Laboratorium elektroniki i miernictwa
|
|
- Izabela Orzechowska
- 8 lat temu
- Przeglądów:
Transkrypt
1 Numer indeksu Michał Moroz Imię i nazwisko Numer indeksu Paweł Tarasiuk Imię i nazwisko kierunek: Informatyka semestr 2 grupa II rok akademicki: 2008/2009 Laboratorium elektroniki i miernictwa Ćwiczenie T1 Charakterystyki tranzystorów Ocena:
2 Streszczenie Sprawozdanie z ćwiczenia, którego celem było wyznaczenie właściwości statycznych dla tranzystora bipolarnego typu NPN w układzie wspólnego emitera oraz unipolarnego z kanałem typu N. 1 Teoria W tym rozdziale zostaną omówione pokrótce poszczególne zagadnienia związane z tematem przeprowadzanego ćwiczenia. 1.1 Tranzystor bipolarny Tranzystory bipolarne są wynikiem połączenia dwóch złącz p-n, tak aby obszar n lub obszar p był wspólny dla obu złącz. Stąd wynika podział na dwa główne typy tranzystorów bipolarnych NPN oraz PNP, które zostaną omówione w rozdziałach i W tranzystorze bipolarnym wyróżnia się trzy wyprowadzenia - bazę (B), kolektor (C) i emiter (E), jak zostało to oznaczone na rysunku 1. T1 NPN C T2 PNP E B E B C Rysunek 1: Standardowe oznaczenia tranzystorów NPN i PNP. Zasada działania tranzystora polega na wyprowadzeniu złącza emitera (którego działanie można uogólnić do działania diody) ze stanu równowagi do stanu przewodzenia. Emiter poprzez rekombinację zaczyna wprowadzać nośniki większościowe do bazy, które ze względu na jej niewielką grubość przechodzą bezpośrednio do kolektora. Dzięki temu regulując prąd bazy możemy w łatwy sposób sterować prądem kolektora. Tranzystory bipolarne charakteryzują się pięcioma obszarami pracy: 1. Obszar aktywny złącze BE spolaryzowane jest w kierunku przewodzenia, złącze CB w kierunku zaporowym. 2. Obszar aktywny odwrócony złącze BE spolaryzowane w kierunku zaporowym, złącze CB w kierunku przewodzenia. 3. Obszar zatkania złącza BE i CB spolaryzowane w kierunku zaporowym. 4. Obszar nasycenia złącza BE i CB spolaryzowane w kierunku przewodzenia. 5. Obszar przebicia lawinowego przy przekroczeniu napięcia progowego, występuje efekt nagłego wzrostu przewodności tranzystora podobnie jak w diodzie. W pierwszych modelach tranzystorów złącza były symetryczne, co powodowało, że różnica między kolektorem i emiterem zacierała się i tranzystor działał podobnie w stanie aktywnym i aktywnym inwersyjnym. We współczesnych tranzystorach stan aktywny odwrócony nie jest wykorzystany ze względu na gorsze parametry od stanu aktywnego, co spowodowane jest niejednorodnym rozłożeniem domieszek w strukturze tranzystora. Tranzystory o niejednorodnym rozłożeniu domieszek nazywane są epiplanarnymi. Michał Moroz, Paweł Tarasiuk, ćw. T1 2 / 18
3 Stan nasycenia i odcięcia są odpowiednikami logicznych stanów 1 i 0 w układach cyfrowych, z kolei stan aktywny wykorzystywany jest w układach analogowych ze względu na prawie liniową zależność między prądem bazy i prądem kolektora i bardzo duże (zwykle kilkusetkrotne) wzmocnienie sygnału Tranzystor NPN W tranzystorze NPN złącze BE można potraktować jako diodę z kierunkiem przewodzenia od bazy do emitera. Zatem kiedy napięcie na bazie tranzystora będzie większe niż napięcie na emiterze o graniczną wartość przewodzenia diody, prąd zacznie płynąć przez to złącze i stopniowo otwierać tranzystor aż do momentu, kiedy wejdzie w stan nasycenia Tranzystor PNP W tranzystorze PNP złącze BE można potraktować jako diodę z kierunkiem przewodzenia od emitera do bazy. Kiedy napięcie na bazie tranzystora będzie niższe od wartości na emiterze o graniczną wartość przewodzenia diody, prąd zacznie płynąć przez to złącze i tranzystor zacznie się otwierać. 1.2 Model hybrydowy Model hybrydowy jest jednym ze schematów zastępczych tranzystora używanych do analizy parametrów charakteryzujących dany tranzystor. Tranzystor w układzie wspólnego emitera jest zastępowany układem przedstawionym na rysunku 2. BASE J3 R1 h11 h21 * Ib CS1 J1 COLLECTOR EMITTER J4 ~ VS1 h12 * Uce R2 h22 J2 Rysunek 2: Schemat zastępczy dla modelu hybrydowego. Tranzystor w układzie wspólnego emitera jest tu przedstawiony jako czwórnik, którego elementami jest źródło napięciowe na bazie i źródło prądowe na kolektorze. Model ten opisany jest układem równań w funkcji prądu bazy I B i napięcia kolektor-emiter U CE : U BE = h 11e I B + h 12e U CE (1) I C = h 21e I B + h 22e U CE (2) Cztery współczynniki h 11e, h 12e, h 21e, h 22e są charakterystycznymi parametrami dla tego układu i opisują kolejno: 1. h 11e impedancja wejściowa przy zwartym obwodzie wyjściowym. 2. h 12e zwrotne wzmocnienie napięciowe przy rozwartym obwodzie wejściowym. 3. h 21e zwarciowy współczynnik wzmocnienia prądowego. Michał Moroz, Paweł Tarasiuk, ćw. T1 3 / 18
4 4. h 22e admitancja wyjściowa przy rozwartym obwodzie wejściowym. W dalszej części sprawozdania będziemy posługiwać się pojęciami rezystancja dla h 11e oraz konduktancja dla h 22e, ponieważ pomiary przeprowadzane są dla prądu stałego. Poszczególne parametry można obliczyć za pomocą poniższych równań: h 11e = h 12e = ( ) UBE I B U CE =const ( ) UBE U CE ) ( IC h 21e = I B ( IC h 22e = U CE I B =const U CE =const ) I B =const Przedstawiony model nie jest idealny, przykładowo nie obejmuje swoją definicją pojemności, która występuje w tranzystorach i której wpływ jest bardzo widoczny przy wysokich częstotliwościach (rzędu kilkudziesięciu MHz i wyższych). 