Badanie powtarzalności pozycjonowania robota IRp-6

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Badanie powtarzalności pozycjonowania robota IRp-6"

Transkrypt

1 Materiały pomocnicze do ćwiczeń laboratoryjnych Badanie powtarzalności pozycjonowania robota IRp-6 opracował: dr inż. Paweł Cegielski Literatura uzupełniająca do ćwiczenia: 1. Cegielski P. Automatyzacja i robotyka w budowie maszyn Skrypt PW (Tempus), 1997r. 2. Honczarenko J. Roboty przemysłowe. Elementy i zastosowanie WNT, Warszawa 1996r. 3. Olszewski M. Manipulatory i roboty przemysłowe WNT, Warszawa Podręcznik programowania robotów IRp-6/10. ZAP Robotyka, Ostrów Wlkp. (do wglądu w laboratorium). 5. Żurek J. Podstawy robotyzacji. Laboratorium Wydawnictwo Politechniki Poznańskiej, Norma PN-EN Roboty przemysłowe. Metody badania charakterystyk funkcjonalnych.

2 I. WPROWADZENIE NAPĘDY MASZYN MANIPULACYJNYCH DO AUTOMATYZACJI PROCESÓW TECHNOLOGICZNYCH Zespół ruchu maszyny manipulacyjnej, takiej jak np. robot przemysłowy, składa się z szeregu elementów, wśród których najważniejsze układy to: napędowy i pomiarowy parametrów ruchu (rys. 10). Układ napędowy maszyny manipulacyjnej (rys. 2) odpowiada za przeniesienie energii zasilającej do zespołu ruchu i składa się z następujących, głównych urządzeń: - przemiennik pierwotnej energii zasilającej (układ zasilający), najczęściej elektrycznej, który zamienia ją na energię użyteczną, np. sprężone powietrze, obniżone napięcie itp., - wzmacniacz mocy (regulator), który odpowiada za sterowanie przepływem energii zgodnie z poleceniami układu sterującego, - element wykonawczy, którym może być zastosowany silnik napędowy, - przekładnia ruchu zmieniająca rodzaj lub ilość ruchu i przekazuje bezpośrednio do osi maszyny. Zespół ruchu maszyny manipulacyjnej Elementy tworzące parę kinematyczną Układ napędowy Układ pomiarowy parametrów ruchu - korpus - łożyska - osłony - itp. - układ zasilający - regulator (wzmacniacz mocy) - silnik napędowy - przekładnia ruchu - przetwornik pomiarowy - przekładnia pomiarowa Rys. 1. Zespół ruchu maszyny manipulacyjnej struktura. 2

3 Pierwotna energia Y Sygnały wejściowe Sygnał wyjściowy zasilania... (sterujące) (mechaniczny) Przemiennik Wzmacniacz Element Przekładnia energii mocy (regulator) wykonawczy ruchu Bezpośrednia energia zasilania X Rys. 2. Schemat blokowy układu napędowego maszyny manipulacyjnej. Jak widać na rys. 2, jest to układ otwarty, a ewentualne sprzężenia zwrotne realizował będzie układ sterowania, czerpiąc informacje z przetworników pomiarowych (czujników) parametrów ruchu i przenosząc je na sygnały wejściowe (sterujące). Ewentualne czujniki sprzęgane są mechanicznie w obrębie elementu wykonawczego czy przekładni ruchu, rzadziej bezpośrednio z osią maszyny manipulacyjnej. Ważne jest, w odniesieniu do systemów zautomatyzowanych, aby zastosowany system napędowy umożliwiał jak największy zakres przemieszczeń i prędkości ruchu, sterowanych z dużą dokładnością i powtarzalnością w całym zakresie. Z punktu widzenia wykorzystania na stanowiskach zrobotyzowanych, niezbędna jest możliwość automatycznego sterowania ruchami manipulacyjnymi wszystkich zainstalowanych osi. Jednocześnie należy pamiętać o innych, specyficznych wymaganiach stawianych tego typu napędom, z których najważniejsze to: wiele stopni swobody wiele napędów do instalacji i często równoczesnego sterowania, możliwość / łatwość sterowania parametrami pracy, praca ze znacznymi obciążeniami, duża dynamika zmiany obciążeń (przeważnie inercyjnych masowych), długotrwała praca w stanie bezruchu elementu roboczego, wymagana duża dokładność (powtarzalność pozycjonowania). Na rys. 3 zestawiono poszczególne rodzaje napędów stosowanych przy budowie przemysłowych maszyn manipulacyjnych, w tym robotów i manipulatorów. Z uwagi na zastosowany element wykonawczy (np. silnik) wyróżnia się: - napędy pneumatyczne liniowe bądź obrotowe, szybkie, niezawodne, tanie i proste w użyciu, ale o niskiej sprawność i braku możliwości sterowania prędkością oraz o ograniczonych możliwościach zatrzymywania w położeniach pośrednich. Stosuje się je głównie jako napędy przełączalne zderzakowo do realizacji prostych ruchów 3

4 ustawczych manipulatorów stałoprogramowych (przeważnie nie więcej niż dwie pozycje pracy). - napędy hydrauliczne (elektrohydrauliczne) liniowe bądź obrotowe o dobrych właściwościach dynamicznych, dużej sztywności i udźwigu, łatwe do sterowania, trwałe i odporne na przeciążenia, umożliwiają realizację zarówno ruchów ustawczych jak i roboczych. Duże rozmiary i masa oraz wrażliwość na zmiany temperatury i zanieczyszczenia ograniczają obecnie ich wykorzystanie do zadań pomocniczych ruchów ustawczych, napędu elementów spawalniczego oprzyrządowania montażowego itp. - napędy elektryczne przede wszystkim obrotowe, o małych gabarytach, wysokiej sprawności i momencie. Łatwość i precyzja sterowania pozwala na ich wykorzystanie do budowy tzw. serwonapędów, z precyzyjną kontrolą prędkości i przemieszczenia zespołu maszyny. Wymagają rozbudowanych zespołów przeniesienia napędu (przekładni ruchu), zwłaszcza redukujących obroty. Napędy elektryczne są wrażliwe na przeciążenia, zwłaszcza długotrwałe. Obecnie znajdują powszechne zastosowanie, zarówno do realizacji ruchów ustawczych jak i roboczych robotów przemysłowych i innych maszyn manipulacyjnych. Napędy maszyn manipulacyjnych (M i A) Pneumatyczny Hydrauliczny Elektryczny Siłownik linowy Siłownik obrotowy Silnik obrotowy Silnik liniowy Silnik obrotowy Silnik liniowy Siłownik wahadłowy Prądu stałego Prądu przemiennego Silnik skokowy Rys. 3. Rodzaje napędów przemysłowych maszyn manipulacyjnych. 4

5 Z punktu widzenia realizowanych funkcji, w maszynach manipulacyjnych stosowane są dwa rodzaje przekładni: zmieniające rodzaj ruchu, najczęściej obrotowego na postępowy (rys. 4) oraz przekazujących i/lub zmieniających ilość ruchu najczęściej redukcyjnych. Rys. 4. Przykład przekładni zmieniających rodzaj ruchu tu: z obrotowego na postępowy (od lewej: przekładnia śrubowa ( - toczna), zębatkowa i pasowa ( - zębata). Wśród przekładni przekazujących i/lub zmieniających ilość ruchu stosowne są przede wszystkim: mechanizmy dźwigniowe, przekładnie cięgnowe: - sztywne cięgna, - cierne (np. pasowe), przekładnie zębate redukujące: - walcowe, stożkowe,... - ślimakowe, - cykloidalne: planetarne, harmoniczne (falowe),.... Drugim, istotnym składnikiem zespołu ruchu maszyny manipulacyjnej, jest układ pomiarowy parametrów ruchu. Jego zadaniem jest dostarczanie regulatorowi / wzmacniaczowi mocy (rys. 2) informacji niezbędnych do realizacji funkcji sprzężenia zwrotnego serwonapędu. Mierzone wielkości to: o wartość położenia, prędkość dane uzupełniające, często wyznaczane pośrednio. przyspieszenie Na zespół pomiarowy składać się mogą następujące elementy: przetwornik pomiarowy (czujnik), przetwornik pośredniczący (opcjonalnie), 5

