Modułowy robot mobilny Elektron

Wielkość: px
Rozpocząć pokaz od strony:

Download "Modułowy robot mobilny Elektron"

Transkrypt

1 Modułowy robot mobilny Elektron Wojciech Szynkiewicz 1, Rafał Chojecki 2, Andrzej Rydzewski 1, Marek Majchrowski 1, Piotr Trojanek 1 Streszczenie Artykuł opisuje strukturę sprzętową i podstawowe oprogramowanie robota mobilnego Elektron R1. Zarówno konstrukcja mechaniczna robota, jak i jego układ sterowania mają budowę modułową. Baza jezdna jest sześciokołową platformą mobilną z napędem na wszystkie koła. Podstawowym elementem sterownika robota jest komputer pokładowy o dużej mocy obliczeniowej zbudowany na bazie jednopłytkowego mikrokomputera typu PC przeznaczonego do zastosowań wbudowanych. Oprócz podstawowych czujników odometrycznych oraz dalmierzy podczerwonych, robot może być wyposażony w dodatkowe moduły złożonych czujników takich jak: skaner laserowy z kamerą dookólną, głowica do skanowania trójwymiarowego oraz układ stereowizyjny. 1. WSTEP Robot mobilny Elektron R1 (rys. 1) został zaprojektowany i zbudowany w Instytucie Automatyki i Robotyki oraz Instytucie Automatyki i Informatyki Stosowanej Politechniki Warszawskiej. Jest to autonomiczna platforma laboratoryjna przygotowana do badań nad systemami sterowania i nawigacji robotów mobilnych. Podstawowym założeniem przy projektowaniu układów sterowania tych robotów było przyjęcie modułowej struktury zarówno części sprzętowej jak i programowej sterowników, dzięki temu, w zależności od przyszłych potrzeb, ich rozbudowa nie będzie nastręczała większych problemów. Możliwości takiego dostępu są zazwyczaj bardzo ograniczone w komercyjnych robotach mobilnych. Przy projektowaniu robota Elektron wykorzystano doświadczenia zdobyte podczas tworzenia wielu konstrukcji mechanicznych robotów mobilnych [1]. Moduły składające się na układ sterowania mają dobrze zdefiniowane interfejsy, metody komunikacji oraz ograniczenia jakim podlegają. Architektura sprzętowa i programowa sterownika ma hierarchiczną strukturę warstwową. Warstwa wykonawcza realizuje bezpośrednią obsługę sprzętu, w tym sterowanie silnikami oraz obsługę czujników. Warstwa decyzyjna realizuje zadania wyższego poziomu m.in. planowanie działań, nawigację robotem oraz komunikację między robotami. Założono, że układ sterowania powinien umożliwiać autonomiczne działanie robota. Intensywny rozwój robotyki mobilnej w ostatnich dwóch dekadach zaowocował powstaniem wielu konstrukcji mechanicznych [3, 4] oraz architektur programowych robotów [9, 12]. Obecnie dominują architektury hybrydowe deliberatywnoreaktywne, najczęściej o strukturze warstwowej. Nie opracowano jak dotąd żadnego Praca jest finansowana przez grant MNiI: 3T11A0009/29 1 Instytut Automatyki i Informatyki Stosowanej, Wydział Elektroniki i Technik Informacyjnych, Politechnika Warszawska, ul. Nowowiejska 15/19, Warszawa, 2 Wydział Mechatroniki, Instytut Automatyki i Robotyki, ul. św. Andrzeja Boboli 8, Warszawa

2 W. Szynkiewicz i in. standardu dla tego typu oprogramowania, aczkolwiek podejmowane są próby stworzenia otwartych środowisk programowania robotów z ogólnie dostępnymi źródłami, które próbują wyznaczać takie standardy [2,5 7,9]. W aktualnej wersji oprogramowania sterownika robota Elektron wykorzystano otwarte środowisko Player/Stage [7,12]. Zawiera ono m.in. bogatą bibliotekę sterowników różnych urządzeń, w tym czujników typowo montowanych w robotach mobilnych takich jak: dalmierze, skanery laserowe, kamery wizyjne, itp. 2. KONSTRUKCJA MECHANICZNA Baza jezdna robota jest sześciokołową platformą mobilną z napędem na wszystkie koła (rys. 1). Jako założenia projektowe postawiono następujące wymagania: zwarta konstrukcja o stosunkowo niewielkich rozmiarach zbudowana z modułów, nośność 15kg, duża trwałość i niezawodność mechaniczna, możliwość poruszania się w pomieszczeniach zamkniętych i w terenie, możliwie duża zwrotność oraz autonomia działania. Robot ma budowę modułową i w jej skład wchodzą moduły napędowe, moduł centralny rama, moduł sterowania, moduł stopnia mocy oraz wymienne moduły wykonawczo-sensoryczne. Bazowe podwozie ma wymiary mm. Rys. 1. Robot mobilny Elektron R1 Kadłub robota został wykonany z aluminium i całkowicie osłania wszystkie elementy układu sterowania i zasilania. W konstrukcji ramy wykorzystano prostokątne profile, dzięki czemu otrzymano lekką i sztywną konstrukcję nośną. Zastosowany w robocie układ napędowy jest typu czołgowego: skręcanie odbywa się przez różnicowanie prędkości kół po prawej i lewej stronie robota. Do napędu pojazdu zastosowano dwa silniki prądu stałego o nominalnym napięciu zasilania 24V, ze zintegrowanymi przekładniami. Każdy z silników napędza trzy koła, odpowiednio po lewej i prawej stronie pojazdu. Dla zabezpieczenia przekładni silników przed obciążeniami pochodzącymi od podłoża, a tym samym zwiększenia ich trwałości, każde z kół ma własny zestaw łożysk. Takie rozwiązanie pozwoliło zwiększyć

3 Modułowy robot mobilny Elektron obciążalność statyczną podwozia pojazdu do 100kg. Napęd z silników jest przekazywany na koła za pośrednictwem systemu przekładni z paskami zębatymi. Przekładnie zapewniają bezluzową i cichą pracę napędów. Oba napędy pojazdu zaprojektowano jako niezależne zintegrowane moduły. Pojedynczy moduł składa się z: korpusu, silnika napędowego wraz z przekładnią i enkoderem, systemu przekładni z paskiem zębatym oraz piast z łożyskami. W zabudowanym korpusie znajdują się wszystkie przekładnie oraz łożyska, dzięki czemu są całkowicie zabezpieczone przed zanieczyszczeniami. Oba moduły są identyczne i mogą być montowane zarówno po prawej jak i lewej stronie pojazdu. W pojeździe zastosowano koła o jednakowej średnicy wynoszącej 100mm. Moduły napędowe są przykręcane do spodu ramy i zabezpieczone dodatkowo dolną osłoną. Wraz z ramą tworzą zwartą i zamkniętą konstrukcję. Między modułami napędowymi znajdują się dwa 12V akumulatory, każdy o pojemności 7Ah. Komputer pokładowy wraz z modułami sterującymi został umieszczony nad układem napędowym. Dla zapewnienia wygodnego dostępu do układu sterującego został on umieszczony na łatwo demontowalnym panelu. W celu zabezpieczenia układów elektronicznych przed zakłóceniami zastosowano ekrany oddzielające je od silników oraz modułów mocy. W tylnej części robota, na pokrywie górnej, znajduje się panel sterowania zintegrowany z układem zasilania. Panel jest wyposażony w przełączniki odpowiedzialne za włączanie poszczególnych obwodów robota oraz aktywację napędów. W panelu znajdują się też: wyświetlacz informujący o stanie robota, przycisk stopu awaryjnego, gniazdo zasilania zewnętrznego i ładowania akumulatorów, gniazda portów komunikacji szeregowej oraz port sterownika ręcznego. Przez łącze sterownika możliwe jest sterowanie napędami bez udziału komputera pokładowego. Jest to szczególnie przydatna funkcja podczas przestawiania robota. Źródłem zasilania robota są dwa akumulatory 12V połączone szeregowo lub zewnętrzny zasilacz o napięciu 24V. Układ zasilania wyposażony został w przetwornice, dzięki którym na pokładzie robota dostępne są napięcia 5V, 12V i 24V. 3. PODSTAWOWE CZUJNIKI ROBOTA Robot Elektron R1 jest wyposażony w kilka niezależnych układów czujników. Do podstawowych należą: układ pomiaru odometrycznego oraz układ dalmierzy optycznych rozmieszczonych dookoła korpusu robota. Układ pomiaru odometrycznego składa się z dwóch przetworników obrotowo-impulsowych (enkoderów optycznych) umieszczonych w module napędowym. Zastosowano dwufazowe enkodery o rozdzielczości 1000 impulsów na obrót, dzięki czemu jest możliwy pomiar kąta obrotu kół z rozdzielczością 1/4000 pełnego obrotu. Ze względu na luzy występujące w przekładniach napędu i wynikającej z tego powodu możliwości powstawania stosunkowo dużych błędów, zrezygnowano z umieszczenia enkoderów na wałach silników. Pomiar prędkości obrotowej odbywa się bezpośrednio na osiach kół. Układ dalmierzy optoelektronicznych służy do wykrywania przeszkód znajdujących się w bezpośrednim otoczeniu robota. Czujniki pracują w paśmie podczerwieni, a pomiar dokonywany jest metodą triangulacyjną. Zastosowano dwa typy dalmierzy, krótkiego (3-30cm) i dalekiego zasięgu (10-120cm). Na robocie rozmiesz-

