MARM. Laboratorium 1 system zegarów, porty wejścia/wyjścia. M. Suchenek
|
|
- Dawid Morawski
- 7 lat temu
- Przeglądów:
Transkrypt
1 MARM M. Suchenek Laboratorium 1 system zegarów, porty wejścia/wyjścia Celem laboratorium jest zapoznanie się ze środowiskiem uruchomieniowym Keil µvision, w tym konfiguracja środowiska, systemu zegarów, portów wejścia/wyjścia. Strukturę systemu zegarów mikrokontrolera STM32F411 przedstawia diagram: 1
2 1. Konfigurację systemu zegarów Konfigurację systemu zegarów należy rozpocząć od inicjalizacji wartości domyślnych dla systemu zegarów funkcją: void RCC_DeInit(void) Ustawia ona: HSI włączone HSE, PLL wyłączone wyjścia MOC1-2 wyłączone, nie zmienia ustawień dla LSE i LSI. Następnie wybrać należy odpowiednie źródła zegara dla mikrokontrolera, to jest przynajmniej jeden z zegarów: HSE, HSI, LSE, LSI. Konfiguracja zewnętrznego źródła zegara HSE: RCC_HSEConfig(uint32_t RCC_HSE) parametry wejściowe: RCC_HSE_ON/RCC_HSE_OFF włącza/wyłącza zewnętrzny oscylator RCC_HSE_Bypass pozwala podać zewnętrzny zegar na wejście HSE Funkcja czeka na włączenie zegara HSE ErrorStatus RCC_WaitForHSEStartUp(void), funkcja zwraca: SUCCESS oscylator HSE jest stabilny i gotowy ERROR nie jest gotowy Włączenie/wyłączenie szybkiego wbudowanego zegara HSI: void RCC_HSICmd(FunctionalState NewState), parametr wejściowy przyjmuje wartości: ENABLE bądź DISABLE kalibracja wewnętrznego źródła zegara: void RCC_AdjustHSICalibrationValue(uint8_t HSICalibrationValue) dopuszczalne wartości: 0 0x1F Konfiguracja zewnętrznego wolnego zegara LSE: void RCC_LSEConfig(uint8_t RCC_LSE), parametry wejściowe: RCC_LSE_ON włącza źródło jako oscylator RCC_LSE_OFF wyłącza RCC_LSE_Bypass pozwala podać zewnętrzny zegar na wejście LSE Włączenie/wyłączenie wewnętrznego oscylatora LSI: void RCC_LSICmd(FunctionalState NewState), parametry wejściowe funkcji ENABLE lub DISABLE Oprócz włączenia zegara należy skonfigurować odpowiednio multiplekser System clock mux, który określa źródło zegara dla mikrokontrolera: void RCC_SYSCLKConfig(uint32_t RCC_SYSCLKSource) RCC_SYSCLKSource_HSI wewnętrzny zegar szybki HSI RCC_SYSCLKSource_HSE zewnętrzny zegar szybki HSE RCC_SYSCLKSource_PLLCLK zegar z pętli fazowej PLL 2
3 Do sprawdzenia poprawności konfiguracji systemu zegarów można skorzystać z funkcji sprawdzającej źródło zegara: uint8_t RCC_GetSYSCLKSource(void), funkcja zwraca: 0x00 - HSI used as system clock 0x04 - HSE used as system clock 0x08 - PLL used as system clock sprawdzającej częstotliwość pracy zegara głównego: void RCC_GetClocksFreq(RCC_ClocksTypeDef* RCC_Clocks) sprawdzającej gotowość zegara bądź oscylatora do pracy: FlagStatus RCC_GetFlagStatus(uint8_t RCC_FLAG) RCC_FLAG_HSIRDY: gotowość zegara HSI RCC_FLAG_HSERDY: gotowość zegara HSE RCC_FLAG_PLLRDY: gotowość pętli fazowej PLL RCC_FLAG_PLLI2SRDY: PLLI2S RCC_FLAG_PLLSAIRDY: PLLSAI RCC_FLAG_LSERDY: gotowość zegara LSE RCC_FLAG_LSIRDY: gotowość zegara LSI oraz przyczynę wyzerowania mikrokontrolera: RCC_FLAG_BORRST: POR/PDR bądź BOR reset RCC_FLAG_PINRST: poprzez pin reset RCC_FLAG_PORRST: POR/PDR reset RCC_FLAG_SFTRST: Software reset RCC_FLAG_IWDGRST: reset poprzez niezależny watchdog RCC_FLAG_WWDGRST: reset poprzez watchdog okienkowy RCC_FLAG_LPWRRST: Low Power reset Funkcja zwracane FlagStatus, która może przyjąć wartość SET lub RESET Konfiguracja pętli fazowej PLL: void RCC_PLLConfig(uint32_t RCC_PLLSource, uint32_t PLLM, uint32_t PLLN, uint32_t PLLP, uint32_t PLLQ) RCC_PLLSource określa źródło zegara dla pętli fazowej: RCC_PLLSource_HSI RCC_PLLSource_HSE PLLM - dzielnik częstotliwości dla VCO: ustawiany w zakresie 0-63 PLLN - mnożnik częstotliwości dla VCO: ustawiany w zakresie PLLP - dzielnik częstotliwości dla zegara mikrokontrolera SYSCLK (2,4,6,8) PLLQ - dzielnik zegara dla układów: OTG FS, SDIO i RNG 4-15 Uwaga: VCO pętli fazowej może pracować w zakresie częstotliwości od 192 do 432 MHz Włączenie pętli fazowej: void RCC_PLLCmd(FunctionalState NewState) NewState może przyjąć wartości określone jako ENABLE bądź DISABLE 3
4 Konfiguracja zegarów dla magistral AHB, APB1, APB2: konfiguracja zegarów dla magistrali AHB (HCLK) void RCC_HCLKConfig(uint32_t RCC_SYSCLK) RCC_SYSCLK_Div1: AHB clock = SYSCLK RCC_SYSCLK_Div2: AHB clock = SYSCLK/2 RCC_SYSCLK_Div4: AHB clock = SYSCLK/4 RCC_SYSCLK_Div8: AHB clock = SYSCLK/8 RCC_SYSCLK_Div16: AHB clock = SYSCLK/16 RCC_SYSCLK_Div64: AHB clock = SYSCLK/64 RCC_SYSCLK_Div128: AHB clock = SYSCLK/128 RCC_SYSCLK_Div256: AHB clock = SYSCLK/256 RCC_SYSCLK_Div512: AHB clock = SYSCLK/512 konfiguracja wolnych zegarów dla magistrali APB1 (PCLK1) void RCC_PCLK1Config(uint32_t RCC_HCLK) RCC_HCLK_Div1: APB1 clock = HCLK RCC_HCLK_Div2: APB1 clock = HCLK/2 RCC_HCLK_Div4: APB1 clock = HCLK/4 RCC_HCLK_Div8: APB1 clock = HCLK/8 RCC_HCLK_Div16: APB1 clock = HCLK/16 konfiguracja szybkich zegarów dla magistrali APB2 (PCLK2) void RCC_PCLK2Config(uint32_t RCC_HCLK) RCC_HCLK_Div1: APB2 clock = HCLK RCC_HCLK_Div2: APB2 clock = HCLK/2 RCC_HCLK_Div4: APB2 clock = HCLK/4 RCC_HCLK_Div8: APB2 clock = HCLK/8 RCC_HCLK_Div16: APB2 clock = HCLK/16 4