6 przekładnia pomiarowa (opcjonalnie). Na rys. 5 przedstawiono przykład kompletnej jednostki napędowej zastosowanej w robocie IRp-6 (napędy kiści - 4 i 5 ej osi). Oś układu kinematycznego (piasta z łożyskami) Przekładnia redukująca (harmoniczna) Element wykonawczy (silnik elektryczny) Przetwornik pom. przemieszczenia (enkoder) Przetwornik pom. prędkości (prądnica tachometryczna) Rys. 5. Przykład kompletnej jednostki napędowej robota IRp-6. Wśród elementów zespołu ruchu robotów przemysłowych szczególną uwagę zwraca się na rozwiązanie napędu kiści robota (ruchu lokalnego), mającego bezpośredni wpływ na stabilność pracy i powtarzalność pozycjonowania. Spośród trzech podstawowych koncepcji: systemu popychaczy, napędu bezpośredniego i przekładni łańcuchowych bądź pasowych, dwie pierwsze są korzystniejsze m.in. z uwagi na mniejsze luzy i większą sztywność. Na rys. 6 przedstawiono sposób realizacji poszczególnych ruchów robota IRp-6. Umieszczony wewnątrz ramion system popychaczy powoduje jednak znaczne ograniczenia zakresu ruchu poszczególnych osi robota. 6

7 Rys. 6. Realizacja ruchów robota IRp-6: a) dolnego ramienia (przekładnia śrubowo - toczna), b) górnego ramienia (przekładnia śrubowo - toczna), c) kiści (system popychaczy). DOKŁADNOŚĆ I POWTARZALNOŚĆ POZYCJONOWANIA ROBOTA PRZEMYSŁOWEGO Dokładność i powtarzalność pozycjonowania robota przemysłowego ma decydujący wpływ na jakość i dokładność wykonywanych części w realizowanym przez robot procesie technologicznym. Powtarzalność pozycjonowania typowych konstrukcji robotów przemysłowych waha się w szerokim zakresie: ± 0,01 1,0 mm. Najwyższe dokładności możliwe są przede wszystkim wówczas, kiedy robot ma niewielki udźwig i zasięg, dzięki czemu możliwe jest zachowanie wysokiej sztywności układu. Według polskiej normy PN-EN 29283, charakterystyki dokładności i powtarzalności pozycjonowania określają różnice miedzy położeniem zadanym, a rzeczywistym oraz fluktuację położenia rzeczywistego serii powtarzalnych dojść do położenia zadanego. Powstałe błędy mogą być powodowane m.in. przez: układ wewnętrznego sterowania, 7

8 błędy transformacji współrzędnych, różnice wymiarów w strukturze węzłów przegubowych, model zastosowanego systemu sterowana, czynniki mechaniczne, takie jak luzy, histereza oraz tarcie, czynniki zewnętrzne takie jak np. temperatura. Istnieje wiele koncepcji wyznaczania powtarzalności pozycjonowania. Zgodnie z PN-EN 29283, dokładność pozycjonowania jednokierunkowego podaje odchyłkę między położeniem zadanym a wartością średnią położeń rzeczywistych przy dochodzeniu do położenia zadanego z tego samego kierunku. Ta sama norma definiuje powtarzalność pozycjonowania jednokierunkowego jako miarę rozrzutu położeń (lub orientacji) rzeczywistych uzyskanych w wyniku n-krotnie powtarzalnego ruchu o tym samym kierunku do położenia zadanego. W tabl. 1 przedstawiono warunki badania powtarzalności pozycjonowania jednokierunkowego zgodnie z PN-EN Niestety, w cytowanym źródle nie określono dokładnie metodyki i budowy stanowiska pomiarowego. Tabl. 1. Zestawienie warunków badania powtarzalności pozycjonowania jednokierunkowego (PN- EN 29283). Obciążenie Prędkość Położenia Liczba cykli 100% udźwigu nominalnego 50 udźwigu nominalnego (na życzenie) 100% prędkości nominalnej 50% i/albo 10 % prędkości nominalnej (na życzenie) 100% prędkości nominalnej (na życzenie) 50% i/albo 10 % prędkości nominalnej (na życzenie) P 1 P 2 P 3 P 4 P 5 30 W pewnym uproszczeniu, powtarzalność pozycjonowania można wyznaczyć jako maksymalny błąd bezwzględny, uzyskany w serii pomiarów rzeczywistego położenia końcówki robota względem położenia zadanego. W tym celu należy wykonać trzy serie zaprogramowanych podejść (osobno dla kierunku X, Y i Z) zamocowanym na końcówce robota narzędziem wzorcowym do np. czujnika zegarowego. Powtarzalność pozycjonowania należy obliczyć zgodnie z poniższym wzorem: S p = ± (X max X min ) / 2 8

9 gdzie: S P - powtarzalność, X max maksymalna wartość pomiaru w serii, X min minimalna wartość pomiaru w serii, Inne podejście do wyznaczania powtarzalności pozycjonowania, opiera się na obróbce statystycznej wyników. Wartość średnią błędu oraz odchylenie średnie określa się na podstawie wykonanego testu statystycznego, np. testu t-studenta. II. PRZEBIEG I WYKONANIE ĆWICZENIA Celem ćwiczenia jest zapoznanie studentów z metodyką pomiaru powtarzalności pozycjonowania robota przemysłowego oraz wykonanie serii pomiarów i obliczeń powtarzalności pozycjonowania robota IRp-6 dla wszystkich kierunków najazdu na czujnik pomiarowy. W ramach ćwiczenia studenci powinni samodzielnie uruchomić i przeprowadzić szereg pomiarów powtarzalności pozycjonowania robota przemysłowego IRp-6, zgodnie z procedurą zawartą w niniejszej instrukcji oraz informacjami przekazanymi przez prowadzącego ćwiczenie. BUDOWA STANOWISKA BADAWCZEGO panel programowania pulpit operatorski X wbudowany komputer PC z ekranem dotykowym układ sterowania robota pozycjoner Z Y ramię robota IRp-6 9

10 W skład stanowiska laboratoryjnego wchodzą następujące, główne urządzenia (na rys. zaznaczono kierunki układu odniesienia robota): manipulator robota IRp-6 o strukturze antropomorficznej (kątowej), udźwigu 6kg i powtarzalności pozycjonowania ± 0,2 mm, układ sterowania USR-6m z wbudowanym przemysłowym komputerem PC, pozycjoner o dwóch stopniach swobody (jedna oś sterowana) i udźwigu 50kg. Dodatkowe wyposażenie, związane z badaniem powtarzalności pozycjonowania robota, obejmuje (fot. poniżej): czujnik zegarowy z wysięgnikiem (zamocowany do stołu pozycjonera), końcówkę pomiarową (zamocowaną na końcu ramienia robota), obciążenie testowe robota (ok. 3 kg). PROCEDURA WYKONANIA ĆWICZENIA Obsługa stanowiska badawczego sprowadzać się będzie do uruchomienia i obsługi wcześniej napisanego programu testowego. W tym celu należy wywołać, poprzez ekran dotykowy wbudowanego w szafę sterowniczą komputera PC, tryb obsługa pamięci masowej (fot. poniżej). Po wpisaniu numeru programu (przekazanego przez prowadzącego), należy kolejno wykonać: Czytaj, do USR i START. Ramię robota ustawi się w pozycji wyjściowej. Dalsza obsługa prowadzona będzie w oparciu o pulpit operatorski podświetlany przycisk CYKL. 10