1.3 JFET - złączowy tranzystor polowy Tranzystor polowy złączowy z kanałem typu n (którego symbol przedstawiony jest na rysunku 3) to rodzaj tranzystora unipolarnego. Zbudowany jest z warstwy półprzewodnika typu n, na której końcach znajduje się dren (D) i źródło (S) tranzystora. Bramka (G), będąca warstwą silnie domieszkowanego półprzewodnika typu p nie rozdziela, tak jak w tranzystorach bipolarnych, źródła i drenu, ale znajduje się obok kanału przewodzenia. (3) (4) (5) (6) D G T1 S Rysunek 3: Symbol n-kanałowego tranzystora JFET. Kiedy podamy napięcie dodatnie na bramkę (relatywnie do źródła), tranzystor ten zachowa się jak dioda. Tryb ten nie jest wykorzystywany w praktyce. Po przyłożeniu napięcia ujemnego, grubość warstwy zubożonej zmienia się w zależności od różnicy napięć, co powoduje zmniejszenie bądź zwiększenie przewodzącego kanału, dając w efekcie możliwość sterowania przepływem prądu przez kanał. Przy osiągnięciu napięcia U GS(OF F ) warstwa zubożona całkowicie odcina kanał. Płynie wtedy tylko niewielki prąd upływu I D(OF F ) rzędu pojedynczych mikroamperów. Opisana zależność nazywana jest efektem polowym tranzystora, stąd nazwa FET (Field Effect Transistor). Podstawową różnicą w działaniu tranzystora bipolarnego i unipolarnego jest to, że bramka tranzystora unipolarnego nie jest sterowana prądem, a napięciem, ze względu na wsteczną polaryzację złącza p-n. Zapewnia to bardzo dużą impedancję wejściową takiego tranzystora. Tranzystory JFET znajdują zastosowanie w niskoszumnych wzmacniaczach operacyjnych i jako wtórniki wejściowe oscyloskopów ze względu na wyżej wymienioną impedancję, niskie szumy i mniejszy prąd upływu w stosunku do tranzystorów bipolarnych. Michał Moroz, Paweł Tarasiuk, ćw. T1 4 / 18
5 - 2 Analiza wyników Pomiary były zrealizowane z użyciem multimetrów M 4660A, nr J3 011 T6 65 i J3 011 T6 66, M 4650, nr J3/M/1 i J3 T6 262/4, zasilacza MPS3003L 3, nr J3/011/T6 71, zespołu źródeł sterujących ZŹS 05, generatora DF1641A, nr J3 T6 263/1 oraz oscyloskopu GOS 630, nr J3 011 T6 59. Badany był układ T1-03, którego schematy znajdują się na rysunkach 4, 10 oraz Pomiary tranzystora bipolarnego Na rysunku 4 został przedstawiony schemat urządzenia przeznaczonego do badania charakterystyk tranzystora bipolarnego. Podczas wszystkich pomiarów za pomocą tego układu wykorzystywane były te same multimetry: M 4660A, nr J3 011 T6 65 jako V1, M 4660A, nr J3 011 T6 66 jako V2, M 4650, nr J3/M/1 jako A1 oraz M 4650, nr J3 T6 262/4 jako A2. CS1 ZZS-05 A A1 M-4650 T1 V V1 M-4660A V V2 M-4660A A A2 M-4650 G1 + ZN Rysunek 4: Schemat urządzenia pomiarowego do badania tranzystora bipolarnego. Wyniki pomiarów dla tranzystora bipolarnego zostały zestawione w tabelach 1, 2, 3 oraz 4. Należy zaznaczyć, że wartości stałych podane w tytułach tabel są tylko wartościami poglądowymi. Michał Moroz, Paweł Tarasiuk, ćw. T1 5 / 18
6 Tabela 1: Pomiary tranzystora bipolarnego przy I B = 0,25 µa. I B [µa] U BE [V] U CE [V] I C [ma] (0,27 ± 0,01) (0,393 ± 0,001) (0,000 ± 0,001) (0,00 ± 0,01) (0,27 ± 0,01) (0,464 ± 0,001) (0,494 ± 0,001) (0,00 ± 0,01) (0,27 ± 0,01) (0,464 ± 0,001) (1,025 ± 0,001) (0,00 ± 0,01) (0,27 ± 0,01) (0,464 ± 0,001) (1,500 ± 0,001) (0,00 ± 0,01) (0,27 ± 0,01) (0,464 ± 0,001) (2,063 ± 0,002) (0,00 ± 0,01) (0,27 ± 0,01) (0,464 ± 0,001) (2,523 ± 0,002) (0,00 ± 0,01) (0,28 ± 0,01) (0,464 ± 0,001) (3,007 ± 0,002) (0,00 ± 0,01) (0,28 ± 0,01) (0,464 ± 0,001) (3,495 ± 0,002) (0,00 ± 0,01) (0,28 ± 0,01) (0,464 ± 0,001) (4,021 ± 0,003) (0,00 ± 0,01) (0,28 ± 0,01) (0,464 ± 0,001) (4,497 ± 0,003) (0,00 ± 0,01) (0,28 ± 0,01) (0,464 ± 0,001) (5,017 ± 0,003) (0,00 ± 0,01) (0,28 ± 0,01) (0,464 ± 0,001) (5,588 ± 0,003) (0,00 ± 0,01) (0,28 ± 0,01) (0,464 ± 0,001) (6,027 ± 0,004) (0,00 ± 0,01) (0,28 ± 0,01) (0,464 ± 0,001) (7,070 ± 0,004) (0,00 ± 0,01) (0,28 ± 0,01) (0,464 ± 0,001) (7,546 ± 0,004) (0,00 ± 0,01) (0,28 ± 0,01) (0,464 ± 0,001) (8,003 ± 0,005) (0,00 ± 0,01) (0,28 ± 0,01) (0,464 ± 0,001) (8,491 ± 0,005) (0,00 ± 0,01) (0,28 ± 0,01) (0,464 ± 0,001) (9,020 ± 0,005) (0,00 ± 0,01) (0,28 ± 0,01) (0,464 ± 0,001) (9,500 ± 0,005) (0,00 ± 0,01) (0,28 ± 0,01) (0,464 ± 0,001) (10,587 ± 0,006) (0,00 ± 0,01) Przy obliczaniu średniej wartości stałych w tabelach będziemy korzystać ze wzorów na średnią i na średni błąd średniej. Możemy założyć, że średni błąd średniej zastąpi inne błędy pomiarowe ze względu na dużą ilość pomiarów podczas każdego badania. x = 1 n x i (7) n i=1 n (x i x) 2 i=1 x = (8) n (n 1) Obliczamy średni prąd bazy i średni błąd średniej dla wartości z tabeli 1: I B = (0, 28 ± 0, 01) µa Z tabeli możemy łatwo wyczytać, że tak mały prąd bazy nie powoduje otwarcia złącza kolektor-emiter. Michał Moroz, Paweł Tarasiuk, ćw. T1 6 / 18
7 Tabela 2: Pomiary tranzystora bipolarnego przy I B = 100 µa. I B [µa] U BE [V] U CE [V] I C [ma] (100,26 ± 0,31) (0,594 ± 0,001) (0,013 ± 0,001) (0,00 ± 0,01) (100,05 ± 0,31) (0,621 ± 0,001) (0,051 ± 0,001) (0,61 ± 0,01) (100,22 ± 0,31) (0,661 ± 0,001) (0,104 ± 0,001) (3,01 ± 0,02) (100,04 ± 0,31) (0,671 ± 0,001) (0,145 ± 0,001) (4,88 ± 0,03) (100,18 ± 0,31) (0,679 ± 0,001) (0,211 ± 0,001) (6,06 ± 0,04) (100,16 ± 0,31) (0,678 ± 0,001) (0,302 ± 0,001) (6,23 ± 0,04) (100,14 ± 0,31) (0,679 ± 0,001) (0,406 ± 0,001) (6,23 ± 0,04) (100,13 ± 0,31) (0,679 ± 0,001) (0,500 ± 0,001) (6,23 ± 0,04) (100,12 ± 0,31) (0,678 ± 0,001) (1,006 ± 0,001) (6,25 ± 0,04) (100,09 ± 0,31) (0,677 ± 0,001) (2,061 ± 0,002) (6,28 ± 0,04) (100,08 ± 0,31) (0,675 ± 0,001) (3,030 ± 0,002) (6,31 ± 0,04) (100,08 ± 0,31) (0,673 ± 0,001) (4,014 ± 0,003) (6,35 ± 0,04) (100,07 ± 0,31) (0,671 ± 0,001) (5,160 ± 0,003) (6,38 ± 0,04) (100,06 ± 0,31) (0,670 ± 0,001) (6,005 ± 0,004) (6,41 ± 0,04) (100,06 ± 0,31) (0,667 ± 0,001) (8,067 ± 0,005) (6,47 ± 0,04) (100,05 ± 0,31) (0,662 ± 0,001) (10,581 ± 0,006) (6,54 ± 0,04) Obliczamy średnią i średni błąd