5 2. Konfiguracja portów wejścia/wyjścia Konfigurację portów wejściowych bądź wyjściowych należy rozpocząć od włączenia zegara dla poszczególnych portów, które mają być używane. Porty podłączone są do magistrali AHB1, stąd należy skorzystać z funkcji: void RCC_AHB1PeriphClockCmd(uint32_t RCC_AHB1Periph, FunctionalState NewState) gdzie: RCC_AHB1Periph określa port NewState stan ENABLE bądź DISABLE, włącza bądź wyłącza port np. RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE) Kolejnym etapem jest powołanie oraz uzupełnienie struktury odpowiedzialnej za konfigurację portu zdefiniowaną w pliku stm32f4xx_gpio.h: typedef struct { uint32_t GPIO_Pin; GPIOSpeed_TypeDef GPIO_Speed; GPIOMode_TypeDef GPIO_Mode; GPIOOType_TypeDef GPIO_OType; GPIOPuPd_TypeDef GPIO_PuPd; } GPIO_InitTypeDef; Do inicjalizacji struktury można użyć funkcji: void GPIO_Init(GPIO_TypeDef* GPIOx, GPIO_InitTypeDef* GPIO_InitStruct) Zapis do portu 16 bitów: void GPIO_Write(GPIO_TypeDef* GPIOx, uint16_t PortVal) np. GPIO_Write(GPIOA, 0xffff); Zapis do pojedynczego wyprowadzenia mikrokontrolera: void GPIO_WriteBit(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin, BitAction BitVal) np. GPIO_WriteBit(GPIOA, GPIO_Pin_1, 0); bądź alternatywna funkcja ustawiająca wartość logiczną 1 na wyjściu: void GPIO_SetBits(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin) np. GPIO_SetBits(GPIOF, GPIO_Pin_6) bądź kilka wyprowadzeń z portu: GPIO_SetBits(GPIOF, GPIO_Pin_6 GPIO_Pin_7 GPIO_Pin_8 GPIO_Pin_9) bądź alternatywna funkcja ustawiająca wartość logiczną 0 na wyjściu: void GPIO_ResetBits(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin) np. GPIO_ResetBits(GPIOF, GPIO_Pin_6) bądź kilka wyprowadzeń z portu: np. GPIO_ResetBits(GPIOF, GPIO_Pin_6 GPIO_Pin_7 GPIO_Pin_8 GPIO_Pin_9) Można także bezpośrednio ustawiać wartości rejestrów ustawiającą wartość wyprowadzeń w stan logiczny 1 : np. GPIOA->BSRR = GPIO_Pin_10; // GPIOA.10 = 1 5
6 bądź ustawiającą wartość wyprowadzeń w stan logiczny 0 : np. GPIOA->BRR = GPIO_Pin_10; // GPIOA.10 = 0 Odczyt ustawionej wartości portu wyjściowego: uint16_t GPIO_ReadOutputData(GPIO_TypeDef* GPIOx) np. readvalue = GPIO_ReadOutputData(GPIOC); Odczyt pojedynczego pinu portu wyjściowego: uint8_t GPIO_ReadOutputDataBit(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin) np. readvalue = GPIO_ReadOutputDataBit(GPIOA, GPIO_Pin_0) Odczyt portu wejściowego, 16 bitów: uint16_t GPIO_ReadInputData(GPIO_TypeDef* GPIOx) np. portval = GPIO_ReadInputdata(GPIOA); Odczyt stanu pojedynczego wyprowadzenia: uint8_t GPIO_ReadInputDataBit(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin) np. if (GPIO_ReadInputDataBit(GPIOA, GPIO_Pin_15) == 0) { } 6
7 3. Opis zestawu laboratoryjnego Do portów płytki uruchomieniowej, podłączone są: PA5 - zielona dioda LED, oznaczona jako LD2 PC13 przycisk niebieski oznaczony jako USER Złącze USB do programowania i diagnostyki USER LD2 Zdjęcie płytki uruchomieniowej z mikrokontrolerem STM32F411. 7
Programowanie mikrokontrolerów 2.0
4.1 Programowanie mikrokontrolerów 2.0 Taktowanie Marcin Engel Marcin Peczarski Instytut Informatyki Uniwersytetu Warszawskiego 22 listopada 2016 4.2 Drzewo taktowania w STM32F411 Źródło: RM0383 Reference
Porty GPIO w mikrokontrolerach STM32F3
Zachodniopomorski Uniwersytet Technologiczny WYDZIAŁ ELEKTRYCZNY Katedra Inżynierii Systemów, Sygnałów i Elektroniki LABORATORIUM Podstawy Programowania Mikroprocesorów i Procesorów DSP Porty GPIO w mikrokontrolerach
Instytut Teleinformatyki
Instytut Teleinformatyki Wydział Fizyki, Matematyki i Informatyki Politechnika Krakowska Mikrokontrolery i Mikroprocesory Zapoznanie się ze środowiskiem CUBE, obsługa portów I/O laboratorium: 02 autor:
Język C. Wykład 9: Mikrokontrolery cz.2. Łukasz Gaweł Chemia C pokój 307
Język C Wykład 9: Mikrokontrolery cz.2 Łukasz Gaweł Chemia C pokój 307 lukasz.gawel@pg.edu.pl Pierwszy program- powtórka Częstotliwość zegara procesora μc (należy sprawdzić z kartą techniczną μc) Dodaje
Programowanie mikrokontrolerów 2.0
Programowanie mikrokontrolerów 2.0 Zegar czasu rzeczywistego Marcin Engel Marcin Peczarski Instytut Informatyki Uniwersytetu Warszawskiego 5 maja 2015 Zegar czasu rzeczywistego Niezależny układ RTC (ang.
