Wymagania edukacyjne i kryteria oceniania. w nauczaniu matematyki w zakresie. rozszerzonym. dla uczniów technikum

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wymagania edukacyjne i kryteria oceniania. w nauczaniu matematyki w zakresie. rozszerzonym. dla uczniów technikum"

Transkrypt

1 Wymagania edukacyjne i kryteria oceniania w nauczaniu matematyki w zakresie rozszerzonym dla uczniów technikum

2 Wymagania podstawowe obejmują wiedzę i umiejętności całkowicie niezbędne do dalszego kształcenia przedmiotowego i międzyprzedmiotowego, czyli są: stosunkowo łatwe do opanowania, całkowicie niezbędne dalszej nauce, bezpośrednio użyteczne w życiu pozaszkolnym i pracy zawodowej. Spełnienie wymagań podstawowych pozwala uzyskać stopień co najwyżej dostateczny. Wymagania ponadpodstawowe (PP) stanowią pogłębienie i poszerzenie wymagań podstawowych. Ocenie podlega aktywność ucznia na lekcji, jego przygotowanie do lekcji (zeszyt, przybory, podręcznik itp.), praca w grupie, odpowiedzi ustne, prace pisemne (sprawdziany, kartkówki ), zadania domowe. Sprawdziany powinny być tak konstruowane, by 70% zadań badało umiejętności z poziomu P, a 30% z poziomu PP. Sprawdziany wyznaczone przez nauczyciela uczeń poprawia w czasie ustalonym przez nauczyciela. Przy wypowiedziach ustnych oceniamy zrozumienie polecenia, stopień wyczerpania tematu, poprawny język matematyczny, samodzielność.

3 W procesie nauczania stosujemy pracę indywidualną oraz pracę grupową. Przeliczenie punktów na oceny odbywa się w sposób następujący: Procent uzyskanych Ocena punktów 0% - 29% niedostateczny 30% - 44% dopuszczający 45% - 64% dostateczny 65% - 79% dobry 80% - 94% bardzo dobry 95% - 100% celujący W dolnej lub górnej granicy punktowej nauczyciel może zastosować oceny ze znakiem + lub -. Oceny mają przydzielone wagi: ze sprawdzianu 3 z kartkówki 2 z odpowiedzi - 1

4 z zadania domowego 1 z aktywności 1 z przygotowania do lekcji -1 Przy wypowiedziach ustnych oceniamy zrozumienie polecenia, stopień wyczerpania tematu, poprawny język matematyczny, samodzielność. W procesie nauczania stosujemy pracę indywidualną oraz pracę grupową.

5 Liczby rzeczywiste i zbiory L.p. Temat lekcji 1. Zbiory i działania na nich Uczeń demonstruje opanowanie umiejętności rozwiązując zadania, w których potrafi: wyznaczać sumę, iloczyn i różnicę dwóch zbiorów liczbowych. ( zbiory skończone - P) 2. Zbiory liczbowe interpretować liczby naturalne na osi liczbowej, (P) rozpoznawać liczby naturalne podzielne przez 2, 3, 5, 9, 10, 100, (P) rozpoznawać liczbę złożoną, gdy jest ona jednocyfrowa lub dwucyfrowa, a także, gdy na istnienie dzielnika wskazuje poznana cecha podzielności, (P) rozkładać liczby dwucyfrowe na czynniki pierwsze, (P) wykonywać proste rachunki na liczbach całkowitych, (P) 3. Potęga o wykładniku całkowitym zamieniać ułamki zwykłe o mianownikach będących dzielnikami liczb 10, 100, 1000 itd. na ułamki dziesiętne skończone dowolną metodą (przez rozszerzanie ułamków zwykłych, dzielenie licznika przez mianownik w pamięci, pisemnie lub za pomocą kalkulatora), (P) ułamki zwykłe o mianownikach innych niż w punkcie 4.9. zapisywać w postaci rozwinięcia dziesiętnego nieskończonego (z użyciem trzech kropek po ostatniej cyfrze), dzieląc licznik przez mianownik w pamięci, pisemnie lub za pomocą kalkulatora, (P) zamieniać ułamki zwykłe na ułamki dziesiętne (także okresowe), zamieniać ułamki dziesiętne skończone na ułamki zwykłe. (P) obliczać potęgi liczb wymiernych o wykładnikach naturalnych, (P) zapisywać w postaci jednej potęgi: iloczyny potęg o takich samych podstawach, iloczyny oraz ilorazy potęg o takich samych wykładnikach oraz potęgę potęgi (przy wykładnikach naturalnych), (P) porównywać potęgi o różnych wykładnikach naturalnych i takich samych podstawach oraz porównywać potęgi o takich samych wykładnikach naturalnych i różnych dodatnich podstawach, (P) zamieniać potęgi o wykładnikach całkowitych ujemnych na odpowiednie potęgi o wykładnikach naturalnych, (P) zapisywać liczby w notacji wykładniczej, tzn. w postaci a 10 k, gdzie k jest liczbą całkowitą i 1 a 10. (P) 4. Pierwiastki kwadratowe i pierwiastki obliczać wartości pierwiastków drugiego i trzeciego stopnia z liczb, które są odpowiednio kwadratami lub sześcianami liczb wymiernych, (P) wyłączać czynnik przed znak pierwiastka oraz włączać czynnik pod znak pierwiastka, (P) mnożyć i dzielić pierwiastki drugiego stopnia, (P)

6 sześcienne 5. Przedstawianie liczb rzeczywistych w różnych postaciach 6. Obliczanie wartości wyrażeń arytmetycznych wymiernych 7. Pierwiastki stopnia n i działania na nich 8. Potęga o wykładniku wymiernym 9. Pojęcie logarytmu 10. Logarytm iloczynu, ilorazu oraz logarytm potęgi 11. Zmiana podstawy logarytmu mnożyć i dzielić pierwiastki trzeciego stopnia. (P) przedstawiać liczby rzeczywiste w różnych postaciach (np. ułamka zwykłego, ułamka dziesiętnego okresowego, z użyciem symboli pierwiastków, potęg): obliczać wartości wyrażeń arytmetycznych (wymiernych): posługiwać się w obliczeniach pierwiastkami dowolnego stopnia i stosować prawa działań na pierwiastkach: obliczać potęgi o wykładnikach wymiernych i stosować prawa działań na potęgach o wykładnikach wymiernych: wykorzystywać definicję logarytmu: stosować w obliczeniach wzory na logarytm iloczynu, logarytm ilorazu i logarytm potęgi o wykładniku naturalnym: stosować w obliczeniach wzór na zamianę podstawy logarytmu:

7 12. Oś liczbowa interpretować liczby całkowite na osi liczbowej, (P) 13. Odległość na osi liczbowej 14. Przedziały liczbowe 15. Działania na przedziałach liczbowych 16. Interpretacja geometryczna równań i nierówności z wartością bezwzględną 17. Zaokrąglanie liczb i szacowanie wyników działań 18. Błąd bezwzględny i błąd względny przybliżenia obliczać wartość bezwzględną, (P) interpretować liczby wymierne na osi liczbowej; obliczać odległość między dwiema liczbami na osi liczbowej, (P) wskazywać na osi liczbowej zbiór liczb spełniających warunek typu: x 3, x 5. (P) obliczać odległość dwóch punktów na osi, wyznaczać współrzędne środka odcinka: posługiwać się pojęciem przedziału liczbowego, zaznaczać przedziały na osi liczbowej. Działania na przedziałach liczbowych wyznaczać sumę, iloczyn i różnicę przedziałów liczbowych. (P) Interpretacja geometryczna równań i nierówności z wartością bezwzględną wykorzystywać pojęcie wartości bezwzględnej i jej interpretację geometryczną, zaznaczać na osi liczbowej zbiory opisane za pomocą równań i nierówności typu: x a b, x a b, x a b : zaokrąglać liczby naturalne, (P) szacować wartości wyrażeń arytmetycznych, (P) zaokrąglać rozwinięcia dziesiętne liczb. (P) obliczać błąd bezwzględny i błąd względny przybliżenia: 19. Procenty, przedstawiać część pewnej wielkości jako procent lub promil tej wielkości i odwrotnie, (P)