średniej dla wartości z tabeli 2. I B = (100, 11 ± 0, 02) µa Tabela 3: Pomiary tranzystora bipolarnego przy U CE = 5 V. I B [µa] U BE [V] U CE [V] I C [ma] (0,28 ± 0,01) (0,465 ± 0,001) (5,001 ± 0,003) (0,00 ± 0,01) (4,88 ± 0,02) (0,570 ± 0,001) (5,002 ± 0,003) (0,16 ± 0,01) (10,48 ± 0,04) (0,610 ± 0,001) (5,000 ± 0,003) (0,44 ± 0,01) (19,37 ± 0,06) (0,629 ± 0,001) (4,999 ± 0,003) (0,95 ± 0,01) (30,47 ± 0,10) (0,642 ± 0,001) (4,998 ± 0,003) (1,64 ± 0,01) (40,86 ± 0,13) (0,650 ± 0,001) (4,997 ± 0,003) (2,31 ± 0,02) (50,72 ± 0,16) (0,655 ± 0,001) (4,996 ± 0,003) (2,96 ± 0,02) (60,75 ± 0,19) (0,660 ± 0,001) (4,995 ± 0,003) (3,64 ± 0,02) (70,58 ± 0,22) (0,663 ± 0,001) (4,994 ± 0,003) (4,30 ± 0,03) (80,80 ± 0,25) (0,666 ± 0,001) (4,993 ± 0,003) (5,01 ± 0,03) (90,52 ± 0,28) (0,669 ± 0,001) (4,992 ± 0,003) (5,71 ± 0,03) (100,57 ± 0,31) (0,671 ± 0,001) (4,991 ± 0,003) (6,43 ± 0,04) (110,64 ± 0,34) (0,673 ± 0,001) (4,991 ± 0,003) (7,15 ± 0,04) (120,89 ± 0,37) (0,675 ± 0,001) (4,990 ± 0,003) (7,90 ± 0,04) (130,04 ± 0,40) (0,676 ± 0,001) (4,989 ± 0,003) (8,57 ± 0,05) (139,02 ± 0,42) (0,677 ± 0,001) (4,988 ± 0,003) (9,30 ± 0,05) (150,10 ± 0,46) (0,678 ± 0,001) (4,987 ± 0,003) (10,06 ± 0,06) (159,94 ± 0,49) (0,679 ± 0,001) (4,986 ± 0,003) (10,81 ± 0,06) (170,75 ± 0,52) (0,681 ± 0,001) (4,986 ± 0,003) (11,63 ± 0,06) (180,99 ± 0,55) (0,681 ± 0,001) (4,985 ± 0,003) (12,41 ± 0,07) (190,85 ± 0,58) (0,681 ± 0,001) (4,984 ± 0,003) (13,17 ± 0,07) Michał Moroz, Paweł Tarasiuk, ćw. T1 7 / 18
8 Obliczamy średnią i średni błąd średniej dla wartości z tabeli 3. U CE = (4, 992 ± 0, 002) V Tabela 4: Pomiary tranzystora bipolarnego przy U CE = 10 V. I B [µa] U BE [V] U CE [V] I C [ma] (0,28 ± 0,01) (0,464 ± 0,001) (10,075 ± 0,006) (0,00 ± 0,01) (5,00 ± 0,02) (0,585 ± 0,001) (10,075 ± 0,006) (0,16 ± 0,01) (10,32 ± 0,04) (0,609 ± 0,001) (10,074 ± 0,006) (0,44 ± 0,01) (20,35 ± 0,07) (0,628 ± 0,001) (10,073 ± 0,006) (1,02 ± 0,01) (30,19 ± 0,10) (0,638 ± 0,001) (10,071 ± 0,006) (1,64 ± 0,01) (40,04 ± 0,13) (0,646 ± 0,001) (10,071 ± 0,006) (2,27 ± 0,02) (50,65 ± 0,16) (0,652 ± 0,001) (10,063 ± 0,006) (3,00 ± 0,02) (59,57 ± 0,18) (0,654 ± 0,001) (10,063 ± 0,006) (3,62 ± 0,02) (70,33 ± 0,22) (0,657 ± 0,001) (10,068 ± 0,006) (4,37 ± 0,03) (80,20 ± 0,25) (0,659 ± 0,001) (10,066 ± 0,006) (5,08 ± 0,03) (90,47 ± 0,28) (0,661 ± 0,001) (10,065 ± 0,006) (5,83 ± 0,03) (100,16 ± 0,31) (0,662 ± 0,001) (10,061 ± 0,006) (6,56 ± 0,04) (110,43 ± 0,34) (0,663 ± 0,001) (10,061 ± 0,006) (7,34 ± 0,04) (120,66 ± 0,37) (0,664 ± 0,001) (10,062 ± 0,006) (8,11 ± 0,05) (130,91 ± 0,40) (0,663 ± 0,001) (10,062 ± 0,006) (8,92 ± 0,05) (140,77 ± 0,43) (0,664 ± 0,001) (10,061 ± 0,006) (9,69 ± 0,05) (150,05 ± 0,46) (0,664 ± 0,001) (10,060 ± 0,006) (10,46 ± 0,06) (160,29 ± 0,49) (0,664 ± 0,001) (10,058 ± 0,006) (11,28 ± 0,06) (170,51 ± 0,52) (0,664 ± 0,001) (10,058 ± 0,006) (12,12 ± 0,07) (180,56 ± 0,55) (0,662 ± 0,001) (10,057 ± 0,006) (12,97 ± 0,07) (190,62 ± 0,58) (0,663 ± 0,001) (10,057 ± 0,006) (13,81 ± 0,07) Obliczamy średnią i średni błąd średniej dla wartości z tabeli 4. U CE = (10, 065 ± 0, 002) V Ze względu na niewielkie odchylenia rzędu 0,5 %, lub mniejsze średnie wartości stałych z powyższych tabel (wyłączając tabelę 1) możemy przyjąć wartości przybliżone w kolejności 100 µa, 5 V oraz 10 V. Dla stałej z tabeli 1) przyjmujemy dalszą wartość równą 0,28 µa. Z danych przedstawionych powyżej możemy wyznaczyć wykresy poszczególnych przebiegów. Poszczególne charakterystyki zostały przedstawione na rysunkach 5, 6, 7, 8, a wspólny wykres wszystkich czterech wykresów przedstawiony został na rysunku 11. Michał Moroz, Paweł Tarasiuk, ćw. T1 8 / 18
9 Rysunek 5: Wykres charakterystyk wyjściowych badanego tranzystora. Rysunek 6: Wykres charakterystyk przejściowych badanego tranzystora zależność napięciowa. Michał Moroz, Paweł Tarasiuk, ćw. T1 9 / 18
10 Rysunek 7: Wykres charakterystyk wejściowych badanego tranzystora. Rysunek 8: Wykres charakterystyk przejściowych badanego tranzystora zależność prądowa. Michał Moroz, Paweł Tarasiuk, ćw. T1 10 / 18
11 Rysunek 9: Charakterograf tranzystora bipolarnego. Dzięki takiemu zestawieniu danych, możemy policzyć wartości parametrów dynamicznych tranzystora. h 11e = (28, 7 ± 3, 1) Ω h 12e = ( 1, 7 ± 0, 1) 10 3 h 21e = (74, 8 ± 0, 2) h 22e = (3, 17 ± 0, 05) 10 5 S Na podstawie tych wyników stwierdzamy, że dla U CE równego 10 V oraz I B równego 100 µa, rezystancja wejściowa tranzystora wynosi (28,7 ± 3,1) Ω, wzmocnienie prądowe (74,8 ± 0,2), wzmocnienie napięciowe (odwrotność zwrotnego wzmocnienia napięcia) K U = (588 ± 59), oraz opór wyjściowy (31,5 ± 1,6) kω. Wyniki te pokrywają się z teoretycznymi rozważaniami nt. tranzystora bipolarnego w układzie wspólnego emitera. Wysokie współczynniki wzmocnienia prądowego i napięciowego przy prawie liniowej zależności prądu kolektora od prądu bazy pozwalają nam sądzić, że tranzystor spisałby się nieźle w układzie wzmacniacza prądowego małych mocy i małych częstotliwości np. do zastosowania jako wzmacniacz słuchawkowy. Niewiele możemy powiedzieć o jego wartościach granicznych, dlatego nie jesteśmy w stanie stwierdzić, czy tranzystor działałby dobrze przy dużych mocach i częstotliwościach. Należy pamiętać, że przy układach o tak niskiej rezystancji wejściowej na bazie tranzystora koniecznie powinien znaleźć się jakiś rezystor, aby zabezpieczyć tranzystor przed spaleniem. Michał Moroz, Paweł Tarasiuk, ćw. T1 11 / 18