4 W. Szynkiewicz i in. czono osiemnaście czujników: pięć dalekiego zasięgu i trzynaście krótkiego. Na rys. 2 pokazano ich rozmieszczenie w zderzakach robota. W przedniej części robota umieszczono 11 dalmierzy, na każdej burcie pojazdu po dwa oraz w tylnej części trzy. Dla uniknięcia wzajemnego zakłócania czujniki dalekiego i krótkiego zasięgu są umieszczone naprzemiennie. Dalmierze są obsługiwane przez jednoukładowe mikrokomputery podłączone do komputera nadrzędnego przez magistralę RS-485. Rys. 2. Rozmieszczenie dalmierzy podczerwonych na korpusie robota 4. DODATKOWE MODUŁY CZUJNIKÓW Robot jest przystosowany do współpracy z dodatkowym wyposażeniem. Otwarta struktura układu sterowania oraz specjalnie zaprojektowana konstrukcja mechaniczna pozwalają na łatwy montaż dodatkowych modułów. W opisywanej konstrukcji robota, główny nacisk położono na opracowanie dodatkowego wyposażenia w postaci modułów czujników. Dotychczas zbudowano i przetestowano trzy wersje takich modułów. Pierwszy składa się ze skanera laserowego SICK LMS 200 oraz układu wizji dookólnej (rys. 3a). Skaner został sztywno przykręcony do specjalnego wspornika zamocowanego do korpusu robota. Umożliwia pomiar odległości w zakresie kątowym 180. Do górnej części skanera przymocowano układ wizji dookólnej. Składa się on z kamery umieszczonej pionowo oraz zwierciadła parabolicznego umieszczonego nad nią w osi optycznej. Zaletą czujnika wizji dookólnej jest możliwość obserwacji otoczenia w zakresie 360 przez jedną kamerę. Oś optyczna skanera oraz oś kamery pokrywają się. Drugim modułem przygotowanym dla robotów typu ELEKTRON jest głowica do skanowania trójwymiarowego. Moduł składa się ze skanera laserowego SICK LMS 200 umieszczonego na obrotowej głowicy. Głowica może obracać skaner wokół osi poprzecznej w zakresie kątowym od 15 do +90. Do napędu głowicy wykorzystano silnik elektryczny prądu stałego z przekładnią planetarną. Napęd przekazywany jest za pośrednictwem przekładni z paskiem zębatym, dzięki czemu silnik napędowy został zainstalowany w podstawie. Do pomiaru kąta obrotu zostały zastosowane dwa przetworniki obrotowo-impulsowe. Pierwszy z nich, zainstalowany na wale silnika, jest wykorzystywany w układzie regulacji położenia. Drugi dokonuje pomiaru kąta obrotu bezpośrednio na osi obrotu skanera. Dzięki takiej konfiguracji możliwy jest precyzyjny pomiar położenia kątowego głowicy, na który nie mają wpływu luzy występujące w przekładni. Głowicę pokazano na rys. 3b.

5 Modułowy robot mobilny Elektron Trzecim modułem jest system stereowizyjny (rys. 3c). Składa się on z dwóch kamer CCD o wysokiej rozdzielczości, które są dodatkowo wyposażone w motozoom. Kamery zostały zainstalowane w przedniej części robota, na specjalnie przygotowanej belce. Dzięki zastosowaniu obrotowej podstawy kamery mogą obracać się w zakresie kątowym od 0 do 180. a b c Rys. 3. Moduły czujników 5. STRUKTURA UKŁADU STEROWANIA Schemat blokowy układu sterowania jest pokazany na rys.4. Podstawowym elementem układu jest główny komputer pokładowy, który zarządza pracą całego systemu i realizuje wszystkie funkcje sterowania wysokiego poziomu. Wykorzystano tu jednopłytkowy komputer PCM-9579 EBX firmy Advantech [8]. Jest to komputer z procesorem Celeron lub Pentium (z zegarem o częstotliwości odpowiednio 650MHz i 900MHz), przeznaczony do zastosowań wbudowanych (embedded), wyposażony we wszystkie typowe elementy komputera klasy PC (grafika, dźwięk, Ethernet, sterowniki napędów dyskowych, porty równoległe i szeregowe RS-232, magistrala PCI), a także w elementy dodatkowe, typowe dla komputerów wbudowanych (magistrale PC-104 i PC-104+, magistralę RS-485, złącze pamięci compact flash pracującej w trybie IDE). Magistrale PC-104 i PC-104+ (standard dla komputerów wbudowanych) umożliwiają łatwą rozbudowę i modyfikację układu sterowania, przez dokładanie kart rozszerzeń. Układy te cechują się stosunkowo niewielkimi rozmiarami, małym poborem mocy oraz dużą dostępnością gotowych modułów peryferyjnych. W konfiguracji bazowej robota, do magistrali PC-104+ jest przyłączona bezprzewodowa karta sieciowa zgodna z standardem Ethernet g wykorzystywana do szybkiej (52Mb/s) komunikacji robota z otoczeniem. W układzie sterowania robota wyposażonego w kamerę wysokiej jakości, do magistrali PC-104+ jest przyłączona karta akwizycji obrazu. W układach innych egzemplarzy robotów, do magistrali tej, a także do magistrali

6 W. Szynkiewicz i in. 3& *áyzq\nrpsxwhu VWHUXM F\ 3&0(%; ZEXGRZDQ\NODV\3&.DUWDDNZL]\FML REUD]X.DUWD :/$1 =DVLODQLH 3& LNURNRPSXWHU SRPLDURZ\ &]XMQLNL RGOHJáR FL 56 0LNURNRPSXWHU VWHUXM F\ 0LNURNRPSXWHU SRPLDURZ\ &]XMQLNL ELQDUQH 3:0 $% Rys. 4. Struktura sprzętowa sterownika robota Elektron :]PDFQLDF]H PRF\ :\ ZLHWODF] /&'.ODZLDWXUD 6LOQLNL (QNRGHU\QDNRáDFK 3U]HWZRUQLFH 3U]HND QLNL 9 %DWHULD DNXPXODWRUyZ PC-104 mogą być przyłączone inne, dodatkowe pakiety rozszerzające, zgodnie z potrzebami funkcjonalności układu, zarówno fabryczne, jak i prototypowe wykonane we własnym zakresie. Planuje się np. wykonanie specjalizowanej karty szybkiego interfejsu RS-422 do komunikacji z dalmierzem laserowym. Bezpośrednie sterowanie wszystkich elementów wykonawczych robota (silniki, czujniki, itp.), a także wykrywanie i obsługa sytuacji awaryjnych są realizowane przez specjalizowany mikrokomputer sterujący. Jest on zbudowany na bazie mikrokomputera jednoukładowego firmy Atmel T89C51AC2 8-bitowego układu rodziny MCS-51. Mikrokomputer ten jest wykonany w statycznej technologii CMOS, dzięki czemu charakteryzuje się niskim zużyciem energii, może pracować z rezonatorem kwarcowym o częstotliwości do 40MHz. Komunikacja mikrokomputera z głównym komputerem sterującym odbywa się za pomocą bloku sprzęgającego, przyłączonego z jednej strony do magistrali PC-104 komputera, a z drugiej strony do magistrali mikrokomputera. Jedną z funkcji mikrokomputera sterującego jest sterowanie silnikami napędowymi robota (regulacja prędkości lub położenia). Do tego celu wykorzystano scalone regulatory PID układy LM629 firmy National Semiconductor. Są to specjalizowane układy przeznaczone do sterowania silnikami, które wykonując cyfrowy algorytm regulacji PID mogą realizować kilka typowych zadań sterowania: regulacja prędkości, realizacja zadanej trajektorii oraz regulacja położenia. Układ mierzy pozycję i prędkość wykorzystując bezpośrednio sygnał z enkodera i wytwarza stero-

7 Modułowy robot mobilny Elektron wanie w postaci sygnału PWM. Sygnały PWM, po przejściu przez wzmacniacz mocy, sterują silnikami elektrycznymi prądu stałego. Zadanie regulacji (pozycja zadana, prędkość zadana, przyspieszenie) oraz parametry regulatora (wzmocnienia wszystkich członów, częstotliwość próbkowania, ograniczenie wartości członu całkującego) są przekazywane programowo. Jest przy tym możliwy programowy dostęp do regulatorów zarówno przez mikrokomputer, jak i przez główny komputer sterujący. W celu zapewnienia elastyczności konfiguracji, prostoty rozbudowy oraz zmniejszenia liczby przewodów dochodzących do mikrokomputera sterującego, przyjęto że wszystkie czujniki będą bezpośrednio obsługiwane przez specjalizowane mikrokomputery pomiarowe, pracujące w sieci lokalnej. Do budowy sieci mikrokomputerów pomiarowych przyjęto standard RS-485. Za zasilanie całości układu sterowania odpowiada blok przetwornic i przekaźników, sterowany ręcznie przez użytkownika za pomocą klawiatury. W bloku tym, zasilanym napięciem 24V z akumulatora albo z zasilacza zewnętrznego, jest wytwarzane napięcie 5V (do zasilania m.in. komputerów i logiki sterownika), oraz napięcia 12V i 24V (do zasilania silników i różnych elementów dodatkowych, np. kamery). Każde z napięć zasilających może być indywidualnie włączane i wyłączane przez użytkownika. 6. OPROGRAMOWANIE Oprogramowanie robota ma strukturę warstwową, gdzie podstawowe funkcje, takie jak akwizycja danych z układu odometrii czy dalmierzy na podczerwień, są realizowane przez układy zbudowane na bazie mikrokomputerów jednoukładowych połączonych z głównym komputerem pokładowym robota, który wykonuje programy sterujące robotem i analizujące dane pomiarowe. Moduły akwizycji danych analogowych, do których są podłączone czujniki odległości, są odpytywane o wartości sygnałów wejściowych przez mikrokomputer nadrzędny w cyklu 40ms. W przypadku zaniechania odpytywania następuje automatyczne odłączenie zasilania od czujników. W ten sposób unika się zbędnego poboru energii np. w czasie jazdy na wprost, kiedy nie jest potrzebna informacja z czujników umieszczonych na tylnym zderzaku. Komunikacja z modułami akwizycji danych odbywa się przez magistralę RS-485, gdzie moduły pełnią rolę urządzeń typu slave zaś transmisja danych jest zawsze inicjowana przez układ nadrzędny (master). Głównym zadaniem mikrokomputera sterującego jest obsługa scalonych regulatorów PID. Pośredniczy on w przekazywaniu sterowań i odczytywaniu aktualnej pozycji pomiędzy komputerem PC a układami LM629. Mikrokomputer sterujący generuje ponadto dwa sygnały PWM sterujące serwomechanizmami modelarskimi, które mogą służyć np. do obracania kamer bądź do sterowania prostego manipulatora. Główny komputer pokładowy jest wyposażony w 256MB pamięci RAM oraz kartę compact flash o pojemności 512MB pracującą w trybie IDE. Pracuje on pod kontrolą systemu operacyjnego Linux w dystrybucji Gentoo. Wybór samego systemu spowodowany jest bogactwem oprogramowania (w tym gotowych sterowników urządzeń) dostępnego dla tej platformy. Dystrybucja została wybrana z powodu dobrze rozwiniętego systemu konfiguracji i dostosowywania pakietów do specyfiki sys-