Opóźnienia w STM32 (2)
Precyzyjne odmierzanie czasu w połączeniu z trybami oszczędzania energii Kurs grafika pochodzi z http://7art-screensavers.com Opóźnienia w STM32 (2) Precyzyjne odmierzanie czasu w połączeniu z trybami
Programator ICP mikrokontrolerów rodziny ST7. Full MFPST7. Lite. Instrukcja użytkownika 03/09
Full Lite MFPST7 Programator ICP mikrokontrolerów rodziny ST7 Instrukcja użytkownika 03/09 Spis treści WSTĘP 3 CZYM JEST ICP? 3 PODŁĄCZENIE PROGRAMATORA DO APLIKACJI 4 OBSŁUGA APLIKACJI ST7 VISUAL PROGRAMMER
STM32Cube ułatwienie tworzenia oprogramowania
Krok po kroku Kursy EP STM32Cube ułatwienie tworzenia oprogramowania Mikrokontrolery STM32 tworzą ogromną rodzinę procesorów z rdzeniem ARM Cortex. W jej skład wchodzą zarówno nieskomplikowane jednostki
SigmaDSP - zestaw uruchomieniowy dla procesora ADAU1701. SigmaDSP - zestaw uruchomieniowy dla procesora ADAU1701.
SigmaDSP - zestaw uruchomieniowy. SigmaDSP jest niedrogim zestawem uruchomieniowym dla procesora DSP ADAU1701 z rodziny SigmaDSP firmy Analog Devices, który wraz z programatorem USBi i darmowym środowiskiem
Programowanie mikrokontrolerów 2.0
Programowanie mikrokontrolerów 2.0 Tryby uśpienia Marcin Engel Marcin Peczarski Instytut Informatyki Uniwersytetu Warszawskiego 19 grudnia 2016 Zarządzanie energią Często musimy zadbać o zminimalizowanie
Politechnika Śląska w Gliwicach
Politechnika Śląska w Gliwicach Wydział Automatyki, Elektroniki i Informatyki LABORATORIUM PRZEDMIOTU SYSTEMY MIKROPROCESOROWE ĆWICZENIE 1 Układy wejścia i wyjścia mikrokontrolera ATXMega128A1 1 1 Cel
Instytut Teleinformatyki
Instytut Teleinformatyki Wydział Fizyki, Matematyki i Informatyki Politechnika Krakowska Mikrokontrolery i Mikroprocesory Przetwornik ADC laboratorium: 04 autor: mgr inż. Katarzyna Smelcerz Kraków, 2016
Systemy wbudowane. Uniwersytet Łódzki Wydział Fizyki i Informatyki Stosowanej. Witold Kozłowski
Uniwersytet Łódzki Wydział Fizyki i Informatyki Stosowanej Systemy wbudowane Witold Kozłowski Zakład Fizyki i Technologii Struktur Nanometrowych 90-236 Łódź, Pomorska 149/153 https://std2.phys.uni.lodz.pl/mikroprocesory/
Timery w mikrokontrolerach STM32F3
Zachodniopomorski Uniwersytet Technologiczny WYDZIAŁ ELEKTRYCZNY Katedra Inżynierii Systemów, Sygnałów i Elektroniki LABORATORIUM Podstawy Programowania Mikroprocesorów i Procesorów DSP Timery w mikrokontrolerach
WYDZIAŁ ELEKTRYCZNY KATEDRA TELEKOMUNIKACJI I APARATURY ELEKTRONICZNEJ. Instrukcja do zajęć laboratoryjnych. Numer ćwiczenia: 2
Politechnika Białostocka WYDZIAŁ ELEKTRYCZNY KATEDRA TELEKOMUNIKACJI I APARATURY ELEKTRONICZNEJ Instrukcja do zajęć laboratoryjnych Temat ćwiczenia: Sygnały zegarowe. Obsługa GPIO i przetwornika ADC Numer
LabVIEW PLATFORMA EDUKACYJNA Lekcja 5 LabVIEW i Arduino konfiguracja środowiska i pierwszy program
LabVIEW PLATFORMA EDUKACYJNA Lekcja 5 LabVIEW i Arduino konfiguracja środowiska i pierwszy program Przygotował: Jakub Wawrzeńczak 1. Wprowadzenie Lekcja przedstawia wykorzystanie środowiska LabVIEW 2016
Systemy wbudowane. Uniwersytet Łódzki Wydział Fizyki i Informatyki Stosowanej. Witold Kozłowski
Uniwersytet Łódzki Wydział Fizyki i Informatyki Stosowanej Systemy wbudowane Witold Kozłowski Zakład Fizyki i Technologii Struktur Nanometrowych 90-236 Łódź, Pomorska 149/153 https://std2.phys.uni.lodz.pl/mikroprocesory/
2. PORTY WEJŚCIA/WYJŚCIA (I/O)
2. PORTY WEJŚCIA/WYJŚCIA (I/O) 2.1 WPROWADZENIE Porty I/O mogą pracować w kilku trybach: - przesyłanie cyfrowych danych wejściowych i wyjściowych a także dla wybrane wyprowadzenia: - generacja przerwania
