Metody i narzędzia ewaluacji

Wielkość: px
Rozpocząć pokaz od strony:

Download "Metody i narzędzia ewaluacji"

Transkrypt

1 Metody i narzędzia ewaluacji wyników zdalnego testowania wiedzy (platforma informatyczna e-matura)

2

3 Książka przygotowana w ramach projektu E-matura, współfinansowanego przez Unię Europejską w ramach Europejskiego Funduszu Społecznego, Programu Operacyjnego Kapitał Ludzki, Priorytet III Wysoka jakość systemu oświaty, Działanie 3.3 Poprawa jakości kształcenia, Poddziałanie Modernizacja treści i metod kształcenia projekty konkursowe.

4 Książka jest dystrybuowana bezpłatnie Redakcja: prof. dr hab. inz. Sławomir Wiak Opracowanie graficzne: Niceday Książka przygotowana w ramach projektu E-matura, współfinansowanego przez Unię Europejską w ramach Europejskiego Funduszu Społecznego, Programu Operacyjnego Kapitał Ludzki, Priorytet III Wysoka jakość systemu oświaty, Działanie 3.3 Poprawa jakości kształcenia, Poddziałanie Modernizacja treści i metod kształcenia projekty konkursowe. copyright by Politechnika Łódzka, Łódź 2013 Książka współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego ISBN:

5 Dorota Krawczyk-Stańdo Grzegorz Kusztelak Jacek Stańdo Nowe funkcjonalności platformy stosowanej w projekcie E-pogotowie matematyczne w kontekście e-matury Wprowadzenie Informatyczna rewolucja, której od kilkunastu lat jesteśmy świadkami, nie ominęła także edukacji. Powszechna dostępność komputerów oraz Internetu spowodowała błyskawiczny rozwój nowych metod nauczania. E-learning, czyli komputerowo wspomagane zdalne nauczanie, zdobywa coraz większą popularność. Platforma e-learningowa LearnWay firmy Gromar jest typowym narzędziem do zdalnej edukacji. Zawiera wiele funkcjonalności do zarządzania uczestnikami szkoleń, prowadzenia czatów, forum dyskusyjnego, udostępniania materiałów dydaktycznych, przeprowadzania ankiet itd. Dla realizacji projektu E-pogotowie matematyczne, którego celem było udzielanie doraźnej pomocy merytorycznej online w rozwiązaniu zadań z matematyki na poziomie maturalnym zastosowano tę Platformę [ ]. W swym początkowym kształcie nie miała on wielu funkcjonalności. W trakcie trwania projektu część z nich uzupełniono. Ponad rok temu firma Gromar złożyła projekt w partnerstwie z Politechniką Łódzką pt. Virtual Classroom, który otrzymał finansowanie z osi priorytetowej III: Gospodarka, innowacyjność, przedsiębiorczość. Projekt polega na opracowaniu i wdrożeniu narzędzia e-learningowego, będącego składową platformy e- learnigowej LearnWay. Virtual Classroom miała zwierać szereg funkcjonalności, które same w sobie nie są czymś unikalnym na rynku aplikacji IT natomiast dotychczas nie były wykorzystywane w takiej konfiguracji, z przeznaczeniem do usprawnienia procesu nauczania elektronicznego w szczególności w matematyce. Celem pracy jest przedstawienie propozycji nowych funkcjonalności Platformy, które były realizowane w ramach projektu Proponowane nowe funkcjonalności Rysowanie wykresów funkcji elementarnych Motywacja. W czasie konsultacji z uczniami szkół średnich w ramach realizacji projektu E-pogotowie matematyczne wielokrotnie pojawia się potrzeba przywołania wykresu funkcji elementarnej. Wykonanie takiego wykresu z wykorzystaniem podstawowego narzędzia do rysowania obsługiwanego za pomocą myszki czy nawet tabletu jest oczywiście możliwe, ale daje efekt daleko odbiegający od ideału. Przykład. Uczeń zgłosił się, aby uzyskać pomoc w rozwiązaniu zadania. Zadanie. Rozwiąż równanie trygonometryczne w przedziale. Poniżej przedstawiamy zrzut okna komunikacyjnego z zapisem zarysu rozwiązania. Przejrzystości rozwiązania sprzyja przywołanie wykresów funkcji oraz. 135

6 Rys Źródło e-pogotowie matematyczne. Jeśli dostępna byłaby funkcjonalność rysowania wykresów rozwiązanie wyglądałoby np. tak: Rys Źródło E-pogotowie matematyczne. Tablice matematyczne Motywacja. Dołączenie tablic matematycznych zgodnych z zaleceniami Centralnej Komisji Egzaminacyjnej (CKE) wydaje się cenne z uwagi na kształcenie umiejętności korzystania z takiej pomocy w sytuacji zadaniowej. W czasie egzaminu maturalnego CKE dopuszcza korzystanie z tablic. Przykład. Uczeń zgłosił się, aby uzyskać pomoc w rozwiązaniu zadania. Zadanie. Dla jakich wartości parametru a równanie posiada rozwiązanie. Poniżej przedstawiamy zrzut okna komunikacyjnego z zapisem zarysu rozwiązania. W trakcie rozwiązania wykładowca musiał przypomnieć uczniowi wzór na sinus kąta podwojonego (w ramce). 136

7 Rys Źródło E-pogotowie matematyczne. Zamieszczenie w oknie komunikacyjnym możliwość przywołania tablic matematycznych, potrzeba przypomnienia wspomnianego wzoru, byłaby okazją do samodzielnego wyszukania tego wzoru przez ucznia. Rys Źródło E-pogotowie matematyczne. Baza brył zapisanych wektorowo Motywacja. Przygotowanie zestawu typowych brył wykorzystywanych w zadaniach maturalnych ze stereometrii zapisanych w technice wektorowej wydaje się być cenną pomocą. Da to możliwość szybkiej analizy zadania na rysunku. Możliwość edycji i nieproporcjonalnego skalowania wynikająca z zapisu wektorowego jest ważna, gdyż umożliwi odwzorowanie na rysunku rzeczywistego stosunku długości krawędzi, co często pozwala zauważyć własności niezbędne do rozwiązania bądź znacząco ułatwiające rozwiązanie zadania. Przykład. Uczeń zgłosił się z zadaniem sprowadzającym się w rezultacie do policzenia różnicy objętości dwóch stożków. Rysunki i zapis rozwiązania poniżej. Rys Źródło E-pogotowie matematyczne. 137