11 Badanie polegać będzie na wykonaniu trzech serii pomiarów, kolejno dla kierunków X, Y i Z (rys. na następnej stronie). W trakcie pomiarów ramię robota poruszać się będzie z ok. 50 % prędkości maksymalnej. Każdorazowo, po dojechaniu końcówki pomiarowej do czujnika zegarowego, nastąpi zatrzymanie ramienia robota i ciągłe zaświecenie przycisku CYKL. Podczas pierwszego w danej serii (X, Y lub Z) dojazdu końcówki pomiarowej do czujnika, należy go wyzerować. Podczas kolejnych dojazdów, należy odczytać wskazanie czujnika zegarowego. Potwierdzenie wyzerowania lub odczytu wskazań czujnika następuje poprzez przyciśnięcie przycisku CYKL. UWAGA po jego wciśnięciu nastąpi ruch ramienia robota. Wykonanie zadanej przez prowadzącego liczby cykli dla danego kierunku pomiaru sygnalizowane będzie pulsującym świeceniem przycisku CYKL. Przejście do kolejnej serii wymagać będzie zmiany położenia czujnika oraz powtórzenia jego zerowania dla pierwszego najazdu końcówki pomiarowej. Zmiana położenia czujnika zegarowego dla kolejnych kierunków pomiaru: - dla kierunku X ustawienie początkowe nie wymagające przestawienia, - dla kierunku Y zmiana automatyczna przez obrót pozycjonera, - dla kierunku Z wymagane przezbrojenie wysięgnika tylko prowadzący ćwiczenie! Sprawozdanie, sporządzone w oparciu o przekazany na zajęciach formularz, zawierać będzie wartości odczytane z czujnika zegarowego, spostrzeżenia na temat sposobu osiągania pozycji pomiarowych, niezbędne obliczenia oraz graficzne przedstawienie wyników badań. 11

12 12

Roboty manipulacyjne i mobilne. Roboty przemysłowe zadania i elementy

Roboty manipulacyjne i mobilne. Roboty przemysłowe zadania i elementy Roboty manipulacyjne i mobilne Wykład II zadania i elementy Janusz Jakubiak IIAiR Politechnika Wrocławska Informacja o prawach autorskich Materiały pochodzą z książek: J. Honczarenko.. Budowa i zastosowanie.

Bardziej szczegółowo

Materiały pomocnicze do ćwiczeń laboratoryjnych

Materiały pomocnicze do ćwiczeń laboratoryjnych Materiały pomocnicze do ćwiczeń laboratoryjnych Badanie napędów elektrycznych z luzownikami w robocie Kawasaki FA006E wersja próbna Literatura uzupełniająca do ćwiczenia: 1. Cegielski P. Elementy programowania

Bardziej szczegółowo

Struktura manipulatorów

Struktura manipulatorów Temat: Struktura manipulatorów Warianty struktury manipulatorów otrzymamy tworząc łańcuch kinematyczny o kolejnych osiach par kinematycznych usytuowanych pod kątem prostym. W ten sposób w zależności od

Bardziej szczegółowo

Politechnika Poznańska Instytut Technologii Mechanicznej. Laboratorium MASZYN I URZĄDZEŃ TECHNOLOGICZNYCH. Nr 2

Politechnika Poznańska Instytut Technologii Mechanicznej. Laboratorium MASZYN I URZĄDZEŃ TECHNOLOGICZNYCH. Nr 2 Politechnika Poznańska Instytut Technologii Mechanicznej Laboratorium MASZYN I URZĄDZEŃ TECHNOLOGICZNYCH Nr 2 POMIAR I KASOWANIE LUZU W STOLE OBROTOWYM NC Poznań 2008 1. CEL ĆWICZENIA Celem ćwiczenia jest

Bardziej szczegółowo

ĆWICZENIE NR P-8 STANOWISKO BADANIA POZYCJONOWANIA PNEUMATYCZNEGO

ĆWICZENIE NR P-8 STANOWISKO BADANIA POZYCJONOWANIA PNEUMATYCZNEGO INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN POLITECHNIKI ŁÓDZKIEJ ĆWICZENIE NR P-8 STANOWISKO BADANIA POZYCJONOWANIA PNEUMATYCZNEGO Koncepcja i opracowanie: dr inż. Michał Krępski Łódź, 2011 r. Stanowiska

Bardziej szczegółowo

P O L I T E C H N I K A Ł Ó D Z K A INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI LABORATORIUM POMIARÓW I AUTOMATYKI W ELEKTROWNIACH

P O L I T E C H N I K A Ł Ó D Z K A INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI LABORATORIUM POMIARÓW I AUTOMATYKI W ELEKTROWNIACH P O L I T E C H N I K A Ł Ó D Z K A INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI LABORATORIUM POMIARÓW I AUTOMATYKI W ELEKTROWNIACH Badanie siłowników INSTRUKCJA DO ĆWICZENIA LABORATORYJNEGO ŁÓDŹ 2011

Bardziej szczegółowo

Laboratorium z Napęd Robotów

Laboratorium z Napęd Robotów POLITECHNIKA WROCŁAWSKA WYDZIAŁ ELEKTRYCZNY INSTYTUT MASZYN, NAPĘDÓW I POMIARÓW ELEKTRYCZNYCH Laboratorium z Napęd Robotów Robot precyzyjny typu SCARA Prowadzący: mgr inŝ. Waldemar Kanior Sala 101, budynek

Bardziej szczegółowo

Roboty przemysłowe. Cz. II

Roboty przemysłowe. Cz. II Roboty przemysłowe Cz. II Klasyfikacja robotów Ze względu na rodzaj napędu: - hydrauliczny (duże obciążenia) - pneumatyczny - elektryczny - mieszany Obecnie roboty przemysłowe bardzo często posiadają napędy

Bardziej szczegółowo

Kinematyka manipulatora równoległego typu DELTA 106 Kinematyka manipulatora równoległego hexapod 110 Kinematyka robotów mobilnych 113

Kinematyka manipulatora równoległego typu DELTA 106 Kinematyka manipulatora równoległego hexapod 110 Kinematyka robotów mobilnych 113 Spis treści Wstęp 11 1. Rozwój robotyki 15 Rys historyczny rozwoju robotyki 15 Dane statystyczne ilustrujące rozwój robotyki przemysłowej 18 Czynniki stymulujące rozwój robotyki 23 Zakres i problematyka

Bardziej szczegółowo

Serwomechanizm - zamknięty układ sterowania przemieszczeniem, o strukturze typowego układu regulacji. Wartość wzorcowa porównywana jest z

Serwomechanizm - zamknięty układ sterowania przemieszczeniem, o strukturze typowego układu regulacji. Wartość wzorcowa porównywana jest z serwomechanizmy Serwomechanizm - zamknięty układ sterowania przemieszczeniem, o strukturze typowego układu regulacji. Wartość wzorcowa porównywana jest z przetworzonym przez przetwornik bieżącym sygnałem

Bardziej szczegółowo

Specyfikacja techniczna obrabiarki. wersja 2013-02-03, wg. TEXT VMX42 U ATC40-05 VMX42 U ATC40

Specyfikacja techniczna obrabiarki. wersja 2013-02-03, wg. TEXT VMX42 U ATC40-05 VMX42 U ATC40 Specyfikacja techniczna obrabiarki wersja 2013-02-03, wg. TEXT VMX42 U ATC40-05 VMX42 U ATC40 KONSTRUKCJA OBRABIARKI HURCO VMX42 U ATC40 Wysoka wytrzymałość mechaniczna oraz duża dokładność są najważniejszymi

Bardziej szczegółowo

Sterowanie napędów maszyn i robotów

Sterowanie napędów maszyn i robotów Sterowanie napędów maszyn i robotów dr inż. Jakub Możaryn Wykład 1 Instytut Automatyki i Robotyki Wydział Mechatroniki Politechnika Warszawska, 2014 Projekt współfinansowany przez Unię Europejską w ramach

Bardziej szczegółowo

ROBOTY AUTOMATYZACJA PRODUKCJI

ROBOTY AUTOMATYZACJA PRODUKCJI ROBOTY AUTOMATYZACJA PRODUKCJI Roboty najnowszej generacji 02 Dane techniczne oraz więcej informacji na www.dopak.pl ROBOTY NAJNOWSZEJ GENERACJI PICKERSPX10 Robot przeznaczony do odbioru wlewków jak również

Bardziej szczegółowo

Wyposażenie Samolotu

Wyposażenie Samolotu P O L I T E C H N I K A R Z E S Z O W S K A im. Ignacego Łukasiewicza Wydział Budowy Maszyn i Lotnictwa Katedra Awioniki i Sterowania Wyposażenie Samolotu Instrukcja do laboratorium nr 2 Przyrządy żyroskopowe

Bardziej szczegółowo

ROBOTY PRZEMYSŁOWE LABORATORIUM FANUC S-420F

ROBOTY PRZEMYSŁOWE LABORATORIUM FANUC S-420F ROBOTY PRZEMYSŁOWE LABORATORIUM FANUC S-420F Wstęp Roboty przemysłowe FANUC Robotics przeznaczone są dla szerokiej gamy zastosowań, takich jak spawanie ( Spawanie to jedno z najczęstszych zastosowań robotów.