Programowanie układów STM32F4 (1)
Programowanie układów STM32F4 (1) W tym kursie, bazując na nieskomplikowanych projektach, zaprezentuję w praktyczny sposób programowanie układów z rodziny STM32F4. Jest to pierwszy artykuł z serii. Przedstawione
SML3 październik
SML3 październik 2005 16 06x_EIA232_4 Opis ogólny Moduł zawiera transceiver EIA232 typu MAX242, MAX232 lub podobny, umożliwiający użycie linii RxD, TxD, RTS i CTS interfejsu EIA232 poprzez złącze typu
LABORATORIUM UKŁADÓW PROGRAMOWALNYCH. PROCESORY OSADZONE kod kursu: ETD 7211 SEMESTR ZIMOWY 2017
Politechnika Wrocławska, Wydział Elektroniki Mikrosystemów i Fotoniki Wydziałowy Zakład Metrologii Mikro- i Nanostruktur LABORATORIUM UKŁADÓW PROGRAMOWALNYCH PROCESORY OSADZONE kod kursu: ETD 7211 SEMESTR
Laboratorium mikrokontrolerów
Akademia Górniczo-Hutnicza w Krakowie Katedra Elektroniki WIET Laboratorium mikrokontrolerów Ćwiczenie 3 Fast GPIO, magistrale i zegar Autor: Paweł Russek http://www.fpga.agh.edu.pl/pm ver. 9.11.16 1/12
Mikrokontrolery z rdzeniami Cortex-M - STM32F401 w praktyce. Grzegorz Mazur Politechnika Warszawska Instytut Informatyki
Mikrokontrolery z rdzeniami Cortex-M - STM32F401 w praktyce Grzegorz Mazur Politechnika Warszawska Instytut Informatyki 1 Co to jest Cortex? Nowa generacja procesorów (rdzeni) ARM Zestaw instrukcji Thumb
IIPW_SML3_680 (Z80) przewodnik do ćwiczeń laboratoryjnych
IIPW_SML3_680 (Z80) przewodnik do ćwiczeń laboratoryjnych wrzesieo 2010 UWAGA: Moduł jest zasilany napięciem do 3.3V i nie może współpracowad z wyjściami układów zasilanych z wyższych napięd. Do pracy
ISP ADAPTER. Instrukcja obsługi rev.1.1. Copyright 2009 SIBIT
Instrukcja obsługi rev.1.1 Spis treści 1.Wprowadzenie... 3 2. Rozmieszczenie elementów...4 3. Opis wyprowadzeń złącza ISP...6 4. Zasilanie adaptera...7 5. Wybór źródła taktowania...8 6. Wybór programowanego
Laboratorium Procesorów Sygnałowych
Laboratorium Procesorów Sygnałowych Moduł STM32F407 Discovery GPIO, C/A, akcelerometr I. Informacje wstępne Celem ćwiczenia jest zapoznanie z: Budową i programowaniem modułu STM32 F4 Discovery Korzystaniem
DOKUMENTACJA PROJEKTU
Warszawa, dn. 16.12.2015r. Student: Artur Tynecki (E.EIM) atynecki@stud.elka.pw.edu.pl Prowadzący: dr inż. Mariusz Jarosław Suchenek DOKUMENTACJA PROJEKTU Projekt wykonany w ramach przedmiotu Mikrokontrolery
Sprawozdanie z projektu MARM. Część druga Specyfikacja końcowa. Prowadzący: dr. Mariusz Suchenek. Autor: Dawid Kołcz. Data: r.
Sprawozdanie z projektu MARM Część druga Specyfikacja końcowa Prowadzący: dr. Mariusz Suchenek Autor: Dawid Kołcz Data: 01.02.16r. 1. Temat pracy: Układ diagnozujący układ tworzony jako praca magisterska.
ZL28ARM. Zestaw uruchomieniowy dla mikrokontrolerów AT91SAM7XC
ZL28ARM Zestaw uruchomieniowy dla mikrokontrolerów AT91SAM7XC Zestaw ZL28ARM jest uniwersalnym zestawem uruchomieniowym dla mikrokontrolerów AT91SAM7XC. Dzięki wyposażeniu w szeroką gamę układów peryferyjnych
Szkolenia specjalistyczne
Szkolenia specjalistyczne AGENDA Programowanie mikrokontrolerów w języku C na przykładzie STM32F103ZE z rdzeniem Cortex-M3 GRYFTEC Embedded Systems ul. Niedziałkowskiego 24 71-410 Szczecin info@gryftec.com
Programowanie mikrokontrolerów 2.0
13.1 Programowanie mikrokontrolerów 2.0 Sterowanie fazowe Marcin Engel Marcin Peczarski Instytut Informatyki Uniwersytetu Warszawskiego 19 grudnia 2016 Triak Triak jest półprzewodnikowym elementem przełączającym
Niektóre piny mogą pełnić różne role, zależnie od aktualnej wartości sygnałów sterujących.