8 promile i punkty procentowe 20. Obliczanie podatków 21. Lokata na procent prosty i na procent składany obliczać procent danej liczby, (P) obliczać liczbę na podstawie danego jej procentu, (P) stosować obliczenia procentowe do rozwiązywania problemów w kontekście praktycznym, np. obliczać ceny po podwyżce lub obniżce o dany procent, (P) wykonywać obliczenia procentowe: wykonywać obliczenia związane z VAT, obliczać odsetki dla lokaty rocznej, (P) obliczać podatki: obliczać zysk z lokat (również złożonych na procent składany i na okres krótszy niż rok):

9 Wyrażenia algebraiczne i wzory skróconego mnożenia L.p. Temat lekcji Uczeń demonstruje opanowanie umiejętności rozwiązując zadania, w których potrafi: 1. Wyrażenie algebraiczne 2. Kwadrat sumy i kwadrat różnicy dwóch wyrażeń 3. Różnica kwadratów dwóch wyrażeń 4. Zastosowanie wzorów skróconego mnożenia korzystać z nieskomplikowanych wzorów, w których występują oznaczenia literowe, zamieniać wzór na formę słowną, (P) stosować oznaczenia literowe nieznanych wielkości liczbowych i zapisywać proste wyrażenie algebraiczne na podstawie informacji osadzonych w kontekście praktycznym, (P) opisywać za pomocą wyrażeń algebraicznych związki między różnymi wielkościami, (P) obliczać wartości liczbowe wyrażeń algebraicznych, (P) redukować wyrazy podobne w sumie algebraicznej, (P) dodawać i odejmować sumy algebraiczne, (P) mnożyć jednomiany, mnożyć sumę algebraiczną przez jednomian oraz, w nietrudnych przykładach, mnożyć sumy algebraiczne, (P) wyznaczać wskazaną wielkość z podanych wzorów, w tym geometrycznych i fizycznych. (P) używać wzorów skróconego mnożenia na a b 2 : używać wzoru skróconego mnożenia na a 2 2 b : używać wzorów skróconego mnożenia na a b 2 oraz a 2 2 b :

10 5. Sześcian sumy i różnicy dwóch wyrażeń 6. Suma i różnica sześcianów dwóch wyrażeń 7. Zastosowanie wzorów skróconego mnożenia używać wzorów skróconego mnożenia na a b 3 : używać wzorów skróconego mnożenia na a 3 3 b : używać wzorów skróconego mnożenia na a b 2 używać wzorów skróconego mnożenia na a b 3 oraz a i a b : b,

11 Elementy statystyki opisowej L.p. Temat lekcji Uczeń demonstruje opanowanie umiejętności rozwiązując zadania, w których potrafi: 1. Sposoby prezentacji problemów w statystyce 2. Odczytywanie i interpretacja przedstawionych danych 3. Mediana zestawu danych statystycznych 4. Średnia arytmetyczna i średnia ważona danych statystycznych 5. Odchylenie standardowe wyszukiwać, selekcjonować i porządkować informacje z dostępnych źródeł, (P) przedstawiać dane w tabeli, za pomocą diagramu słupkowego lub kołowego. (P) odczytywać i interpretować dane przedstawione w postaci diagramów, wykresów i tabel. (P) obliczać medianę (także w przypadku danych pogrupowanych). (P) obliczać średnią arytmetyczną i średnią ważoną (także w przypadku danych pogrupowanych): obliczać odchylenie standardowe zestawu danych (także w przypadku danych odpowiednio pogrupowanych), (P) interpretować średnią ważoną i odchylenie standardowe dla danych empirycznych:

12 Równania i nierówności pierwszego stopnia z jedną niewiadomą L.p. Temat lekcji Uczeń demonstruje opanowanie umiejętności rozwiązując zadania, w których potrafi: 1. Równania stopnia pierwszego z jedną niewiadomą 2. Równania stopnia pierwszego w postaci proporcji 3. Nierówności pierwszego stopnia z jedną niewiadomą 4. Rozwiązywanie zadań prowadzących do rozwiązywania nierówności liniowych 5. Równania i nierówności zapisywać związki między wielkościami za pomocą równania pierwszego stopnia z jedną niewiadomą, (P) sprawdzać, czy dana liczba spełnia równanie stopnia pierwszego z jedną niewiadomą, (P) rozwiązywać równania stopnia pierwszego z jedną niewiadomą, (P) za pomocą równań rozwiązywać zadania osadzone w kontekście praktycznym, (P) sprawdzać, czy dana liczba rzeczywista jest rozwiązaniem równania: zapisywać związki między wielkościami wprost proporcjonalnymi i odwrotnie proporcjonalnymi. (P) sprawdzać, czy dana liczba jest rozwiązaniem nierówności, (P) rozwiązywać nierówności pierwszego stopnia z jedną niewiadomą: rozwiązywać nierówności pierwszego stopnia z jedna niewiadomą: rozwiązywać równania i nierówności liniowe z parametrem:

13 liniowe z parametrem 6. Własności wartości bezwzględnej 7. Równania i nierówności z wartością bezwzględną wykorzystywać pojęcie wartości bezwzględnej i jej interpretację geometryczną: rozwiązywać równania i nierówności z wartością bezwzględną typu: x 1 2 3, x 3 x 5 12 :

14 Trójkąty podobne i twierdzenie Talesa L.p. Temat lekcji Uczeń demonstruje opanowanie umiejętności rozwiązując zadania, w których potrafi: 1. Wielokąty podobne i ich własności 2. Cechy podobieństwa trójkątów 3. Podobieństwo trójkątów w zadaniach 4. Twierdzenie Talesa rozpoznawać wielokąty przystające i podobne, obliczać wymiary wielokąta powiększonego lub pomniejszonego w danej skali, obliczać stosunek pól wielokątów podobnych. stosować cechy przystawania trójkątów, korzystać z własności trójkątów prostokątnych podobnych. rozpoznawać trójkąty podobne: wykorzystywać (także w kontekstach praktycznych) cechy podobieństwa trójkątów: stosować twierdzenie Talesa i twierdzenie odwrotne do twierdzenia Talesa do obliczania długości odcinków i ustalania równoległości prostych:

15 Prosta na płaszczyźnie kartezjańskiej L.p. Temat lekcji Uczeń demonstruje opanowanie umiejętności rozwiązując zadania, w których potrafi: 1. Odległość na płaszczyźnie kartezjańskiej 2. Równanie prostej w postaci ogólnej i kierunkowej 3. Wyznaczanie równania prostej przechodzącej przez dwa punkty 4. Interpretacja geometryczna układów równań stopnia pierwszego z dwiema niewiadomymi zaznaczać w układzie współrzędnych na płaszczyźnie punkty o danych współrzędnych, (P) odczytywać współrzędne danych punktów, (P) obliczać odległość dwóch punktów: rozpoznawać postać ogólną i kierunkową równania prostej, narysować prostą określoną równaniem ogólnym albo kierunkowym: rozwiązywać układy równań stopnia pierwszego z dwiema niewiadomymi, wyznaczać równanie prostej przechodzącej przez dwa dane punkty (w postaci kierunkowej lub ogólnej): sprawdzać, czy dana para liczb spełnia układ dwóch równań stopnia pierwszego z dwiema niewiadomymi, (P) wykorzystywać interpretację geometryczną układu równań pierwszego stopnia z dwiema niewiadomymi:

16 Nierówności stopnia pierwszego z dwiema niewiadomymi i ich układy L.p. Temat lekcji Uczeń demonstruje opanowanie umiejętności rozwiązując zadania, w których potrafi: 1. Nierówność stopnia pierwszego z dwiema niewiadomymi 2. Układy nierówności liniowych z dwiema niewiadomymi interpretować graficznie nierówność liniową z dwiema niewidomymi: interpretować graficznie układy nierówności liniowych z dwiema niewiadomymi:

17 Funkcja i jej własności L.p. Temat lekcji Uczeń demonstruje opanowanie umiejętności rozwiązując zadania, w których potrafi: 1. Pojęcie funkcji i sposoby jej określania 2. Dziedzina i zbiór wartości funkcji 3. Miejsce zerowe i znak funkcji w przedziale 4. Funkcja rosnąca, malejąca lub stała odczytywać z wykresu funkcji: wartość funkcji dla danego argumentu, argumenty dla danej wartości funkcji, obliczać wartości funkcji podanych nieskomplikowanym wzorem i zaznaczać punkty należące do jej wykresu, określać funkcję za pomocą wzoru, tabeli, wykresu, opisu słownego, obliczać ze wzoru wartość funkcji dla danego argumentu: odczytywać z wykresu dziedzinę i zbiór wartości funkcji: odczytywać z wykresu funkcji dla jakich argumentów funkcja przyjmuje wartości dodatnie, dla jakich ujemne, a dla jakich zero, odczytywać z wykresu funkcji miejsca zerowe oraz maksymalne przedziały, w których funkcja ma stały znak: odczytywać i interpretować informacje przedstawione za pomocą wykresu funkcji, rozpoznawać zmianę wartości funkcji przy określonych zmianach argumentów, odczytywać z wykresu funkcji maksymalne przedziały, w których funkcja rośnie, maleje: 5. Wartość odczytywać i interpretować informacje przedstawione za pomocą wykresów funkcji (w tym wykresów opisujących zjawiska występujące w przyrodzie, gospodarce, życiu codziennym),

18 największa i wartość najmniejsza funkcji w przedziale 6. Odczytywanie z wykresów funkcji rozwiązań równań i nierówności odczytywać z wykresu funkcji punkty, w których funkcja przyjmuje w danym przedziale wartość największą lub najmniejszą: odczytywać z wykresu funkcji f rozwiązanie równania odczytywać z wykresu funkcji f rozwiązanie nierówności f x a, gdzie a R, f x a, f x a, f x a, f x a.

19 Trygonometria L.p. Temat lekcji Uczeń demonstruje opanowanie umiejętności rozwiązując zadania, w których potrafi: 1. Tangens kąta ostrego 2. Sinus i cosinus kąta ostrego 3. Wartości funkcji trygonometryczny ch dla kątów 30, 45 i Odczytywanie wartości funkcji trygonometrycznych z tablic 5. Związki między funkcjami trygonometrycznymi stosować twierdzenie Pitagorasa, korzystać z własności trójkątów podobnych, wykorzystywać definicję i wyznaczać wartości funkcji tangens kątów ostrych: wykorzystywać definicje i wyznaczać wartości funkcji sinus i cosinus kątów ostrych: wykorzystywać definicje i wyznaczać dokładne wartości funkcji sinus, cosinus i tangens dla kątów 30, 45 i 60, obliczać dokładną miarę kąta ostrego równego 30, 45 i 60 dla której funkcja trygonometryczna przyjmuje daną wartość: korzystać z przybliżonych wartości funkcji trygonometrycznych (odczytanych z tablic lub obliczonych za pomocą kalkulatora), obliczać miarę kąta ostrego, dla której funkcja trygonometryczna przyjmuje daną przybliżoną wartość (korzystając z tablic lub kalkulatora): 2 2 stosować proste zależności między funkcjami trygonometrycznymi: sin cos 1, (P) tg sin cos oraz sin 90 znając wartość jednej z funkcji trygonometrycznych, wyznaczać wartości pozostałych funkcji tego samego kąta ostrego: cos,

20 6. Funkcje trygonometryczne kątów o miarach od 0 do 180 wykorzystywać definicje i wyznaczać wartości funkcji sinus, cosinus i tangens kątów o miarach od 0 do 180 : 7. Przykłady zastosowań funkcji trygonometrycznych kątów o miarach od 0 do 180 obliczać pole trójkąta, gdy dane są dwa boki i kąt między nimi zawarty, (P) interpretować współczynnik a występujący we wzorze funkcji liniowej y ax b :

21 Funkcja liniowa L.p. Temat lekcji Uczeń demonstruje opanowanie umiejętności rozwiązując zadania, w których potrafi: 1. Wzór i wykres funkcji liniowej rysować wykres funkcji liniowej, korzystając z jej wzoru, obliczać, dla jakiego argumentu funkcja liniowa przyjmuje daną wartość, 2. Interpretacja współczynników liczbowych we wzorze funkcji liniowej 3. Miejsce zerowe i znak funkcji liniowej 4. Wyznaczanie wzoru funkcji liniowej 5. Funkcja liniowa w zastosowaniach odczytywać z wykresu dziedzinę i zbiór wartości funkcji: interpretować współczynniki występujące we wzorze funkcji liniowej: odczytywać z wykresu funkcji liniowej miejsce zerowe i przedziały, w których funkcja ma stały znak: wyznaczać wzór funkcji liniowej na podstawie informacji o tej funkcji lub o jej wykresie: wykorzystywać własności funkcji liniowej do interpretacji zagadnień geometrycznych, fizycznych itp. (także osadzonych w kontekście praktycznym):

22 6. Rozwiązywanie zadań prowadzących do wykorzystania interpretacji geometrycznej układu równań liniowych 7. Przykłady funkcji, których wykresem jest suma odcinków lub półprostych za pomocą układów równań opisywać i rozwiązywać zadania osadzone w kontekście praktycznym, (P) wykorzystywać interpretację geometryczną układu równań pierwszego stopnia z dwiema niewiadomymi: szkicować wykres funkcji określonej w różnych przedziałach różnymi wzorami, odczytywać własności takiej funkcji z wykresu:

23 Funkcja y a x L.p. Temat lekcji Uczeń demonstruje opanowanie umiejętności rozwiązując zadania, w których potrafi: 1. Wykres i własności funkcji określonej a wzorem y x 2. Wielkości odwrotnie proporcjonalne 3. Przekształcanie wykresu funkcji a y x szkicować wykres funkcji f x a dla każdego a, x odczytywać z wykresu funkcji niektóre jej własności: zapisywać związki między wielkościami wprost proporcjonalnymi i odwrotnie proporcjonalnymi, korzystać ze wzoru i wykresu funkcji a y do interpretacji zagadnień związanych z wielkościami odwrotnie proporcjonalnymi: x na podstawie wykresu funkcji a y x szkicować wykres funkcji: a y x p, a y q x, a y x