8 W. Szynkiewicz i in. temu wbudowanego. Całość oprogramowania skompilowana z opcjami optymalizacji dla procesora Pentium zajmuje obszar o pojemności ok. 100MB na karcie pamięci. Do systemu zostały dołączone także biblioteki IPP (Intel Integrated Performance Primitives) [10] oraz MKL (Intel Math Kernel Library) [11], które umożliwiają znaczące przyśpieszenie operacji przetwarzania obrazu. Do sterowania robotem została wykorzystane środowisko Player/Stage [12]. Ogólny schemat struktury oprogramowania z wykorzystaniem Playera przedstawiono na rys. 5. Jest to struktura trójwarstwowa. W warstwie górnej są umieszczone programy klientów realizujące zadania użytkownika. Warstwę środkową stanowi proces wielowątkowego serwera Player, w którego skład wchodzą interfejsy i sterowniki. Natomiast warstwę dolną stanowią sterowniki programowe konkretnych urządzeń. Każdy klient jest połączony z serwerem Playera przez gniazda TCP. Jeśli klient jest Rys. 5. Ogólna struktura oprogramowania robota Elektron uruchomiony na tej samym komputerze co Player, wówczas połączenie jest przez realizowane interfejs lokalny (loopback). W przeciwnym przypadku jest to fizyczne połączenie przez sieć (może to być sieć bezprzewodowa). Z drugiej strony Player łączy się z urządzeniami, przez swoje sterowniki, zazwyczaj wykorzystując łącze RS-232, choć w przypadku niektórych sterowników (jak festival) połączenie to jest nawiązywane także przez sieć TCP. W przypadku sterownika robota mobilnego Elektron połączenie to jest nawiązywane z modułem jądra Linuxa, który dalej obsługuje to żądanie. Wewnątrz procesu Player różne wątki komunikują się wykorzystując wspólną przestrzeń adresową procesu. Każde urządzenie jest powiązane z buforem komend

9 Modułowy robot mobilny Elektron i buforem danych. Dostęp do tych buforów jest zrealizowany z wykorzystaniem mechanizmu wzajemnego wykluczania. W ten sposób jest zapewniony asynchroniczny kanał komunikacyjny pomiędzy wątkami sterowników urządzeń a wątkami serwera odpowiedzialnymi za odbieranie oraz udostępnianie danych programom klientów. Integracja robota z tym oprogramowaniem wymagała stworzenia sterowników (drivers) implementujących interfejsy już wcześniej zdefiniowane w systemie zapewniające komunikację z układem napędu (sterowanie prędkościowe i pozycyjne) i czujnikami odległości, sterowanie serwomechanizmami modelarskimi oraz monitorowanie stanu naładowania akumulatorów w trakcie pracy robota. Programowy sterownik napędów robota mobilnego Elektron ma postać tzw. wtyczki do serwera Player. Udostępnia on interfejs position. Komunikacja sterownika ze specjalizowaną kartą PC-104 zawierającą mikrokomputer sterujący odbywa się przez porty we-wy oraz przerwania ich obsługę realizuje specjalnie napisany moduł jądra systemu Linux. Sterownik ten pozwala na: ustawienie prędkościowego trybu sterowania robotem, ustawienie pozycyjnego trybu sterowania robotem, ustawienie maksymalnego przyspieszenia w obu trybach, ustawienie maksymalnej prędkości w trybie sterowania pozycyjnego, odczyt danych odometrycznych, wyzerowanie liczników odczytów odometrycznych, odczytanie geometrii robota pozycji oraz rozmiarów jego bazy jezdnej, ustawienie parametrów scalonego regulatora PID LM629, wyłączenie wzmacniaczy mocy dla silników. Zostały także uruchomione istniejące w środowisku Player sterowniki dalmierza laserowego, przechwytywania obrazu z kamer wizyjnych, obsługa wejścia i wyjścia audio. Do chwili obecnej nie wystąpiła konieczność używania rozszerzeń czasu rzeczywistego dla systemu Linux (np. RT-Linux lub RTAI), jednak przyjęte założenie o tworzeniu oprogramowania od podstaw (jako elementu prowadzonych prac) pozwala w łatwy sposób na taką modyfikację w przyszłości. 7. PODSUMOWANIE W artykule omówiono budowę robota Elektron skonstruowanego z myślą wykorzystania go w pracach badawczych nad nawigacją autonomiczną robotów mobilnych. Modułowa konstrukcja pozwala na szybkie zmiany wyposażenia robota, w szczególności zestawów czujników. Dzięki wykorzystaniu typowych komputerów PC przeznaczonych do zastosowań wbudowanych z magistralami standardu PC-104 i PC-104+, poza dużą mocą obliczeniową uzyskano możliwość łatwej rozbudowy układu sterowania przez dodanie nowych kart rozszerzeń. W chwili obecnej roboty są wyposażone w karty WLAN zgodne ze standardem g do szybkiej (52Mb/s) komunikacji bezprzewodowej. Dla robotów Elektron opracowano także moduły złożonych czujników, m.in. czujnika złożonego z skanera laserowego i kamery dookólnej o wysokiej rozdzielczości, głowicy skanującej 3D, czy też układu stereowizyjnego.

10 LITERATURA W. Szynkiewicz i in. [1] R. Chojecki, M. Olszewski, P. Marcinkiewicz. Miniaturowe roboty mobilne w Instytucie Automatyki i Robotyki Politechniki Warszawskiej. In: Przemysłowe i medyczne systemy robotyczne Red. K. Tchoń, s WKŁ [2] B.P. Gerkey, R.T. Vaughan, A. Howard. The player/stage project: Tools for multi-robot and distributed sensor systems. In: Int. Conf. on Advanced Robotics (ICAR2003). Proceedings, 2003, s [3] M. Kabała, K. Tchoń, M. Wnuk. Robot mobilny napędzany w układzie wewnętrznym. In: Krajowa Konfrencja Robotyki, VII KKR, Prace Naukowe ICT PWr. Proceedings Red. K. Tchoń, Lądek Zdrój, wolumen 1, s [4] W. Klimasara. Koncepcja, projekt oraz konstrukcja mechaniczna mobilnego robota interwencyjno-inspekcyjnego sr-10 inspector. In: Krajowa Konfrencja Robotyki, VII KKR, Prace Naukowe ICT PWr. Proceedings Red. K. Tchoń, Lądek Zdrój, wolumen 1, s [5] M. Montemerlo, N. Roy, S. Thrun. Perspectives on standardization in mobile robot programming: The carnegie mellon navigation (carmen) toolkit. In: IE- EE/RSJ Int. Conf. on Intelligent Robots and Systems. Proceedings, Vol. 3, s [6] A. Orebäck, H.I. Christensen. Evaluation of architectures for mobile robotics. Autonomous Robots, 2003, Vol. 14, No. 1, s [7] R.T. Vaughan, B.P. Gerkey, A. Howard. On device abstractions for portable, reusable robot code. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems. Proceedings, Vol. 3, s [8] Advantech. 5.25" Single Board Computer PCM-9579, [9] CARMEN. CARMEN: Carnegie Mellon Robot Navigation Toolkit, [10] Intel. IntelR Integrated Performance Primitives (IPP), [11] Intel. IntelR Math Kernel Library (MKL), [12] Player/Stage The Player/Stage Project, A MODULAR MOBILE ROBOT ELEKTRON The paper presents a new mobile robot Elektron. Elektron is a modular mobile platform offering various options like a laser scanner with omnidirectional vision system, 3D scanning head, stereovision system. The robot has six-wheel base with all wheels motorized. It is equipped with on-board embedded computer based on Intel Pentium processor.

