Laboratorium Fotoniki

Wielkość: px
Rozpocząć pokaz od strony:

Download "Laboratorium Fotoniki"

Transkrypt

1 Zakład Optoelektroniki Laboratorium Fotoniki Instrukcja do ćwiczenia: BADANIE PARAMETRÓW PRACY WZMACNIACZA OPTYCZNEGO EDFA Ostatnie dwie dekady to okres niezwykle dynamicznego rozwoju różnego rodzaju systemów światłowodowych poczynając od systemów dalekiego zasięgu, poprzez systemy metropolitalne, a kończąc na sieciach dostępowych i lokalnych. We wszystkich tych systemach sygnał transmitowany jest za pomocą światła, które tak samo jak sygnał elektryczny ulega tłumieniu. W linkach optycznych można wyróżnić trzy główne źródła strat sygnału optycznego: straty transmisyjne (tłumienie światłowodów), straty komponentów optycznych (przełączników, złącz, etc.) oraz straty wynikające z podziału sygnału w demultiplekserach i sprzęgaczach. Aby zniwelować te straty stosuje się wzmacniacze sygnału optycznego, które mogą pełnić następujące funkcje: zwiększenie mocy wyjściowej nadajnika - umieszczony za laserem wzmacniacz optyczny zwiększa o db poziom mocy optycznej nadajnika, problem szumów jest mało istotny w tym miejscu, decydująca jest moc wyjściowa wzmacniacza optycznego. zwiększenie poziomu mocy sygnału osłabionego na skutek tłumienia - wzmacniacz umieszczony jest w torze optycznym, decydującym parametrem jest duże wzmocnienie wzmacniacza, na kolejnym miejscu należy umieścić niski poziom szumów, aby stosunek sygnał/szum nie uległ znacznej degradacji. zwiększenie czułość odbiornika - przedwzmacniacz umieszczony przed odbiornikiem zwiększa czułość odbiornika, najważniejszym parametrem jest niski poziom szumów, potem wzmocnienie, poziom mocy wyjściowej jest mało istotny. Wzmacniacz optyczny jest elementem aktywnym wzmacniającym sygnał optyczny bez konwersji na sygnał elektryczny (w odróżnieniu od regeneratora, który konwertuje sygnał optyczny na elektryczny, wzmacnia sygnał elektryczny, a następnie konwertuje wzmocniony sygnał elektryczny z powrotem na sygnał optyczny). Regeneratory stosowane były w latach 70-tych w linkach optycznych w celu minimalizacji szumów i zniekształceń generowanych w łączach. Wzmacniacze optyczne wzmacniają cały sygnał, wraz z szumami (Rys. 1) Rys. 1. Porównanie ideowych schematów działania regeneratora sygnału optycznego (a) oraz wzmacniacza optycznego (b). 1