8 Dysponowanie bazą brył, z której mógłby od razu skorzystać nauczyciel oraz przeskalowanie i dorysować elementy wynikające z treści zadania w znaczący sposób może skrócić i usprawnić proces nauczania. Rys Źródło E-pogotowie matematyczne. Kalkulator Motywacja. Z kalkulatorów zawierających podstawowe funkcje również można korzystać na egzaminie maturalnym z matematyki. Celowe jest zatem kształtowanie umiejętności korzystania z tego narzędzia chociażby w celu weryfikacji poprawności wykonanych obliczeń. Przykład. Zadanie. W ciągu dany jest wyraz i zależność. Znajdź. Zauważenie, że zależność sprowadza się do znacznie prostszej postaci, a mianowicie wymaga od ucznia wykazania się znajomością własności funkcji logarytmicznej i wykładniczej. Jednakże sprawdzenie, że wykonane zgodnie z tym wzorem rachunki są poprawne jest już możliwe z użyciem kalkulatora. Rys Źródło E-pogotowie matematyczne. Geogebra i Cabri Motywacja. Na rynku programów wspomagających proces nauczania/uczenia się matematyki pojawia się coraz więcej pozycji. Silnym narzędziem komercyjnym jest Cabri. Geogebra to z kolei rozwiązanie typu freeware. Zakres zastosowań Geogebry jest w zasadzie ograniczony jedynie wyobraźnią użytkowników. Wydaje się ona bardzo cenna w edukacji matematycznej na każdym poziomie. Geogebra pozwala wyeksportować stworzony programik wizualizujący dane zagadnienie w postaci 138

9 apletu Javy gotowego do zamieszczenia na stronie webowej. W Internecie są już dostępne całe archiwa prezentacji pogrupowanych tematycznie. Świetnym uzupełnieniem wizualizacji stworzonych w Geogebrze byłaby możliwość równoczesnej rozmowy online ucznia z nauczycielem. Stąd pomysł, aby w obszarze tablicy uruchamiać aplet Javy stworzony w Geogebrze. Użytkownik (wykładowca/uczeń) wskazywałby URL do apletu, aplet uruchamiałby się w obrębie okienka tablicy wirtualnej, zarówno wykładowca jak i uczeń widzieliby przebieg animacji i mogli wymieniać spostrzeżenia na ten temat (rozmowa głosowa / czat). Osoba, która uruchomiła aplet mogłaby nim sterować. Przykład. Uczeń zgłasza się z zadaniem dotyczącym trójkąta, w którym trzeba skorzystać z własności, że suma kątów wewnętrznych w trójkącie jest równa kątowi półpełnemu. Uczeń nie pamięta tej własności. Nauczyciel wpisuje w dedykowane pole dialogowe w oknie komunikacyjnym adres strony z odpowiednim apletem stworzonym za pomocą geogebry. W obrębie tablicy wirtualnej uruchamia się wizualizacja. Rys Źródło E-pogotowie matematyczne Nowe funkcjonalności w akcji Zadanie: Dany jest ostrosłup prawidłowy trójkątny, w którym długość krawędzi podstawy wynosi a. Kąt między krawędzią boczną a krawędzią podstawy wynosi 45 stopni. Ostrosłup ten przecięto płaszczyzną, która przechodzi przez krawędź podstawy i środek przeciwległej jej krawędzi bocznej. Oblicz pole przekroju. Scenariusz rozwiązania powyższego zadania z użyciem proponowanych funkcjonalności. Krok 1 Wybranie ostrosłupa trójkątnego z bazy brył i odpowiednie jego wyskalowanie. Rys Źródło E-pogotowie matematyczne. 139

10 Krok 2 Dorysowanie odcinków wynikających z treści zadania, odszukanie w tablicach niezbędnych wartości funkcji trygonometrycznych. Rys Źródło E-pogotowie matematyczne. Krok 3 Wykonanie dalszych przekształceń i np. wyliczenie za pomocą kalkulatora pola przekroju dla ustalonego a. Rys Źródło E-pogotowie matematyczne. Dodatkowe funkcjonalności organizacyjne Platformę można także wyposażyć w system kontroli jakości. Służył by on do obserwacji wykładowców w trakcie udzielania konsultacji a także badań naukowych (badania jakościowe). Jakie funkcjonalności w platformie warto doposażyć: możliwość włączenia się osób trzecich, zrzuty ekranów z tablicy, zapisywanie całej rozmowy czatowej, nagrywanie fonii i wideo z konsultacji. Literatura: Stańdo J, Kisiel K., (2011), How Can ICT Effectively Support Educational Processes? Mathematical Emergency E-Services Case, H. Cherifi, J.M. Zain, and E. El-Qawasmeh (Eds.): DICTAP 2011, Part II, CCIS 167, pp , Springer-Verlag Berlin Heidelberg Krawczyk-Stańdo D., Stańdo J. - Wspomaganie procesu dydaktycznego przez e-pogotowie matematyczne Kwartalnik Edukacja. Studia, Badania, Innowacje numer 2 (110) 2010 Stańdo J., Bieniecki W. (2010), Ways of application of different information technologies in education on the example of mathematical emergency e-services, Information Systems in management VII, Distant Learning and Web Solutions for Education and Business, Scientific editors Piotr Jałowiecki, Arkadiusz Orłowski, Warsaw. 140