Systemy wbudowane. Paweł Pełczyński ppelczynski@swspiz.pl

Systemy wbudowane. Paweł Pełczyński ppelczynski@swspiz.pl Systemy wbudowane Paweł Pełczyński ppelczynski@swspiz.pl 1 Program przedmiotu Wprowadzenie definicja, zastosowania, projektowanie systemów wbudowanych Mikrokontrolery AVR Programowanie mikrokontrolerów

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Opis stanowiska laboratoryjnego do projektowania i weryfikacji algorytmów sterujących autonomicznych pojazdów

Bardziej szczegółowo

Sterowniki Programowalne Sem. V, AiR

Sterowniki Programowalne Sem. V, AiR Katedra Inżynierii Systemów Sterowania Sterowniki Programowalne Sem. V, AiR Opis stanowiska sterowania prędkością silnika 3-fazowego Opracował: mgr inż. Arkadiusz Cimiński Data: październik, 2016 r. Opis

Bardziej szczegółowo

2. Zawartość dokumentacji. 1. Strona tytułowa. 2. Zawartość dokumentacji. 3. Spis rysunków. 4. Opis instalacji kontroli dostępu. 3.

2. Zawartość dokumentacji. 1. Strona tytułowa. 2. Zawartość dokumentacji. 3. Spis rysunków. 4. Opis instalacji kontroli dostępu. 3. 2. Zawartość dokumentacji 1. Strona tytułowa. 2. Zawartość dokumentacji. 3. Spis rysunków. 4. Opis instalacji kontroli dostępu. 3. Spis rysunków Rys nr 1 schemat instalacji KD Piwnica Rys nr 2 schemat

Bardziej szczegółowo

Jednostka centralna. Miejsca na napędy 5,25 :CD-ROM, DVD. Miejsca na napędy 3,5 : stacja dyskietek

Jednostka centralna. Miejsca na napędy 5,25 :CD-ROM, DVD. Miejsca na napędy 3,5 : stacja dyskietek Ćwiczenia 1 Budowa komputera PC Komputer osobisty (Personal Komputer PC) komputer (stacjonarny lub przenośny) przeznaczony dla pojedynczego użytkownika do użytku domowego lub biurowego. W skład podstawowego

Bardziej szczegółowo

LEKCJA TEMAT: Zasada działania komputera.

LEKCJA TEMAT: Zasada działania komputera. LEKCJA TEMAT: Zasada działania komputera. 1. Ogólna budowa komputera Rys. Ogólna budowa komputera. 2. Komputer składa się z czterech głównych składników: procesor (jednostka centralna, CPU) steruje działaniem

Bardziej szczegółowo

Politechnika Wrocławska

Politechnika Wrocławska Politechnika Wrocławska Instytut Cybernetyki Technicznej Wizualizacja Danych Sensorycznych Projekt Kompas Elektroniczny Prowadzący: dr inż. Bogdan Kreczmer Wykonali: Tomasz Salamon Paweł Chojnowski Wrocław,

Bardziej szczegółowo

- WALKER Czteronożny robot kroczący

- WALKER Czteronożny robot kroczący - WALKER Czteronożny robot kroczący Wiktor Wysocki 2011 1. Wstęp X-walker jest czteronożnym robotem kroczącym o symetrycznej konstrukcji. Został zaprojektowany jako robot którego zadaniem będzie przejście

Bardziej szczegółowo

MCAR Robot mobilny z procesorem AVR Atmega32

MCAR Robot mobilny z procesorem AVR Atmega32 MCAR Robot mobilny z procesorem AVR Atmega32 Opis techniczny Jakub Kuryło kl. III Ti Zespół Szkół Zawodowych nr. 1 Ul. Tysiąclecia 3, 08-530 Dęblin e-mail: jkurylo92@gmail.com 1 Spis treści 1. Wstęp..

Bardziej szczegółowo

EPPL , 15-31, 20-31

EPPL , 15-31, 20-31 Najnowsza seria zaawansowanych technologicznie zasilaczy klasy On-Line (VFI), przeznaczonych do współpracy z urządzeniami zasilanymi z jednofazowej sieci energetycznej ~230V: serwery, sieci komputerowe

Bardziej szczegółowo

Wizualizacja stanu czujników robota mobilnego. Sprawozdanie z wykonania projektu.

Wizualizacja stanu czujników robota mobilnego. Sprawozdanie z wykonania projektu. Wizualizacja stanu czujników robota mobilnego. Sprawozdanie z wykonania projektu. Maciek Słomka 4 czerwca 2006 1 Celprojektu. Celem projektu było zbudowanie modułu umożliwiającego wizualizację stanu czujników

Bardziej szczegółowo

Rozproszony system zbierania danych.

Rozproszony system zbierania danych. Rozproszony system zbierania danych. Zawartość 1. Charakterystyka rozproszonego systemu.... 2 1.1. Idea działania systemu.... 2 1.2. Master systemu radiowego (koordynator PAN).... 3 1.3. Slave systemu

Bardziej szczegółowo

EPPL 1-1. KOMUNIKACJA - Interfejs komunikacyjny RS 232 - Sieciowa Karta Zarządzająca SNMP/HTTP

EPPL 1-1. KOMUNIKACJA - Interfejs komunikacyjny RS 232 - Sieciowa Karta Zarządzająca SNMP/HTTP EPPL 1-1 Najnowsza seria zaawansowanych technologicznie zasilaczy klasy On-Line (VFI), przeznaczonych do współpracy z urządzeniami zasilanymi z jednofazowej sieci energetycznej ~230V: serwery, sieci komputerowe

Bardziej szczegółowo

AUTOMATYKA I STEROWANIE W CHŁODNICTWIE, KLIMATYZACJI I OGRZEWNICTWIE L1 BUDOWA TERMOSTATU ELEKTRONICZNEGO

AUTOMATYKA I STEROWANIE W CHŁODNICTWIE, KLIMATYZACJI I OGRZEWNICTWIE L1 BUDOWA TERMOSTATU ELEKTRONICZNEGO ĆWICZENIE LABORATORYJNE AUTOMATYKA I STEROWANIE W CHŁODNICTWIE, KLIMATYZACJI I OGRZEWNICTWIE L1 BUDOWA TERMOSTATU ELEKTRONICZNEGO Wersja: 2013-07-27-1- 1.1. Cel ćwiczenia Celem ćwiczenia jest samodzielna

Bardziej szczegółowo

Szczegółowy Opis Przedmiotu Zamówienia: Zestaw do badania cyfrowych układów logicznych

Szczegółowy Opis Przedmiotu Zamówienia: Zestaw do badania cyfrowych układów logicznych ZP/UR/46/203 Zał. nr a do siwz Szczegółowy Opis Przedmiotu Zamówienia: Zestaw do badania cyfrowych układów logicznych Przedmiot zamówienia obejmuje następujące elementy: L.p. Nazwa Ilość. Zestawienie komputera

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Architektura komputerów Tydzień 8 Magistrale systemowe Magistrala Układy składające się na komputer (procesor, pamięć, układy we/wy) muszą się ze sobą komunikować, czyli być połączone. Układy łączymy ze

Bardziej szczegółowo

ROBOT MOBILNY ZBIERAJĄCY INFORMACJE O POMIESZCZENIU

ROBOT MOBILNY ZBIERAJĄCY INFORMACJE O POMIESZCZENIU P O L I T E C H N I K A P O Z N A Ń S K A Praca magisterska ROBOT MOBILNY ZBIERAJĄCY INFORMACJE O POMIESZCZENIU Promotor: dr inż. Dariusz Sędziak inż. Maciej Ciechanowski Poznań 2016 Cel pracy: CEL I ZAKRES

Bardziej szczegółowo

SigmaDSP - zestaw uruchomieniowy dla procesora ADAU1701. SigmaDSP - zestaw uruchomieniowy dla procesora ADAU1701.

SigmaDSP - zestaw uruchomieniowy dla procesora ADAU1701. SigmaDSP - zestaw uruchomieniowy dla procesora ADAU1701. SigmaDSP - zestaw uruchomieniowy. SigmaDSP jest niedrogim zestawem uruchomieniowym dla procesora DSP ADAU1701 z rodziny SigmaDSP firmy Analog Devices, który wraz z programatorem USBi i darmowym środowiskiem

Bardziej szczegółowo

Analogowy sterownik silnika krokowego oparty na układzie avt 1314

Analogowy sterownik silnika krokowego oparty na układzie avt 1314 Katedra Energoelektroniki i Automatyki Systemów Przetwarzania Energii 51 Konferencja Studenckich Kół Naukowych Bartłomiej Dąbek Adrian Durak - Elektrotechnika 3 rok - Elektrotechnika 3 rok Analogowy sterownik

Bardziej szczegółowo

Rejestratory Sił, Naprężeń.