2 Główne zalety wzmacniaczy optycznych względem regeneratorów to: niezawodność - Regenerator jest urządzeniem bardziej złożonym, a co za tym idzie bardziej awaryjnym. elastyczność - Regenerator jest przystosowany do konkretnych prędkości i sposobów kodowania. Przy zwiększaniu prędkości łącza lub przy zmianie sposobu kodowania należy wymienić wszystkie regeneratory (koszty!). Wzmacniacze wzmacniają sygnał optyczny niezależnie od jego prędkości czy sposobu kodowania. możliwość zastosowania w WDM - Użycie regeneratorów wymaga każdorazowej demultipleksacji, osobnego wzmocnienia każdego kanału i ponownej multiplekscji (dodatkowe elementy = koszty + większa awaryjność). Wzmacniacz optyczny wzmacnia wszystkie kanały jednocześnie. niski koszt - Wzmacniacz optyczny jest urządzeniem znaczenie mniej złożonym niż regenerator, a co za tym idzie tańszym. Rodzaje wzmacniaczy optycznych omówione w niniejszej instrukcji: wzmacniacze półprzewodnikowe wzmacniacze światłowodowe REDFA (Rare Earth Doped Fiber Amplifier) wzmacniacze światłowodowe Ramana Wzmacniacze półprzewodnikowe Optyczny wzmacniacz półprzewodnikowy SOA (Semiconductor Optical Amplifier) jest półprzewodnikowym laserem pracującym poniżej progu oscylacji (Rys. 2). Podstawowym elementem wzmacniacza jest półprzewodnikowy obszar aktywny, pompowany - tak jak w laserze półprzewodnikowym prądem. Izolator optyczny zaznaczony na rysunku uniezależnia wzmocnienie od odbić, a rezonansowy filtr optyczny obniża poziom szumów wywołanych emisją spontaniczną. Rys. 2. Schemat półprzewodnikowego wzmacniacza optycznego. Wzmacniacze półprzewodnikowe charakteryzują się szeregiem ograniczeń, które praktycznie uniemożliwiają ich użycie torach światłowodowych w systemach DWDM: duże straty na połączeniach ze światłowodami (nawet 10 db) wysoki poziom szumów duża wrażliwość na polaryzację sygnału wprowadzają dodatkowe przesłuchy (mieszanie czterofalowe) Wzmacniacze SOA znajdują jednak inne zastosowania, m. in. w systemach OTDR, przy generacji solitonów oraz jako elementy optycznych bramek logicznych. Stosowane są również jako wzmacniacze mocy wyjściowej nadajnika, ze względu na technologiczną łatwość połączenia wzmacniacza z laserem półprzewodnikowym (wykonywane są w jednym procesie technologicznym). 2

3 Wzmacniacze światłowodowe REDFA Obecnie na rynku dostępne są trzy rodzaje wzmacniaczy światłowodowych domieszkowanych jonami ziem rzadkich: PDFA (Praseodymium Doped Fiber Amplifier) pasmo O TDFA (Thulium Doped Fiber Amplifier) pasmo S EDFA (Erbium Doped Fiber Amplifier) pasmo C i L W trakcie niniejszego laboratorium badane będą parametry wzmacniacza EDFA (domieszkowanego jonami erbu), dlatego zasada działania wzmacniaczy REDFA zostanie omówiona na podstawie tego wzmacniacza. Prosty schemat wzmacniacza EDFA pokazany jest na rysunku 3. Zaznaczona na rysunku wzmocniona emisja spontaniczna jest nieuniknionym skutkiem stosowania wzmacniaczy bazujących na wymuszonej emisji promieniowania i jest głównym źródłem szumu w tego typu wzmacniaczach. Rys. 3. Schemat światłowodowego wzmacniacza domieszkowanego jonami erbu. Ośrodkiem aktywnym w omawianym wzmacniaczu jest włókno (zwykle kwarcowe), którego rdzeń domieszkowany jest jonami Er 3+ (Rys. 4). Rys. 4. Schemat światłowodu aktywnego domieszkowanego jonami erbu. Domieszkowanie światłowodu erbem zmienia jego charakterystykę absorpcji. Zjawisko absorpcji promieniowania optycznego jest jednym z podstawowych mechanizmów oddziaływania pola elektromagnetycznego z materią. Jeżeli na atom znajdujący się w stanie podstawowym o energii E 1 padnie kwant promieniowania (w tym przypadku foton) o energii odpowiadającej przerwie energetycznej między poziomami, to atom może zostać wzbudzony do stanu wyższego (o energii E 2 ). Jest to proces absorpcji, zwanej też absorpcją wymuszoną (Rys. 5). Rys. 5. Procesy oddziaływania pola EM z materią. 3