System informatyczny zdalnego egzaminowania

System informatyczny zdalnego egzaminowania System informatyczny zdalnego egzaminowania - strategia, logika systemu, architektura, ewaluacja (platforma informatyczna e-matura) redakcja Sławomir Wiak Konrad Szumigaj Redakcja: prof. dr hab. inż. Sławomir

Bardziej szczegółowo

System informatyczny zdalnego egzaminowania

System informatyczny zdalnego egzaminowania System informatyczny zdalnego egzaminowania - strategia, logika systemu, architektura, ewaluacja (platforma informatyczna e-matura) redakcja Sławomir Wiak Konrad Szumigaj Redakcja: prof. dr hab. inż. Sławomir

Bardziej szczegółowo

Metody i narzędzia ewaluacji

Metody i narzędzia ewaluacji Metody i narzędzia ewaluacji wyników zdalnego testowania wiedzy (platforma informatyczna e-matura) Książka przygotowana w ramach projektu E-matura, współfinansowanego przez Unię Europejską w ramach Europejskiego

Bardziej szczegółowo

Placówka z certyfikatem PN-EN ISO 9001:2009 i akredytacją Łódzkiego Kuratora Oświaty

Placówka z certyfikatem PN-EN ISO 9001:2009 i akredytacją Łódzkiego Kuratora Oświaty 96-100 Skierniewice, Al. Niepodległości 4 tel. (46) 833-20-04, (46) 833-40-47 fax. (46) 832-56-43 www.wodnskierniewice.eu wodn@skierniewice.com.pl Placówka z certyfikatem PN-EN ISO 9001:2009 i akredytacją

Bardziej szczegółowo

Początki e-learningu

Początki e-learningu E-learning Początki e-learningu Początków nauczania na odległość można doszukiwać się w Stanach Zjednoczonych w latach 80. Technikę tą początkowo wykorzystywało tylko kilka uczelni wyższych. Widząc zainteresowanie

Bardziej szczegółowo

REALIZACJA KIERUNKÓW POLITYKI OŚWIATOWEJ PAŃSTWA

REALIZACJA KIERUNKÓW POLITYKI OŚWIATOWEJ PAŃSTWA Matematyka gimnazjów i szkół ponadgimnazjalnych Jak zachęcić uczniów do rozwiązywania zadań na dowodzenie? TREŚCI: Projektowanie zadań na dowodzenie zgodnych z nową podstawą programową w wersji przyjaznej

Bardziej szczegółowo

Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych

Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych ZESPÓŁ SZKÓŁ HANDLOWO-EKONOMICZNYCH IM. MIKOŁAJA KOPERNIKA W BIAŁYMSTOKU Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych Mój przedmiot matematyka spis scenariuszy

Bardziej szczegółowo

Porównanie umiejętności matematycznych uczniów, którzy w 2007 roku pisali próbną maturę na poziomie podstawowym lub rozszerzonym

Porównanie umiejętności matematycznych uczniów, którzy w 2007 roku pisali próbną maturę na poziomie podstawowym lub rozszerzonym XIII Konferencja Diagnostyki Edukacyjnej Uczenie się i egzamin w oczach uczniów. Łomża, 5-7..27 Anna Dubiecka, Jacek Stańdo 2 Matematyka 2_Gimnazjum, WSiP 2 Centrum Nauczania Matematyki i Fizyki, Politechnika

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 2 CZERWCA 2015. Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 2 CZERWCA 2015. Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 013 KOD UZUPEŁNIA ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM

Bardziej szczegółowo

MATeMAtyka 3. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony

MATeMAtyka 3. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Agnieszka Kamińska, Dorota Ponczek MATeMAtyka 3 Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 015 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY DATA: czerwca

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejkę z kodem szkoły dysleksja MMA-R1_1P-07 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdającego 1 Sprawdź, czy arkusz egzaminacyjny zawiera 15

Bardziej szczegółowo

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................

Bardziej szczegółowo

Innowacyjny program nauczania matematyki dla liceów

Innowacyjny program nauczania matematyki dla liceów Justyna Biernacka Konsultant ds. matematyki WODN w Skierniewicach Innowacyjny program nauczania matematyki dla liceów We wrześniu 2015 roku odbyła się VI Ogólnopolska Konferencja GeoGebry. Konferencja

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 2015 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY DATA: 8

Bardziej szczegółowo

Monika Góral, Krzysztof Grynienko, Monika Jasińska, Piotr Kryszkiewicz

Monika Góral, Krzysztof Grynienko, Monika Jasińska, Piotr Kryszkiewicz Powtórzenie wiadomości o układach równań { { 2x + 3y = 5 6x + 9y = 15 x + 2y = 7 2x y = 1 { 4x + 2y = 8 5x + 3y = 9 { 4x + y = 2 5x 3y = 11 2x + 3y = 5 6x + 9y = 15 4x + 2y = 8 5x + 3y = 9 { MATEMATYKA

Bardziej szczegółowo

Wymagania edukacyjne z matematyki klasa IV technikum

Wymagania edukacyjne z matematyki klasa IV technikum Wymagania edukacyjne z matematyki klasa IV technikum Poziom rozszerzony Obowiązują wymagania z zakresu podstawowego oraz dodatkowo: FUNKCJE TRYGONOMETRYCZNE zaznacza kąt w układzie współrzędnych, wskazuje

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 2015 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY DATA: 8

Bardziej szczegółowo

MATEMATYKA Wymagania edukacyjne i zakres materiału w roku szkolnym 2014/2015 (klasa trzecia)

MATEMATYKA Wymagania edukacyjne i zakres materiału w roku szkolnym 2014/2015 (klasa trzecia) MATEMATYKA Wymagania edukacyjne i zakres materiału w roku szkolnym 2014/2015 (klasa trzecia) ZAKRES MATERIAŁU, TREŚCI NAUCZANIA 1. Potęgi. Logarytmy. Funkcja wykładnicza sprawnie wykonywać działania na