Rejestratory Sił, Naprężeń. JAS Projektowanie Systemów Komputerowych Rejestratory Sił, Naprężeń. 2012-01-04 2 Zawartość Typy rejestratorów.... 4 Tryby pracy.... 4 Obsługa programu.... 5 Menu główne programu.... 7 Pliki.... 7 Typ

Bardziej szczegółowo

ZL4PIC. Uniwersalny zestaw uruchomieniowy dla mikrokontrolerów PIC

ZL4PIC. Uniwersalny zestaw uruchomieniowy dla mikrokontrolerów PIC ZL4PIC uniwersalny zestaw uruchomieniowy dla mikrokontrolerów PIC (v.1.0) ZL4PIC Uniwersalny zestaw uruchomieniowy dla mikrokontrolerów PIC 1 Zestaw jest przeznaczony dla elektroników zajmujących się aplikacjami

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Architektura komputerów Tydzień 11 Wejście - wyjście Urządzenia zewnętrzne Wyjściowe monitor drukarka Wejściowe klawiatura, mysz dyski, skanery Komunikacyjne karta sieciowa, modem Urządzenie zewnętrzne

Bardziej szczegółowo

Raport z budowy robota Krzysio

Raport z budowy robota Krzysio Raport z budowy robota Krzysio Bartosz Kolasa Adrian Szymański Piotr Andrzejak Radosław Grymin Politechnika Wrocławska Wydział Elektroniki 14 marca 2011 Spis treści 1 Wprowadzenie 2 2 Konstrukcja 2 3 Zasilanie

Bardziej szczegółowo

Bezprzewodowa sieć kontrolno-sterująca z interfejsem Bluetooth dla urządzeń mobilnych z systemem Android

Bezprzewodowa sieć kontrolno-sterująca z interfejsem Bluetooth dla urządzeń mobilnych z systemem Android Bezprzewodowa sieć kontrolno-sterująca z interfejsem Bluetooth dla urządzeń mobilnych z systemem Android Wykonanie: Łukasz Tomaszowicz Promotor: dr inż. Jacek Kołodziej Cel pracy dyplomowej Celem pracy

Bardziej szczegółowo

1. Budowa komputera schemat ogólny.

1. Budowa komputera schemat ogólny. komputer budowa 1. Budowa komputera schemat ogólny. Ogólny schemat budowy komputera - Klawiatura - Mysz - Skaner - Aparat i kamera cyfrowa - Modem - Karta sieciowa Urządzenia wejściowe Pamięć operacyjna

Bardziej szczegółowo

Tytuł: Instrukcja obsługi Modułu Komunikacji internetowej MKi-sm TK / 3001 / 016 / 002. Wersja wykonania : wersja oprogramowania v.1.

Tytuł: Instrukcja obsługi Modułu Komunikacji internetowej MKi-sm TK / 3001 / 016 / 002. Wersja wykonania : wersja oprogramowania v.1. Zakład Elektronicznych Urządzeń Pomiarowych POZYTON sp. z o. o. 42-200 Częstochowa ul. Staszica 8 p o z y t o n tel. : (034) 361-38-32, 366-44-95, 364-88-82, 364-87-50, 364-87-82, 364-87-62 tel./fax: (034)

Bardziej szczegółowo

dokument DOK 02-05-12 wersja 1.0 www.arskam.com

dokument DOK 02-05-12 wersja 1.0 www.arskam.com ARS3-RA v.1.0 mikro kod sterownika 8 Linii I/O ze zdalną transmisją kanałem radiowym lub poprzez port UART. Kod przeznaczony dla sprzętu opartego o projekt referencyjny DOK 01-05-12. Opis programowania

Bardziej szczegółowo

2013-04-25. Czujniki obiektowe Sterowniki przemysłowe

2013-04-25. Czujniki obiektowe Sterowniki przemysłowe Ogólne informacje o systemach komputerowych stosowanych w sterowaniu ruchem funkcje, właściwości Sieci komputerowe w sterowaniu informacje ogólne, model TCP/IP, protokoły warstwy internetowej i transportowej

Bardziej szczegółowo

GATHERING DATA SYSTEM FOR CONCRETE S SAMPLE DESTRUCTING RESEARCHES WITH USE OF LABVIEW PACKET

GATHERING DATA SYSTEM FOR CONCRETE S SAMPLE DESTRUCTING RESEARCHES WITH USE OF LABVIEW PACKET Łukasz Bajda V rok Koło Naukowe Techniki Cyfrowej dr inż. Wojciech Mysiński opiekun naukowy GATHERING DATA SYSTEM FOR CONCRETE S SAMPLE DESTRUCTING RESEARCHES WITH USE OF LABVIEW PACKET. SYSTEM AKWIZYCJI

Bardziej szczegółowo

Seria wielofunkcyjnych serwerów sieciowych USB

Seria wielofunkcyjnych serwerów sieciowych USB Seria wielofunkcyjnych serwerów sieciowych USB Przewodnik szybkiej instalacji Wstęp Niniejszy dokument opisuje kroki instalacji i konfiguracji wielofunkcyjnego serwera sieciowego jako serwera urządzenia

Bardziej szczegółowo

AUTONOMOUS GUARDIAN ROBOT AUTONOMICZNY ROBOT WARTOWNIK

AUTONOMOUS GUARDIAN ROBOT AUTONOMICZNY ROBOT WARTOWNIK Łukasz Bajda V rok Koło Naukowe Techniki Cyfrowej dr inż. Wojciech Mysiński opiekun naukowy AUTONOMOUS GUARDIAN ROBOT AUTONOMICZNY ROBOT WARTOWNIK Keywords: robot, guardian, PIR, H bridge Słowa kluczowe:

Bardziej szczegółowo

Zestaw 1 1. Rodzaje ruchu punktu materialnego i metody ich opisu. 2. Mikrokontrolery architektura, zastosowania. 3. Silniki krokowe budowa, zasada działania, sterowanie pracą. Zestaw 2 1. Na czym polega

Bardziej szczegółowo

NX70 PLC www.atcontrol.pl

NX70 PLC www.atcontrol.pl NX70 PLC NX70 Właściwości Rozszerzalność, niezawodność i łatwość w integracji Szybki procesor - zastosowanie technologii ASIC pozwala wykonywać CPU proste instrukcje z prędkością 0,2 us/1 krok Modyfikacja

Bardziej szczegółowo

NX700 PLC www.atcontrol.pl

NX700 PLC www.atcontrol.pl NX700 PLC NX700 Podstawowe cechy Rozszerzalność, niezawodność i łatwość w integracji Szybki procesor - zastosowanie technologii ASIC pozwala wykonywać CPU proste instrukcje z prędkością 0,2 us/1 krok Modyfikacja

Bardziej szczegółowo

Ćwiczenie 5 Zegar czasu rzeczywistego na mikrokontrolerze AT90S8515

Ćwiczenie 5 Zegar czasu rzeczywistego na mikrokontrolerze AT90S8515 Laboratorium Techniki Mikroprocesorowej Informatyka studia dzienne Ćwiczenie 5 Zegar czasu rzeczywistego na mikrokontrolerze AT90S8515 Cel ćwiczenia Celem ćwiczenia jest poznanie możliwości nowoczesnych

Bardziej szczegółowo

Cyfrowy wzmacniacz AED dla przetworników tensometrycznych.

Cyfrowy wzmacniacz AED dla przetworników tensometrycznych. Cyfrowy wzmacniacz AED dla przetworników tensometrycznych. Zamień swoje analogowe przetworniki wagi na cyfrowe. AED sprawia, że wdrażanie systemów sterowania procesami jest łatwe i wygodne. AED przetwarza

Bardziej szczegółowo

Wysokowydajne falowniki wektorowe Micno KE300.

Wysokowydajne falowniki wektorowe Micno KE300. Wysokowydajne falowniki wektorowe Micno KE300. Firma Shenzhen Micno Electric Co. jest przedsiębiorstwem zajmującym się zaawansowanymi technologiami. Specjalizuje się w pracach badawczorozwojowych, produkcji,

Bardziej szczegółowo

Budowa Komputera część teoretyczna

Budowa Komputera część teoretyczna Budowa Komputera część teoretyczna Komputer PC (pesonal computer) jest to komputer przeznaczony do użytku osobistego przeznaczony do pracy w domu lub w biurach. Wyróżniamy parę typów komputerów osobistych:

Bardziej szczegółowo

Serwomechanizm - zamknięty układ sterowania przemieszczeniem, o strukturze typowego układu regulacji. Wartość wzorcowa porównywana jest z

Serwomechanizm - zamknięty układ sterowania przemieszczeniem, o strukturze typowego układu regulacji. Wartość wzorcowa porównywana jest z serwomechanizmy Serwomechanizm - zamknięty układ sterowania przemieszczeniem, o strukturze typowego układu regulacji. Wartość wzorcowa porównywana jest z przetworzonym przez przetwornik bieżącym sygnałem

Bardziej szczegółowo

Przegląd rozwiązań z oferty firmy 4D Systems

Przegląd rozwiązań z oferty firmy 4D Systems 1 Przegląd rozwiązań z oferty firmy 4D Systems Przegląd rozwiązań z oferty firmy 4D Systems 4D Systems Pty Ltd jest firmą pochodzącą z Australii, która od ponad 25 lat specjalizuje się w opracowywaniu

Bardziej szczegółowo

SPIS TREŚCI TESTERY AKUMULATORÓW

SPIS TREŚCI TESTERY AKUMULATORÓW SPIS TREŚCI TESTERY AKUMULATORÓW Tester akumulatorów BBT 305 Tester akumulatorów BBT 605 Tester akumulatorów BT 301 Tester akumulatorów Milton Tester akumulatorów Milton Digital Tester akumulatorów 500A2

Bardziej szczegółowo

Sprawdzian test egzaminacyjny 2 GRUPA I

Sprawdzian test egzaminacyjny 2 GRUPA I ... nazwisko i imię ucznia Sprawdzian test egzaminacyjny 2 GRUPA I 1. Na rys. 1 procesor oznaczony jest numerem A. 2 B. 3 C. 5 D. 8 2. Na rys. 1 karta rozszerzeń oznaczona jest numerem A. 1 B. 4 C. 6 D.