24 Równanie kwadratowe L.p. Temat lekcji Uczeń demonstruje opanowanie umiejętności rozwiązując zadania, w których potrafi: 1. Równanie kwadratowe niezupełne 2. Równanie kwadratowe zupełne 3. Rozwiązywanie zadań prowadzących do rozwiązywania równań kwadratowych 4. Suma i iloczyn pierwiastków równania kwadratowego 5. Równania kwadratowe z parametrem rozwiązywać równania kwadratowe niezupełne: rozwiązywać równania kwadratowe z jedną niewiadomą: za pomocą równań kwadratowych opisywać i rozwiązywać zadania osadzone w kontekście praktycznym z geometrii, fizyki itp. (PP) stosować wzory Viete a, rozwiązywać równania kwadratowe z parametrem: rozwiązywać równania kwadratowe z parametrem:

25 Wektory i jednokładność L.p. Temat lekcji Uczeń demonstruje opanowanie umiejętności rozwiązując zadania, w których potrafi: 1. Pojęcie wektora określać: kierunek, zwrot i długość wektora, 2. Suma i różnica wektorów swobodnych 3. Iloczyn wektora swobodnego przez liczbę i jednokładność rozpoznawać wektory równe, przeciwne, równoległe i prostopadłe. dodawać i odejmować wektory, interpretować geometrycznie działania na wektorach: znajdować obrazy niektórych figur geometrycznych w jednokładności (odcinka, trójkąta, czworokąta itp.), rozpoznawać figury podobne i jednokładne, wykorzystywać (także w kontekstach praktycznych) ich własności:

26 Warunki i tryb uzyskania wyższej niż przewidywana rocznej oceny klasyfikacyjnej Uczeń może podwyższyć sobie ocenę roczną z przedmiotu najwyżej o jeden stopień w stosunku do oceny przewidywanej, jeśli ma co najmniej połowę prac pisemnych ocenioną na ocenę, którą chce uzyskać lub wyższą. Wówczas, na dwa tygodnie przed klasyfikacją, uczeń poprawia prace pisemne wskazane przez nauczyciela.

Wymagania edukacyjne i kryteria oceniania. w nauczaniu matematyki w zakresie. podstawowym. dla uczniów technikum

Wymagania edukacyjne i kryteria oceniania. w nauczaniu matematyki w zakresie. podstawowym. dla uczniów technikum Wymagania edukacyjne i kryteria oceniania w nauczaniu matematyki w zakresie podstawowym dla uczniów technikum Wymagania podstawowe obejmują wiedzę i umiejętności całkowicie niezbędne do dalszego kształcenia

Bardziej szczegółowo

Typ szkoły: ZASADNICZA SZKOŁA ZAWODOWA Rok szkolny 2015/2016 Zawód: FRYZJER, CUKIERNIK, PIEKARZ, SPRZEDAWCA, FOTOGRAF i inne zawody.

Typ szkoły: ZASADNICZA SZKOŁA ZAWODOWA Rok szkolny 2015/2016 Zawód: FRYZJER, CUKIERNIK, PIEKARZ, SPRZEDAWCA, FOTOGRAF i inne zawody. Typ szkoły: ZASADNICZA SZKOŁA ZAWODOWA Rok szkolny 05/06 Zawód: FRYZJER, CUKIERNIK, PIEKARZ, SPRZEDAWCA, FOTOGRAF i inne zawody Przedmiot: MATEMATYKA Klasa I (60 godz) Rozdział. Liczby rzeczywiste Numer

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny

Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny Podstawa programowa z 23 grudnia 2008r. do nauczania matematyki w zasadniczych szkołach zawodowych Podręcznik: wyd.

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE MATEMATYKA SZKOŁA BRANŻOWA I STOPNIA. rok szkolny 2017/2018. Zespół Szkół Nr1 Olkusz, ul. Górnicza 12

WYMAGANIA EDUKACYJNE MATEMATYKA SZKOŁA BRANŻOWA I STOPNIA. rok szkolny 2017/2018. Zespół Szkół Nr1 Olkusz, ul. Górnicza 12 WYMAGANIA EDUKACYJNE MATEMATYKA SZKOŁA BRANŻOWA I STOPNIA rok szkolny 2017/2018 Zespół Szkół Nr1 Olkusz, ul. Górnicza 12 1 Liczby rzeczywiste i działania na nich liczby naturalne na osi liczbowej. wykonywać

Bardziej szczegółowo

REALIZACJA TREŚCI PODSTAWY PROGRAMOWEJ PRZEZ PROGRAM MATEMATYKA Z PLUSEM

REALIZACJA TREŚCI PODSTAWY PROGRAMOWEJ PRZEZ PROGRAM MATEMATYKA Z PLUSEM REALIZACJA TREŚCI PODSTAWY PROGRAMOWEJ PRZEZ PROGRAM MATEMATYKA Z PLUSEM Treści nauczania wg podstawy programowej Podręcznik M+ Klasa I Klasa II Klasa III 1. Liczby wymierne dodatnie. Uczeń: 1) odczytuje

Bardziej szczegółowo

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................

Bardziej szczegółowo

Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka

Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka TEMAT 5. Przekątna kwadratu. Wysokość trójkąta równobocznego 6. Trójkąty o kątach 90º, 45º, 45º oraz 90º, 30º, 60º 1. Okrąg opisany na trójkącie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE

WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE Przekształcenia algebraiczne Równania i układy równań Pojęcie funkcji. Własności funkcji. WYRAŻENIA

Bardziej szczegółowo

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY Numer lekcji 1 2 Nazwa działu Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań Zbiór liczb rzeczywistych i jego 3 Zbiór

Bardziej szczegółowo

Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony

Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Uczeń realizujący zakres rozszerzony powinien również spełniać wszystkie wymagania w zakresie poziomu podstawowego. Zakres

Bardziej szczegółowo

Wymagania edukacyjne klasa trzecia.

Wymagania edukacyjne klasa trzecia. TEMAT Wymagania edukacyjne klasa trzecia. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE Lekcja organizacyjna System dziesiątkowy System rzymski Liczby wymierne i niewymierne

Bardziej szczegółowo

Kup książkę Poleć książkę Oceń książkę. Księgarnia internetowa Lubię to!» Nasza społeczność

Kup książkę Poleć książkę Oceń książkę. Księgarnia internetowa Lubię to!» Nasza społeczność Kup książkę Poleć książkę Oceń książkę Księgarnia internetowa Lubię to!» Nasza społeczność Spis treści WSTĘP 5 ROZDZIAŁ 1. Matematyka Europejczyka. Program nauczania matematyki w szkołach ponadgimnazjalnych

Bardziej szczegółowo

ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi

ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi Rozkład materiału nauczania został opracowany na podstawie programu

Bardziej szczegółowo

PG im. Tadeusza Kościuszki w Kościerzycach Przedmiot

PG im. Tadeusza Kościuszki w Kościerzycach Przedmiot KARTA MONITOROWANIA PODSTAWY PROGRAMOWEJ KSZTAŁCENIA OGÓLNEGO III etap edukacyjny PG im. Tadeusza Kościuszki w Kościerzycach Przedmiot matematyka Klasa......... Rok szkolny Imię i nazwisko nauczyciela