Bardziej szczegółowo

Str. tytułowa. Mobilna Technologia Wspomagająca Uczenie Matematyki Uczniów Niewidomych i Słabowidzących KRÓTKA PREZENTACJA

Str. tytułowa. Mobilna Technologia Wspomagająca Uczenie Matematyki Uczniów Niewidomych i Słabowidzących KRÓTKA PREZENTACJA Str. tytułowa Mobilna Technologia Wspomagająca Uczenie Matematyki Uczniów Niewidomych i Słabowidzących KRÓTKA PREZENTACJA Platforma PlatMat powstała w projekcie badawczym współfinansowanym przez PFRON

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY

Bardziej szczegółowo

PROGRAM DOSKONALENIA PRZEDMIOTOWEGO W ZAKRESIE KOMPETENCJI MATEMATYCZNYCH dla nauczycieli szkół podstawowych

PROGRAM DOSKONALENIA PRZEDMIOTOWEGO W ZAKRESIE KOMPETENCJI MATEMATYCZNYCH dla nauczycieli szkół podstawowych PROGRAM DOSKONALENIA PRZEDMIOTOWEGO W ZAKRESIE KOMPETENCJI MATEMATYCZNYCH dla nauczycieli szkół podstawowych TYTUŁ PROGRAMU: Kształcenie myślenia matematycznego z wykorzystaniem TIK CELE OGÓLNE: Kształcenie

Bardziej szczegółowo

Kursy Matematyki online Matematyka Reaktywacja czyli nowoczesne przygotowanie do matury z matematyki

Kursy Matematyki online Matematyka Reaktywacja czyli nowoczesne przygotowanie do matury z matematyki Kursy Matematyki online Matematyka Reaktywacja czyli nowoczesne przygotowanie do matury z matematyki Jędrzej Wierzejewski Politechnika Wrocławska Instytut Matematyki i Informatyki O czym będzie mowa 1.

Bardziej szczegółowo

KLUCZ PUNKTOWANIA ODPOWIEDZI

KLUCZ PUNKTOWANIA ODPOWIEDZI Egzamin maturalny maj 009 MATEMATYKA POZIOM ROZSZERZONY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie. a) Wiadomości i rozumienie Matematyka poziom rozszerzony Wykorzystanie pojęcia wartości argumentu i wartości

Bardziej szczegółowo

Monika Góral, Krzysztof Grynienko, Monika Jasińska, Piotr Kryszkiewicz

Monika Góral, Krzysztof Grynienko, Monika Jasińska, Piotr Kryszkiewicz Powtórzenie wiadomości o układach równań 2x + 3y = 5 6x + 9y = 15 x + 2y = 7 2x y = 1 4x + 2y = 8 5x + 3y = 9 4x + y = 2 5x 3y = 11 2x + 3y = 5 6x + 9y = 15 4x + 2y = 8 5x + 3y = 9 MATEMATYKA Scenariusz

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI 8 MAJA 2015 POZIOM ROZSZERZONY. Godzina rozpoczęcia: 9:00. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI 8 MAJA 2015 POZIOM ROZSZERZONY. Godzina rozpoczęcia: 9:00. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD UZUPEŁNIA ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM

Bardziej szczegółowo

Skrypt 26. Stereometria: Opracowanie Jerzy Mil

Skrypt 26. Stereometria: Opracowanie Jerzy Mil Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 26 Stereometria: 1. Przypomnienie

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Centralna Komisja Egzaminacyjna Materiał współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Miejsce na naklejkę ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU

Bardziej szczegółowo

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Cel główny projektu Celem głównym projektu było zwiększenie w okresie od kwietnia 2011 roku do grudnia 2012 roku

Bardziej szczegółowo

Plik pobrany ze strony www.zadania.pl

Plik pobrany ze strony www.zadania.pl Plik pobrany ze strony www.zadania.pl Wpisuje zdający przed rozpoczęciem pracy PESEL ZDAJĄCEGO Miejsce na nalepkę z kodem szkoły PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Instrukcja dla zdającego Arkusz I

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naklejkę MMA-R_P-08 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MAJ ROK 008 Czas pracy 80 minut Instrukcja

Bardziej szczegółowo

Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy)

Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy) Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy) klasa 3. PAZDRO Plan jest wykazem wiadomości i umiejętności, jakie powinien mieć uczeń ubiegający się o określone oceny na poszczególnych etapach edukacji

Bardziej szczegółowo

STUDIA I MONOGRAFIE NR

STUDIA I MONOGRAFIE NR STUDIA I MONOGRAFIE NR 21 WYBRANE ZAGADNIENIA INŻYNIERII WIEDZY Redakcja naukowa: Andrzej Cader Jacek M. Żurada Krzysztof Przybyszewski Łódź 2008 3 SPIS TREŚCI WPROWADZENIE 7 SYSTEMY AGENTOWE W E-LEARNINGU

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który

Bardziej szczegółowo

Przedmiotowe Ocenianie Z Matematyki - Technikum. obowiązuje w roku szkolnym 2016 / 2017

Przedmiotowe Ocenianie Z Matematyki - Technikum. obowiązuje w roku szkolnym 2016 / 2017 Przedmiotowe Ocenianie Z Matematyki - Technikum obowiązuje w roku szkolnym 2016 / 2017 1. Rok szkolny dzieli się na dwa semestry. Każdy semestr kończy się klasyfikacją. 2. Na początku roku szkolnego informuję

Bardziej szczegółowo

Wymagania edukacyjne z matematyki - klasa III (poziom rozszerzony) wg programu nauczania Matematyka Prosto do matury