Bardziej szczegółowo

Modem radiowy MR10-GATEWAY-S

Modem radiowy MR10-GATEWAY-S Modem radiowy MR10-GATEWAY-S - instrukcja obsługi - (dokumentacja techniczno-ruchowa) Spis treści 1. Wstęp 2. Budowa modemu 3. Parametry techniczne 4. Parametry konfigurowalne 5. Antena 6. Dioda sygnalizacyjna

Bardziej szczegółowo

KOMPUTER. Zestawy komputerowe podstawowe wiadomości

KOMPUTER. Zestawy komputerowe podstawowe wiadomości KOMPUTER Zestawy komputerowe podstawowe wiadomości Budowa zestawu komputerowego Monitor Jednostka centralna Klawiatura Mysz Urządzenia peryferyjne Monitor Monitor wchodzi w skład zestawu komputerowego

Bardziej szczegółowo

ZL9ARM płytka bazowa dla modułów diparm z mikrokontrolerami LPC213x/214x

ZL9ARM płytka bazowa dla modułów diparm z mikrokontrolerami LPC213x/214x ZL9ARM płytka bazowa dla modułów diparm z mikrokontrolerami LPC213x/214x ZL9ARM Płytka bazowa dla modułów diparm z mikrokontrolerami LPC213x/214x 1 ZL9ARM to uniwersalna płyta bazowa dla modułów diparm

Bardziej szczegółowo

Płyty główne rodzaje. 1. Płyta główna w formacie AT

Płyty główne rodzaje. 1. Płyta główna w formacie AT Płyty główne rodzaje 1. Płyta główna w formacie AT Jest formatem płyty głównej typu serwerowego będącej następstwem płyty XT o 8-bitowej architekturze. Została stworzona w celu obsługi 16-bitowej architektury

Bardziej szczegółowo

Sterownik przekaźników S4P-01

Sterownik przekaźników S4P-01 EL-TEC Sp. z o.o. ul. Wierzbowa 46/48 93-133 Łódź tel: +48 42 663 89 05 fax: +48 42 663 89 04 e-mail: info@el-tec.com.pl http://www.el-tec.com.pl Sterownik przekaźników Dokumentacja Techniczno Ruchowa

Bardziej szczegółowo

Biomonitoring system kontroli jakości wody

Biomonitoring system kontroli jakości wody FIRMA INNOWACYJNO -WDROŻENIOWA ul. Źródlana 8, Koszyce Małe 33-111 Koszyce Wielkie tel.: 0146210029, 0146360117, 608465631 faks: 0146210029, 0146360117 mail: biuro@elbit.edu.pl www.elbit.edu.pl Biomonitoring

Bardziej szczegółowo

ZL28ARM. Zestaw uruchomieniowy dla mikrokontrolerów AT91SAM7XC

ZL28ARM. Zestaw uruchomieniowy dla mikrokontrolerów AT91SAM7XC ZL28ARM Zestaw uruchomieniowy dla mikrokontrolerów AT91SAM7XC Zestaw ZL28ARM jest uniwersalnym zestawem uruchomieniowym dla mikrokontrolerów AT91SAM7XC. Dzięki wyposażeniu w szeroką gamę układów peryferyjnych

Bardziej szczegółowo

Zadania do ćwiczeń laboratoryjnych Systemy rozproszone automatyki - laboratorium

Zadania do ćwiczeń laboratoryjnych Systemy rozproszone automatyki - laboratorium 1. Komunikacja PLC falownik, poprzez sieć Profibus DP Stanowiska A-PLC-5 oraz B-FS-4 1.1. Urządzenia i narzędzia 1.1.1. Sterownik SIMATIC S7-315 2DP (z wbudowanym portem Profibus DP). 1.1.2. Falownik MicroMaster440

Bardziej szczegółowo

SYSTEM MONITOROWANIA GAZÓW MSMR-16

SYSTEM MONITOROWANIA GAZÓW MSMR-16 SYSTEM MONITOROWANIA GAZÓW MSMR-16 Schemat blokowy przykładowej konfiguracji systemu Widok i podstawowe wymiary centrali MSMR-16 22 Zaciski centrali MSMR-16 Nr zacisku Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10 Z11

Bardziej szczegółowo

STM32Butterfly2. Zestaw uruchomieniowy dla mikrokontrolerów STM32F107

STM32Butterfly2. Zestaw uruchomieniowy dla mikrokontrolerów STM32F107 Zestaw uruchomieniowy dla mikrokontrolerów STM32F107 STM32Butterfly2 Zestaw STM32Butterfly2 jest platformą sprzętową pozwalającą poznać i przetestować możliwości mikrokontrolerów z rodziny STM32 Connectivity

Bardziej szczegółowo

1. Wprowadzenie Programowanie mikrokontrolerów Sprzęt i oprogramowanie... 33

1. Wprowadzenie Programowanie mikrokontrolerów Sprzęt i oprogramowanie... 33 Spis treści 3 1. Wprowadzenie...11 1.1. Wstęp...12 1.2. Mikrokontrolery rodziny ARM...13 1.3. Architektura rdzenia ARM Cortex-M3...15 1.3.1. Najważniejsze cechy architektury Cortex-M3... 15 1.3.2. Rejestry

Bardziej szczegółowo

PRACA DYPLOMOWA MAGISTERSKA

PRACA DYPLOMOWA MAGISTERSKA Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania PRACA DYPLOMOWA MAGISTERSKA Konstrukcja autonomicznego robota mobilnego Małgorzata Bartoszewicz Promotor: prof. dr hab. inż. A. Milecki Zakres

Bardziej szczegółowo

Badanie napędu z silnikiem bezszczotkowym prądu stałego

Badanie napędu z silnikiem bezszczotkowym prądu stałego Badanie napędu z silnikiem bezszczotkowym prądu stałego Instrukcja do ćwiczenia Celem ćwiczenia jest zapoznanie się z budową, zasadą działania oraz sposobem sterowania 3- pasmowego silnika bezszczotkowego

Bardziej szczegółowo

Proste układy wykonawcze

Proste układy wykonawcze Proste układy wykonawcze sterowanie przekaźnikami, tyrystorami i małymi silnikami elektrycznymi Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne

Bardziej szczegółowo

STEROWNIK MODUŁÓW PRZEKAŹNIKOWYCH SMP-8

STEROWNIK MODUŁÓW PRZEKAŹNIKOWYCH SMP-8 STEROWNIK MODUŁÓW PRZEKAŹNIKOWYCH SMP-8 Przeznaczenie i ogólna charakterystyka Sterownik modułów przekaźnikowych SMP-8 jest urządzeniem mogącym pracować w dwóch niezależnych trybach pracy: Master lub Slave.

Bardziej szczegółowo

CENTRALNA BATERIA CB24V

CENTRALNA BATERIA CB24V CENTRALNA BATERIA CB24V SYSTEM ZASILANIA OŚWIETLENIA AWARYJNEGO OPRAW LED 2012-10-04 0 ES- S Y S T E M Zasilacz 230VAC/24VDC LS1 LS2 LS3 LS4 CENTRALNA BATERIA CB24V ES-SYSTEM CENTRALNA BATERIA 24V System

Bardziej szczegółowo

8. MAGISTRALE I GNIAZDA ROZSZERZEŃ. INTERFEJSY ZEWNĘTRZNE.

8. MAGISTRALE I GNIAZDA ROZSZERZEŃ. INTERFEJSY ZEWNĘTRZNE. 8. MAGISTRALE I GNIAZDA ROZSZERZEŃ. INTERFEJSY ZEWNĘTRZNE. Magistrala (ang. bus) jest ścieżką łączącą ze sobą różne komponenty w celu wymiany informacji/danych pomiędzy nimi. Inaczej mówiąc jest to zespół

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: STEROWNIKI W UKŁADACH NAPĘDOWYCH I STEROWANIA CONTROLLERS IN CONTROL AND DRIVE SYSTEMS Kierunek: MECHATRONIKA Rodzaj przedmiotu: obowiązkowy na specjalności: PROJEKTOWANIE SYSTEMÓW MECHANICZNYCH

Bardziej szczegółowo

PL 214592 B1. POLITECHNIKA CZĘSTOCHOWSKA, Częstochowa, PL 14.03.2011 BUP 06/11

PL 214592 B1. POLITECHNIKA CZĘSTOCHOWSKA, Częstochowa, PL 14.03.2011 BUP 06/11 PL 214592 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 214592 (13) B1 (21) Numer zgłoszenia: 388915 (51) Int.Cl. G01B 5/28 (2006.01) G01C 7/04 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej

Bardziej szczegółowo

Koncepcja, zasady budowy i elementy rozległego systemu sterowania.

Koncepcja, zasady budowy i elementy rozległego systemu sterowania. K&K Przedsiębiorstwo Wielobranżowe pyrobox@pyrobox.com.pl www.pyrobox.com.pl System pirotechniczny Pyrobox. Rozległy system sterowania widowiskami. Część I. Koncepcja, zasady budowy i elementy rozległego

Bardziej szczegółowo

Kurs Projektowanie i programowanie z Distributed Safety. Spis treści. Dzień 1. I Bezpieczeństwo funkcjonalne - wprowadzenie (wersja 1212)

Kurs Projektowanie i programowanie z Distributed Safety. Spis treści. Dzień 1. I Bezpieczeństwo funkcjonalne - wprowadzenie (wersja 1212) Spis treści Dzień 1 I Bezpieczeństwo funkcjonalne - wprowadzenie (wersja 1212) I-3 Cel stosowania bezpieczeństwa funkcjonalnego I-4 Bezpieczeństwo funkcjonalne I-5 Zakres aplikacji I-6 Standardy w zakresie

Bardziej szczegółowo

1. INSTALACJA SERWERA

1. INSTALACJA SERWERA 1. INSTALACJA SERWERA Dostarczony serwer wizualizacji składa się z: 1.1. RASPBERRY PI w plastikowej obudowie; 1.2. Karty pamięci; 1.3. Zasilacza 5 V DC; 1,5 A; 1.4. Konwertera USB RS485; 1.5. Kabla

Bardziej szczegółowo

PROJEKT WYKONAWCZY. ADRES: Stargard Szczeciński ul. Mieszka I 4 nr geod. działki 300 obr. 11. INWESTOR: Powiat Stargardzki. ul.