Bardziej szczegółowo

Ćw. 18: Pomiary wielkości nieelektrycznych II

Ćw. 18: Pomiary wielkości nieelektrycznych II Wydział: EAIiE Kierunek: Imię i nazwisko (e mail): Rok:. (../..) Grupa: Zespół: Data wykonania: Zaliczenie: Podpis prowadzącego: Uwagi: LABORATORIUM METROLOGII Ćw. 18: Pomiary wielkości nieelektrycznych

Bardziej szczegółowo

Rok akademicki: 2013/2014 Kod: RAR s Punkty ECTS: 5. Poziom studiów: Studia I stopnia Forma i tryb studiów: -

Rok akademicki: 2013/2014 Kod: RAR s Punkty ECTS: 5. Poziom studiów: Studia I stopnia Forma i tryb studiów: - Nazwa modułu: Roboty przemysłowe Rok akademicki: 2013/2014 Kod: RAR-1-604-s Punkty ECTS: 5 Wydział: Inżynierii Mechanicznej i Robotyki Kierunek: Automatyka i Robotyka Specjalność: - Poziom studiów: Studia

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 2. Analiza kinematyczna napędu z przekładniami

INSTRUKCJA DO ĆWICZENIA NR 2. Analiza kinematyczna napędu z przekładniami INSTRUKCJA DO ĆWICZENIA NR 2 Analiza kinematyczna napędu z przekładniami 1. Wprowadzenie Układ roboczy maszyny, cechuje się swoistą charakterystyką ruchowoenergetyczną, często odmienną od charakterystyki

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych Napęd hydrauliczny

Instrukcja do ćwiczeń laboratoryjnych Napęd hydrauliczny Instrukcja do ćwiczeń laboratoryjnych Napęd hydrauliczny Sterowanie układem hydraulicznym z proporcjonalnym zaworem przelewowym Opracowanie: Z. Kudźma, P. Osiński, M. Stosiak 1 Proporcjonalne elementy

Bardziej szczegółowo

Zestaw 1 1. Rodzaje ruchu punktu materialnego i metody ich opisu. 2. Mikrokontrolery architektura, zastosowania. 3. Silniki krokowe budowa, zasada działania, sterowanie pracą. Zestaw 2 1. Na czym polega

Bardziej szczegółowo

BADANIA PNEUMATYCZNEGO SIŁOWNIKA BEZTŁOCZYSKOWEGO

BADANIA PNEUMATYCZNEGO SIŁOWNIKA BEZTŁOCZYSKOWEGO INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN POLITECHNIKI ŁÓDZKIEJ ĆWICZENIE NR P-6 BADANIA PNEUMATYCZNEGO SIŁOWNIKA BEZTŁOCZYSKOWEGO Koncepcja i opracowanie: dr inż. Michał Krępski Łódź, 2011 r. Stanowiska

Bardziej szczegółowo

Teoria maszyn i mechanizmów Kod przedmiotu

Teoria maszyn i mechanizmów Kod przedmiotu Teoria maszyn i mechanizmów - opis przedmiotu Informacje ogólne Nazwa przedmiotu Teoria maszyn i mechanizmów Kod przedmiotu 06.1-WM-MiBM-P-54_15gen Wydział Kierunek Wydział Mechaniczny Mechanika i budowa

Bardziej szczegółowo

Ćwiczenie 1. Badanie aktuatora elektrohydraulicznego. Sterowanie Napędów Maszyn i Robotów Przemysłowych - laboratorium. Instrukcja laboratoryjna

Ćwiczenie 1. Badanie aktuatora elektrohydraulicznego. Sterowanie Napędów Maszyn i Robotów Przemysłowych - laboratorium. Instrukcja laboratoryjna Sterowanie Napędów Maszyn i Robotów Przemysłowych - laboratorium Ćwiczenie 1 Badanie aktuatora elektrohydraulicznego Instrukcja laboratoryjna Opracował : mgr inż. Arkadiusz Winnicki Warszawa 2010 Badanie

Bardziej szczegółowo

Prototypowanie sterownika dla robota IRp-6

Prototypowanie sterownika dla robota IRp-6 1. Opis techniczny robota IRp-6. Prototypowanie sterownika dla robota IRp-6 Robot IRp-6 jest robotem elektrycznym wykorzystującym silniki prądu stałego do realizacji ruchu poszczególnych osi (ramion).

Bardziej szczegółowo

Siłownik liniowy z serwonapędem

Siłownik liniowy z serwonapędem Siłownik liniowy z serwonapędem Zastosowanie: przemysłowe systemy automatyki oraz wszelkie aplikacje wymagające bardzo dużych prędkości przy jednoczesnym zastosowaniu dokładnego pozycjonowania. www.linearmech.it

Bardziej szczegółowo

BUDOWA I TESTOWANIE UKŁADÓW ELEKTROPNEUMATYKI

BUDOWA I TESTOWANIE UKŁADÓW ELEKTROPNEUMATYKI INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN POLITECHNIKI ŁÓDZKIEJ ĆWICZENIE NR P-3 BUDOWA I TESTOWANIE UKŁADÓW ELEKTROPNEUMATYKI Koncepcja i opracowanie: dr hab. inż. Witold Pawłowski dr inż. Michał

Bardziej szczegółowo

Instrukcja z przedmiotu Napęd robotów

Instrukcja z przedmiotu Napęd robotów POLITECHNIKA WROCŁAWSKA WYDZIAŁ ELEKTRYCZNY INSTYTUT MASZYN, NAPĘDÓW I POMIARÓW ELEKTRYCZNYCH Instrukcja z przedmiotu Napęd robotów Wieloosiowy liniowy napęd pozycjonujący robot ramieniowy RV-2AJ CEL ĆWICZENIA

Bardziej szczegółowo

ĆWICZENIE NR.6. Temat : Wyznaczanie drgań mechanicznych przekładni zębatych podczas badań odbiorczych

ĆWICZENIE NR.6. Temat : Wyznaczanie drgań mechanicznych przekładni zębatych podczas badań odbiorczych ĆWICZENIE NR.6 Temat : Wyznaczanie drgań mechanicznych przekładni zębatych podczas badań odbiorczych 1. Wstęp W nowoczesnych przekładniach zębatych dąży się do uzyskania małych gabarytów w stosunku do

Bardziej szczegółowo

BUDOWA I TESTOWANIE UKŁADÓW PNEUMATYKI

BUDOWA I TESTOWANIE UKŁADÓW PNEUMATYKI INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN POLITECHNIKI ŁÓDZKIEJ ĆWICZENIE NR P-2 BUDOWA I TESTOWANIE UKŁADÓW PNEUMATYKI Koncepcja i opracowanie: dr hab. inż. Witold Pawłowski, dr inż. Michał Krępski

Bardziej szczegółowo

Mechatronika i inteligentne systemy produkcyjne. Aktory

Mechatronika i inteligentne systemy produkcyjne. Aktory Mechatronika i inteligentne systemy produkcyjne Aktory 1 Definicja aktora Aktor (ang. actuator) -elektronicznie sterowany człon wykonawczy. Aktor jest łącznikiem między urządzeniem przetwarzającym informację

Bardziej szczegółowo

Podstawy technik wytwarzania PTWII - projektowanie. Ćwiczenie 4. Instrukcja laboratoryjna

Podstawy technik wytwarzania PTWII - projektowanie. Ćwiczenie 4. Instrukcja laboratoryjna PTWII - projektowanie Ćwiczenie 4 Instrukcja laboratoryjna Człowiek - najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Warszawa 2011 2 Ćwiczenie

Bardziej szczegółowo

Ćwiczenie nr R-4. Konstrukcja i działanie oraz obsługa robota przemysłowego IRp-6

Ćwiczenie nr R-4. Konstrukcja i działanie oraz obsługa robota przemysłowego IRp-6 INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN POLITECHNIKI ŁÓDZKIEJ W ŁODZI Ćwiczenie nr R-4 Konstrukcja i działanie oraz obsługa robota przemysłowego IRp-6 Opracował: dr inż. Grzegorz Bechciński Opracowanie