12 2.2 Pomiary tranzystora unipolarnego Do przeprowadzania pomiarów zostały wykorzystane multimetry M 4660A, nr J3 011 T6 65 jako V1, M 4660A, nr J3 011 T6 66 jako V2 oraz M 4650, nr J3 T6 262/4 jako A1. Wyniki pomiarów tranzystora unipolarnego zostały zestawione w tabelach 5, 6 oraz 7. A2 M-4650 ZN ZZS V1 M-4660A V2 M-4660A - A Q1 G2 G1 V V + Rysunek 10: Schemat urządzenia pomiarowego do badania tranzystora unipolarnego. Tabela 5: Pomiary tranzystora bipolarnego przy U DS = 5 V. U GS [V] U DS [V] I [ma] (-13,890 ± 0,007) (5,013 ± 0,003) (0,00 ± 0,01) (-12,999 ± 0,007) (5,014 ± 0,003) (0,00 ± 0,01) (-12,021 ± 0,007) (5,014 ± 0,003) (0,00 ± 0,01) (-11,013 ± 0,006) (5,014 ± 0,003) (0,00 ± 0,01) (-9,975 ± 0,005) (5,014 ± 0,003) (0,00 ± 0,01) (-9,002 ± 0,005) (5,014 ± 0,003) (0,00 ± 0,01) (-8,070 ± 0,005) (5,015 ± 0,003) (0,00 ± 0,01) (-7,052 ± 0,004) (5,015 ± 0,003) (0,00 ± 0,01) (-6,099 ± 0,004) (5,015 ± 0,003) (0,00 ± 0,01) (-5,047 ± 0,003) (5,015 ± 0,003) (0,08 ± 0,01) (-4,494 ± 0,003) (5,014 ± 0,003) (0,79 ± 0,01) (-4,006 ± 0,003) (5,013 ± 0,003) (1,88 ± 0,01) (-3,498 ± 0,002) (5,011 ± 0,003) (3,31 ± 0,02) (-3,043 ± 0,002) (5,009 ± 0,003) (4,78 ± 0,03) (-2,558 ± 0,002) (5,006 ± 0,003) (6,57 ± 0,04) (-2,025 ± 0,002) (5,004 ± 0,003) (8,55 ± 0,05) (-1,514 ± 0,001) (5,001 ± 0,003) (10,66 ± 0,06) (-1,010 ± 0,001) (4,999 ± 0,003) (12,90 ± 0,07) (-0,498 ± 0,001) (4,955 ± 0,003) (15,25 ± 0,08) (-0,256 ± 0,001) (4,954 ± 0,003) (16,42 ± 0,09) (0,018 ± 0,001) (4,950 ± 0,003) (17,19 ± 0,09) Obliczamy średnią i średni błąd średniej dla wyników z tabeli 5. U DS = (5, 002 ± 0, 005) V Michał Moroz, Paweł Tarasiuk, ćw. T1 12 / 18
13 Tabela 6: Pomiary tranzystora bipolarnego przy U GS = -4 V. U GS [V] U DS [V] I [ma] (-4,008 ± 0,003) (0,000 ± 0,001) (0,00 ± 0,01) (-4,008 ± 0,003) (0,503 ± 0,001) (0,87 ± 0,01) (-4,008 ± 0,003) (1,012 ± 0,001) (1,29 ± 0,01) (-4,008 ± 0,003) (1,514 ± 0,001) (1,48 ± 0,01) (-4,008 ± 0,003) (2,016 ± 0,002) (1,60 ± 0,01) (-4,008 ± 0,003) (2,545 ± 0,002) (1,68 ± 0,01) (-4,008 ± 0,003) (3,026 ± 0,002) (1,73 ± 0,01) (-4,008 ± 0,003) (4,027 ± 0,003) (1,82 ± 0,01) (-4,008 ± 0,003) (5,095 ± 0,003) (1,89 ± 0,01) (-4,008 ± 0,003) (6,045 ± 0,004) (1,97 ± 0,02) (-4,008 ± 0,003) (7,096 ± 0,004) (1,99 ± 0,02) (-4,008 ± 0,003) (8,010 ± 0,005) (2,02 ± 0,02) (-4,008 ± 0,003) (9,070 ± 0,005) (2,04 ± 0,02) (-4,008 ± 0,003) (10,173 ± 0,006) (2,08 ± 0,02) (-4,008 ± 0,003) (10,573 ± 0,006) (2,09 ± 0,02) (-4,008 ± 0,003) (0,266 ± 0,001) (0,53 ± 0,01) (-4,008 ± 0,003) (0,748 ± 0,001) (1,11 ± 0,01) (-4,008 ± 0,003) (1,250 ± 0,001) (1,40 ± 0,01) Obliczamy średnią i średni błąd średniej dla wyników z tabeli 6. U GS = ( 4, 008 ± 0, 000) V Tabela 7: Pomiary tranzystora bipolarnego przy U CE = -1,5 V. U GS [V] U DS [V] I [ma] (-1,503 ± 0,001) (0,000 ± 0,001) (0,00 ± 0,01) (-1,503 ± 0,001) (0,243 ± 0,001) (1,51 ± 0,01) (-1,503 ± 0,001) (0,483 ± 0,001) (2,88 ± 0,02) (-1,503 ± 0,001) (0,750 ± 0,001) (4,26 ± 0,03) (-1,503 ± 0,001) (0,993 ± 0,001) (5,37 ± 0,03) (-1,503 ± 0,001) (1,269 ± 0,001) (6,44 ± 0,04) (-1,503 ± 0,001) (1,495 ± 0,001) (7,19 ± 0,04) (-1,503 ± 0,001) (2,016 ± 0,002) (8,52 ± 0,05) (-1,503 ± 0,001) (2,527 ± 0,002) (9,36 ± 0,05) (-1,503 ± 0,001) (3,010 ± 0,002) (9,86 ± 0,05) (-1,503 ± 0,001) (3,981 ± 0,002) (10,45 ± 0,06) (-1,503 ± 0,001) (5,093 ± 0,003) (10,75 ± 0,06) (-1,503 ± 0,001) (6,096 ± 0,004) (10,89 ± 0,06) (-1,503 ± 0,001) (6,991 ± 0,004) (10,96 ± 0,06) (-1,503 ± 0,001) (8,021 ± 0,005) (11,01 ± 0,06) (-1,503 ± 0,001) (9,039 ± 0,005) (11,03 ± 0,06) (-1,503 ± 0,001) (10,002 ± 0,006) (11,04 ± 0,06) (-1,503 ± 0,001) (10,576 ± 0,006) (11,04 ± 0,06) Obliczamy średnią i średni błąd średniej dla wyników z tabeli 7. Michał Moroz, Paweł Tarasiuk, ćw. T1 13 / 18
14 U GS = ( 1, 503 ± 0, 000) V Wykresy 11, 12 i 13 przedstawiają powyższe wyniki pomiarów w postaci łatwej do odczytania. Rysunek 11: Wykres charakterystyk przejściowych badanego tranzystora. Michał Moroz, Paweł Tarasiuk, ćw. T1 14 / 18
15 Rysunek 12: Wykres charakterystyk wyjściowych badanego tranzystora. Na wykresie 11 można wyznaczyć punkt U GS(OF F ) w okolicy -5 V, w zależności od tego, jaką wartość prądu I D uznamy za graniczną. Dla przykładu, wartość 1 ma została osiągnięta przy napięciu 0,14 V dla U GS = 4 V oraz przy napięciu 0,62 V dla U GS = 1, 5 V. W obszarze pomiędzy -4 V a 0 V występuje prawie idealna prosta, z której można skorzystać do wzmacniania sygnału przy małym poziomie zniekształceń nieliniowych. Stąd użycie tych tranzystorów w oscyloskopach. Rysunek 13: Charakterograf tranzystora unipolarnego. Michał Moroz, Paweł Tarasiuk, ćw. T1 15 / 18
16 2.3 Wizualizacja charakterystyki wyjściowej tranzystora polowego Do przeprowadzenia tego doświadczenia wykorzystano multimetr M 4660A, nr J3 011 T6 66 oraz oscyloskopu GOS 630, nr J3 011 T6 59. Schemat układu znajduje się na rysunku 14. Q1 ZZS G2 V V1 M-4660A R1 ~ J1 UY+ J2 UY- G1 DF1641A UX+ J3 UX- J4 GND GND GND GND Rysunek 14: Schemat urządzenia pomiarowego do badania charakterystyki wyjściowej tranzystora polowego. Korzystając z generatora funkcyjnego oraz oscyloskopu, czy nasze wcześniejsze przewidywania i wyniki są prawidłowe dla sygnałów o małej częstotliwości. Rysunek 15: Oscylogram f = 560 Hz, X-Y, X: 2 V/div, Y: 20 mv/div, U = -4,031 V Michał Moroz, Paweł Tarasiuk, ćw. T1 16 / 18
17 Rysunek 16: Oscylogram f = 560 Hz, X-Y, X: 2 V/div, Y: 20 mv/div, U = -2,994 V Rysunek 17: Oscylogram f = 560 Hz, X-Y, X: 2 V/div, Y: 20 mv/div, U = -0,992 V Michał Moroz, Paweł Tarasiuk, ćw. T1 17 / 18