PROJEKT WYKONAWCZY. ADRES: Stargard Szczeciński ul. Mieszka I 4 nr geod. działki 300 obr. 11. INWESTOR: Powiat Stargardzki. ul. EGZEMPLARZ NR 4 PROJEKT WYKONAWCZY MONITORINGU WĘZŁA CIEPLNEGO W BUDYNKU II LICEUM OGÓLNOKSZTAŁCĄCEGO ADRES: Stargard Szczeciński ul. Mieszka I 4 nr geod. działki 300 obr. 11 INWESTOR: Powiat Stargardzki

Bardziej szczegółowo

OMAC Italy URZĄDZENIA DO BUDOWY KOLEJOWEJ SIECI TRAKCYJNEJ RW-07-PL R0

OMAC Italy URZĄDZENIA DO BUDOWY KOLEJOWEJ SIECI TRAKCYJNEJ RW-07-PL R0 OMAC Italy URZĄDZENIA DO BUDOWY KOLEJOWEJ SIECI TRAKCYJNEJ RW-07-PL R0 Systemy te zostały zaprojektowane specjalnie do wciągania i napinania linii przesyłowych i kolejowych linii trakcyjnych. Nadają

Bardziej szczegółowo

AP7921 RACK PDU SWITCHE D 1U 16A/230V 8xC13

AP7921 RACK PDU SWITCHE D 1U 16A/230V 8xC13 AP7921 RACK PDU SWITCHE D 1U 16A/230V 8xC13 Cena: 3 104,81 zł Netto: 2 524,24 zł Parametry Podstawka / Blok CPU Opis Aluminium APC Switched Rack PDU APC Switched Rack PDU to urządzenie dystrybucji zasilania

Bardziej szczegółowo

E-TRONIX Sterownik Uniwersalny SU 1.2

E-TRONIX Sterownik Uniwersalny SU 1.2 Obudowa. Obudowa umożliwia montaż sterownika na szynie DIN. Na panelu sterownika znajduje się wyświetlacz LCD 16x2, sygnalizacja LED stanu wejść cyfrowych (LED IN) i wyjść logicznych (LED OUT) oraz klawiatura

Bardziej szczegółowo

Zastosowanie procesorów AVR firmy ATMEL w cyfrowych pomiarach częstotliwości

Zastosowanie procesorów AVR firmy ATMEL w cyfrowych pomiarach częstotliwości Politechnika Lubelska Wydział Elektrotechniki i Informatyki PRACA DYPLOMOWA MAGISTERSKA Zastosowanie procesorów AVR firmy ATMEL w cyfrowych pomiarach częstotliwości Marcin Narel Promotor: dr inż. Eligiusz

Bardziej szczegółowo

ZARZĄDZANIE ENERGIĄ. dla istniejących i nowych budynków.

ZARZĄDZANIE ENERGIĄ. dla istniejących i nowych budynków. ZARZĄDZANIE ENERGIĄ dla istniejących i nowych budynków www.inels.pl Zarządzanie energią BUS (rozwiązanie magistralowe) do dużych budynków (rozwiązanie bezprzewodowe) do istniejących mieszkań oraz domów

Bardziej szczegółowo

I. DANE TECHNICZNE II. INSTRUKCJA UśYTKOWANIA... 4

I. DANE TECHNICZNE II. INSTRUKCJA UśYTKOWANIA... 4 Sterownik CU-210 I. DANE TECHNICZNE... 2 1 Opis elementów sterujących i kontrolnych...2 2 Budowa... 3 3 Dane znamionowe... 3 II. INSTRUKCJA UśYTKOWANIA... 4 1 Opis działania... 4 1.1 Załączenie i wyłączenie

Bardziej szczegółowo

ZL4PIC uniwersalny zestaw uruchomieniowy dla mikrokontrolerów PIC (v.1.0) Uniwersalny zestaw uruchomieniowy dla mikrokontrolerów PIC

ZL4PIC uniwersalny zestaw uruchomieniowy dla mikrokontrolerów PIC (v.1.0) Uniwersalny zestaw uruchomieniowy dla mikrokontrolerów PIC 1 ZL4PIC Uniwersalny zestaw uruchomieniowy dla mikrokontrolerów PIC Zestaw jest przeznaczony dla elektroników zajmujących się aplikacjami mikrokontrolerów PIC. Jest on przystosowany do współpracy z mikrokontrolerami

Bardziej szczegółowo

X-Meter. EnergyTeam PRZYKŁADOWE SCHEMATY SYSTEMU X-METER. 1 punkt pomiarowy. System nr 1. 2 punkty pomiarowe. System nr 2

X-Meter. EnergyTeam PRZYKŁADOWE SCHEMATY SYSTEMU X-METER. 1 punkt pomiarowy. System nr 1. 2 punkty pomiarowe. System nr 2 PRZYKŁADOWE SCHEMATY SYSTEMU X-METER System nr 1 1 punkt pomiarowy Schemat przedstawia najprostszy / najmniejszy z możliwych systemów z wykorzystaniem urządzenia X-Meter. W tym przypadku system monitoruje

Bardziej szczegółowo

Generator przebiegów pomiarowych Ex-GPP2

Generator przebiegów pomiarowych Ex-GPP2 Generator przebiegów pomiarowych Ex-GPP2 Przeznaczenie Generator przebiegów pomiarowych GPP2 jest programowalnym sześciokanałowym generatorem napięć i prądów, przeznaczonym do celów pomiarowych i diagnostycznych.

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Architektura komputerów Wykład 12 Jan Kazimirski 1 Magistrale systemowe 2 Magistrale Magistrala medium łączące dwa lub więcej urządzeń Sygnał przesyłany magistralą może być odbierany przez wiele urządzeń

Bardziej szczegółowo

MODEL STANOWISKA DO BADANIA OPTYCZNEJ GŁOWICY ŚLEDZĄCEJ

MODEL STANOWISKA DO BADANIA OPTYCZNEJ GŁOWICY ŚLEDZĄCEJ Mgr inż. Kamil DZIĘGIELEWSKI Wojskowa Akademia Techniczna DOI: 10.17814/mechanik.2015.7.232 MODEL STANOWISKA DO BADANIA OPTYCZNEJ GŁOWICY ŚLEDZĄCEJ Streszczenie: W niniejszym referacie zaprezentowano stanowisko

Bardziej szczegółowo

Programowanie Układów Logicznych kod kursu: ETD6203. Szczegóły realizacji projektu indywidualnego W dr inż.

Programowanie Układów Logicznych kod kursu: ETD6203. Szczegóły realizacji projektu indywidualnego W dr inż. Programowanie Układów Logicznych kod kursu: ETD6203 Szczegóły realizacji projektu indywidualnego W1 24.02.2016 dr inż. Daniel Kopiec Projekt indywidualny TERMIN 1: Zajęcia wstępne, wprowadzenie TERMIN

Bardziej szczegółowo

Sensory i systemy pomiarowe Prezentacja Projektu SYNERIFT. Michał Stempkowski Tomasz Tworek AiR semestr letni 2013-2014

Sensory i systemy pomiarowe Prezentacja Projektu SYNERIFT. Michał Stempkowski Tomasz Tworek AiR semestr letni 2013-2014 Sensory i systemy pomiarowe Prezentacja Projektu SYNERIFT Michał Stempkowski Tomasz Tworek AiR semestr letni 2013-2014 SYNERIFT Tylne koła napędzane silnikiem spalinowym (2T typu pocket bike ) Przednie

Bardziej szczegółowo

Katedra Systemów Decyzyjnych. Kierownik: prof. dr hab. inż. Zdzisław Kowalczuk ksd@eti.pg.gda.pl

Katedra Systemów Decyzyjnych. Kierownik: prof. dr hab. inż. Zdzisław Kowalczuk ksd@eti.pg.gda.pl Katedra Systemów Decyzyjnych Kierownik: prof. dr hab. inż. Zdzisław Kowalczuk ksd@eti.pg.gda.pl 2010 Kadra KSD profesor zwyczajny 6 adiunktów, w tym 1 z habilitacją 4 asystentów 7 doktorantów Wydział Elektroniki,

Bardziej szczegółowo

CHŁOPCZYK Robot typu Line Follower

CHŁOPCZYK Robot typu Line Follower Politechnika Wrocławska CHŁOPCZYK Robot typu Line Follower Autor: Damian Trzeciak Mateusz Piszczek Koło Naukowe Robotyków KoNaR www.konar.pwr.wroc.pl Wrocław, 15 marca 2011 Spis treści 1 Wstęp 2 2 Konstrukcja

Bardziej szczegółowo

Układy sterowania robotów przemysłowych. Warstwa programowania trajektorii ruchu. Warstwa wyznaczania trajektorii ruchu.