Podłączenie mikrokontrolera ATmega8: zasilanie 8 i 22
STM32Butterfly2. Zestaw uruchomieniowy dla mikrokontrolerów STM32F107
Zestaw uruchomieniowy dla mikrokontrolerów STM32F107 STM32Butterfly2 Zestaw STM32Butterfly2 jest platformą sprzętową pozwalającą poznać i przetestować możliwości mikrokontrolerów z rodziny STM32 Connectivity
Wstęp...9. 1. Architektura... 13
Spis treści 3 Wstęp...9 1. Architektura... 13 1.1. Schemat blokowy...14 1.2. Pamięć programu...15 1.3. Cykl maszynowy...16 1.4. Licznik rozkazów...17 1.5. Stos...18 1.6. Modyfikowanie i odtwarzanie zawartości
STM32 dla użytkowników 8-bitowców (2)
STM32 dla użytkowników 8-bitowców (2) 32-bitowe mikrokontrolery są postrzegane przez konstruktorów jako elementy do bardziej wymagających zadań. Czasy się jednak zmieniają, co widać już nawet w sklepach
Instrukcja obsługi Zasilacz regulowany WINNERS XL4015 USB
Instrukcja obsługi Zasilacz regulowany WINNERS XL4015 USB Moduł przetwornicy regulowanej WINNERS XL4015 USB może zostać użyty jako standardowy układ obniżający napięcie stałe DC, ładowarka akumulatorów
Expandery wejść MCP23S17 oraz MCP23017
Expandery wejść MCP23S17 oraz MCP23017 Expander I/O MCP20S17 I2C Piny wyjściowe expanderów MCP23S17 oraz MCP23017 Expander I/O MCP23S17 SPI Podłączenie urządzenia na magistrali SPI z płytą Arduino. Linie
Instrukcja dla: Icomsat v1.0 SIM900 GSM/GPRS shield for Arduino oraz dla GPRS Shield produkcji Seeedstudio.
Instrukcja dla: Icomsat v1.0 SIM900 GSM/GPRS shield for Arduino oraz dla GPRS Shield produkcji Seeedstudio. IComsat jest to shield GSM/GPRS współpracujący z Arduino oparty o moduł SIM900 firmy SIMCOM.
Edukacyjny sterownik silnika krokowego z mikrokontrolerem AT90S1200 na płycie E100. Zestaw do samodzielnego montażu.
E113 microkit Edukacyjny sterownik silnika krokowego z mikrokontrolerem AT90S1200 na płycie E100 1.Opis ogólny. Zestaw do samodzielnego montażu. Edukacyjny sterownik silnika krokowego przeznaczony jest
Laboratorium 2 Sterowanie urządzeniami z wykorzystaniem systemu plików Intel Galileo
Laboratorium 2 Sterowanie urządzeniami z wykorzystaniem systemu plików Intel Galileo Zakres: Laboratorium obrazuje podstawy sterowania urządzeń z wykorzystaniem wirtualnego systemu plików sysfs z poziomu
Instytut Teleinformatyki
Instytut Teleinformatyki Wydział Fizyki, Matematyki i Informatyki Politechnika Krakowska Mikroprocesory i Mikrokontrolery Dostęp do portów mikrokontrolera ATmega32 język C laboratorium: 10 autorzy: dr
ZL6ARM Zestaw uruchomieniowy dla mikrokontrolerów LPC213x. Tab. 1. Zestawienie najważniejszych parametrów wybranych mikrokontrolerów z rodziny LPC213x
ZL6ARM Zestaw uruchomieniowy dla mikrokontrolerów LPC213x (rdzeń ARM7TMDI-S) Kompatybilny z zestawem MCB2130 firmy Keil! Zestaw ZL6ARM opracowano z myślą o elektronikach chcących szybko zaznajomić się
Zestaw uruchomieniowy z mikrokontrolerem LPC1114 i wbudowanym programatorem ISP
Zestaw uruchomieniowy z mikrokontrolerem LPC1114 i wbudowanym programatorem ISP ZL32ARM ZL32ARM z mikrokontrolerem LPC1114 (rdzeń Cotrex-M0) dzięki wbudowanemu programatorowi jest kompletnym zestawem uruchomieniowym.
STM-owa układanka: Nucleo, AC6, HAL
STM-owa układanka: Nucleo, AC6, HAL Od dłuższego czasu sprzedaż mikrokontrolerów STM32 jest powiązana ze wsparciem dla projektów bazujących na tych układach. Jest to wsparcie polegające zarówno na dystrybucji
Instrukcja obsługi. PROGRAMATOR dualavr. redflu Tarnów
2008 Instrukcja obsługi PROGRAMATOR dualavr redflu Tarnów 1. Instalacja. Do podłączenia programatora z PC wykorzystywany jest przewód USB A-B (często spotykany przy drukarkach). Zalecane jest wykorzystanie
ZL5ARM. Zestaw uruchomieniowy dla mikrokontrolerów LPC2119/2129 (rdzeń ARM7TMDI-S) Kompatybilność z zestawem MCB2100 firmy Keil
ZL5ARM Zestaw uruchomieniowy dla mikrokontrolerów LPC2119/2129 (rdzeń ARM7TMDI-S) ZL5ARM Zestaw uruchomieniowy dla mikrokontrolerów LPC2119/2129 (rdzeń ARM7TMDI-S) 1 Zestaw ZL5ARM opracowano z myślą o
Płytka uruchomieniowa XM32
2015 Płytka uruchomieniowa XM32 Instrukcja obsługi - www.barion-st.com 2015-08-07 2 SPIS TREŚCI 1. WSTĘP... 3 1.1 Co to jest XM32?... 3 1.2 Budowa oraz parametry techniczne... 3 1.3 Schemat połączeń...
Podstawy Elektroniki dla Informatyki. Pętla fazowa
AGH Katedra Elektroniki Podstawy Elektroniki dla Informatyki Pętla fazowa Ćwiczenie 6 2015 r. 1. Wstęp Celem ćwiczenia jest zapoznanie się, poprzez badania symulacyjne, z działaniem pętli fazowej. 2. Konspekt
Uniwersalny sterownik silnika krokowego z portem szeregowym RS232 z procesorem AT90S2313 na płycie E200. Zestaw do samodzielnego montażu.