4 Jeżeli wzbudzony atom przejdzie samoistnie do niższego poziomu energetycznego, emitując przy tym foton o energii odpowiadającej różnicy poziomów energetycznych, to mamy do czynienia ze zjawiskiem emisji spontanicznej. Czas po jakim foton zostanie samoistnie wyemitowany nazywany jest czasem życia danego poziomu energetycznego. Emisja spontaniczna we wzmacniaczu EDFA jest procesem pasożytniczym (niepożądanym) i szerokopasmowym (fotony emitowane są z dowolnego podpoziomu pasma E 2 ). Jeżeli natomiast na wzbudzony atom padnie kolejny kwant promieniowania, to może on wymusić przejście do poziomu podstawowego. Zjawisko to nazywane jest emisją wymuszoną. Procesowi temu towarzyszy wyemitowanie dodatkowego fotonu identycznego, co do energii, kierunku, zwrotu i fazy z fotonem wymuszającym. Charakterystykę absorpcji szkła domieszkowanego jonami erbu przedstawiono na rysunku 6. Poszczególne piki na charakterystyce odpowiadają konkretnym przejściom optycznym (absorpcyjnym). Na podstawie położenia tych przejść można określić położenie poziomów energetycznych jonów erbu. Rys. 6. Schemat poziomów energetycznych jonów erbu w matrycy szklanej i odpowiadająca mu charakterystyka absorpcji. Warto zaznaczyć, że położenie energetyczne tych poziomów zmienia się w zależności od matrycy osnowy jonu. Z punktu widzenia pracy wzmacniacza EDFA najbardziej interesujące są pasma w okolicy 980 nm oraz nm. Rysunek 6 pokazuje uproszczony schemat energetyczny jonów erbu wraz z najważniejszymi przejściami optycznymi. 4

5 Rys. 7. Uproszczony schemat poziomów energetycznych jonu erbu. Długi czas życia poziomu 4 I 13/2 (ok ms) w połączeniu z dużym przekrojem czynnym na absorpcję umożliwia bardzo efektywne jego pompowanie i uzyskanie stanu inwersji obsadzeń (stanu w którym populacja górnego poziomu energetycznego jest większa od populacji stanu dolnego). W stanie inwersji obsadzeń ilość aktów emisji wymuszonej jest większa niż aktów emisji spontanicznej i możliwe jest wzmacnianie sygnału o długości fali z zakresu nm. Pompowanie poziomu 4 I 13/2 realizuje się na dwa sposoby: pobudzając ośrodek promieniowaniem o długości fali 980 nm. Pompowany jest wyższy poziom 4 I 11/2, następnie atom przechodzi spontanicznie do stanu 4 I 13/2 na drodze relaksacji bezpromienistej (nie zostaje wyemitowany foton, energia tracona jest na drgania sieci, a więc na ciepło) pobudzając bezpośrednio poziom 4 I 13/2 promieniowaniem o długości fali 1480 nm. Pompowany jest szczyt pasma 4 I 13/2, a emisja zachodzi z dna pasma, dlatego taki układ dalej pozostaje układem trójpoziomowym (podobnie jak poprzedni). Jak już wcześniej wspomniano emisja spontaniczna jest procesem pasożytniczym. Z jednej strony powoduje depopulację poziomu 4 I 13/2, a więc ogranicza ilość aktów emisji wymuszonej (zmniejsza wzmocnieni sygnału). Z drugiej strony emisja spontaniczna również jest wzmacniana i jako wzmocniona emisja spontaniczna (ang. ASE Amplified Spontaneous Emission) jest źródłem szumu własnego wzmacniacza EDFA. ASE propaguje się wzdłuż światłowodu w obydwu kierunkach, z tym że w kierunku wstecznym jej moc jest większa (ze względu na większą moc sygnału pompy na początku włókna Rys. 8). Rys. 8. Rozkład mocy pompy, sygnału i ASE we wzmacniaczu EDFA. 5

