS TREŚCI 1. WSTĘP... 3 1.1 Co to jest USBasp?... 3 1.2 Parametry techniczne... 3 1.3 Obsługiwane procesory... 3 1.4 Zawartość zestawu... 4

Bardziej szczegółowo

ZL25ARM. Płyta bazowa dla modułów diparm z mikrokontrolerami STR912. [rdzeń ARM966E-S]

ZL25ARM. Płyta bazowa dla modułów diparm z mikrokontrolerami STR912. [rdzeń ARM966E-S] ZL25ARM Płyta bazowa dla modułów diparm z mikrokontrolerami STR912 [rdzeń ARM966E-S] ZL25ARM to płyta bazowa umożliwiająca wykonywanie różnorodnych eksperymentów z mikrokontrolerami STR912 (ARM966E-S).

Bardziej szczegółowo

III. Przebieg ćwiczenia. 1. Generowanie i wizualizacja przebiegów oraz wyznaczanie ich podstawowych parametrów

III. Przebieg ćwiczenia. 1. Generowanie i wizualizacja przebiegów oraz wyznaczanie ich podstawowych parametrów POLITECHNIKA RZESZOWSKA KATEDRA METROLOGII I SYSTEMÓW DIAGNOSTYCZNYCH LABORATORIUM GRAFICZNE ŚRODOWISKA PROGRAMOWANIA S.P. WPROWADZENIE DO UŻYTKOWANIA ŚRODOWISKA VEE (1) I. Cel ćwiczenia Celem ćwiczenia

Bardziej szczegółowo

STM32Butterfly2. Zestaw uruchomieniowy dla mikrokontrolerów STM32F107

STM32Butterfly2. Zestaw uruchomieniowy dla mikrokontrolerów STM32F107 Zestaw uruchomieniowy dla mikrokontrolerów STM32F107 STM32Butterfly2 Zestaw STM32Butterfly2 jest platformą sprzętową pozwalającą poznać i przetestować możliwości mikrokontrolerów z rodziny STM32 Connectivity

Bardziej szczegółowo

Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski SYSTEMY SCADA

Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski SYSTEMY SCADA Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski SYSTEMY SCADA Laboratorium nr 8 PODSTAWY OBSŁUGI PROGRAMU WONDERWARE INTOUCH 10.1 Opracował: mgr inż. Marcel Luzar Cel: Konfiguracja

Bardziej szczegółowo

Szybki przewodnik instalacji

Szybki przewodnik instalacji Megapixel IP Camera ACM-5601 Megapixel Day&Night IP Camera ACM-5611 Ver. 080109 Szybki przewodnik instalacji Początki 1.1 Zawartość pudełka ACM-5601/5611 Zasilacz sieciowy (opcjonalnie) Płyta CD Złącza

Bardziej szczegółowo

Bezpieczeństwo informacji oparte o kryptografię kwantową

Bezpieczeństwo informacji oparte o kryptografię kwantową WYŻSZA SZKOŁA BIZNESU W DĄBROWIE GÓRNICZEJ WYDZIAŁ ZARZĄDZANIA INFORMATYKI I NAUK SPOŁECZNYCH Instrukcja do laboratorium z przedmiotu: Bezpieczeństwo informacji oparte o kryptografię kwantową Instrukcja

Bardziej szczegółowo

FREEboard. Zestaw startowy z mikrokontrolerem z rodziny Freescale KINETIS L (Cortex-M0+) i sensorami MEMS 7 DoF

FREEboard. Zestaw startowy z mikrokontrolerem z rodziny Freescale KINETIS L (Cortex-M0+) i sensorami MEMS 7 DoF FREEboard Zestaw startowy z mikrokontrolerem z rodziny Freescale KINETIS L (Cortex-M0+) i sensorami MEMS 7 DoF FREEboard to bogato wyposażona platforma startowa wyposażona w mikrokontroler z rodziny Freescale

Bardziej szczegółowo

Badanie działania bramki NAND wykonanej w technologii TTL oraz układów zbudowanych w oparciu o tę bramkę.

Badanie działania bramki NAND wykonanej w technologii TTL oraz układów zbudowanych w oparciu o tę bramkę. WFiIS LABORATORIUM Z ELEKTRONIKI Imię i nazwisko: 1. 2. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA CEL ĆWICZENIA Badanie działania

Bardziej szczegółowo

Porty wejścia/wyjścia w układach mikroprocesorowych i w mikrokontrolerach

Porty wejścia/wyjścia w układach mikroprocesorowych i w mikrokontrolerach Porty wejścia/wyjścia w układach mikroprocesorowych i w mikrokontrolerach Semestr zimowy 2012/2013, E-3, WIEiK-PK 1 Porty wejścia-wyjścia Input/Output ports Podstawowy układ peryferyjny port wejścia-wyjścia

Bardziej szczegółowo

Mikrokontrolery AVR Wprowadzenie

Mikrokontrolery AVR Wprowadzenie Mikrokontrolery AVR Wprowadzenie Komunikacja z otoczeniem mikrokontrolera Każdy z mikrokontrolerów posiada pewna liczbę wyprowadzeń cyfrowych które służą do wprowadzania i odbierania informacji z mikrokontrolera.