microkit E3 Uniwersalny sterownik silnika krokowego z portem szeregowym RS3 z procesorem AT90S33 na płycie E00. Zestaw do samodzielnego montażu..opis ogólny. Sterownik silnika krokowego przeznaczony jest
Karta katalogowa JAZZ OPLC JZ20-T40/JZ20-J-T wejść cyfrowych, 2 wejścia analogowe/cyfrowe, 2 wejścia analogowe. 20 wyjść tranzystorowych
Karta katalogowa JAZZ OPLC JZ20-T40/JZ20-J-T40 16 wejść cyfrowych, 2 wejścia analogowe/cyfrowe, 2 wejścia analogowe 20 wyjść tranzystorowych Specyfikacja techniczna Zasilanie Napięcie zasilania 24 VDC
Konfiguracja i programowanie PLC Siemens SIMATIC S7 i panelu tekstowego w układzie sterowania napędami elektrycznymi. Przebieg ćwiczenia
Ćwiczenie VIIN Konfiguracja i programowanie PLC Siemens SIMATIC S7 i panelu tekstowego w układzie sterowania napędami elektrycznymi Przebieg ćwiczenia 1. Rozpoznać elementy stanowiska (rys.1,2,3) i podłączyć
AN ON OFF TEMPERATURE CONTROLLER WITH A MOBILE APPLICATION
Krzysztof Bolek III rok Koło Naukowe Techniki Cyfrowej dr inż. Wojciech Mysiński opiekun naukowy AN ON OFF TEMPERATURE CONTROLLER WITH A MOBILE APPLICATION DWUPOŁOŻENIOWY REGULATOR TEMPERATURY Z APLIKACJĄ
Instytut Teleinformatyki
Instytut Teleinformatyki Wydział Fizyki, Matematyki i Informatyki Politechnika Krakowska Mikroprocesory i mikrokontrolery Obsługa portów wejścia/wyjścia mikrokontrolera laboratorium: 02 autor: mgr inż.
TECHNIKA MIKROPROCESOROWA II
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie Wydział IEiT Katedra Elektroniki TECHNIKA MIKROPROCESOROWA II LAB 6a Wykorzystanie USB do komunikacji z komputerem PC Mariusz Sokołowski http://www.fpga.agh.edu.pl/upt2
Poradnik programowania procesorów AVR na przykładzie ATMEGA8
Poradnik programowania procesorów AVR na przykładzie ATMEGA8 Wersja 1.0 Tomasz Pachołek 2017-13-03 Opracowanie zawiera opis podstawowych procedur, funkcji, operatorów w języku C dla mikrokontrolerów AVR
Płytka uruchomieniowa AVR oparta o układ ATMega16/ATMega32. Instrukcja Obsługi. SKN Chip Kacper Cyrocki Page 1
Płytka uruchomieniowa AVR oparta o układ ATMega16/ATMega32 Instrukcja Obsługi SKN Chip Kacper Cyrocki Page 1 Spis treści Wstęp... 3 Wyposażenie płytki... 4 Zasilanie... 5 Programator... 6 Diody LED...
STM32 Butterfly. Zestaw uruchomieniowy dla mikrokontrolerów STM32F107
Zestaw uruchomieniowy dla mikrokontrolerów STM32F107 STM32 Butterfly Zestaw STM32 Butterfly jest platformą sprzętową pozwalającą poznać i przetestować możliwości mikrokontrolerów z rodziny STM32 Connectivity
ZL30ARM. Zestaw uruchomieniowy dla mikrokontrolerów STM32F103
ZL30ARM Zestaw uruchomieniowy dla mikrokontrolerów STM32F103 Zestaw ZL30ARM jest uniwersalnym zestawem uruchomieniowym dla mikrokontrolerów STM32F103. Dzięki wyposażeniu w szeroką gamę układów peryferyjnych
2. Architektura mikrokontrolerów PIC16F8x... 13
Spis treści 3 Spis treœci 1. Informacje wstępne... 9 2. Architektura mikrokontrolerów PIC16F8x... 13 2.1. Budowa wewnętrzna mikrokontrolerów PIC16F8x... 14 2.2. Napięcie zasilania... 17 2.3. Generator
Stair Lighting Driver. Sterownik oświetlenia schodowego Instrukcja użytkowania
Stair Lighting Driver Sterownik oświetlenia schodowego Instrukcja użytkowania 1 S t r o n a Spis treści 1. Zasady BHP przy obsłudze urządzenia... 3 1.1. Wymogi ogólne... 3 1.2. Na stanowisku instalacji
Szybka instrukcja obsługi - Wi.TV
Szybka instrukcja obsługi - Poniższa instrukcja obsługi pozwoli lepiej zrozumieć uzytkownikowi zasadę działania. Aby otrzymać więcej informacji dot.specyfikacji i obslugi proszę skorzystać ze strony internetowej
Mikrokontrolery AVR Wprowadzenie
Mikrokontrolery AVR Wprowadzenie Komunikacja z otoczeniem mikrokontrolera Każdy z mikrokontrolerów posiada pewna liczbę wyprowadzeń cyfrowych które służą do wprowadzania i odbierania informacji z mikrokontrolera.
Technika mikroprocesorowa. Konsola do gier
K r a k ó w 1 1. 0 2. 2 0 1 4 Technika mikroprocesorowa Konsola do gier W yk o n a l i : P r o w a d z ą c y: P a w e ł F l u d e r R o b e r t S i t k o D r i n ż. J a c e k O s t r o w s k i Opis projektu
Instrukcja obsługi programatora AVR Prog USB v2
Instrukcja obsługi programatora AVR Prog USB v2 Instrukcja obsługi programatora AVR Prog USB v2, STK500 v2 www.and-tech.pl Strona 1 Zawartość Instrukcja obsługi programatora AVR Prog USB v2, STK500 v2
Ustawienia ogólne. Ustawienia okólne są dostępne w panelu głównym programu System Sensor, po kliknięciu ikony
Ustawienia ogólne Ustawienia okólne są dostępne w panelu głównym programu System Sensor, po kliknięciu ikony Panel główny programu System Sensor (tylko dla wersja V2, V3, V4) Panel główny programu System
TECHNIKA MIKROPROCESOROWA II
Akademia Górniczo Hutnicza im. Stanisława Staszica w Krakowie Wydział IEiT Katedra Elektroniki TECHNIKA MIKROPROCESOROWA II LAB 2 Human-Machine Interface, czyli obsługa wyświetlacza slcd Sebastian Koryciak
XMEGA. Warsztaty CHIP Rok akademicki 2014/2015
XMEGA Warsztaty CHIP Rok akademicki 2014/2015 Plan warsztatów: Wprowadzenie do Atmel Studio (20/11/2014) Porty I/O (20/11/2014) Przerwania (27/11/2014) Wykorzystana literatura: [1] Dokumentacja ATMEL(www.atmel.com):
dv-2ps INSTRUKCJA OBSŁUGI
dv-2ps INSTRUKCJA OBSŁUGI Manometr cyfrowy z programowalnymi stykami i wyjściem RS485 1. Diody LED statusu styków 2. Aktualna wartość ciśnienia 3. Przyłacze elektyczne 4. Przyłącze procesowe dv-2ps jest
Instytut Teleinformatyki
Instytut Teleinformatyki Wydział Fizyki, Matematyki i Informatyki Politechnika Krakowska Mikroprocesory i Mikrokontrolery Zastosowanie przetwornika analogowo-cyfrowego do odczytywania napięcia z potencjometru
ZL2ARM easyarm zestaw uruchomieniowy dla mikrokontrolerów LPC2104/5/6 (rdzeń ARM7TDMI-S)
ZL2ARM Zestaw uruchomieniowy dla mikrokontrolerów LPC2104/5/6 (rdzeń ARM7TDMI-S) 1 Zestaw ZL2ARM opracowano z myślą o elektronikach chcących szybko zaznajomić się z mikrokontrolerami z rdzeniem ARM7TDMI-S.