18 Zaobserwowana nieliniowość w dolnej części oscylogramu 16 to najprawdopodobniej efekt działania kondensatora. 3 Wnioski końcowe Oba tranzystory posiadają obszary liniowej pracy, dzięki którym mogą wzmacniać dany sygnał bez zmiany jego kształtu lub z niewielkimi zniekształceniami, co jest przyczyną ich wszechstronnych zastosowań. Dzięki możliwości szybkiego przełączania się pomiędzy trybami zatkania i nasycenia tranzystory są najczęściej używanymi elementami w technice cyfrowej, a możliwość sterowania prądem pozwala na tworzenie prostych zasilaczy małych i średnich mocy. W porównaniu z elementami pasywnymi, takimi jak rezystor, tranzystory mogą znajdować się w różnych stanach otwarcia i mogą być łatwo (przy użyciu niewielkiego prądu i wykorzystując niskie napięcia) wykorzystane do przechowywania informacji. W porównaniu z lampami, tranzystory zyskują ze względu na mniejsze straty ciepła i brak konieczności operacji na wysokich napięciach oraz ciągłego podgrzewania katody lampy. Tranzystory ze względu na swoje niewielkie rozmiary znajdują zastosowanie w układach o dowolnym stopniu integracji. Proces wytwarzania tranzystorów ze złącz krzemowych jest bardzo tani, dzięki czemu nie jest problematycznym budowanie układów z wielką ilością tranzystorów, za przykład mając chociażby współczesne procesory. Literatura [1] Bogdan Żółtowski, Wprowadzenie do zajęć laboratoryjnych z fizyki, Skrypt Politechniki Łódzkiej, Łódź [2] David Halliday, Robert Resnick, Jearl Walker, Podstawy fizyki, Tom 3., Wydawnictwo Naukowe PWN, Warszawa [3] S. M. Kaczmarek, PRZEBICIE I MODELE ZŁĄCZA p-n Michał Moroz, Paweł Tarasiuk, ćw. T1 18 / 18
Laboratorium elektroniki i miernictwa
Numer indeksu 150946 Michał Moroz Imię i nazwisko Numer indeksu 151021 Paweł Tarasiuk Imię i nazwisko kierunek: Informatyka semestr 2 grupa II rok akademicki: 2008/2009 Laboratorium elektroniki i miernictwa
Ćwiczenie - 3. Parametry i charakterystyki tranzystorów
Spis treści Ćwiczenie - 3 Parametry i charakterystyki tranzystorów 1 Cel ćwiczenia 1 2 Podstawy teoretyczne 2 2.1 Tranzystor bipolarny................................. 2 2.1.1 Charakterystyki statyczne
Politechnika Białostocka
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA EKS1A300024 BADANIE TRANZYSTORÓW BIAŁYSTOK 2015 1. CEL I ZAKRES
Politechnika Białostocka
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA 2 (EZ1C500 055) BADANIE DIOD I TRANZYSTORÓW Białystok 2006
Politechnika Białostocka
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA ENS1C300 022 BADANIE TRANZYSTORÓW BIAŁYSTOK 2013 1. CEL I ZAKRES
Budowa. Metoda wytwarzania
Budowa Tranzystor JFET (zwany też PNFET) zbudowany jest z płytki z jednego typu półprzewodnika (p lub n), która stanowi tzw. kanał. Na jego końcach znajdują się styki źródła (ang. source - S) i drenu (ang.
Badanie charakterystyk elementów półprzewodnikowych
Badanie charakterystyk elementów półprzewodnikowych W ramach ćwiczenia student poznaje praktyczne właściwości elementów półprzewodnikowych stosowanych w elektronice przez badanie charakterystyk diody oraz
Politechnika Białostocka
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA 2 Kod: ES1C400 026 BADANIE WYBRANYCH DIOD I TRANZYSTORÓW BIAŁYSTOK
III. TRANZYSTOR BIPOLARNY
1. TRANZYSTOR BPOLARNY el ćwiczenia: Wyznaczenie charakterystyk statycznych tranzystora bipolarnego Zagadnienia: zasada działania tranzystora bipolarnego. 1. Wprowadzenie Nazwa tranzystor pochodzi z języka
Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych Laboratorium Przyrządów Półprzewodnikowych. Ćwiczenie 2
Ćwiczenie 2 Cel ćwiczenia Celem ćwiczenia jest poznanie statycznych charakterystyk tranzystorów bipolarnych oraz metod identyfikacji parametrów odpowiadających im modeli małosygnałowych, poznanie metod
Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska
Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska 1947 r. pierwszy tranzystor ostrzowy John Bradeen (z lewej), William Shockley (w środku) i Walter Brattain (z prawej) (Bell Labs) Zygmunt Kubiak
BADANIE TRANZYSTORA BIPOLARNEGO
BADANIE TRANZYSTORA BIPOLARNEGO CEL poznanie charakterystyk tranzystora bipolarnego w układzie WE poznanie wybranych parametrów statycznych tranzystora bipolarnego w układzie WE PRZEBIEG ĆWICZENIA: 1.
Wiadomości podstawowe
Wiadomości podstawowe Tranzystory są urządzeniami półprzewodnikowymi umożliwiającymi sterowanie przepływem dużego prądu, za pomocą prądu znacznie mniejszego. Wykorzystuje się je do wzmacniania małych sygnałów
IV. TRANZYSTOR POLOWY
1 IV. TRANZYSTOR POLOWY Cel ćwiczenia: Wyznaczenie charakterystyk statycznych tranzystora polowego złączowego. Zagadnienia: zasada działania tranzystora FET 1. Wprowadzenie Nazwa tranzystor pochodzi z
Systemy i architektura komputerów
Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech Systemy i architektura komputerów Laboratorium nr 4 Temat: Badanie tranzystorów Spis treści Cel ćwiczenia... 3 Wymagania... 3 Przebieg ćwiczenia...
Temat i cel wykładu. Tranzystory
POLTECHNKA BAŁOSTOCKA Temat i cel wykładu WYDZAŁ ELEKTRYCZNY Tranzystory Celem wykładu jest przedstawienie: konstrukcji i działania tranzystora bipolarnego, punktu i zakresów pracy tranzystora, konfiguracji
Uniwersytet Pedagogiczny
Uniwersytet Pedagogiczny im. Komisji Edukacji Narodowej w Krakowie Laboratorium elektroniki Ćwiczenie nr 4 Temat: PRZYRZĄDY PÓŁPRZEWODNIKOWE TRANZYSTOR UNIPOLARNY Rok studiów Grupa Imię i nazwisko Data
LABORATORIUM ELEKTRONIKI ĆWICZENIE 4 POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH
LABORATORIUM ELEKTRONIKI ĆWICZENIE 4 Parametry statyczne tranzystorów polowych złączowych Cel ćwiczenia Podstawowym celem ćwiczenia jest poznanie statycznych charakterystyk tranzystorów polowych złączowych
TRANZYSTORY MOCY. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi tranzystorami i ich charakterystykami.