Bardziej szczegółowo

Szkolenia specjalistyczne

Szkolenia specjalistyczne Szkolenia specjalistyczne AGENDA Programowanie mikrokontrolerów w języku C na przykładzie STM32F103ZE z rdzeniem Cortex-M3 GRYFTEC Embedded Systems ul. Niedziałkowskiego 24 71-410 Szczecin info@gryftec.com

Bardziej szczegółowo

ZL4PIC. Uniwersalny zestaw uruchomieniowy dla mikrokontrolerów PIC

ZL4PIC. Uniwersalny zestaw uruchomieniowy dla mikrokontrolerów PIC ZL4PIC uniwersalny zestaw uruchomieniowy dla mikrokontrolerów PIC (v.1.0) ZL4PIC Uniwersalny zestaw uruchomieniowy dla mikrokontrolerów PIC 1 Zestaw jest przeznaczony dla elektroników zajmujących się aplikacjami

Bardziej szczegółowo

Płytka uruchomieniowa AVR oparta o układ ATMega16/ATMega32. Instrukcja Obsługi. SKN Chip Kacper Cyrocki Page 1

Płytka uruchomieniowa AVR oparta o układ ATMega16/ATMega32. Instrukcja Obsługi. SKN Chip Kacper Cyrocki Page 1 Płytka uruchomieniowa AVR oparta o układ ATMega16/ATMega32 Instrukcja Obsługi SKN Chip Kacper Cyrocki Page 1 Spis treści Wstęp... 3 Wyposażenie płytki... 4 Zasilanie... 5 Programator... 6 Diody LED...

Bardziej szczegółowo

Temat ćwiczenia: Przekaźniki półprzewodnikowe

Temat ćwiczenia: Przekaźniki półprzewodnikowe Temat ćwiczenia: Przekaźniki półprzewodnikowe 1. Wprowadzenie Istnieje kilka rodzajów przekaźników półprzewodnikowych. Zazwyczaj są one sterowane optoelektrycznie z pełną izolacja galwaniczną napięcia

Bardziej szczegółowo

Przystawka oscyloskopowa z analizatorem stanów logicznych. Seria DSO-29xxA&B. Skrócona instrukcja użytkownika

Przystawka oscyloskopowa z analizatorem stanów logicznych. Seria DSO-29xxA&B. Skrócona instrukcja użytkownika Przystawka oscyloskopowa z analizatorem stanów logicznych Seria DSO-29xxA&B Skrócona instrukcja użytkownika Zawartość zestawu: Przystawka DSO-29XXA lub DSO-29XXB Moduł analizatora stanów logicznych Sondy

Bardziej szczegółowo

Schemat blokowy karty

Schemat blokowy karty Obsługa kart I/O Karta NI USB-6008 posiada: osiem wejść analogowych (AI), dwa wyjścia analogowe (AO), 12 cyfrowych wejść-wyjść (DIO), 32-bitowy licznik. Schemat blokowy karty Podstawowe parametry karty

Bardziej szczegółowo

Systemy wbudowane. Uniwersytet Łódzki Wydział Fizyki i Informatyki Stosowanej. Witold Kozłowski

Systemy wbudowane. Uniwersytet Łódzki Wydział Fizyki i Informatyki Stosowanej. Witold Kozłowski Uniwersytet Łódzki Wydział Fizyki i Informatyki Stosowanej Systemy wbudowane Witold Kozłowski Zakład Fizyki i Technologii Struktur Nanometrowych 90-236 Łódź, Pomorska 149/153 https://std2.phys.uni.lodz.pl/mikroprocesory/

Bardziej szczegółowo

Poradnik programowania procesorów AVR na przykładzie ATMEGA8

Poradnik programowania procesorów AVR na przykładzie ATMEGA8 Poradnik programowania procesorów AVR na przykładzie ATMEGA8 Wersja 1.0 Tomasz Pachołek 2017-13-03 Opracowanie zawiera opis podstawowych procedur, funkcji, operatorów w języku C dla mikrokontrolerów AVR

Bardziej szczegółowo

Centrala alarmowa ALOCK-1

Centrala alarmowa ALOCK-1 Centrala alarmowa ALOCK-1 http://www.alarmlock.tv 1. Charakterystyka urządzenia Centrala alarmowa GSM jest urządzeniem umożliwiającym monitorowanie stanów wejść (czujniki otwarcia, czujki ruchu, itp.)

Bardziej szczegółowo

BADANIE ELEMENTÓW RLC

BADANIE ELEMENTÓW RLC KATEDRA ELEKTRONIKI AGH L A B O R A T O R I U M ELEMENTY ELEKTRONICZNE BADANIE ELEMENTÓW RLC REV. 1.0 1. CEL ĆWICZENIA - zapoznanie się z systemem laboratoryjnym NI ELVIS II, - zapoznanie się z podstawowymi

Bardziej szczegółowo

Podstawy budowy wirtualnych przyrządów pomiarowych

Podstawy budowy wirtualnych przyrządów pomiarowych Podstawy budowy wirtualnych przyrządów pomiarowych Problemy teoretyczne: Pomiar parametrów napięciowych sygnałów za pomocą karty kontrolno pomiarowej oraz programu LabVIEW (prawo Shanona Kotielnikowa).

Bardziej szczegółowo

1. Poznanie właściwości i zasady działania rejestrów przesuwnych. 2. Poznanie właściwości i zasady działania liczników pierścieniowych.

1. Poznanie właściwości i zasady działania rejestrów przesuwnych. 2. Poznanie właściwości i zasady działania liczników pierścieniowych. Ćwiczenie 9 Rejestry przesuwne i liczniki pierścieniowe. Cel. Poznanie właściwości i zasady działania rejestrów przesuwnych.. Poznanie właściwości i zasady działania liczników pierścieniowych. Wprowadzenie.

Bardziej szczegółowo

Laboratorium Komputerowe Systemy Pomiarowe

Laboratorium Komputerowe Systemy Pomiarowe Jarosław Gliwiński, Łukasz Rogacz Laboratorium Komputerowe Systemy Pomiarowe ćw. Programowanie wielofunkcyjnej karty pomiarowej w VEE Data wykonania: 15.05.08 Data oddania: 29.05.08 Celem ćwiczenia była

Bardziej szczegółowo