Wymagania edukacyjne z matematyki - klasa III (poziom rozszerzony) wg programu nauczania Matematyka Prosto do matury STEREOMETRIA Wymagania edukacyjne z matematyki - klasa III (poziom rozszerzony) wskazać płaszczyzny równoległe i prostopadłe do danej płaszczyzny wskazać proste równoległe i prostopadłe do danej płaszczyzny

Bardziej szczegółowo

Matematyka 3 wymagania edukacyjne

Matematyka 3 wymagania edukacyjne Matematyka 3 wymagania edukacyjne Zakres podstawowy 1 POZIOMY WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

Program zajęć realizowanych w ramach godzin z art. 42 KN (Koło Informatyczne)

Program zajęć realizowanych w ramach godzin z art. 42 KN (Koło Informatyczne) Program zajęć realizowanych w ramach godzin z art. 42 KN (Koło Informatyczne) Opracował: Piotr Kępa Spis treści 1. Wstęp 2. Cele ogólne i szczegółowe 3. Procedury osiągania celów 4. Przewidywane efekty

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naklejkę MMA-P1_1P-082 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2008 Czas pracy 120 minut Instrukcja

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc

WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc 1, Ciągi zna definicję ciągu (ciągu liczbowego); potrafi wyznaczyć dowolny wyraz ciągu liczbowego określonego wzorem ogólnym;

Bardziej szczegółowo

PL-Warszawa: Usługi edukacyjne i szkoleniowe 2013/S 023-035199. Ogłoszenie o udzieleniu zamówienia. Usługi

PL-Warszawa: Usługi edukacyjne i szkoleniowe 2013/S 023-035199. Ogłoszenie o udzieleniu zamówienia. Usługi 1/5 Niniejsze ogłoszenie w witrynie TED: http://ted.europa.eu/udl?uri=ted:notice:35199-2013:text:pl:html PL-Warszawa: Usługi edukacyjne i szkoleniowe 2013/S 023-035199 Ogłoszenie o udzieleniu zamówienia

Bardziej szczegółowo

GIMNAZJUM Wymagania edukacyjne z matematyki na poszczególne oceny półroczne i roczne w roku szkolnym

GIMNAZJUM Wymagania edukacyjne z matematyki na poszczególne oceny półroczne i roczne w roku szkolnym GIMNAZJUM Wymagania edukacyjne z matematyki na poszczególne oceny półroczne i roczne w roku szkolnym 2013-2014 Ocenę celującą otrzymuje uczeń, który: wykorzystuje na lekcjach matematyki wiadomości z innych

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 016 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dyskalkulia dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY

Bardziej szczegółowo

Kup książkę Poleć książkę Oceń książkę. Księgarnia internetowa Lubię to!» Nasza społeczność

Kup książkę Poleć książkę Oceń książkę. Księgarnia internetowa Lubię to!» Nasza społeczność Kup książkę Poleć książkę Oceń książkę Księgarnia internetowa Lubię to!» Nasza społeczność Spis treści WSTĘP 5 ROZDZIAŁ 1. Matematyka Europejczyka. Program nauczania matematyki w szkołach ponadgimnazjalnych

Bardziej szczegółowo

E-learning: nowoczesna metoda kształcenia

E-learning: nowoczesna metoda kształcenia E-learning: nowoczesna metoda kształcenia Tworzenie kursów e-learningowych Karolina Kotkowska Plan prezentacji część I E-learning obiektywnie: 2. Definicja 3. Formy 4. Wady i zalety e-szkoleń 5. Mity 6.

Bardziej szczegółowo

KLUCZ PUNKTOWANIA ODPOWIEDZI

KLUCZ PUNKTOWANIA ODPOWIEDZI Egzamin maturalny maj 009 MATEMATYKA POZIOM PODSTAWOWY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie 1. Matematyka poziom podstawowy Wyznaczanie wartości funkcji dla danych argumentów i jej miejsca zerowego. Zdający

Bardziej szczegółowo

Innowacyjny program nauczania matematyki dla gimnazjów ma rozbudowaną budowę:

Innowacyjny program nauczania matematyki dla gimnazjów ma rozbudowaną budowę: Innowacyjny program nauczania matematyki w gimnazjum, zawierający elementy zastosowania TIK (Technologii Informacyjno-Komunikacyjnych, w tym darmowego oprogramowania GeoGebry do nauczania matematyki) Innowacyjny

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 2015 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY DATA: 2

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY SIERPIEŃ 2014. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY SIERPIEŃ 2014. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 03 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI Instrukcja

Bardziej szczegółowo

SCENARIUSZ LEKCJI. 4.Integracja: Wewnątrzprzedmiotowa.

SCENARIUSZ LEKCJI. 4.Integracja: Wewnątrzprzedmiotowa. 1. Informacje wstępne: Publiczne Gimnazjum Nr 6 w Opolu Data:15.05.2013 r. Klasa:.II b Czas trwania zajęć: 45 min. Nauczany przedmiot: matematyka Nauczyciel: Ewa Jakubowska SCENARIUSZ LEKCJI 2.Program

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naklejkę MMA-R1_1P-091 PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY STYCZEŃ ROK 2009 Czas pracy 180 minut

Bardziej szczegółowo

Wymagania kl. 3. Zakres podstawowy i rozszerzony

Wymagania kl. 3. Zakres podstawowy i rozszerzony Wymagania kl. 3 Zakres podstawowy i rozszerzony Temat lekcji Zakres treści Osiągnięcia ucznia 1. RACHUNEK PRAWDOPODOBIEŃSTWA 1. Reguła mnożenia reguła mnożenia ilustracja zbioru wyników doświadczenia za

Bardziej szczegółowo

MATeMAtyka 3 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych

MATeMAtyka 3 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych MATeMAtyka 3 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy Klasa 3 Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające

Bardziej szczegółowo

Konferencja prasowa: CEIDG, czyli zero okienka co daje przedsiębiorcom? Warszawa, 4 sierpnia 2011r.