Centrala alarmowa ALOCK-1
Centrala alarmowa ALOCK-1 http://www.alarmlock.tv 1. Charakterystyka urządzenia Centrala alarmowa GSM jest urządzeniem umożliwiającym monitorowanie stanów wejść (czujniki otwarcia, czujki ruchu, itp.)
Programowanie mikrokontrolerów - laboratorium
Państwowa Wyższa Szkoła Zawodowa w Nowym Sączu Instytut Techniczny Programowanie mikrokontrolerów- laboratorium Nazwisko i imię 1. 2. Data wykonania ćwiczenia: Grupa: Ocena sprawozdania Zaliczenie: Symbol:
GSM KONTROLER V3.0 instrukcja v 1.0
GSM KONTROLER V3.0 instrukcja v 1.0 UWAGA: Instrukcja w wersji przedprodukcyjnej. Prosimy o zgłaszanie wszelkich uwag i poprawek dotyczących użytkowania i obsługi Kontrolera. Nie ponosimy odpowiedzialności
1. Wprowadzenie Programowanie mikrokontrolerów Sprzęt i oprogramowanie... 33
Spis treści 3 1. Wprowadzenie...11 1.1. Wstęp...12 1.2. Mikrokontrolery rodziny ARM...13 1.3. Architektura rdzenia ARM Cortex-M3...15 1.3.1. Najważniejsze cechy architektury Cortex-M3... 15 1.3.2. Rejestry
LITEcompLPC1114. Zestaw ewaluacyjny z mikrokontrolerem LPC1114 (Cortex-M0) Sponsorzy:
LITEcompLPC1114 Zestaw ewaluacyjny z mikrokontrolerem LPC1114 (Cortex-M0) Bezpłatny zestaw dla Czytelników książki Mikrokontrolery LPC1100. Pierwsze kroki LITEcompLPC1114 jest doskonałą platformą mikrokontrolerową
Parametryzacja przetworników analogowocyfrowych
Parametryzacja przetworników analogowocyfrowych wersja: 05.2015 1. Cel ćwiczenia Celem ćwiczenia jest zaprezentowanie istoty działania przetworników analogowo-cyfrowych (ADC analog-to-digital converter),
Ciśnieniomierz typ AL154AG08.P
1. O P I S O G Ó L N Y C I Ś N I E N I O M I E R Z A A L 1 5 4 A G 0 8. P 2 Przyrząd umożliwia pomiar, wyświetlenie na wyświetlaczu, zapamiętanie w wewnętrznej pamięci oraz odczyt przez komputer wartości
Instrukcja obsługi programatora AVR Prog USB v2
Instrukcja obsługi programatora AVR Prog USB v2 Instrukcja obsługi programatora AVR Prog USB v2, STK500 v2 Strona 1 Zawartość 1. Instalacja... 3 2. Instalacja sterowników w trybie HID.... 3 3. Programowanie
LOW ENERGY TIMER, BURTC
PROJEKTOWANIE ENERGOOSZCZĘDNYCH SYSTEMÓW WBUDOWANYCH ĆWICZENIE 4 LOW ENERGY TIMER, BURTC Katedra Elektroniki AGH 1. Low Energy Timer tryb PWM Modulacja szerokości impulsu (PWM) jest często stosowana przy
ZL4PIC. Uniwersalny zestaw uruchomieniowy dla mikrokontrolerów PIC
ZL4PIC uniwersalny zestaw uruchomieniowy dla mikrokontrolerów PIC (v.1.0) ZL4PIC Uniwersalny zestaw uruchomieniowy dla mikrokontrolerów PIC 1 Zestaw jest przeznaczony dla elektroników zajmujących się aplikacjami
uruchomieniowego i biblioteki API dla mikrokontrolerów STM32
Temat 1: Wprowadzenie do środowiska IDE, prezentacja zestawu uruchomieniowego i biblioteki API dla mikrokontrolerów STM32 Celem ćwiczenia jest prezentacja podstawowych funkcji darmowego środowiska programistycznego
Programator procesorów rodziny AVR AVR-T910
Programator procesorów rodziny AVR AVR-T910 Instrukcja obsługi Opis urządzenia AVR-T910 jest urządzeniem przeznaczonym do programowania mikrokontrolerów rodziny AVR firmy ATMEL. Programator podłączany
ZL15AVR. Zestaw uruchomieniowy dla mikrokontrolerów ATmega32
ZL15AVR Zestaw uruchomieniowy dla mikrokontrolerów ATmega32 ZL15AVR jest uniwersalnym zestawem uruchomieniowym dla mikrokontrolerów ATmega32 (oraz innych w obudowie 40-wyprowadzeniowej). Dzięki wyposażeniu
Cisco EPC2100 Instrukcja obsługi modemu
Urządzenie WiFi samo w sobie nie ogranicza prędkości usługi internetowej. Korzystając jednak z urządzenia (komputera stacjonarnego, laptopa itp.) podłączonego do Internetu poprzez WiFi, na osiąganą prędkość
KOMUNIKACJA Z OTOCZENIEM MIKROKONTROLERA
Mikrokontrolery AVR KOMUNIKACJA Z OTOCZENIEM MIKROKONTROLERA Wyprowadzenia Każdy z mikrokontrolerów posiada pewną liczbę wyprowadzeń cyfrowych które służą do wprowadzania i odbierania informacji z mikrokontrolera.