Bardziej szczegółowo

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum)

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum) Podstawa programowa przedmiotu MATEMATYKA III etap edukacyjny (klasy I - III gimnazjum) Cele kształcenia wymagania ogólne: I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje i tworzy teksty o

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DLA 3 KLASY GIMNAZJUM

ROZKŁAD MATERIAŁU DLA 3 KLASY GIMNAZJUM ROZKŁAD MATERIAŁU DLA 3 KLASY GIMNAZJUM TEMAT LICZBA GODZIN LEKCYJNYCH 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) 1. Lekcja organizacyjna 1 2. System dziesiątkowy 2-4 3. System rzymski 5-6 WYMAGANIA SZCZEGÓŁOWE

Bardziej szczegółowo

TEMAT 1. LICZBY I DZIAŁANIA 14 20. 1. Liczby 1-2. 2. Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2

TEMAT 1. LICZBY I DZIAŁANIA 14 20. 1. Liczby 1-2. 2. Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2 TEMAT 1. LICZBY I DZIAŁANIA 14 20 LICZBA GODZIN LEKCYJNYCH 1. Liczby 1-2 2. Rozwinięcia dziesiętne liczb wymiernych 3. Zaokrąglanie liczb. Szacowanie wyników 1 1-2 WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne Klasa 7

Wymagania na poszczególne oceny szkolne Klasa 7 1 Wymagania na poszczególne oceny szkolne Klasa 7 Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny z matematyki w klasie I poziom rozszerzony

Wymagania edukacyjne na poszczególne oceny z matematyki w klasie I poziom rozszerzony Wymagania edukacyjne na poszczególne oceny z matematyki w klasie I poziom rozszerzony Na ocenę dopuszczającą, uczeń: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych

Bardziej szczegółowo

konieczne (ocena dopuszczająca) Temat podstawowe (ocena dostateczna) dopełniające (ocena bardzo dobra) rozszerzające (ocena dobra)

konieczne (ocena dopuszczająca) Temat podstawowe (ocena dostateczna) dopełniające (ocena bardzo dobra) rozszerzające (ocena dobra) Wymagania na poszczególne oceny szkolne Klasa 7 Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane

Bardziej szczegółowo

konieczne (ocena dopuszczająca) Temat rozszerzające (ocena dobra)

konieczne (ocena dopuszczająca) Temat rozszerzające (ocena dobra) Wymagania na poszczególne oceny szkolne Klasa 7 Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane

Bardziej szczegółowo

konieczne (ocena dopuszczająca) Temat podstawowe (ocena dostateczna) rozszerzające (ocena dobra) dopełniające (ocena bardzo dobra)

konieczne (ocena dopuszczająca) Temat podstawowe (ocena dostateczna) rozszerzające (ocena dobra) dopełniające (ocena bardzo dobra) Wymagania na poszczególne oceny szkolne Klasa 7 Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane

Bardziej szczegółowo

Wymagania edukacyjne klasa pierwsza.

Wymagania edukacyjne klasa pierwsza. Wymagania edukacyjne klasa pierwsza. TEMAT WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I DZIAŁANIA Liczby Rozwinięcia dziesiętne liczb wymiernych Zaokrąglanie liczb. Szacowanie wyników Dodawanie

Bardziej szczegółowo

Rozkład materiału nauczania

Rozkład materiału nauczania Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2017/2018 Przedmiot: MATEMATYKA Klasa: III 60 godzin numer programu T5/O/5/12 Rozkład materiału nauczania Temat

Bardziej szczegółowo

MATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Klasa pierwsza

MATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Klasa pierwsza MATeMAtyka 1 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Klasa pierwsza Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe

Bardziej szczegółowo

TEMAT 1. LICZBY I DZIAŁANIA 14 20. 1. Liczby 1-2. 2. Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2

TEMAT 1. LICZBY I DZIAŁANIA 14 20. 1. Liczby 1-2. 2. Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2 TEMAT 1. LICZBY I DZIAŁANIA 14 0 LICZBA GODZIN LEKCYJNYCH 1. Liczby 1-. Rozwinięcia dziesiętne liczb wymiernych 3. Zaokrąglanie liczb. Szacowanie wyników 4. Dodawanie i odejmowanie liczb dodatnich 1 1-

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE

Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje

Bardziej szczegółowo

Zakres materiału obowiązujący do próbnej matury z matematyki

Zakres materiału obowiązujący do próbnej matury z matematyki ZAKRES PODSTAWOWY Zakres materiału obowiązujący do próbnej matury z matematyki 1) przedstawia liczby rzeczywiste w różnych postaciach (np. ułamka zwykłego, ułamka dziesiętnego okresowego, z użyciem symboli

Bardziej szczegółowo

Plan wynikowy z rozkładem materiału

Plan wynikowy z rozkładem materiału Plan wynikowy z rozkładem materiału Plan wynikowy oraz rozkład materiału nauczania są indywidualnymi dokumentami nauczycielskimi związanymi z realizowanym programem nauczania. Uwzględniają specyfikę danej

Bardziej szczegółowo

Kształcenie w zakresie podstawowym. Klasa 1

Kształcenie w zakresie podstawowym. Klasa 1 Kształcenie w zakresie podstawowym. Klasa 1 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem

Wymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem Wymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem pojęcie liczby naturalnej, całkowitej, wymiernej rozszerzenie osi liczbowej na liczby ujemne sposób i potrzebę zaokrąglania

Bardziej szczegółowo

V. WYMAGANIA EGZAMINACYJNE

V. WYMAGANIA EGZAMINACYJNE V. WYMAGANIA EGZAMINACYJNE Standardy wymagań egzaminacyjnych Zdający posiada umiejętności w zakresie: POZIOM PODSTAWOWY POZIOM ROZSZERZONY 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny

Bardziej szczegółowo

Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013

Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013 Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum w roku szkolnym 2012/2013 I. Zakres materiału do próbnego egzaminu maturalnego z matematyki: 1) liczby rzeczywiste 2) wyrażenia algebraiczne

Bardziej szczegółowo

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 2, ZAKRES PODSTAWOWY

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 2, ZAKRES PODSTAWOWY 1 Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań na oceny 2 Trygonometria Funkcje trygonometryczne kąta ostrego w trójkącie prostokątnym 3-4 Trygonometria Funkcje trygonometryczne

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie podstawowym.

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie podstawowym. Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 1 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE KLASA I Pogrubieniem oznaczono wymagania, które wykraczają poza podstawę programową dla zakresu podstawowego.