12 Ć wiczenie 2 TRANZYSTORY MOCY Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi tranzystorami i ich charakterystykami. 1. Wiadomości wstępne Tranzystory są to trójelektrodowe przyrządy
Wykład VIII TRANZYSTOR BIPOLARNY
Wykład VIII TRANZYSTOR BIPOLARNY Tranzystor Trójkońcówkowy półprzewodnikowy element elektroniczny, posiadający zdolność wzmacniania sygnału elektrycznego. Nazwa tranzystor pochodzi z angielskiego zwrotu
Tranzystory. bipolarne (NPN i PNP), polowe (MOSFET), fototranzystory
Tranzystory bipolarne (NPN i PNP), polowe (MOSFET), fototranzystory Tranzystory -rodzaje Tranzystor to element, który posiada zdolność wzmacniania mocy sygnału elektrycznego. Z uwagi na tą właściwość,
Ćwiczenie 10 Temat: Własności tranzystora. Podstawowe własności tranzystora Cel ćwiczenia
Ćwiczenie 10 Temat: Własności tranzystora. Podstawowe własności tranzystora Cel ćwiczenia Poznanie podstawowych własności tranzystora. Wyznaczenie prądów tranzystorów typu n-p-n i p-n-p. Czytanie schematów
Przyrządy półprzewodnikowe część 5 FET
Przyrządy półprzewodnikowe część 5 FET r inż. Bogusław Boratyński Wydział Elektroniki Mikrosystemów i Fotoniki Politechnika Wrocławska 2011 Literatura i źródła rysunków G. Rizzoni, Fundamentals of Electrical
Tranzystory. 1. Tranzystory bipolarne 2. Tranzystory unipolarne. unipolarne. bipolarny
POLTEHNKA AŁOSTOKA Tranzystory WYDZAŁ ELEKTYZNY 1. Tranzystory bipolarne 2. Tranzystory unipolarne bipolarny unipolarne Trójkońcówkowy (czterokońcówkowy) półprzewodnikowy element elektroniczny, posiadający
ELEMENTY ELEKTRONICZNE TS1C
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki nstrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEMENTY ELEKTRONCZNE TS1C300 018 BAŁYSTOK 013 1. CEL ZAKRES ĆWCZENA LABORATORYJNEGO
Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDIA DZIENNE. Badanie tranzystorów unipolarnych typu JFET i MOSFET
Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej TIA ZIENNE LAORATORIM PRZYRZĄÓW PÓŁPRZEWONIKOWYCH Ćwiczenie nr 8 adanie tranzystorów unipolarnych typu JFET i MOFET I. Zagadnienia
płytka montażowa z tranzystorami i rezystorami, pokazana na rysunku 1. płytka montażowa do badania przerzutnika astabilnego U CC T 2 masa
Tranzystor jako klucz elektroniczny - Ćwiczenie. Cel ćwiczenia Zapoznanie się z podstawowymi układami pracy tranzystora bipolarnego jako klucza elektronicznego. Bramki logiczne realizowane w technice RTL
Ćwiczenie 2 LABORATORIUM ELEKTRONIKI POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH
LABORATORIUM LKTRONIKI Ćwiczenie Parametry statyczne tranzystorów bipolarnych el ćwiczenia Podstawowym celem ćwiczenia jest poznanie statycznych charakterystyk tranzystorów bipolarnych oraz metod identyfikacji
Wykład X TRANZYSTOR BIPOLARNY
Wykład X TRANZYSTOR BIPOLARNY Tranzystor Trójkoocówkowy półprzewodnikowy element elektroniczny, posiadający zdolnośd wzmacniania sygnału elektrycznego. Nazwa tranzystor pochodzi z angielskiego zwrotu "transfer
Zasada działania tranzystora bipolarnego
Tranzystor bipolarny Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Zasada działania tranzystora bipolarnego
Ćwiczenie 4. Parametry statyczne tranzystorów polowych JFET i MOSFET
Ćwiczenie 4 Parametry statyczne tranzystorów polowych JFET i MOSFET Cel ćwiczenia Podstawowym celem ćwiczenia jest poznanie charakterystyk statycznych tranzystorów polowych złączowych oraz z izolowaną
Tranzystory bipolarne. Małosygnałowe parametry tranzystorów.
ĆWICZENIE 3 Tranzystory bipolarne. Małosygnałowe parametry tranzystorów. I. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie małosygnałowych parametrów tranzystorów bipolarnych na podstawie ich charakterystyk
WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POLITECHNIKI KRAKOWSKIEJ
WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POLITECHNIKI KRAKOWSKIEJ Instytut Fizyki LABORATORIUM PODSTAW ELEKTROTECHNIKI, ELEKTRONIKI I MIERNICTWA ĆWICZENIE 2 Charakterystyki tranzystora polowego POJĘCIA
PRZEŁĄCZANIE DIOD I TRANZYSTORÓW
L A B O R A T O R I U M ELEMENTY ELEKTRONICZNE PRZEŁĄCZANIE DIOD I TRANZYSTORÓW REV. 1.1 1. CEL ĆWICZENIA - obserwacja pracy diod i tranzystorów podczas przełączania, - pomiary charakterystycznych czasów
Pomiar charakterystyk statycznych tranzystora JFET oraz badanie własności sterowanego dzielnika napięcia.
WFiIS LABORATORIUM Z ELEKTRONIKI Imię i nazwisko: 1. 2. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA CEL ĆWICZENIA Pomiar charakterystyk
Temat: Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych
INSTYTUT SYSTEMÓW INŻYNIERII ELEKTRYCZNEJ POLITECHNIKI ŁÓDZKIEJ WYDZIAŁ: KIERUNEK: ROK AKADEMICKI: SEMESTR: NR. GRUPY LAB: SPRAWOZDANIE Z ĆWICZEŃ W LABORATORIUM METROLOGII ELEKTRYCZNEJ I ELEKTRONICZNEJ
Drgania relaksacyjne w obwodzie RC
Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. grupa II Termin: 21 IV 2009 Nr. ćwiczenia: 311 Temat ćwiczenia: Drgania relaksacyjne w obwodzie RC Nr. studenta: 5 Nr.
Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Katedra Elektroniki
Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Na podstawie instrukcji Wtórniki Napięcia,, Laboratorium układów Elektronicznych Opis badanych układów Spis Treści 1. CEL ĆWICZENIA... 2 2.
Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7
Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi zastosowaniami wzmacniacza operacyjnego, poznanie jego charakterystyki przejściowej
ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI
1 ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 15.1. CEL ĆWICZENIA Celem ćwiczenia jest poznanie podstawowych właściwości wzmacniaczy mocy małej częstotliwości oraz przyswojenie umiejętności
Elementy półprzewodnikowe. Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego.
Elementy półprzewodnikowe Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego. Elementy elektroniczne i ich zastosowanie. Elementy stosowane w elektronice w większości
Tranzystory bipolarne. Właściwości dynamiczne wzmacniaczy w układzie wspólnego emitera.
ĆWICZENIE 5 Tranzystory bipolarne. Właściwości dynamiczne wzmacniaczy w układzie wspólnego emitera. I. Cel ćwiczenia Badanie właściwości dynamicznych wzmacniaczy tranzystorowych pracujących w układzie
Tranzystor. C:\Program Files (x86)\cma\coach6\full.en\cma Coach Projects\PTSN Coach 6 \Elektronika\Tranzystor_cz2b.cmr
Tranzystor Program: Coach 6 Projekt: komputer H : C:\Program Files (x86)\cma\coach6\full.en\cma Coach Projects\PTSN Coach 6 \Elektronika\Tranzystor_cz1.cmr C:\Program Files (x86)\cma\coach6\full.en\cma
Vgs. Vds Vds Vds. Vgs
Ćwiczenie 18 Temat: Wzmacniacz JFET i MOSFET w układzie ze wspólnym źródłem. Cel ćwiczenia: Wzmacniacz JFET w układzie ze wspólnym źródłem. Zapoznanie się z konfiguracją polaryzowania tranzystora JFET.
Ćwiczenie 24 Temat: Układy bramek logicznych pomiar napięcia i prądu. Cel ćwiczenia
Ćwiczenie 24 Temat: Układy bramek logicznych pomiar napięcia i prądu. Cel ćwiczenia Poznanie własności i zasad działania różnych bramek logicznych. Zmierzenie napięcia wejściowego i wyjściowego bramek
Laboratorium Przyrządów Półprzewodnikowych test kompetencji zagadnienia
Wrocław, 21.03.2017 r. Laboratorium Przyrządów Półprzewodnikowych test kompetencji zagadnienia Podczas testu kompetencji studenci powinni wykazać się znajomością zagadnień określonych w kartach kursów
Ćw. III. Dioda Zenera
Cel ćwiczenia Ćw. III. Dioda Zenera Zapoznanie się z zasadą działania diody Zenera. Pomiary charakterystyk statycznych diod Zenera. Wyznaczenie charakterystycznych parametrów elektrycznych diod Zenera,
Ćwiczenie 4- tranzystor bipolarny npn, pnp
Ćwiczenie 4- tranzystor bipolarny npn, pnp Tranzystory są to urządzenia półprzewodnikowe, które umożliwiają sterowanie przepływem dużego prądu, za pomocą prądu znacznie mniejszego. Tranzystor bipolarny
Badanie zjawiska rezonansu elektrycznego w obwodzie RLC
Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. grupa II Termin: 21 IV 2009 Nr. ćwiczenia: 321 Temat ćwiczenia: Badanie zjawiska rezonansu elektrycznego w obwodzie RLC
E104. Badanie charakterystyk diod i tranzystorów
E104. Badanie charakterystyk diod i tranzystorów Cele: Wyznaczenie charakterystyk dla diod i tranzystorów. Dla diod określa się zależność I d =f(u d ) prądu od napięcia i napięcie progowe U p. Dla tranzystorów
Przykładowe zadanie egzaminacyjne dla kwalifikacji E.20 w zawodzie technik elektronik
1 Przykładowe zadanie egzaminacyjne dla kwalifikacji E.20 w zawodzie technik elektronik Znajdź usterkę oraz wskaż sposób jej usunięcia w zasilaczu napięcia stałego 12V/4A, wykonanym w oparciu o układ scalony
Tranzystory polowe FET(JFET), MOSFET
Tranzystory polowe FET(JFET), MOSFET Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Publikacja współfinansowana
Zapoznanie się z podstawowymi strukturami funktorów logicznych realizowanymi w technice RTL (Resistor Transistor Logic) oraz zasadą ich działania.
adanie funktorów logicznych RTL - Ćwiczenie. Cel ćwiczenia Zapoznanie się z podstawowymi strukturami funktorów logicznych realizowanymi w technice RTL (Resistor Transistor Logic) oraz zasadą ich działania..