Konferencja prasowa: CEIDG, czyli zero okienka co daje przedsiębiorcom? Warszawa, 4 sierpnia 2011r. Konferencja prasowa: CEIDG, czyli zero okienka co daje przedsiębiorcom? Warszawa, 4 sierpnia 2011r. Czy w Polsce łatwo jest założyć biznes? Wg Rankingu Doing Business 2011, przygotowanego przez Bank Światowy

Bardziej szczegółowo

EGZAMIN MATURALNY OD ROKU SZKOLNEGO

EGZAMIN MATURALNY OD ROKU SZKOLNEGO EGZAMIN MATURALNY OD ROKU SZKOLNEGO 204/205 MATEMATYKA POZIOM PODSTAWOWY PRZYKŁADOWY ZESTAW ZADAŃ DLA OSÓB Z AUTYZMEM, W TYM Z ZESPOŁEM ASPERGERA (A2) W czasie trwania egzaminu zdający może korzystać z

Bardziej szczegółowo

Nauczanie zdalne przedmiotów matematycznych

Nauczanie zdalne przedmiotów matematycznych Nauczanie zdalne przedmiotów matematycznych Joanna Karłowska-Pik Katedra Teorii Prawdopodobieństwa i Analizy Stochastycznej Wydział Matematyki i Informatyki Uniwersytet Mikołaja Kopernika w Toruniu Nauczanie

Bardziej szczegółowo

Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA

Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL We współpracy z: PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz egzaminacyjny

Bardziej szczegółowo

Krzyżówka oraz hasła do krzyżówki. Kalina R., Przewodnik po matematyce dla klas VII-VIII, część IV, SENS, Poznań 1997, s.20-22.

Krzyżówka oraz hasła do krzyżówki. Kalina R., Przewodnik po matematyce dla klas VII-VIII, część IV, SENS, Poznań 1997, s.20-22. Omnibus matematyczny 1. Cele lekcji a) Wiadomości Uczeń: zna pojęcia matematyczne z zakresu szkoły podstawowej i gimnazjum. b) Umiejętności Uczeń: potrafi podać odpowiednie pojęcie matematyczne na podstawie

Bardziej szczegółowo

Człowiek najlepsza inwestycja & R E EE

Człowiek najlepsza inwestycja & R E EE & R E EE ZAPYTANIE OFERTOWE (POWYŻEJ 14.000 EURO) NR WNT/POKLJO.1/2012 I. Nazwa i adres Zamawiającego: GroMar Spółka z ograniczoną odpowiedzialnością Ul. Tuszyńska 98, 93-305 Łódź NIP: 725-16-36-609 Regon:

Bardziej szczegółowo

SZKOLENIE: METODYKA E-LEARNINGU (50h) Tematyka zajęć: PROGRAM EXE NARZĘDZIE DO TWORZENIA ELEKTRONICZNYCH MATERIAŁÓW DYDAKTYCZNYCH (10h)

SZKOLENIE: METODYKA E-LEARNINGU (50h) Tematyka zajęć: PROGRAM EXE NARZĘDZIE DO TWORZENIA ELEKTRONICZNYCH MATERIAŁÓW DYDAKTYCZNYCH (10h) Program szkolenia realizowanego w ramach Projektu BELFER ONLINE + przygotowanie nauczycieli z obszarów wiejskich do kształcenia kompetencji kluczowych uczniów i dorosłych przy wykorzystaniu platform e-learningowych

Bardziej szczegółowo

Wirtualizacja zasobów IPv6 w projekcie IIP

Wirtualizacja zasobów IPv6 w projekcie IIP Wirtualizacja zasobów IPv6 w projekcie IIP Artur Binczewski, Bartosz Gajda, Wiktor Procyk, Robert Szuman Poznańskie Centrum Superkomputerowo Sieciowe Adam Grzech, Jan Kwiatkowski, Krzysztof Chudzik Politechnika

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 00 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

Matematyka z plusem dla szkoły ponadgimnazjalnej. ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy)

Matematyka z plusem dla szkoły ponadgimnazjalnej. ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy) Program nauczania: Matematyka z plusem, Liczba godzin nauki w tygodniu: 3 Planowana liczba godzin w ciągu roku: 72 ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy)

Bardziej szczegółowo

OPIS WYMOGÓW JAKOŚCI ŚWIADCZENIA USŁUG e-learnig

OPIS WYMOGÓW JAKOŚCI ŚWIADCZENIA USŁUG e-learnig OPIS WYMOGÓW JAKOŚCI ŚWIADCZENIA USŁUG e-learnig E-learning jako usługa rozwojowa E-learning to jedna z forma zdalnego nauczania (tj. formy wspomagania procesu uczenia się technologiami informacyjno-komunikacyjnymi)

Bardziej szczegółowo

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego. Istota i zastosowanie platformy e-learningowej Moodle

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego. Istota i zastosowanie platformy e-learningowej Moodle Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Istota i zastosowanie platformy e-learningowej Moodle Platforma e-learningowa Platforma e-learningowa to zintegrowany

Bardziej szczegółowo

ZAKRES PODSTAWOWY CZĘŚĆ II. Wyrażenia wymierne

ZAKRES PODSTAWOWY CZĘŚĆ II. Wyrażenia wymierne CZĘŚĆ II ZAKRES PODSTAWOWY Wyrażenia wymierne Temat: Wielomiany-przypomnienie i poszerzenie wiadomości. (2 godz.) znać i rozumieć pojęcie jednomianu (2) znać i rozumieć pojęcie wielomianu stopnia n (2)

Bardziej szczegółowo

Plan zajęć stacjonarnych. Grupa II

Plan zajęć stacjonarnych. Grupa II Plan zajęć stacjonarnych Grupa II Szkolenie pt.: Metodyka kształcenia multimedialnego stacjonarnego i niestacjonarnego z wykorzystaniem platformy e-learningowej Moodle szkolenie blended learning dla nauczycieli