Bardziej szczegółowo

Roboty przemysłowe. Wprowadzenie

Roboty przemysłowe. Wprowadzenie Roboty przemysłowe Wprowadzenie Pojęcia podstawowe Manipulator jest to mechanizm cybernetyczny przeznaczony do realizacji niektórych funkcji kończyny górnej człowieka. Należy wyróżnić dwa rodzaje funkcji

Bardziej szczegółowo

Napędy elektromechaniczne urządzeń precyzyjnych - projektowanie. Ćwiczenie 3 Dobór mikrosilnika prądu stałego do układu pozycjonującego

Napędy elektromechaniczne urządzeń precyzyjnych - projektowanie. Ćwiczenie 3 Dobór mikrosilnika prądu stałego do układu pozycjonującego Napędy elektromechaniczne urządzeń precyzyjnych - projektowanie Dobór mikrosilnika prądu stałego do układu pozycjonującego Precyzyjne pozycjonowanie robot chirurgiczny (2009) 39 silników prądu stałego

Bardziej szczegółowo

Mechanika Robotów. Wojciech Lisowski. 5 Planowanie trajektorii ruchu efektora w przestrzeni roboczej

Mechanika Robotów. Wojciech Lisowski. 5 Planowanie trajektorii ruchu efektora w przestrzeni roboczej Katedra Robotyki i Mechatroniki Akademia Górniczo-Hutnicza w Krakowie Mechanika Robotów Wojciech Lisowski 5 Planowanie trajektorii ruchu efektora w przestrzeni roboczej Mechanika Robotów KRiM, WIMIR, AGH

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: MECHANIKA I BUDOWA MASZYN Rodzaj przedmiotu: obowiązkowy na kierunku Rodzaj zajęć: wykład, laboratorium ROBOTYKA Robotics Forma studiów: stacjonarne Poziom przedmiotu: I stopnia

Bardziej szczegółowo

PIONOWE CENTRUM OBRÓBCZE CNC DIGIMA SMTCL VMC850B

PIONOWE CENTRUM OBRÓBCZE CNC DIGIMA SMTCL VMC850B PIONOWE CENTRUM OBRÓBCZE CNC DIGIMA SMTCL VMC850B PODSTAWOWE PARAMETRY TECHNICZNE: VMC850B Przesuwy X/Y/Z 1000 / 560 / 650 mm Maks. obciążenie stołu 600 kg Stożek wrzeciona SK40 - Maks. moc wrzeciona 9/10,5

Bardziej szczegółowo

1. STRUKTURA MECHANIZMÓW 1.1. POJĘCIA PODSTAWOWE

1. STRUKTURA MECHANIZMÓW 1.1. POJĘCIA PODSTAWOWE 1. STRUKTURA MECHANIZMÓW 1.1. POJĘCIA PODSTAWOWE 1.1.1. Człon mechanizmu Człon mechanizmu to element konstrukcyjny o dowolnym kształcie, ruchomy bądź nieruchomy, zwany wtedy podstawą, niepodzielny w aspekcie

Bardziej szczegółowo

1. Zasady konstruowania elementów maszyn

1. Zasady konstruowania elementów maszyn 3 Przedmowa... 10 O Autorów... 11 1. Zasady konstruowania elementów maszyn 1.1 Ogólne zasady projektowania.... 14 Pytania i polecenia... 15 1.2 Klasyfikacja i normalizacja elementów maszyn... 16 1.2.1.

Bardziej szczegółowo

Wydział Budownictwa i Inżynierii Środowiska Katedra Ciepłownictwa. Instrukcja do zajęć laboratoryjnych

Wydział Budownictwa i Inżynierii Środowiska Katedra Ciepłownictwa. Instrukcja do zajęć laboratoryjnych Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska Katedra Ciepłownictwa Instrukcja do zajęć laboratoryjnych Temat ćwiczenia: Badanie własności statycznych siłowników pneumatycznych Ćwiczenie

Bardziej szczegółowo

AUTOMATYKA I STEROWANIE W CHŁODNICTWIE, KLIMATYZACJI I OGRZEWNICTWIE L2 STEROWANIE INWERTEROWYM URZĄDZENIEM CHŁODNICZYM W TRYBIE P

AUTOMATYKA I STEROWANIE W CHŁODNICTWIE, KLIMATYZACJI I OGRZEWNICTWIE L2 STEROWANIE INWERTEROWYM URZĄDZENIEM CHŁODNICZYM W TRYBIE P ĆWICZENIE LABORAORYJNE AUOMAYKA I SEROWANIE W CHŁODNICWIE, KLIMAYZACJI I OGRZEWNICWIE L2 SEROWANIE INWEREROWYM URZĄDZENIEM CHŁODNICZYM W RYBIE P Wersja: 2013-09-30-1- 2.1. Cel ćwiczenia Celem ćwiczenia

Bardziej szczegółowo

PL 213839 B1. Manipulator równoległy trójramienny o zamkniętym łańcuchu kinematycznym typu Delta, o trzech stopniach swobody

PL 213839 B1. Manipulator równoległy trójramienny o zamkniętym łańcuchu kinematycznym typu Delta, o trzech stopniach swobody PL 213839 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 213839 (13) B1 (21) Numer zgłoszenia: 394237 (51) Int.Cl. B25J 18/04 (2006.01) B25J 9/02 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej

Bardziej szczegółowo

Podstawy robotyki - opis przedmiotu

Podstawy robotyki - opis przedmiotu Podstawy robotyki - opis przedmiotu Informacje ogólne Nazwa przedmiotu Podstawy robotyki Kod przedmiotu 06.9-WE-AiRP-PR Wydział Kierunek Wydział Informatyki, Elektrotechniki i Automatyki Automatyka i robotyka

Bardziej szczegółowo

Młody inżynier robotyki

Młody inżynier robotyki Młody inżynier robotyki Narzędzia pracy Klocki LEGO MINDSTORMS NXT Oprogramowanie służące do programowanie kostki programowalnej robora LEGO Mindstorms Nxt v2.0 LEGO Digital Designer - program przeznaczony

Bardziej szczegółowo

Regulacja dwupołożeniowa (dwustawna)

Regulacja dwupołożeniowa (dwustawna) Regulacja dwupołożeniowa (dwustawna) I. Wprowadzenie Regulacja dwustawna (dwupołożeniowa) jest często stosowaną metodą regulacji temperatury w urządzeniach grzejnictwa elektrycznego. Polega ona na cyklicznym

Bardziej szczegółowo

PL B BUP 13/ WUP 01/17

PL B BUP 13/ WUP 01/17 PL 224581 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 224581 (13) B1 (21) Numer zgłoszenia: 406525 (51) Int.Cl. B25J 11/00 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia:

Bardziej szczegółowo

Badanie napędu z silnikiem bezszczotkowym prądu stałego

Badanie napędu z silnikiem bezszczotkowym prądu stałego Badanie napędu z silnikiem bezszczotkowym prądu stałego Instrukcja do ćwiczenia Celem ćwiczenia jest zapoznanie się z budową, zasadą działania oraz sposobem sterowania 3- pasmowego silnika bezszczotkowego

Bardziej szczegółowo

INSTRUKCJA LABORATORYJNA NR 4-EW ELEKTROWNIA WIATROWA

INSTRUKCJA LABORATORYJNA NR 4-EW ELEKTROWNIA WIATROWA LABORATORIUM ODNAWIALNYCH ŹRÓDEŁ ENERGII Katedra Aparatury i Maszynoznawstwa Chemicznego Wydział Chemiczny Politechniki Gdańskiej INSTRUKCJA LABORATORYJNA NR 4-EW ELEKTROWNIA WIATROWA ELEKTROWNIA WIATROWA

Bardziej szczegółowo

PNEUMATYCZNA TECHNIKA PROPORCJONALNA

PNEUMATYCZNA TECHNIKA PROPORCJONALNA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN POLITECHNIKI ŁÓDZKIEJ ĆWICZENIE NR P-7 PNEUMATYCZNA TECHNIKA PROPORCJONALNA Koncepcja i opracowanie: dr hab. inż. Witold Pawłowski dr inż. Michał Krępski

Bardziej szczegółowo

1 Zasady bezpieczeństwa

1 Zasady bezpieczeństwa 1 Zasady bezpieczeństwa W trakcie trwania zajęć laboratoryjnych ze względów bezpieczeństwa nie należy przebywać w strefie działania robota, która oddzielona jest od pozostałej części laboratorium barierkami.