EUROELEKTRA. Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej. Rok szkolny 2012/2013. Zadania dla grupy elektronicznej na zawody II stopnia
EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2012/2013 Zadania dla grupy elektronicznej na zawody II stopnia 1. Wykorzystując rachunek liczb zespolonych wyznacz impedancję
SYMBOLE GRAFICZNE. Tyrystory. Struktura Charakterystyka Opis
SYMBOLE GRAFICZNE y Nazwa triasowy blokujący wstecznie SCR asymetryczny ASCR Symbol graficzny Struktura Charakterystyka Opis triasowy blokujący wstecznie SCR ma strukturę czterowarstwową pnpn lub npnp.
Tranzystorowe wzmacniacze OE OB OC. na tranzystorach bipolarnych
Tranzystorowe wzmacniacze OE OB OC na tranzystorach bipolarnych Wzmacniacz jest to urządzenie elektroniczne, którego zadaniem jest : proporcjonalne zwiększenie amplitudy wszystkich składowych widma sygnału
ĆWICZENIE LABORATORYJNE. TEMAT: Wyznaczanie parametrów diod i tranzystorów
ĆWICZENIE LBORTORYJNE TEMT: Wyznaczanie parametrów diod i tranzystorów 1. WPROWDZENIE Przedmiotem ćwiczenia jest zapoznanie się z budową i zasadą działania podstawowych rodzajów diod półprzewodnikowych
ĆWICZENIE NR 1 TEMAT: Wyznaczanie parametrów i charakterystyk wzmacniacza z tranzystorem unipolarnym
ĆWICZENIE NR 1 TEMAT: Wyznaczanie parametrów i charakterystyk wzmacniacza z tranzystorem unipolarnym 4. PRZEBIE ĆWICZENIA 4.1. Wyznaczanie parametrów wzmacniacza z tranzystorem unipolarnym złączowym w
Ćwiczenie nr 4 Tranzystor bipolarny (npn i pnp)
Ćwiczenie nr 4 Tranzystor bipolarny (npn i pnp) Tranzystory są to urządzenia półprzewodnikowe, które umożliwiają sterowanie przepływem dużego prądu, za pomocą prądu znacznie mniejszego. Tranzystor bipolarny
LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH
Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STDIA DZIENNE e LABOATOIM PZYZĄDÓW PÓŁPZEWODNIKOWYCH Ćwiczenie nr Pomiar częstotliwości granicznej f T tranzystora bipolarnego Wykonując
Tranzystory bipolarne
Tranzystory bipolarne Tranzystor jest to element półprzewodnikowy, w zasadzie trójelektrodowy, umożliwiający wzmacnianie mocy sygnałów elektrycznych. Tranzystory są to trójelektrodowe przyrządy półprzewodnikowe
Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza napięcia REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU
REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU R C E Z w B I Ł G O R A J U LABORATORIUM pomiarów elektronicznych UKŁADÓW ANALOGOWYCH Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza
Ćwiczenie E03IS. Charakterystyki tranzystorów: bipolarnego (npn) w układzie WE i unipolarnego (z kanałem typu n) Laboratorium elektroniki
Laboratorium elektroniki Ćwiczenie E03IS Charakterystyki tranzystorów: bipolarnego (npn) w układzie WE i unipolarnego (z kanałem typu n) Wersja 2.0 (20 marca 2018) Spis treści: 1. Cel ćwiczenia...3 2.
Rys. 1. Oznaczenia tranzystorów bipolarnych pnp oraz npn
Ćwiczenie 4. harakterystyki statyczne tranzystora bipolarnego 1. L ĆWIZNI elem ćwiczenia jest zapoznanie się z podstawowymi charakterystykami statycznymi oraz z najwaŝniejszymi parametrami i modelami tranzystora
POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI. Temperaturowa zależność statycznych i dynamicznych charakterystyk złącza p-n
POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI LABORATORIUM FIZYKI FAZY SKONDENSOWANEJ Ćwiczenie 9 Temperaturowa zależność statycznych i dynamicznych charakterystyk złącza p-n Cel ćwiczenia Celem ćwiczenia jest poznanie
Tranzystory bipolarne. Właściwości wzmacniaczy w układzie wspólnego kolektora.
I. Cel ćwiczenia ĆWICZENIE 6 Tranzystory bipolarne. Właściwości wzmacniaczy w układzie wspólnego kolektora. Badanie właściwości wzmacniaczy tranzystorowych pracujących w układzie wspólnego kolektora. II.
Urządzenia półprzewodnikowe
Urządzenia półprzewodnikowe Diody: - prostownicza - Zenera - pojemnościowa - Schottky'ego - tunelowa - elektroluminescencyjna - LED - fotodioda półprzewodnikowa Tranzystory - tranzystor bipolarny - tranzystor
Ćwiczenie A7 : Tranzystor unipolarny JFET i jego zastosowania
Ćwiczenie A7 : Tranzystor unipolarny JFET i jego zastosowania Jacek Grela, Radosław Strzałka 3 maja 9 1 Wstęp 1.1 Wzory Poniżej zamieszczamy podstawowe wzory i definicje, których używaliśmy w obliczeniach.
1. Zarys właściwości półprzewodników 2. Zjawiska kontaktowe 3. Diody 4. Tranzystory bipolarne
Spis treści Przedmowa 13 Wykaz ważniejszych oznaczeń 15 1. Zarys właściwości półprzewodników 21 1.1. Półprzewodniki stosowane w elektronice 22 1.2. Struktura energetyczna półprzewodników 22 1.3. Nośniki
Ćwiczenie E03FT. Charakterystyki tranzystorów: bipolarnego (npn) w układzie WE i unipolarnego (z kanałem typu n) Laboratorium elektroniki
Laboratorium elektroniki Ćwiczenie E03FT Charakterystyki tranzystorów: bipolarnego (npn) w układzie WE i unipolarnego (z kanałem typu n) Wersja 1.0 (9 kwietnia 2016) Spis treści: 1. Cel ćwiczenia... 3
Część 3. Przegląd przyrządów półprzewodnikowych mocy. Łukasz Starzak, Przyrządy i układy mocy, studia niestacjonarne, lato 2018/19 51
Część 3 Przegląd przyrządów półprzewodnikowych mocy Łukasz Starzak, Przyrządy i układy mocy, studia niestacjonarne, lato 2018/19 51 Budowa przyrządów półprzewodnikowych Struktura składa się z warstw Warstwa
PARAMETRY MAŁOSYGNAŁOWE TRANZYSTORÓW BIPOLARNYCH
L B O R T O R I U M ELEMENTY ELEKTRONICZNE PRMETRY MŁOSYGNŁOWE TRNZYSTORÓW BIPOLRNYCH REV. 1.0 1. CEL ĆWICZENI - celem ćwiczenia jest zapoznanie się z metodami pomiaru i wyznaczania parametrów małosygnałowych
Ćwiczenie 7 PARAMETRY MAŁOSYGNAŁOWE TRANZYSTORÓW BIPOLARNYCH
Ćwiczenie 7 PRMETRY MŁOSYGNŁO TRNZYSTORÓW BIPOLRNYCH Wstęp Celem ćwiczenia jest wyznaczenie niektórych parametrów małosygnałowych hybrydowego i modelu hybryd tranzystora bipolarnego. modelu Konspekt przygotowanie
Tranzystor bipolarny LABORATORIUM 5 i 6
Tranzystor bipolarny LABORATORIUM 5 i 6 Marcin Polkowski (251328) 10 maja 2007 r. Spis treści I Laboratorium 5 2 1 Wprowadzenie 2 2 Pomiary rodziny charakterystyk 3 II Laboratorium 6 7 3 Wprowadzenie 7
ĆWICZENIE 4 CHARAKTERYSTYKI STATYCZNE TRANZYSTORA BIPOLARNEGO
LAORATORIUM LKTRONIKI ĆWIZNI 4 HARAKTRYSTYKI STATYZN TRANZYSTORA IPOLARNGO K A T D R A S Y S T M Ó W M I K R O L K T R O N I Z N Y H 1. L ĆWIZNIA elem ćwiczenia jest zapoznanie się z podstawowymi charakterystykami
Ćwiczenie 17 Temat: Własności tranzystora JFET i MOSFET. Cel ćwiczenia
Ćwiczenie 17 Temat: Własności tranzystora JFET i MOSFET. Cel ćwiczenia Poznanie budowy i zasady pracy tranzystora JFET. Pomiar charakterystyk tranzystora JFET. Czytanie schematów elektronicznych. Przestrzeganie
Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDIA DZIENNE
Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDIA DZIENNE LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH Ćwiczenie nr 12 Pomiar wartości parametrów małosygnałowych h ije tranzystora
Pomiar parametrów tranzystorów
Instytut Fizyki ul Wielkopolska 5 70-45 Szczecin Pracownia Elektroniki Pomiar parametrów tranzystorów (Oprac dr Radosław Gąsowski) Zakres materiału obowiązujący do ćwiczenia: zasada działania tranzystora
Wyznaczanie cieplnego współczynnika oporności właściwej metali
Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. grupa II Termin: 5 V 2009 Nr. ćwiczenia: 303 Temat ćwiczenia: Wyznaczanie cieplnego współczynnika oporności właściwej metali
Tranzystor bipolarny
Tranzystor bipolarny 1. zas trwania: 6h 2. ele ćwiczenia adanie własności podstawowych układów wykorzystujących tranzystor bipolarny. 3. Wymagana znajomość pojęć zasada działania tranzystora bipolarnego,
ELEMENTY UKŁADÓW ENERGOELEKTRONICZNYCH
Politechnika Warszawska Wydział Elektryczny ELEMENTY UKŁADÓW ENERGOELEKTRONICZNYCH Piotr Grzejszczak Mieczysław Nowak P W Instytut Sterowania i Elektroniki Przemysłowej 2015 Wiadomości ogólne Tranzystor
Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech. Elektronika. Laboratorium nr 3. Temat: Diody półprzewodnikowe i elementy reaktancyjne
Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech Elektronika Laboratorium nr 3 Temat: Diody półprzewodnikowe i elementy reaktancyjne SPIS TREŚCI Spis treści... 2 1. Cel ćwiczenia... 3 2. Wymagania...