Bardziej szczegółowo

EGZAMIN MATURALNY OD ROKU SZKOLNEGO

EGZAMIN MATURALNY OD ROKU SZKOLNEGO EGZAMIN MATURALNY OD ROKU SZKOLNEGO 204/205 MATEMATYKA POZIOM PODSTAWOWY PRZYKŁADOWY ZESTAW ZADAŃ (A) W czasie trwania egzaminu zdający może korzystać z zestawu wzorów matematycznych, linijki i cyrkla

Bardziej szczegółowo

MATURA 2012. Przygotowanie do matury z matematyki

MATURA 2012. Przygotowanie do matury z matematyki MATURA 01 Przygotowanie do matury z matematyki Część IX: Stereometria ROZWIĄZANIA Powtórka jest organizowana przez redaktorów portalu MatmaNa.pl we współpracy z dziennikarzami Gazety Lubuskiej. Witaj,

Bardziej szczegółowo

Robimy wspólnie coś konstruktywnego: Projekt FENIKS. i jesteśmy już w połowie okresu realizacji Projektu!

Robimy wspólnie coś konstruktywnego: Projekt FENIKS. i jesteśmy już w połowie okresu realizacji Projektu! Robimy wspólnie coś konstruktywnego: Projekt FENIKS długofalowy program odbudowy, popularyzacji i wspomagania fizyki w szkołach w celu rozwijania podstawowych kompetencji naukowo-technicznych, matematycznych

Bardziej szczegółowo

MATeMAtyka 4 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych

MATeMAtyka 4 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych MATeMAtyka 4 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI 5 MAJA 2016 POZIOM PODSTAWOWY. Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI 5 MAJA 2016 POZIOM PODSTAWOWY. Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 013 KOD UZUPEŁNIA ZDAJĄCY PESEL dyskalkulia miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI

Bardziej szczegółowo

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h)

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h) Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony (według podręczników z serii MATeMAtyka) Klasa I (90 h) Temat Liczba godzin 1. Liczby rzeczywiste 15

Bardziej szczegółowo

GDAŃSKA PLATFORMA EDUKACYJNA

GDAŃSKA PLATFORMA EDUKACYJNA GDAŃSKA PLATFORMA EDUKACYJNA Projekt współfinansowany przez Unię Europejską z Europejskiego Funduszu Rozwoju Regionalnego w ramach Regionalnego Programu Operacyjnego Województwa Pomorskiego na lata 2007

Bardziej szczegółowo

System informatyczny zdalnego egzaminowania

System informatyczny zdalnego egzaminowania System informatyczny zdalnego egzaminowania - strategia, logika systemu, architektura, ewaluacja (platforma informatyczna e-matura) redakcja Sławomir Wiak Konrad Szumigaj Redakcja: prof. dr hab. inż. Sławomir

Bardziej szczegółowo

Czas pracy 170 minut

Czas pracy 170 minut ORGANIZATOR WSPÓŁORGANIZATOR PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI MARZEC ROK 04 POZIOM PODSTAWOWY Czas pracy 70 minut Instrukcja dla piszącego. Sprawdź, czy arkusz zawiera 6 stron.. W zadaniach od. do

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2014 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2014 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM

Bardziej szczegółowo

KLUCZ PUNKTOWANIA ODPOWIEDZI

KLUCZ PUNKTOWANIA ODPOWIEDZI Egzamin maturalny maj 009 MATEMATYKA POZIOM PODSTAWOWY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie. a) Matematyka poziom podstawowy Wyznaczanie wartości funkcji dla danych argumentów i jej miejsca zerowego.

Bardziej szczegółowo

3. Krótki opis nowatorskich rozwiązań organizacyjnych oraz metodycznych:

3. Krótki opis nowatorskich rozwiązań organizacyjnych oraz metodycznych: Opis innowacji Zostać przedsiębiorczym program z program edukacyjny z multimedialnym pakietem dydaktycznym 1. Tytuł innowacji: Projekt Zostać przedsiębiorczym program edukacyjny z multimedialnym pakietem

Bardziej szczegółowo

Projekt Dolnośląska e-szkoła (DeS)

Projekt Dolnośląska e-szkoła (DeS) Projekt Dolnośląska e-szkoła (DeS) Sobótka 6 czerwca 2009 Patronat projektu Dolnośląskie Centrum Doskonalenia Nauczycieli i Informacji Pedagogicznej Urząd Marszałkowski Województwa Dolnośląskiego Departament

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY CZERWIEC 2013. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY CZERWIEC 2013. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 00 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

Wymagania z wiedzy i umiejętności na poszczególne stopnie szkolne z matematyki w Zasadniczej Szkole Zawodowej nr 14

Wymagania z wiedzy i umiejętności na poszczególne stopnie szkolne z matematyki w Zasadniczej Szkole Zawodowej nr 14 z wiedzy i umiejętności na poszczególne stopnie szkolne z matematyki w Zasadniczej Szkole Zawodowej nr 14 Liczby rzeczywiste Wiadomości i umiejętności rozpoznać liczby naturalne w tym pierwsze i złożone,

Bardziej szczegółowo

?RE ~ F:::~~ ZAPYTANIE OFERTOWE (POWYŻEJ 14.000 EURO) NR WNT/POKL/9.2/2012. I. Nazwa i adres Zamawiającego:

?RE ~ F:::~~ ZAPYTANIE OFERTOWE (POWYŻEJ 14.000 EURO) NR WNT/POKL/9.2/2012. I. Nazwa i adres Zamawiającego: ?RE ~ F:::~~ : ZAPYTANIE OFERTOWE (POWYŻEJ 14.000 EURO) NR WNT/POKL/9.2/2012 I. Nazwa i adres Zamawiającego: GroMar Spółka z ograniczoną odpowiedzialnością Ul. Tuszyńska 98, 93-305 Łódź NIP: 725-1 6-36-609