Bardziej szczegółowo

PRZEKŁADNIE CIERNE PRZEKŁADNIE MECHANICZNE ZĘBATE CIĘGNOWE CIERNE ŁAŃCUCHOWE. a) o przełożeniu stałym. b) o przełożeniu zmiennym

PRZEKŁADNIE CIERNE PRZEKŁADNIE MECHANICZNE ZĘBATE CIĘGNOWE CIERNE ŁAŃCUCHOWE. a) o przełożeniu stałym. b) o przełożeniu zmiennym PRZEKŁADNIE CIERNE PRZEKŁADNIE MECHANICZNE ZĘBATE CIĘGNOWE CIERNE PASOWE LINOWE ŁAŃCUCHOWE a) o przełożeniu stałym a) z pasem płaskim a) łańcych pierścieniowy b) o przełożeniu zmiennym b) z pasem okrągłym

Bardziej szczegółowo

WYZNACZENIE CHARAKTERYSTYK STATYCZNYCH PRZETWORNIKÓW POMIAROWYCH

WYZNACZENIE CHARAKTERYSTYK STATYCZNYCH PRZETWORNIKÓW POMIAROWYCH Zakład Metrologii i Systemów Pomiarowych P o l i t e c h n i k a P o z n ańska ul. Jana Pawła II 4 60-96 POZNAŃ (budynek Centrum Mechatroniki, Biomechaniki i Nanoinżynierii) www.zmisp.mt.put.poznan.pl

Bardziej szczegółowo

2. Pomiar drgań maszyny

2. Pomiar drgań maszyny 2. Pomiar drgań maszyny Stanowisko laboratoryjne tworzą: zestaw akcelerometrów, przedwzmacniaczy i wzmacniaczy pomiarowych z oprzyrządowaniem (komputery osobiste wyposażone w karty pomiarowe), dwa wzorcowe

Bardziej szczegółowo

Przygotowanie do pracy frezarki CNC

Przygotowanie do pracy frezarki CNC Wydział Budowy Maszyn i Zarządzania Instytut Technologii Mechanicznej Maszyny i urządzenia technologiczne laboratorium Przygotowanie do pracy frezarki CNC Cykl I Ćwiczenie 2 Opracował: dr inż. Krzysztof

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Katedra Technik Wytwarzania i Automatyzacji WYDZIAŁ BUDOWY MASZYN I LOTNICTWA INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Przedmiot: DIAGNOSTYKA I NADZOROWANIE SYSTEMÓW OBRÓBKOWYCH Temat: Pomiar charakterystyk

Bardziej szczegółowo

(12) OPIS PATENTOWY. (54)Uniwersalny moduł obrotowo-podziałowy

(12) OPIS PATENTOWY. (54)Uniwersalny moduł obrotowo-podziałowy RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 160463 (13) B2 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 283098 (22) Data zgłoszenia: 28.12.1989 B23Q (51)IntCl5: 16/06 (54)Uniwersalny

Bardziej szczegółowo

OZNACZENIA NA SCHEMATACH RYSUNKOWYCH. Opracował: Robert Urbanik

OZNACZENIA NA SCHEMATACH RYSUNKOWYCH. Opracował: Robert Urbanik OZNACZENIA NA SCHEMATACH RYSUNKOWYCH Opracował: Robert Urbanik Oznaczenia na schematach kinematycznych- symbole ruchu Tor ruchu prostoliniowego Chwilowe zatrzymanie w położeniu pośrednim Koniec ruchu prostoliniowego

Bardziej szczegółowo

Urządzenia automatyki przemysłowej Kod przedmiotu

Urządzenia automatyki przemysłowej Kod przedmiotu Urządzenia automatyki przemysłowej - opis przedmiotu Informacje ogólne Nazwa przedmiotu Urządzenia automatyki przemysłowej Kod przedmiotu 06.0-WE-AiRP-UAP Wydział Kierunek Wydział Informatyki, Elektrotechniki

Bardziej szczegółowo

Podstawy Automatyki. Wykład 8 - Wprowadzenie do automatyki procesów dyskretnych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 8 - Wprowadzenie do automatyki procesów dyskretnych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 8 - Wprowadzenie do automatyki procesów dyskretnych Instytut Automatyki i Robotyki Warszawa, 2016 Literatura Zieliński C.: Podstawy projektowania układów cyfrowych. PWN, Warszawa, 2003 Traczyk W.:

Bardziej szczegółowo

Obrotniki i. pozycjonery przeznaczone do spawania ręcznego i zautomatyzowanego.

Obrotniki i. pozycjonery przeznaczone do spawania ręcznego i zautomatyzowanego. Obrotniki i pozycjonery przeznaczone do spawania ręcznego i zautomatyzowanego. Obrotniki i pozycjonery: pomagają utrzymać pomagają spawać Pozycjonery SAF zapewniają : Komfortowe użycie, Prawidłową postawę

Bardziej szczegółowo

Maszyny Elektryczne Specjalne Special Electrical Machines. Elektrotechnika I stopień ogólnoakademicki. niestacjonarne

Maszyny Elektryczne Specjalne Special Electrical Machines. Elektrotechnika I stopień ogólnoakademicki. niestacjonarne KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod Nazwa Nazwa w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Maszyny Elektryczne

Bardziej szczegółowo

PL 203749 B1. Akademia Górniczo-Hutnicza im. Stanisława Staszica,Kraków,PL 17.10.2005 BUP 21/05. Bogdan Sapiński,Kraków,PL Sławomir Bydoń,Kraków,PL

PL 203749 B1. Akademia Górniczo-Hutnicza im. Stanisława Staszica,Kraków,PL 17.10.2005 BUP 21/05. Bogdan Sapiński,Kraków,PL Sławomir Bydoń,Kraków,PL RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 203749 (13) B1 (21) Numer zgłoszenia: 367146 (51) Int.Cl. B25J 9/10 (2006.01) G05G 15/00 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22)

Bardziej szczegółowo

Elektroniczne pompy liniowe

Elektroniczne pompy liniowe PRZEZNACZENIE Pompy liniowe typu PTe przeznaczone są do pompowania nieagresywnej, niewybuchowej cieczy czystej i lekko zanieczyszczonej o temperaturze nie przekraczającej 140 C, wymuszania obiegu wody

Bardziej szczegółowo

KATEDRA TECHNIK WYTWARZANIA I AUTOMATYZACJI

KATEDRA TECHNIK WYTWARZANIA I AUTOMATYZACJI KATEDRA TECHIK WYTWARZAIA I AUTOMATYZACJI ISTRUKCJA DO ĆWICZEŃ LABORATORYJYCH Przedmiot: MASZYY TECHOLOGICZE Temat: Frezarka wspornikowa UFM 3 Plus r ćwiczenia: 2 Kierunek: Mechanika i budowa maszyn 1.