Dioda półprzewodnikowa
mikrofalowe (np. Gunna) Dioda półprzewodnikowa Dioda półprzewodnikowa jest elementem elektronicznym wykonanym z materiałów półprzewodnikowych. Dioda jest zbudowana z dwóch różnie domieszkowanych warstw
LABORATORIUM ELEKTRONIKI WZMACNIACZ MOCY
ZESPÓŁ LABORATORIÓW TELEMATYKI TRANSPORTU ZAKŁAD TELEKOMUNIKACJI W TRANSPORCIE WYDZIAŁ TRANSPORTU POLITECHNIKI WARSZAWSKIEJ LABORATORIUM ELEKTRONIKI INSTRUKCJA DO ĆWICZENIA NR 9 WZMACNIACZ MOCY DO UŻYTKU
Tranzystory polowe. Klasyfikacja tranzystorów polowych
Tranzystory polowe Wiadomości podstawowe Tranzystory polowe w skrócie FET (Field Effect Transistor), są równieŝ nazywane unipolarnymi. Działanie tych tranzystorów polega na sterowanym transporcie jednego
Uniwersytet Pedagogiczny im. Komisji Edukacji Narodowej w Krakowie
Uniwersytet Pedagogiczny im. Komisji Edukacji Narodowej w Krakowie Laboratorium elektroniki Ćwiczenie nr 4 Temat: PRZYRZĄDY PÓŁPRZEWODNIKOWE TRANZYSTOR BIPOLARNY Rok studiów Grupa Imię i nazwisko Data
ZŁĄCZOWY TRANZYSTOR POLOWY
L A B O R A T O R I U M ELEMENTY ELEKTRONICZNE ZŁĄCZOWY TRANZYSTOR POLOWY RE. 2.0 1. CEL ĆWICZENIA - Pomiary charakterystyk prądowo-napięciowych tranzystora. - Wyznaczenie podstawowych parametrów tranzystora
LABORATORIUM ELEKTRONIKI WZMACNIACZ MOCY
ZESPÓŁ LABORATORIÓW TELEMATYKI TRANSPORTU ZAKŁAD TELEKOMUNIKACJI W TRANSPORCIE WYDZIAŁ TRANSPORTU POLITECHNIKI WARSZAWSKIEJ LABORATORIUM ELEKTRONIKI INSTRUKCJA DO ĆWICZENIA NR 9 WZMACNIACZ MOCY DO UŻYTKU
Tranzystory polowe. Podział. Tranzystor PNFET (JFET) Kanał N. Kanał P. Drain. Gate. Gate. Source. Tranzystor polowy (FET) Z izolowaną bramką (IGFET)
Tranzystory polowe Podział Tranzystor polowy (FET) Złączowy (JFET) Z izolowaną bramką (IFET) ze złączem ms (MFET) ze złączem PN (PNFET) Typu MO (MOFET, HEXFET) cienkowarstwowy (TFT) z kanałem zuobożanym
PRACOWNIA ELEKTRONIKI
PRACOWNIA ELEKTRONIKI Ćwiczenie nr 4 Temat ćwiczenia: Badanie wzmacniacza UNIWERSYTET KAZIMIERZA WIELKIEGO W BYDGOSZCZY INSTYTUT TECHNIKI 1. 2. 3. Imię i Nazwisko 1 szerokopasmowego RC 4. Data wykonania
Tranzystory bipolarne elementarne układy pracy i polaryzacji
Tranzystory bipolarne elementarne układy pracy i polaryzacji Ryszard J. Barczyński, 2010 2014 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego
Instrukcja do ćwiczenia laboratoryjnego nr 5
Instrukcja do ćwiczenia laboratoryjnego nr 5 Temat: Charakterystyki statyczne tranzystorów bipolarnych Cel ćwiczenia. Celem ćwiczenia jest poznanie charakterystyk prądowonapięciowych i wybranych parametrów
Ćwiczenie - 4. Podstawowe układy pracy tranzystorów
LABORATORIM ELEKTRONIKI Spis treści Ćwiczenie - 4 Podstawowe układy pracy tranzystorów 1 Cel ćwiczenia 1 2 Podstawy teoretyczne 2 2.1 Podstawowe układy pracy tranzystora........................ 2 2.2 Wzmacniacz
Badanie tranzystora bipolarnego
Spis ćwiczeń: Badanie tranzystora bipolarnego Symulacja komputerowa PSPICE 9.1 www.pspice.com 1. Charakterystyka wejściowa tranzystora bipolarnego 2. Wyznaczanie rezystancji wejściowej 3. Rysowanie charakterystyk
Ćwiczenie 12 Temat: Wzmacniacz w układzie wspólnego emitera. Cel ćwiczenia
Ćwiczenie 12 Temat: Wzmacniacz w układzie wspólnego emitera. Cel ćwiczenia Poznanie konfiguracji zasady pracy wzmacniacza w układzie OE. Wyznaczenie charakterystyk wzmacniacza w układzie OE. Czytanie schematów
5. Tranzystor bipolarny
5. Tranzystor bipolarny Tranzystor jest to trójkońcówkowy element półprzewodnikowy zdolny do wzmacniania sygnałów prądu stałego i zmiennego. Każdy tranzystor jest zatem wzmacniaczem. Definicja wzmacniacza:
Ćwiczenie 14. Temat: Wzmacniacz w układzie wspólnego kolektora. Cel ćwiczenia
Temat: Wzmacniacz w układzie wspólnego kolektora. Cel ćwiczenia Ćwiczenie 14 1 Poznanie zasady pracy wzmacniacza w układzie OC. 2. Wyznaczenie charakterystyk wzmacniacza w układzie OC. INSTRUKCJA DO WYKONANIA
Pracownia pomiarów i sterowania Ćwiczenie 3 Proste przyrządy elektroniczne
Małgorzata Marynowska Uniwersytet Wrocławski, I rok Fizyka doświadczalna II stopnia Prowadzący: dr M. Grodzicki Data wykonania ćwiczenia: 14.04.2015 Pracownia pomiarów i sterowania Ćwiczenie 3 Proste przyrządy
CEL ĆWICZENIA: Celem ćwiczenia jest zapoznanie się z zastosowaniem diod i wzmacniacza operacyjnego
WFiIS LABORATORIUM Z ELEKTRONIKI Imię i nazwisko: 1.. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA CEL ĆWICZENIA: Celem ćwiczenia
Tranzystory bipolarne elementarne układy pracy i polaryzacji
Tranzystory bipolarne elementarne układy pracy i polaryzacji Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Układy