Spis treści. Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
El ektroni ka cyfrow a Aut orpr ogr amuz aj ęć: mgri nż.mar ci njuki ewi cz Pr oj ektwspół f i nansowanyześr odkówuni ieur opej ski ejwr amacheur opej ski egofunduszuspoł ecznego Spis treści Zajęcia 1:
LITEcomp. Zestaw uruchomieniowy z mikrokontrolerem ST7FLITE19
LITEcomp Zestaw uruchomieniowy z mikrokontrolerem ST7FLITE19 Moduł LITEcomp to miniaturowy komputer wykonany na bazie mikrokontrolera z rodziny ST7FLITE1x. Wyposażono go w podstawowe peryferia, dzięki
Organizacja pamięci VRAM monitora znakowego. 1. Tryb pracy automatycznej
Struktura stanowiska laboratoryjnego Na rysunku 1.1 pokazano strukturę stanowiska laboratoryjnego Z80 z interfejsem częstościomierza- czasomierz PFL 21/22. Rys.1.1. Struktura stanowiska. Interfejs częstościomierza
Laboratorium Systemów wbudowanych Wyższa Szkoła Zarządzania i Bankowości, Informatyka studia inżynierskie
Laboratorium Systemów wbudowanych Wyższa Szkoła Zarządzania i Bankowości, Informatyka studia inżynierskie Ćwiczenie nr l Podstawy programowania mikrokontrolerów rodziny AVR8 opracował dr inż. Wojciech
Huawei EchoLife HG8245/ GPON Terminal. User s Manual
Huawei EchoLife HG8245/ GPON Terminal User s Manual Huawei Echolife HG8245, urządzenie końcowe sieci optycznej (ONT) jest to brama główna wysokiej klasy rozwiązanie FTTH. Przy użyciu technologii GPON oraz
W semestrze letnim studenci kierunku Aplikacje Internetu Rzeczy podczas ćwiczeń z programowania CAD/CAM
Pracownia Elektroniki Cyfrowej Programowanie CAD/CAM W semestrze letnim studenci kierunku Aplikacje Internetu Rzeczy podczas ćwiczeń z programowania CAD/CAM projektowali modele 3d. Wykorzystywali do tego
M-1TI. PRECYZYJNY PRZETWORNIK RTD, TC, R, U NA SYGNAŁ ANALOGOWY 4-20mA Z SEPARACJĄ GALWANICZNĄ. 2
M-1TI PRECYZYJNY PRZETWORNIK RTD, TC, R, U NA SYGNAŁ ANALOGOWY 4-20mA Z SEPARACJĄ GALWANICZNĄ www.metronic.pl 2 CECHY PODSTAWOWE Przetwarzanie sygnału z czujnika na sygnał standardowy pętli prądowej 4-20mA
Programowanie STM32F4(7)
Programowanie STM32F4(7) W artykule zajmiemy się konwerterem A/C wbudowanym w układ mikrokontrolera i za jego pomocą zmierzymy temperaturę panującą na układzie. Do wykonania tego ćwiczenia nie będzie potrzebne
MultiTool instrukcja użytkownika 2010 SFAR
MultiTool instrukcja użytkownika 2010 SFAR Tytuł dokumentu: MultiTool instrukcja użytkownika Wersja dokumentu: V1.0 Data: 21.06.2010 Wersja urządzenia którego dotyczy dokumentacja: MultiTool ver. 1.00
USB AVR JTAG. Instrukcja obsługi rev.1.0. Copyright 2011 SIBIT www.sibit.pl
USB Instrukcja obsługi rev.1.0 1 Spis treści 1.Wprowadzenie... 3 2. Opis wyprowadzeń... 4 3. Podłączenie programatora do układu...6 4. Instalacja sterowników... 7 5. Zmiana firmware... 12 6. Konfiguracja
Wyłącznik czasowy GAO EMT757
INSTRUKCJA OBSŁUGI Wyłącznik czasowy GAO EMT757 Produkt nr 552451 Instrukcja obsługi Strona 1 z 10 Cyfrowy programator czasowy Artykuł nr: EMT757 A. Funkcje 1. Cyfrowy programator czasowy (zwany dalej
Bufor danych USB jednorazowego użytku EBI 330-T30/EBI 330-T85 Nr produktu
INSTRUKCJA OBSŁUGI Bufor danych USB jednorazowego użytku EBI 330-T30/EBI 330-T85 Nr produktu 000101609 Strona 1 z 5 Bufor danych USB jednorazowego użytku EBI 330-T30/EBI 330-T85 Opis Bufor danych serii
Konfigurowanie mikrokontrolera, podstawy funkcjonowania aplikacji
Cyfrowy analizator 32-kanałowy (1) Konfigurowanie mikrokontrolera, podstawy funkcjonowania aplikacji Płytka ewaluacyjna zakupiona w celu zapoznania się z nowym układem scalonym po zakończeniu nauki nie
GRM-10 - APLIKACJA PC
GRM-10 - APLIKACJA PC OPIS Aplikacja służy do aktualizacji oprogramowania urządzenia GRM-10 oraz jego konfiguracji z poziomu PC. W celu wykonania wskazanych czynności konieczne jest połączenie GRM-10 z
Programowanie mikrokontrolerów 2.0
6.1 Programowanie mikrokontrolerów 2.0 Liczniki Marcin Engel Marcin Peczarski Instytut Informatyki Uniwersytetu Warszawskiego 31 października 2017 Liczniki Układy sprzętowe wyposażone w wewnętrzny rejestr