WYMAGANIA EDUKACYJNE KLASA I Pogrubieniem oznaczono wymagania, które wykraczają poza podstawę programową dla zakresu podstawowego. WYMAGANIA EDUKACYJNE KLASA I Pogrubieniem oznaczono wymagania, które wykraczają poza podstawę programową dla zakresu podstawowego. 1. LICZBY RZECZYWISTE podaje przykłady liczb: naturalnych, całkowitych,

Bardziej szczegółowo

Kryteria ocen z matematyki w Gimnazjum. Klasa I. Liczby i działania

Kryteria ocen z matematyki w Gimnazjum. Klasa I. Liczby i działania Kryteria ocen z matematyki w Gimnazjum Klasa I Liczby i działania obliczać wartości wyrażeń arytmetycznych, w których występują liczby wymierne skracać i rozszerzać ułamki zwykłe porównywać dwa ułamki

Bardziej szczegółowo

1. LICZBY DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia

1. LICZBY DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia L.P. DZIAŁ Z PODRĘCZNIKA NaCoBeZu kryteria sukcesu w języku ucznia 1. LICZBY 1. Znam pojęcie liczby naturalne, całkowite, wymierne, dodatnie, ujemne, niedodatnie, odwrotne, przeciwne. 2. Potrafię zaznaczyć

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie VII szkoły podstawowej

Wymagania edukacyjne z matematyki w klasie VII szkoły podstawowej Wymagania edukacyjne z matematyki w klasie VII szkoły podstawowej ROZDZIAŁ I LICZBY Uczeń otrzymuje ocenę dopuszczającą jeśli: 1. rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. TEMAT Równania i nierówności (36 h) LICZBA GODZIN LEKCYJNYCH Liczby wymierne 3 Liczby niewymierne 1 Zapisywanie

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 2017 poziom podstawowy

LUBELSKA PRÓBA PRZED MATURĄ 2017 poziom podstawowy LUELSK PRÓ PRZE MTURĄ 07 poziom podstawowy Schemat oceniania Uwaga: kceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania (podajemy kartotekę zadań, gdyż łatwiej będzie

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. TEMAT Równania i nierówności (30h) LICZBA GODZIN LEKCYJNYCH Liczby wymierne 3 Liczby niewymierne 1 Zapisywanie

Bardziej szczegółowo

Wykaz treści i umiejętności zawartych w podstawie programowej z matematyki dla IV etapu edukacyjnego

Wykaz treści i umiejętności zawartych w podstawie programowej z matematyki dla IV etapu edukacyjnego Wykaz treści i umiejętności zawartych w podstawie programowej z matematyki dla IV etapu edukacyjnego 1. Liczby rzeczywiste P1.1. Przedstawianie liczb rzeczywistych w różnych postaciach (np. ułamka zwykłego,

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy I ba Rok szk. 2012/2013

WYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy I ba Rok szk. 2012/2013 Dział LICZBY RZECZYWISTE Uczeń otrzymuje ocenę dopuszczającą lub dostateczną, jeśli: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje

Bardziej szczegółowo

KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ

KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ TREŚCI KSZTAŁCENIA WYMAGANIA PODSTAWOWE WYMAGANIA PONADPODSTAWOWE Liczby wymierne i

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE OCENY MATEMATYKA KL.VII

WYMAGANIA NA POSZCZEGÓLNE OCENY MATEMATYKA KL.VII WYMAGANIA NA POSZCZEGÓLNE OCENY MATEMATYKA KL.VII ROZDZIAŁ I LICZBY 1. rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie do 3000 2. odczytuje liczby naturalne dodatnie zapisane w

Bardziej szczegółowo

Plan realizacji materiału nauczania wraz z określeniem wymagań edukacyjnych

Plan realizacji materiału nauczania wraz z określeniem wymagań edukacyjnych Plan realizacji materiału nauczania wraz z określeniem wymagań edukacyjnych Poziomy wymagań edukacyjnych: K konieczny ocena dopuszczająca (2) P podstawowy ocena dostateczna (3) R rozszerzający ocena dobra

Bardziej szczegółowo

WYMAGANIA SZCZEGÓŁOWE zakres podstawowy dla poszczególnych klas

WYMAGANIA SZCZEGÓŁOWE zakres podstawowy dla poszczególnych klas WYMAGANIA SZCZEGÓŁOWE zakres podstawowy dla poszczególnych klas - klasy pierwsze kolor zielony + gimnazjum - klasy drugie kolor zielony + kolor czerwony + gimnazjum, - klasy maturalne cały materiał 1.

Bardziej szczegółowo

ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY II A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi

ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY II A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY II A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi Rozkład materiału nauczania został opracowany na podstawie programu

Bardziej szczegółowo

IV etap edukacyjny Cele kształcenia wymagania ogólne

IV etap edukacyjny Cele kształcenia wymagania ogólne IV etap edukacyjny Cele kształcenia wymagania ogólne ZAKRES PODSTAWOWY ZAKRES ROZSZERZONY I. Wykorzystywanie i tworzenie informacji. Uczeń interpretuje tekst matematyczny. Po rozwiązaniu zadania interpretuje

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Klasa I - program Matematyka z plusem" LICZBY I DZIAŁANIA POZIOM KONIECZNY - ocena dopuszczająca porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej,

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZBY I DZIAŁANIA Poziom konieczny - ocena dopuszczająca porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej,

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa 1

Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa 1 Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa 1 Liczby rzeczywiste: Uczeń otrzymuje ocenę ( jeśli rozumie i stosuje podpowiedź nauczyciela)oraz

Bardziej szczegółowo

Nie tylko wynik Plan wynikowy dla klasy 1 gimnazjum

Nie tylko wynik Plan wynikowy dla klasy 1 gimnazjum Poziomy wymagań edukacyjnych: K konieczny P podstawowy R rozszerzający D dopełniający W wykraczający Nie tylko wynik Plan wynikowy dla klasy 1 gimnazjum Ułamki i działania 20 h Nazwa modułu I. Ułamki zwykłe

Bardziej szczegółowo

MATEMATYKA Z PLUSEM DLA KLASY VII W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ. programowej dla klas IV-VI. programowej dla klas IV-VI.

MATEMATYKA Z PLUSEM DLA KLASY VII W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ. programowej dla klas IV-VI. programowej dla klas IV-VI. MATEMATYKA Z PLUSEM DLA KLASY VII W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI. LICZBY I DZIAŁANIA 6 h Liczby. Rozwinięcia

Bardziej szczegółowo

Nowa podstawa programowa z matematyki ( w liceum od 01.09.2012 r.)

Nowa podstawa programowa z matematyki ( w liceum od 01.09.2012 r.) IV etap edukacyjny Nowa podstawa programowa z matematyki ( w liceum od 01.09.01 r.) Cele kształcenia wymagania ogólne ZAKRES PODSTAWOWY ZAKRES ROZSZERZONY I. Wykorzystanie i tworzenie informacji. Uczeń

Bardziej szczegółowo

Wymagania z wiedzy i umiejętności na poszczególne stopnie szkolne z matematyki w Zasadniczej Szkole Zawodowej nr 14

Wymagania z wiedzy i umiejętności na poszczególne stopnie szkolne z matematyki w Zasadniczej Szkole Zawodowej nr 14 z wiedzy i umiejętności na poszczególne stopnie szkolne z matematyki w Zasadniczej Szkole Zawodowej nr 14 Liczby rzeczywiste Wiadomości i umiejętności rozpoznać liczby naturalne w tym pierwsze i złożone,

Bardziej szczegółowo

MATeMAtyka cz.1. Zakres podstawowy

MATeMAtyka cz.1. Zakres podstawowy MATeMAtyka cz.1 Zakres podstawowy Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania (W). Wymienione

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki klasa I i II ZSZ 2013/2014

Przedmiotowy system oceniania z matematyki klasa I i II ZSZ 2013/2014 I. Liczby rzeczywiste K-2 P-3 R-4 D-5 W-6 Rozpoznaje liczby: naturalne (pierwsze i złożone),całkowite, wymierne, niewymierne, rzeczywiste Stosuje cechy podzielności liczb przez 2, 3,5, 9 Podaje dzielniki

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 7SP. V. Obliczenia procentowe. Uczeń: 1) przedstawia część wielkości jako procent tej wielkości;

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 7SP. V. Obliczenia procentowe. Uczeń: 1) przedstawia część wielkości jako procent tej wielkości; WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 7SP Liczby. TEMAT Rozwinięcia dziesiętne liczb wymiernych. Zaokrąglanie liczb. Szacowanie wyników. Dodawanie i odejmowanie liczb dodatnich. Mnożenie i dzielenie

Bardziej szczegółowo

Wymagania edukacyjne klasa druga.