6 Innym procesem pasożytniczym jest zjawisko konwersji wzbudzenia (Rys. 9). Proces ten zachodzi przy pompowaniu ośrodka promieniowaniem o długości fali 980 nm. Jeśli atom jest w stanie wzbudzonym to kolejny padający foton pompy zamiast wymusić akt emisji może zostać zaabsorbowany do jeszcze wyższego poziomu energetycznego. W efekcie tego obserwowana jest emisja promieniowania o większej energii niż promieniowanie pompujące (w tym przypadku światło z zakresu zielonego) Energia [cm -1 ] 4 F 7/2 2 H 11/2 4 S 3/ F 9/ I 9/ I 11/ I 13/2 0 4 I 15/2 Rys. 9. Schemat procesu konwersji wzbudzenia jonów erbu. Parametry typowego wzmacniacza EDFA: długość ośrodka wzmacniającego 5-30 m (pasmo C) lub m (pasmo L) pasmo pracy C ( nm) oraz L ( nm) wzmocnienie db (a nawet 50 db) moc wyjściowa 15 dbm (jednostopniowy), 23 dbm (dwustopniowy) nasycenie wzmocnienia, moc nasycenia (punkt pracy wzmacniacza) poziom szumów 3.5 db zależność polaryzacyjna 0.5 db Podstawowym parametrem wzmacniacza optycznego jest wzmocnienie rozumiane jako: gdzie: P out moc wyjściowa P ASE moc wzmocnionej emisji spontanicznej P S moc wejściowa G = (P out P ASE )/P S, Charakterystyka wzmocnienia wzmacniacza EDFA w funkcji długości fali sygnału pokazana jest na rys. 10. Jak widać, charakterystyka absorpcji promieniowania i charakterystyka wzmocnienia G(λ) nieco się różnią, co umożliwia zastosowanie pompy na długości fali 1480 nm (sygnał pompy jest silnie absorbowany i słabo wzmacniany). Niewielkie przesunięcie charakterystyki można uzyskać domieszkując światłowód dodatkowymi składnikami (Al 2 O 3, Ge 2 O 3, P 2 O 5 ). Charakterystyka wzmocnienia nie jest płaska (wzmocnienie zmienia się wraz z długością fali), a więc jedne kanały będą wzmacniane bardziej od innych. Możliwe jest jej wypłaszczenie poprzez zastosowanie odpowiednich filtrów (np. siatek Bragga). 6

7 Rys. 10. Charakterystyki absorpcji i wzmocnienia wzmacniacza EDFA. Wzmocnienie wzmacniacza EDFA zależy od długości aktywnego światłowodu oraz od mocy pompy optycznej. Wzmocnienie rośnie wraz z długością światłowodu aktywnego, ale od pewnej długości rosną również szumy wzmacniacza. W zależności od przeznaczenia wzmacniacza optymalizuje się moc pompy i długość światłowodu. Kolejnym istotnym parametrem jest moc nasycenia wzmacniacza P sat. Definiuje się ją jako taką moc sygnału wejściowego, dla której moc sygnały wyjściowego spada o 3 db (Rys. 11b). Dla małych mocy sygnału wejściowego większość jonów erbu pozostaje w stanie wzbudzonym (mały sygnał nie powoduje znacznej depopulacji górnego poziomu energetycznego). Dlatego dla małych mocy sygnału wejściowego wzmocnienie wzmacniacza jest duże. Natomiast dla dużych mocy sygnału wejściowego górny poziom energetyczny ulega znacznej depopulacji i nawet duża moc pompy nie jest w stanie odbudować inwersji obsadzeń. W efekcie obserwuje się nasycenie wzmocnienia wzmacniacza. Wzmocnienie [db] Wzmocnienie [db] Rys. 11. Zależność wzmocnienia od mocy pompy (a) i mocy sygnału wejściowego (b). Przykładowa rzeczywista konstrukcja wzmacniacza EDFA przedstawiona została na rys. 12. Światłowód domieszkowany erbem (zwykle kilkanaście metrów) wprowadzony jest do toru transmisyjnego. Sygnały pomp (pompami są lasery półprzewodnikowe) doprowadzone są selektywnymi sprzęgaczami. Zwykle stosowana jest jedna pompa (w niektórych rozwiązaniach dwie). Jako pompy stosowane są diody laserowe o długościach fal 980 lub 1480 nm. Sygnał pompy może być wprowadzony zgodnie z kierunkiem sygnału, ale także wstecznie. Optyczny izolator stosowany jest w celu redukcji wpływu odbić. Wyjściowy filtr optyczny usuwa szczątkowy sygnał pompy oraz zmniejsza poziom szumów ASE. 7