Bardziej szczegółowo

Napędy urządzeń mechatronicznych - projektowanie. Ćwiczenie 3 Dobór silnika skokowego do pracy w obszarze rozruchowym

Napędy urządzeń mechatronicznych - projektowanie. Ćwiczenie 3 Dobór silnika skokowego do pracy w obszarze rozruchowym Napędy urządzeń mechatronicznych - projektowanie Dobór silnika skokowego do pracy w obszarze rozruchowym Precyzyjne pozycjonowanie (Velmix 2007) Temat ćwiczenia - stolik urządzenia technologicznego (Szykiedans,

Bardziej szczegółowo

PROJEKTOWANIE MECHATRONICZNE UKŁADY NAPĘDOWE OBRABIAREK

PROJEKTOWANIE MECHATRONICZNE UKŁADY NAPĘDOWE OBRABIAREK PROJEKTOWANIE MECHATRONICZNE na przykładzie obrabiarek Dr hab. inż. Piotr Pawełko p. 141 Piotr.Pawelko@zut.edu.pl www.piopawelko.zut.edu.pl Wśród układów napędowych obrabiarek można rozróżnić napędy główne

Bardziej szczegółowo

Stanowisko do diagnostyki wielofunkcyjnego zestawu napędowego operującego w zróżnicowanych warunkach pracy

Stanowisko do diagnostyki wielofunkcyjnego zestawu napędowego operującego w zróżnicowanych warunkach pracy Stanowisko do diagnostyki wielofunkcyjnego zestawu napędowego operującego w zróżnicowanych warunkach pracy 1. Opis stanowiska laboratoryjnego. Budowę stanowiska laboratoryjnego przedstawiono na poniższym

Bardziej szczegółowo

Napęd elektryczny. Główną funkcją jest sterowane przetwarzanie energii elektrycznej na mechaniczną i odwrotnie

Napęd elektryczny. Główną funkcją jest sterowane przetwarzanie energii elektrycznej na mechaniczną i odwrotnie Napęd elektryczny Główną funkcją jest sterowane przetwarzanie energii elektrycznej na mechaniczną i odwrotnie Podstawowe elementy napędu: maszyna elektryczna, przekształtnik, czujniki, sterownik z oprogramowaniem,

Bardziej szczegółowo

2. Metoda impulsowa pomiaru wilgotności mas formierskich.

2. Metoda impulsowa pomiaru wilgotności mas formierskich. J. BARYCKI 2 T. MIKULCZYŃSKI 2 A. WIATKOWSKI 3 R. WIĘCŁAWEK 4 1,3 Ośrodek Badawczo-Rozwojowy Elementów i Układów Pneumatyki 2,4 Instytut Technologii Maszyn i Automatyzacji Politechniki Wrocławskiej Zaprezentowano

Bardziej szczegółowo

1. Kiść. 1. Kiść 5. Podstawa 2. Przedramię 6. Przewody łączeniowe 3. Ramię 7. Szafa sterownicza 4. Kolumna obrotowa

1. Kiść. 1. Kiść 5. Podstawa 2. Przedramię 6. Przewody łączeniowe 3. Ramię 7. Szafa sterownicza 4. Kolumna obrotowa 1. Kiść 5. Podstawa 2. Przedramię 6. Przewody łączeniowe 3. Ramię 7. Szafa sterownicza 4. Kolumna obrotowa 1. Kiść Manipulator Kr 15 jest wyposażony w kiść dla ładunku użytecznego do 15 kg. Kiść mocowana

Bardziej szczegółowo

Układy napędowe maszyn - opis przedmiotu

Układy napędowe maszyn - opis przedmiotu Układy napędowe maszyn - opis przedmiotu Informacje ogólne Nazwa przedmiotu Układy napędowe maszyn Kod przedmiotu 06.1-WM-MiBM-P-59_15gen Wydział Kierunek Wydział Mechaniczny Mechanika i budowa maszyn

Bardziej szczegółowo

Podstawy PLC. Programowalny sterownik logiczny PLC to mikroprocesorowy układ sterowania stosowany do automatyzacji procesów i urządzeń.

Podstawy PLC. Programowalny sterownik logiczny PLC to mikroprocesorowy układ sterowania stosowany do automatyzacji procesów i urządzeń. Podstawy PLC Programowalny sterownik logiczny PLC to mikroprocesorowy układ sterowania stosowany do automatyzacji procesów i urządzeń. WEJŚCIA styki mechaniczne, przełączniki zbliżeniowe STEROWNIK Program

Bardziej szczegółowo

Kiść robota. Rys. 1. Miejsce zabudowy chwytaka w robocie IRb-6.

Kiść robota. Rys. 1. Miejsce zabudowy chwytaka w robocie IRb-6. Temat: CHWYTAKI MANIPULATORÓW I ROBOTÓW Wprowadzenie Chwytak jest zabudowany na końcu łańcucha kinematycznego manipulatora zwykle na tzw. kiści. Jeżeli kiść nie występuje chwytak mocowany jest do ramienia

Bardziej szczegółowo

Pomiar wielkości nieelektrycznych: temperatury, przemieszczenia i prędkości.

Pomiar wielkości nieelektrycznych: temperatury, przemieszczenia i prędkości. Zakład Napędów Wieloźródłowych Instytut Maszyn Roboczych CięŜkich PW Laboratorium Elektrotechniki i Elektroniki Ćwiczenie E3 - protokół Pomiar wielkości nieelektrycznych: temperatury, przemieszczenia i

Bardziej szczegółowo

WAT - WYDZIAŁ ELEKTRONIKI INSTYTUT SYSTEMÓW ELEKTRONICZNYCH. Przedmiot: CZUJNIKI I PRZETWORNIKI Ćwiczenie nr 1 PROTOKÓŁ / SPRAWOZDANIE

WAT - WYDZIAŁ ELEKTRONIKI INSTYTUT SYSTEMÓW ELEKTRONICZNYCH. Przedmiot: CZUJNIKI I PRZETWORNIKI Ćwiczenie nr 1 PROTOKÓŁ / SPRAWOZDANIE Grupa: WAT - WYDZIAŁ ELEKTRONIKI INSTYTT SYSTEMÓW ELEKTRONICZNYCH Przedmiot: CZJNIKI I PRZETWORNIKI Ćwiczenie nr 1 PROTOKÓŁ / SPRAWOZDANIE Temat: Przetworniki tensometryczne /POMIARY SIŁ I CIŚNIEŃ PRZY

Bardziej szczegółowo

Elektrotechnika I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Elektrotechnika I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013

Bardziej szczegółowo

BUDOWA PNEUMATYCZNEGO STEROWNIKA

BUDOWA PNEUMATYCZNEGO STEROWNIKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN POLITECHNIKI ŁÓDZKIEJ ĆWICZENIE NR P-18 BUDOWA PNEUMATYCZNEGO STEROWNIKA Koncepcja i opracowanie: dr inż. Michał Krępski Łódź, 2011 r. 2 Temat ćwiczenia:

Bardziej szczegółowo

SILNIK KROKOWY. w ploterach i małych obrabiarkach CNC.

SILNIK KROKOWY. w ploterach i małych obrabiarkach CNC. SILNIK KROKOWY Silniki krokowe umożliwiają łatwe sterowanie drogi i prędkości obrotowej w zakresie do kilkuset obrotów na minutę, zależnie od parametrów silnika i sterownika. Charakterystyczną cechą silnika

Bardziej szczegółowo

ROBOTY AUTOMATYZACJA PRODUKCJI

ROBOTY AUTOMATYZACJA PRODUKCJI ROBOTY AUTOMATYZACJA PRODUKCJI Roboty godne zaufania 02 Dane techniczne oraz więcej informacji na www.dopak.pl ROBOTY NAJNOWSZEJ GENERACJI ROBOT PNEUMATYCZNY TYPU PICKER SPRAWDZONA KONSTRUKCJA I IDEALNIE

Bardziej szczegółowo

Karta (sylabus) przedmiotu

Karta (sylabus) przedmiotu WM Karta (sylabus) przedmiotu Mechanika i Budowa Maszyn Studia I stopnia o profilu: A P Przedmiot: Pneumatyka z hydrauliką Kod przedmiotu Status przedmiotu: MBM N 0 6 54-0_0 Język wykładowy: polski Rok:

Bardziej szczegółowo

(13)B1 PL B1. (54) Sposób oraz urządzenie do pomiaru odchyłek okrągłości BUP 21/ WUP 04/99

(13)B1 PL B1. (54) Sposób oraz urządzenie do pomiaru odchyłek okrągłości BUP 21/ WUP 04/99 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19)PL 176148 (13)B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 307963 (22) Data zgłoszenia: 30.03.1995 (51) IntCl6 G01B 5/20 (54) Sposób

Bardziej szczegółowo

2.2 Wyznaczanie modułu Younga na podstawie ścisłej próby rozciągania

2.2 Wyznaczanie modułu Younga na podstawie ścisłej próby rozciągania UT-H Radom Instytut Mechaniki Stosowanej i Energetyki Laboratorium Wytrzymałości Materiałów instrukcja do ćwiczenia 2.2 Wyznaczanie modułu Younga na podstawie ścisłej próby rozciągania I ) C E L Ć W I