Wymagania edukacyjne klasa druga. Wymagania edukacyjne klasa druga. TEMAT WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. POTĘGI Potęga o wykładniku naturalnym Iloczyn i iloraz potęg o jednakowych podstawach Potęgowanie potęgi Potęgowanie

Bardziej szczegółowo

PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum Cele kształcenia wymagania ogólne

PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum Cele kształcenia wymagania ogólne PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum Cele kształcenia wymagania ogólne ZAKRES PODSTAWOWY ZAKRES ROZSZERZONY I. Wykorzystanie i tworzenie informacji. Uczeń używa języka matematycznego

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne z matematyki. dla uczniów klasy Ia i Ib. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016

Wymagania na poszczególne oceny szkolne z matematyki. dla uczniów klasy Ia i Ib. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016 Wymagania na poszczególne oceny szkolne z matematyki dla uczniów klasy Ia i Ib Gimnazjum im. Jana Pawła II w Mętowie w roku szkolnym 2015/2016 DZIAŁ I: LICZBY zaznacza na osi liczbowej punkty odpowiadające

Bardziej szczegółowo

Wymagania eduka cyjne z matematyki

Wymagania eduka cyjne z matematyki Wymagania eduka cyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZ B Y I DZIAŁANIA porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej, zamieniać ułamki zwykłe na

Bardziej szczegółowo

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ L.p. 1. Liczby rzeczywiste 2. Wyrażenia algebraiczne bada, czy wynik obliczeń jest liczbą

Bardziej szczegółowo

MATEMATYKA IV etap edukacyjny. I. Wykorzystanie i tworzenie informacji. II. Wykorzystanie i interpretowanie reprezentacji.

MATEMATYKA IV etap edukacyjny. I. Wykorzystanie i tworzenie informacji. II. Wykorzystanie i interpretowanie reprezentacji. Cele kształcenia wymagania ogólne MATEMATYKA IV etap edukacyjny I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje tekst matematyczny. Po rozwiązaniu zadania interpretuje otrzymany wynik. Uczeń

Bardziej szczegółowo

Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 1

Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 1 Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 1 Wyróżniono następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające

Bardziej szczegółowo

Standardy wymagań maturalnych z matematyki - matura

Standardy wymagań maturalnych z matematyki - matura Standardy wymagań maturalnych z matematyki - matura 2011-2014 STANDARDY WYMAGAŃ BĘDĄCE PODSTAWĄ PRZEPROWADZANIA EGZAMINU MATURALNEGO Zdający posiada umiejętności w zakresie: POZIOM PODSTAWOWY 1. wykorzystania

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej. rozumie rozszerzenie

Bardziej szczegółowo

Mgr Kornelia Uczeń. WYMAGANIA na poszczególne oceny-klasa VII-Szkoła Podstawowa

Mgr Kornelia Uczeń. WYMAGANIA na poszczególne oceny-klasa VII-Szkoła Podstawowa Mgr Kornelia Uczeń WYMAGANIA na poszczególne oceny-klasa VII-Szkoła Podstawowa Oceny z plusem lub minusem otrzymują uczniowie, których wiadomości i umiejętności znajdują się na pograniczu wymagań danej

Bardziej szczegółowo

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych

Bardziej szczegółowo

RAMOWY ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLAS I-III LICEUM OGÓLNOKSZTAŁCĄCEGO PRZY CKU NR 1

RAMOWY ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLAS I-III LICEUM OGÓLNOKSZTAŁCĄCEGO PRZY CKU NR 1 RAMOWY ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLAS I-III LICEUM OGÓLNOKSZTAŁCĄCEGO PRZY CKU NR 1 Zakres podstawowy Kl. 1-60 h ( 30 h w semestrze) Kl. 2-60 h (30 h w semestrze) Kl. 3-90 h (45 h w semestrze)

Bardziej szczegółowo

Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych

Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych ZESPÓŁ SZKÓŁ HANDLOWO-EKONOMICZNYCH IM. MIKOŁAJA KOPERNIKA W BIAŁYMSTOKU Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych Mój przedmiot matematyka spis scenariuszy

Bardziej szczegółowo

Wymagania edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum

Wymagania edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum Semestr I Stopień Rozdział 1. Liczby Zamienia liczby dziesiętne na ułamki

Bardziej szczegółowo

Ułamki i działania 20 h

Ułamki i działania 20 h Propozycja rozkładu materiału Klasa I Razem h Ułamki i działania 0 h I. Ułamki zwykłe II. Ułamki dziesiętne III. Ułamki zwykłe i dziesiętne. Przypomnienie wiadomości o ułamkach zwykłych.. Dodawanie i odejmowanie

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy VII

Wymagania edukacyjne z matematyki dla klasy VII Wymagania edukacyjne z matematyki dla klasy VII Szkoły Podstawowej nr 100 w Krakowie Na podstawie programu Matematyka z plusem Na ocenę dopuszczającą Uczeń: rozumie rozszerzenie osi liczbowej na liczby

Bardziej szczegółowo

Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę

Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę 1. Omówienie programu. Zaznajomienie uczniów ze źródłami finansowania

Bardziej szczegółowo

I. Liczby i działania

I. Liczby i działania I. Liczby i działania porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej, zamieniać ułamki zwykłe na dziesiętne i odwrotnie, zaokrąglać liczby do danego rzędu, szacować wyniki działań,

Bardziej szczegółowo

Matematyka Wymagania edukacyjne, kryteria oceniania i sposoby sprawdzania osiągnięć edukacyjnych uczniów

Matematyka Wymagania edukacyjne, kryteria oceniania i sposoby sprawdzania osiągnięć edukacyjnych uczniów Matematyka Wymagania edukacyjne, kryteria oceniania i sposoby sprawdzania osiągnięć edukacyjnych uczniów Wymagania edukacyjne ogólne 1. Uczeń interpretuje i tworzy teksty o charakterze matematycznym, używa

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który

Bardziej szczegółowo

Wymagania na poszczególne oceny w klasie I gimnazjum do programu nauczania MATEMATYKA NA CZASIE

Wymagania na poszczególne oceny w klasie I gimnazjum do programu nauczania MATEMATYKA NA CZASIE Wymagania na poszczególne oceny w klasie I gimnazjum do programu nauczania MATEMATYKA NA CZASIE I.LICZBY - zaznacza na osi liczbowej punkty odpowiadające liczbom całkowitym, wymiernym(np. 1 2, 2 1 1 ),

Bardziej szczegółowo

Matematyka wykaz umiejętności wymaganych na poszczególne oceny

Matematyka wykaz umiejętności wymaganych na poszczególne oceny Matematyka wykaz umiejętności wymaganych na poszczególne oceny KLASA I 1.Liczby rzeczywiste 1. Podawanie przykładów liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA Kartoteka testu. Maksymalna liczba punktów. Nr zad. Matematyka dla klasy 3 poziom podstawowy

LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA Kartoteka testu. Maksymalna liczba punktów. Nr zad. Matematyka dla klasy 3 poziom podstawowy Matematyka dla klasy poziom podstawowy LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA 06 Kartoteka testu Nr zad Wymaganie ogólne. II. Wykorzystanie i interpretowanie reprezentacji.. II. Wykorzystanie i interpretowanie

Bardziej szczegółowo

IV etap edukacyjny. Cele kształcenia wymagania ogólne

IV etap edukacyjny. Cele kształcenia wymagania ogólne IV etap edukacyjny Cele kształcenia wymagania ogólne I. Wykorzystywanie i tworzenie informacji. Uczeń interpretuje tekst matematyczny. Po rozwiązaniu zadania interpretuje otrzymany wynik. Uczeń używa prostych,

Bardziej szczegółowo

Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016

Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016 Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016 1) Liczby - zamienia liczby dziesiętne skończone na ułamki zwykłe i liczby mieszane, - zapisuje ułamek zwykły w postaci ułamka

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy pierwszej zasadniczej szkoły zawodowej

Wymagania edukacyjne z matematyki dla klasy pierwszej zasadniczej szkoły zawodowej Wymagania edukacyjne z matematyki dla klasy pierwszej zasadniczej szkoły zawodowej ocena dopuszczająca ocena dostateczna ocena dobra ocena bardzo dobra ocena celująca Dział I. LICZBY RZECZYWISTE I DZIALANIA

Bardziej szczegółowo

Wymagania edukacyjne. Hasło z podstawy programowej 1. Liczby naturalne 1 Liczby naturalne, cechy podzielności. Liczba godzin

Wymagania edukacyjne. Hasło z podstawy programowej 1. Liczby naturalne 1 Liczby naturalne, cechy podzielności. Liczba godzin . Liczby rzeczywiste (3 h) PRZEDMIOT: Matematyka KLASA: I zasadnicza szkoła zawodowa Dział programowy Temat Wymagania edukacyjne Liczba godzin Hasło z podstawy programowej. Liczby naturalne Liczby naturalne,

Bardziej szczegółowo

Stopień dobry otrzymuje uczeń, który spełnia wymagania na stopień dostateczny oraz:

Stopień dobry otrzymuje uczeń, który spełnia wymagania na stopień dostateczny oraz: KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KLASY I ZASADNICZEJ SZKOŁY ZAWODOWEJ (IF, IA/L) (zgodny z wymaganiami nowej podstawy programowej z grudnia 2008) Rok szkolny 2015/2016 Stopień dopuszczający potrafi:

Bardziej szczegółowo

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h)

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h) Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony (według podręczników z serii MATeMAtyka) Klasa I (90 h) Temat Liczba godzin 1. Liczby rzeczywiste 15

Bardziej szczegółowo

Zdający posiada umiejętności w zakresie: 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny i formułuje uzyskane wyniki

Zdający posiada umiejętności w zakresie: 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny i formułuje uzyskane wyniki Standardy wymagań na egzaminie maturalnym z matematyki mają dwie części. Pierwsza część opisuje pięć podstawowych obszarów umiejętności matematycznych. Druga część podaje listę szczegółowych umiejętności.

Bardziej szczegółowo

Przedmiotowe Ocenianie Z Matematyki Liceum Ogólnokształcące obowiązuje w roku szkolnym 2016 / 2017

Przedmiotowe Ocenianie Z Matematyki Liceum Ogólnokształcące obowiązuje w roku szkolnym 2016 / 2017 Przedmiotowe Ocenianie Z Matematyki Liceum Ogólnokształcące obowiązuje w roku szkolnym 2016 / 2017 1. Rok szkolny dzieli się na dwa semestry. Każdy semestr kończy się klasyfikacją. 2. Na początku roku

Bardziej szczegółowo

MATEMATYKA. WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski. KLASA I Wymagania

MATEMATYKA. WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski. KLASA I Wymagania MATEMATYKA WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski Treści zapisane kursywą (i oznaczone gwiazdką) wykraczają poza podstawę programową. Nauczyciel może je realizować,

Bardziej szczegółowo

III. STRUKTURA I FORMA EGZAMINU

III. STRUKTURA I FORMA EGZAMINU III. STRUKTURA I FORMA EGZAMINU Egzamin maturalny z matematyki jest egzaminem pisemnym sprawdzającym wiadomości i umiejętności określone w Standardach wymagań egzaminacyjnych i polega na rozwiązaniu zadań

Bardziej szczegółowo

WYMAGANIA na poszczególne oceny-klasa I Gimnazjum

WYMAGANIA na poszczególne oceny-klasa I Gimnazjum WYMAGANIA na poszczególne oceny-klasa I Gimnazjum Oceny z plusem lub minusem otrzymują uczniowie, których wiadomości i umiejętności znajdują się na pograniczu wymagań danej oceny głównej. (Znaki + i -

Bardziej szczegółowo

Wymagania szczegółowe z matematyki klasa 7

Wymagania szczegółowe z matematyki klasa 7 Wymagania szczegółowe z matematyki klasa 7 Dział Szczegółowe wymagania Liczby całkowite (liczby dodatnie, ujemne i zero) - wyróżnia wśród liczb wymiernych liczby naturalne i całkowite oraz liczby pierwsze,

Bardziej szczegółowo

Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas

Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas klasa I 1)Działania na liczbach: dopuszczający: uczeń potrafi poprawnie wykonać cztery podstawowe działania na ułamkach

Bardziej szczegółowo

Matematyka z kluczem. Plan wynikowy z rozkładem materiału Klasa 7

Matematyka z kluczem. Plan wynikowy z rozkładem materiału Klasa 7 Matematyka z kluczem Plan wynikowy z rozkładem materiału Klasa 7 Matematyka z kluczem Plan wynikowy z rozkładem materiału Klasa 7 Temat lekcji Punkty z podstawy programowej Lp. Wymagania podstawowe Wymagania

Bardziej szczegółowo

Standardy wymagań maturalnych z matematyki - matura 2010

Standardy wymagań maturalnych z matematyki - matura 2010 Standardy wymagań maturalnych z matematyki - matura 2010 STANDARDY WYMAGAŃ BĘDĄCE PODSTAWĄ PRZEPROWADZANIA EGZAMINU MATURALNEGO Standardy można pobrać (plik pdf) wybierając ten link: STANDARDY 2010 lub

Bardziej szczegółowo

Wymagania na ocenę dopuszczającą z matematyki klasa I Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS /02

Wymagania na ocenę dopuszczającą z matematyki klasa I Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS /02 Wymagania na ocenę dopuszczającą z matematyki klasa I Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02 Temat lekcji Zakres treści Osiągnięcia ucznia 1. Liczby naturalne definicja dzielnika

Bardziej szczegółowo

Wymagania dla kl. 1. Zakres podstawowy. podaje przykłady liczb pierwszych, parzystych i nieparzystych cechy podzielności liczb naturalnych

Wymagania dla kl. 1. Zakres podstawowy. podaje przykłady liczb pierwszych, parzystych i nieparzystych cechy podzielności liczb naturalnych Wymagania dla kl. 1 Zakres podstawowy Temat lekcji Zakres treści Osiągnięcia ucznia 1. LICZBY RZECZYWISTE 1. Liczby naturalne definicja dzielnika liczby naturalnej definicja liczby pierwszej podaje przykłady

Bardziej szczegółowo