8 Rys. 12. Przykładowa konstrukcja wzmacniacza EDFA. Wzmacniacze światłowodowe Ramana Wzmacniacz światłowodowy Ramana wykorzystuje zjawisko wymuszonego rozpraszania Ramana występujące w światłowodzie niedomieszkowanym (nie ma konieczności dołączania dodatkowego włókna można wykorzystać włókno transmisyjne), na znacznej długości światłowodu (ok. 100 km). W wyniku oddziaływania światła z cząsteczką pojawia się fala rozproszona o częstotliwości zmienionej o częstotliwość jej drgań własnych. Światło rozprasza się zarówno w kierunku propagacji, jak i w kierunku wstecznym. Wymuszone rozpraszanie Ramana rośnie eksponencjalnie wraz z mocą sygnału, a więc aby je wzmocnić należy dostarczyć dodatkowej mocy optycznej za pomocą pompy. W szkle kwarcowym optymalne wzmocnienie następuje przy przesunięciu sygnału pompy o 13.2 THz. Należy tak dobrać pompę optyczną aby jej częstotliwość była większa o 13.2 THz od częstotliwości sygnału wzmacnianego. Aby równie efektywnie wzmocnić sygnały o innych częstotliwościach należy użyć dodatkowych źródeł pompujących. Przykładowe konstrukcje wzmacniaczy Ramana przedstawiono na rysunku 13. Wzmacniacz, który jako ośrodek wzmacniający wykorzystuje światłowód transmisyjny (Rys. 13b) nazywany jest wzmacniaczem rozłożonym. Pompa optyczna doprowadzana jest do wzmacniacza zdalnie, a jego wzmocnienie rozłożone jest na wiele kilometrów światłowodu, co pozwala na minimalizację szumu i efektów nieliniowych. Można także wykorzystać dodatkowy światłowód wzmacniający (np. specjalnie modyfikowany celem poprawienia parametrów wzmocnienia). Taki wzmacniacz nazywany jest wzmacniaczem dyskretnym. 8

9 Rys. 13. Przykładowe konstrukcja wzmacniaczy Ramana: a) wzmacniacz dyskretny, b) wzmacniacz rozłożony. Głównymi wadami wzmacniaczy Ramana jest wymagana wysoka moc pompy (nawet 5 W) oraz w przypadku wzmacniacza dyskretnego znaczna długość światłowodu (100 km). Jednak jego niewątpliwe zalety to możliwość wzmacniania światła w zwykłym światłowodzie oraz dobre parametry szumowe we wzmacniaczach rozłożonych. Tabela 1. Porównanie parametrów wzmacniaczy EDFA i wzmacniaczy Ramana parametr EDFA wzmacniacz Ramana ośrodek wzmacniający specjalny światłowód domieszkowany jonami erbu, o długości 5-30 m (pasmo C) lub m (pasmo L) światłowód standardowy (lub nieznacznie zmodyfikowany), o długości km możliwe pasmo pracy C ( nm) oraz L ( nm) nm (w zależności od dostępności źródeł pompujących) pasmo wzmocnienia 500 GHz 3 GHz pojedynczego wzmacniacza wzmocnienie db db moc nasycenia 5-10 dbm 30 dbm sposób pompowania 1-4 pompy o mocy mw każda do 12 pomp o mocy mw każda zależność od polaryzacji pomijalna pomijalna 9