Bardziej szczegółowo

Podstawy Automatyki. Wykład 8 - Wprowadzenie do automatyki procesów dyskretnych. dr inż. Jakub Możaryn. Warszawa, 2015. Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 8 - Wprowadzenie do automatyki procesów dyskretnych. dr inż. Jakub Możaryn. Warszawa, 2015. Instytut Automatyki i Robotyki Wykład 8 - Wprowadzenie do automatyki procesów dyskretnych Instytut Automatyki i Robotyki Warszawa, 2015 Literatura Zieliński C.: Podstawy projektowania układów cyfrowych. PWN, Warszawa, 2003 Traczyk W.:

Bardziej szczegółowo

Instrukcja do ćwiczenia 6 REGULACJA TRÓJPOŁOŻENIOWA

Instrukcja do ćwiczenia 6 REGULACJA TRÓJPOŁOŻENIOWA Instrukcja do ćwiczenia 6 REGULACJA TRÓJPOŁOŻENIOWA Cel ćwiczenia: dobór nastaw regulatora, analiza układu regulacji trójpołożeniowej, określenie jakości regulacji trójpołożeniowej w układzie bez zakłóceń

Bardziej szczegółowo

Pionowe centrum obróbkowe TBI VC 1570

Pionowe centrum obróbkowe TBI VC 1570 Pionowe centrum obróbkowe TBI VC 1570 Uniwersalne i precyzyjne urządzenie do obróbki 3 osiowej, najbogatszy standard wyposażenia na rynku TBI Technology Sp. z o.o. ul. Bosacka 52 47-400 Racibórz tel.:

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Mechatronika UKŁADY NAPĘDOWE MASZYN I URZĄDZEO Drive systems of machines and devices Forma studiów: stacjonarne Kod przedmiotu: B04 Rodzaj przedmiotu: obowiązkowy dla kierunku

Bardziej szczegółowo

Lista zagadnień kierunkowych pomocniczych w przygotowaniu do egzaminu dyplomowego magisterskiego Kierunek: Mechatronika

Lista zagadnień kierunkowych pomocniczych w przygotowaniu do egzaminu dyplomowego magisterskiego Kierunek: Mechatronika Lista zagadnień kierunkowych pomocniczych w przygotowaniu do Kierunek: Mechatronika 1. Materiały używane w budowie urządzeń precyzyjnych. 2. Rodzaje stali węglowych i stopowych, 3. Granica sprężystości

Bardziej szczegółowo

Próby ruchowe dźwigu osobowego

Próby ruchowe dźwigu osobowego INSTYTUT KONSTRUKCJI MASZYN KIERUNEK: TRANSPORT PRZEDMIOT: SYSTEMY I URZĄDZENIA TRANSPORTU BLISKIEGO Laboratorium Próby ruchowe dźwigu osobowego Functional research of hydraulic elevators Cel i zakres

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: NAPĘDY I STEROWANIE ELEKTROHYDRAULICZNE MASZYN DRIVES AND ELEKTRO-HYDRAULIC MACHINERY CONTROL SYSTEMS Kierunek: Mechatronika Forma studiów: STACJONARNE Kod przedmiotu: S1_07 Rodzaj przedmiotu:

Bardziej szczegółowo

IRB PODSUMOWANIE:

IRB PODSUMOWANIE: IRB 2400 - PODSUMOWANIE: Rysunki obrazujące wymiary, udźwig i zasięg znajdują się na kolejnych stronach. Zdjęcia robota opisywanego tutaj są dostępne na dysku sieciowym pod adresem: https://drive.google.com/open?id=0b0jqhp-eodqgcfrhctlual9tauu

Bardziej szczegółowo

Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8

Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8 Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8 1. Cel ćwiczenia Celem ćwiczenia jest dynamiczne badanie wzmacniacza operacyjnego, oraz zapoznanie się z metodami wyznaczania charakterystyk częstotliwościowych.

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych. Układy rewersyjne

Instrukcja do ćwiczeń laboratoryjnych. Układy rewersyjne Instrukcja do ćwiczeń laboratoryjnych Układy rewersyjne Wstęp Celem ćwiczenia jest budowa różnych układów hydraulicznych pełniących zróżnicowane funkcje. Studenci po odbyciu ćwiczenia powinni umieć porównać

Bardziej szczegółowo

METODA POMIARU DOKŁADNOŚCI KINEMATYCZNEJ PRZEKŁADNI ŚLIMAKOWYCH

METODA POMIARU DOKŁADNOŚCI KINEMATYCZNEJ PRZEKŁADNI ŚLIMAKOWYCH METODA POMIARU DOKŁADNOŚCI KINEMATYCZNEJ PRZEKŁADNI ŚLIMAKOWYCH Dariusz OSTROWSKI 1, Tadeusz MARCINIAK 1 1. WSTĘP Dokładność przeniesienia ruchu obrotowego w precyzyjnych przekładaniach ślimakowych zwanych

Bardziej szczegółowo

UWAGA. Wszystkie wyniki zapisywać na dysku Dane E: Program i przebieg ćwiczenia:

UWAGA. Wszystkie wyniki zapisywać na dysku Dane E: Program i przebieg ćwiczenia: Cel ćwiczenia: Zapoznanie się z. metodami badania i analitycznego wyznaczania parametrów dynamicznych obiektów rzeczywistych na przykładzie mikrotermostatu oraz z metodami symulacyjnymi umożliwiającymi

Bardziej szczegółowo

MiAcz3. Elektryczne maszynowe napędy wykonawcze

MiAcz3. Elektryczne maszynowe napędy wykonawcze MiAcz3 Elektryczne maszynowe napędy wykonawcze Spis Urządzenia nastawcze. Silniki wykonawcze DC z magnesami trwałymi. Budowa. Schemat zastępczy i charakterystyki. Rozruch. Bieg jałowy. Moc. Sprawność.

Bardziej szczegółowo

Zasady i kryteria zaliczenia: Zaliczenie pisemne w formie pytań opisowych, testowych i rachunkowych.

Zasady i kryteria zaliczenia: Zaliczenie pisemne w formie pytań opisowych, testowych i rachunkowych. Jednostka prowadząca: Wydział Techniczny Kierunek studiów: Inżynieria bezpieczeństwa Nazwa przedmiotu: Mechanika techniczna Charakter przedmiotu: podstawowy, obowiązkowy Typ studiów: inżynierskie pierwszego

Bardziej szczegółowo

ROBOTY WEMO Z SERWONAPĘDAMI LINIOWYMI

ROBOTY WEMO Z SERWONAPĘDAMI LINIOWYMI KOMPETENCJA W AUTOMATYZACJI ROBOTY WEMO Z SERWONAPĘDAMI LINIOWYMI Seria ekonomiczna - edesign PROJEKT I BUDOWA ROBOTÓW Nowa, ekonomiczna seria robotów firmy Wemo (seria edesign) została zaprojektowana

Bardziej szczegółowo

SIŁOWNIKI CZUJNIK POZYCJI

SIŁOWNIKI CZUJNIK POZYCJI SIŁOWNIKI CZUJNIK POZYCJI 1 SIŁOWNIKI 2 SPIS TREŚCI WPROWADZENIE STRONA 4 CZUJNIKI POZYCJI LTS STRONA 5 SIŁOWNIKI CZUJNIKI POZYCJI LTL STRONA 9 SPIS TREŚCI CZUJNIKI POZYCJI LTE STRONA 12 3 WPROWADZENIE

Bardziej szczegółowo

PRACA DYPLOMOWA MAGISTERSKA

PRACA DYPLOMOWA MAGISTERSKA KATEDRA WYTRZYMAŁOSCI MATERIAŁÓW I METOD KOMPUTEROWYCH MACHANIKI PRACA DYPLOMOWA MAGISTERSKA Analiza kinematyki robota mobilnego z wykorzystaniem MSC.VisualNastran PROMOTOR Prof. dr hab. inż. Tadeusz Burczyński

Bardziej szczegółowo

P O L I T E C H N I K A W A R S Z A W S K A

P O L I T E C H N I K A W A R S Z A W S K A P O L I T E C H N I K A W A R S Z A W S K A WYDZIAŁ BUDOWNICTWA, MECHANIKI I PETROCHEMII INSTYTUT INŻYNIERII MECHANICZNEJ LABORATORIUM NAPĘDÓW I STEROWANIA HYDRAULICZNEGO I PNEUMATYCZNEGO Instrukcja do

Bardziej szczegółowo