Bardziej szczegółowo

Tematy próbnego pisemnego egzaminu dojrzałości z matematyki

Tematy próbnego pisemnego egzaminu dojrzałości z matematyki Tematy próbnego pisemnego egzaminu dojrzałości z matematyki Zadanie Rozwiąż nierówność: [ +log 0, ( x- )] + [ +log 0, ( x- )] + [ +log 0, ( x- )] ++ + [ + log 0, ( x- )] Zadanie Odcinek AB, gdzie A = (,

Bardziej szczegółowo

Formy dokształcania studentów przyszłych nauczycieli z wykorzystaniem narzędzi TI

Formy dokształcania studentów przyszłych nauczycieli z wykorzystaniem narzędzi TI Małgorzata Bartoszewicz goskab@amu.edu.pl Wydział Chemii, Zakład Dydaktyki Chemii Uniwersytet im. Adama Mickiewicza Poznań Formy dokształcania studentów przyszłych nauczycieli z wykorzystaniem narzędzi

Bardziej szczegółowo

Pytanie: Odpowiedź: Pytanie: Odpowiedź: . Pytanie: Odpowiedź: Pytanie: element multimedialny lub interaktywny Odpowiedź: Pytanie:

Pytanie: Odpowiedź: Pytanie: Odpowiedź: . Pytanie: Odpowiedź: Pytanie: element multimedialny lub interaktywny Odpowiedź: Pytanie: W pozycji Dodatkowe informacje pkt. 1 a) czytamy: przygotowanie elektronicznej (edytowalnej) wersji dokumentu, stanowiącego podział treści na ekrany zgodnie z treściami kształcenia dostarczonymi od Zamawiającego

Bardziej szczegółowo

Uwaga WAŻNE!!!!! Do prawidłowego działania systemu na komputerze użytkowników potrzebna jest obecność maszyny wirtualnej java (JRE).

Uwaga WAŻNE!!!!! Do prawidłowego działania systemu na komputerze użytkowników potrzebna jest obecność maszyny wirtualnej java (JRE). Uwaga WAŻNE!!!!! Do prawidłowego działania systemu na komputerze użytkowników potrzebna jest obecność maszyny wirtualnej java (JRE). 1. Jak sprawdzić czy mam zainstalowaną wirtualną maszynę javy? Należy

Bardziej szczegółowo

OPIS WYMOGÓW JAKOŚCI ŚWIADCZENIA USŁUGI E-LEARNING

OPIS WYMOGÓW JAKOŚCI ŚWIADCZENIA USŁUGI E-LEARNING OPIS WYMOGÓW JAKOŚCI ŚWIADCZENIA USŁUGI E-LEARNING Cel dokumentu Przedstawiony opis jest jedynie przeglądem najważniejszych elementów, na które należy zwrócić uwagę przy wyborze usługi e-learningu. Dokument

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

Czas pracy: 170 minut. Liczba punktów do uzyskania: 50. UZUPEŁNIA UCZEŃ miejsce KOD UCZNIA PESEL na naklejkę z kodem UZUPEŁNIA ZESPÓŁ NADZORUJĄCY

Czas pracy: 170 minut. Liczba punktów do uzyskania: 50. UZUPEŁNIA UCZEŃ miejsce KOD UCZNIA PESEL na naklejkę z kodem UZUPEŁNIA ZESPÓŁ NADZORUJĄCY Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 UZUPEŁNIA UCZEŃ miejsce KOD UCZNIA PESEL na naklejkę z kodem UZUPEŁNIA ZESPÓŁ NADZORUJĄCY EGZAMIN MATURALNY

Bardziej szczegółowo

Cele kształcenia wymagania ogólne (przedruk z podstawy programowej) Ramowy plan nauczania zakres podstawowy. Podręcznik 3 (3 godziny 25 tygodni)

Cele kształcenia wymagania ogólne (przedruk z podstawy programowej) Ramowy plan nauczania zakres podstawowy. Podręcznik 3 (3 godziny 25 tygodni) PLAN WYNIKOWY dla techników i liceów ogólnokształcących zakres podstawowy do Podręcznika 3 z serii Matematyka w otaczającym nas świecie Wydawnictwa Podkowa Plan wynikowy polega na zaplanowaniu umiejętności

Bardziej szczegółowo

PROGRAM ZAJĘĆ REALIZOWANYCH W RAMACH PROJEKTU

PROGRAM ZAJĘĆ REALIZOWANYCH W RAMACH PROJEKTU PROGRAM ZAJĘĆ REALIZOWANYCH W RAMACH PROJEKTU N@uczyciel przygotowanie nauczycieli z ZSP do stosowania e-elarningu w nauczaniu i samokształceniu Szkolenie współfinansowane ze środków Unii Europejskiej

Bardziej szczegółowo

SCENARIUSZ LEKCJI. Wielomiany komputerowe wykresy funkcji wielomianowych

SCENARIUSZ LEKCJI. Wielomiany komputerowe wykresy funkcji wielomianowych Autorzy scenariusza: SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH

Bardziej szczegółowo

Założenia programowe

Założenia programowe Założenia programowe Nauczanie języków obcych w szkole jest ograniczone czasowo (wymiarem godzin lekcyjnych) i tematycznie (programem nauczania) i z przyczyn oczywistych skupia się często na zagadnieniach

Bardziej szczegółowo

Z matematyką w plecaku

Z matematyką w plecaku 179 - Z matematyką w plecaku - kółko matematyczne dla klas II gimnazjum Jesteś zalogowany(a) jako Recenzent (Wyloguj) Kreatywna szkoła ZP_179 Osoby Uczestnicy Certificates Fora dyskusyjne Quizy Zadania

Bardziej szczegółowo

1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia.

1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia. 1. Elementy logiki i algebry zbiorów 1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia. Funkcje zdaniowe. Zdania z kwantyfikatorami oraz ich zaprzeczenia.

Bardziej szczegółowo