Układy sterowania robotów przemysłowych. Warstwa programowania trajektorii ruchu. Warstwa wyznaczania trajektorii ruchu. WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI KATEDRA RiSM Układy sterowania robotów przemysłowych. Warstwa programowania trajektorii ruchu. Warstwa wyznaczania trajektorii ruchu. Dr inż. Mariusz Dąbkowski Zadaniem

Bardziej szczegółowo

PL 210006 B1. POLITECHNIKA WARSZAWSKA, Warszawa, PL

PL 210006 B1. POLITECHNIKA WARSZAWSKA, Warszawa, PL RZECZPOSPOLITA POLSKA Urząd Patentowy Rzeczypospolitej Polskiej (12) OPIS PATENTOWY (19) PL (11) 210006 (21) Numer zgłoszenia: 380722 (22) Data zgłoszenia: 01.10.2006 (13) B1 (51) Int.Cl. A61G 5/02 (2006.01)

Bardziej szczegółowo

dr inż. Konrad Sobolewski Politechnika Warszawska Informatyka 1

dr inż. Konrad Sobolewski Politechnika Warszawska Informatyka 1 dr inż. Konrad Sobolewski Politechnika Warszawska Informatyka 1 Cel wykładu Definicja, miejsce, rola i zadania systemu operacyjnego Klasyfikacja systemów operacyjnych Zasada działanie systemu operacyjnego

Bardziej szczegółowo

Politechnika Śląska Wydział Elektryczny Katedra Mechatroniki. Koncepcja przyłączania mikroinstalacji prosumenckich (gniazd) do laboratorium ilabepro

Politechnika Śląska Wydział Elektryczny Katedra Mechatroniki. Koncepcja przyłączania mikroinstalacji prosumenckich (gniazd) do laboratorium ilabepro 1 Koncepcja przyłączania mikroinstalacji prosumenckich (gniazd) do laboratorium ilabepro 2 W ramach opracowania realizowana jest: Indywidualna diagnoza wybranych gniazd pod względem możliwości ich podłączenia

Bardziej szczegółowo

Zamki hotelowe on-line GS-160

Zamki hotelowe on-line GS-160 Zamki hotelowe on-line - otwieranie drzwi kartą, odłączanie napięcia - programowanie z komputera recepcji - karty Unique 125 KHz czytnik kart przed wejściem do pokoju holder umieszczony na ścianie w pokoju

Bardziej szczegółowo

System monitoringu i sterowania pomp obiegowych

System monitoringu i sterowania pomp obiegowych System monitoringu i sterowania pomp obiegowych Komputerowe systemy wizualizacji i telemetrii oparte na pakiecie FactorySuite firmy Wonderware są istotnymi elementami modernizacji ciepłowni i systemów

Bardziej szczegółowo

Płytka laboratoryjna do współpracy z mikrokontrolerem MC68332

Płytka laboratoryjna do współpracy z mikrokontrolerem MC68332 Płytka laboratoryjna do współpracy z mikrokontrolerem MC68332 Jan Kędzierski Marek Wnuk Wrocław 2009 Spis treści 1 Wstęp 3 2 Opis płytki 3 3 Schematy płytki 7 2 1 Wstęp Płytka laboratoryjna opisywana w

Bardziej szczegółowo

Projekt "Maksymilian" współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt Maksymilian współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Przedmiot zamówienia w zakresie zadania nr 1 dotyczy dostawy pięciu sztuk laptopów komputerów przenośnych. Szczegółowe parametry wymagane, konfiguracja oraz inne wymagania zamawiającego wyszczególnione

Bardziej szczegółowo

CP1L. M i n i a t u r o w e s t e r o w n i k i m a s z y n. » Za a w a n s o w a n e f u n kc j e s t e rowa n i a r u c h e m

CP1L. M i n i a t u r o w e s t e r o w n i k i m a s z y n. » Za a w a n s o w a n e f u n kc j e s t e rowa n i a r u c h e m CP1L M i n i a t u r o w e s t e r o w n i k i m a s z y n» D u ża s z y b k ość p r z e t w a r z a n i a» Za a w a n s o w a n e f u n kc j e s t e rowa n i a r u c h e m» Ł a t w e p o d ł a c z a n

Bardziej szczegółowo

PUNKTOWE STEROWNIKI VERSAMAX MICRO

PUNKTOWE STEROWNIKI VERSAMAX MICRO 1.7 64-PUNKTOWE STEROWNIKI VERSAMAX MICRO IC200UDD064 40 wejść dyskretnych 24 VDC, 24 wyjścia tranzystorowe 24 VDC (zabezpieczenie przed zwarciem i przeciąŝeniem), wbudowany port RS232, drugi port dostępny

Bardziej szczegółowo

Rys. 1. Schemat ideowy karty przekaźników. AVT 5250 Karta przekaźników z interfejsem Ethernet

Rys. 1. Schemat ideowy karty przekaźników. AVT 5250 Karta przekaźników z interfejsem Ethernet Głównym elementem jest mikrokontroler PIC18F67J60, który oprócz typowych modułów sprzętowych, jak port UART czy interfejs I2C, ma wbudowany kompletny moduł kontrolera Ethernet. Schemat blokowy modułu pokazano

Bardziej szczegółowo

Zastosowanie oprogramowania Proficy (ifix, Historian oraz Plant Applications) w laboratoryjnym stanowisku monitoringu systemów produkcyjnych in-line

Zastosowanie oprogramowania Proficy (ifix, Historian oraz Plant Applications) w laboratoryjnym stanowisku monitoringu systemów produkcyjnych in-line Zastosowanie oprogramowania Proficy (ifix, Historian oraz Plant Applications) w laboratoryjnym stanowisku monitoringu systemów produkcyjnych in-line Dr inż. Grzegorz Ćwikła Stanowisko do monitoringu systemów

Bardziej szczegółowo

Moduł CNT020. Przeznaczenie. Oprogramowanie i użyteczne właściwości modułu

Moduł CNT020. Przeznaczenie. Oprogramowanie i użyteczne właściwości modułu Moduł CNT020 9 wejść licznikowych 24V DC Interfejs komunikacyjny: RS-485 Kontrolki LED stanu wejść i wyjść na płycie czołowej Zasilanie 24V DC / 60mA Bezpłatny i w pełni udokumentowany protokół komunikacji

Bardziej szczegółowo

Komputer będzie wykorzystywany na potrzeby aplikacji: biurowych, obliczeniowych, multimedialnych.

Komputer będzie wykorzystywany na potrzeby aplikacji: biurowych, obliczeniowych, multimedialnych. 1. Komputer stacjonarny: a) typ 1 (36szt.) Typ Zastosowanie Stacjonarny. Komputer będzie wykorzystywany na potrzeby aplikacji: biurowych, obliczeniowych, multimedialnych. Wydajność Komputer powinien osiągać

Bardziej szczegółowo

ZL8AVR. Płyta bazowa dla modułów dipavr

ZL8AVR. Płyta bazowa dla modułów dipavr ZL8AVR Płyta bazowa dla modułów dipavr Zestaw ZL8AVR to płyta bazowa dla modułów dipavr (np. ZL7AVR z mikrokontrolerem ATmega128 lub ZL12AVR z mikrokontrolerem ATmega16. Wyposażono ją w wiele klasycznych

Bardziej szczegółowo

Centrum obróbcze MAKA PE 80

Centrum obróbcze MAKA PE 80 Centrum obróbcze MAKA PE 80 Maszyna wyposażona w dwa agregaty agregaty obróbcze : 5 oraz 3 osiowy MAKA CNC centrum frezarsko wiertarskie PE 80 - Budowa maszyny: portalna - Sterowanie Siemens 840D z procesorem

Bardziej szczegółowo

Moduł Ethernetowy. instrukcja obsługi. Spis treści

Moduł Ethernetowy. instrukcja obsługi. Spis treści Moduł Ethernetowy instrukcja obsługi Spis treści 1. Podstawowe informacje...2 2. Konfiguracja modułu...4 3. Podłączenie do sieci RS-485 i LAN/WAN...9 4. Przywracanie ustawień fabrycznych...11 www.el-piast.com

Bardziej szczegółowo

Budowa Mikrokomputera

Budowa Mikrokomputera Budowa Mikrokomputera Wykład z Podstaw Informatyki dla I roku BO Piotr Mika Podstawowe elementy komputera Procesor Pamięć Magistrala (2/16) Płyta główna (ang. mainboard, motherboard) płyta drukowana komputera,

Bardziej szczegółowo

Politechnika Poznańska Instytut Technologii Mechanicznej. Laboratorium MASZYN I URZĄDZEŃ TECHNOLOGICZNYCH. Nr 2

Politechnika Poznańska Instytut Technologii Mechanicznej. Laboratorium MASZYN I URZĄDZEŃ TECHNOLOGICZNYCH. Nr 2 Politechnika Poznańska Instytut Technologii Mechanicznej Laboratorium MASZYN I URZĄDZEŃ TECHNOLOGICZNYCH Nr 2 POMIAR I KASOWANIE LUZU W STOLE OBROTOWYM NC Poznań 2008 1. CEL ĆWICZENIA Celem ćwiczenia jest

Bardziej szczegółowo

P O L I T E C H N I K A Ł Ó D Z K A INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI LABORATORIUM POMIARÓW I AUTOMATYKI W ELEKTROWNIACH

P O L I T E C H N I K A Ł Ó D Z K A INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI LABORATORIUM POMIARÓW I AUTOMATYKI W ELEKTROWNIACH P O L I T E C H N I K A Ł Ó D Z K A INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI LABORATORIUM POMIARÓW I AUTOMATYKI W ELEKTROWNIACH Badanie siłowników INSTRUKCJA DO ĆWICZENIA LABORATORYJNEGO ŁÓDŹ 2011

Bardziej szczegółowo