10 Przebieg ćwiczenia: Zadanie 1: Badanie charakterystyki spektralnej tłumienności włókna światłowodowego domieszkowanego jonami erbu Zadanie polega na wykreśleniu charakterystyki spektralnej tłumienności światłowodu aktywnego wykorzystywanego do budowy wzmacniacza EDFA. W pierwszej części zadania za pomocą analizatora widma optycznego wykonywany jest pomiar referencyjny (w torze pomiarowym pomiędzy analizatorem a źródłem światła znajduje się światłowód referencyjny). Następnie w torze pomiarowym dołączany jest badany światłowód i pomiar jest powtarzany. W celu uzyskania charakterystyki spektralnej włókna wyniki są od siebie odejmowane. 1. Podłączyć światłowód numer 1 do szerokopasmowego źródła światła oraz analizatora widma optycznego. 2. Dokonać pomiaru tłumienia w zakresie nm. 3. Zapisać wyniki pomiaru. 4. W torze pomiarowym pomiędzy światłowodem numer 1 a analizatorem widma umieścić badane włókno. 5. Dokonać pomiaru tłumienia w zakresie nm. 6. Zapisać wyniki pomiaru. 7. Odjąć wynik z punktu 6 od wyniku z punktu 3 i wykreślić charakterystykę tłumienia [db/km]. 8. Skomentować otrzymane wyniki. Zadanie 2: Badanie charakterystyki emisyjnej włókna światłowodowego domieszkowanego jonami erbu Zadanie polega na wykreśleniu charakterystyki emisyjnej światłowodu aktywnego wykorzystywanego do budowy wzmacniacza EDFA. 1. Podłączyć pompę optyczną do światłowodu aktywnego. 2. Wyjście ze światłowodu aktywnego podłączyć na wejście analizatora widma. 3. Ustawić prąd pompy na ok. 50 ma. 4. Zmierzyć charakterystykę emisji w zakresie nm 5. Nanieść charakterystykę emisji na zmierzoną wcześniej charakterystykę tłumienności (absorpcji) i porównać z charakterystykami z rys. 10 w instrukcji teoretycznej. 10

11 Zadanie 3: Pomiar wzmocnienia laboratoryjnego wzmacniacza EDFA dla różnych mocy pompy optycznej Zadanie polega na zestawieniu laboratoryjnego wzmacniacza EDFA oraz na zmierzeniu jego wzmocnienia dla różnych mocy sygnału pompy. 1. Podłączyć sygnał ze źródła WDM do analizatora widma optycznego i zbadać jego charakterystykę spektralną (w zakresie nm) oraz moc. 2. Powtórzyć pomiar z punktu 1 przy włączonym tłumiku 10 db. 3. Zestawić wzmacniacz EDFA wg wzkazówek prowadzącego. 4. Podłączyć sygnał ze źródła WDM na wejście zestawionego wzmacniacza EDFA 5. Połączyć wyjscie wzmacniacza z analizatorem widma optycznego. 6. Zmierzyć sygnał na wyjściu wzmacniacza przy włączonym tłumiku 10 db dla różnych mocy pompy. 7. Wykreślić charakterystykę wzmocnienia wzmacniacza dla różnych mocy pompy wg wzoru z instrukcji oraz wskazówek prowadzącego. 8. Skomentować otrzymane wyniki. Zadanie 4: Pomiar wzmocnienia laboratoryjnego wzmacniacza EDFA dla różnych długości włókna Zadanie polega na pomiarze charakterystyki wzmocnienia wzmacniacza dla różnych długości włókna aktywnego. 1. Zestawić wzmacniacz EDFA wykorzystując włókno o innej długości niż w zadaniu Powtórzyć pomiar charakterystyki wzmocnienia z zadania 3 dla dłuższego włókna aktywnego. 3. Porównać otrzymane charakterystyki i skomentować wyniki. 11

Instytut Mikroelektroniki i Optoelektroniki Politechniki Warszawskiej. Zakład Optoelektroniki

Instytut Mikroelektroniki i Optoelektroniki Politechniki Warszawskiej. Zakład Optoelektroniki Instytut Mikroelektroniki i Optoelektroniki Politechniki Warszawskiej Zakład Optoelektroniki Instrukcja do ćwiczenia: Badanie parametrów wzmacniacza światłowodowego EDFA Ostatnie dwie dekady to okres niezwykle

Bardziej szczegółowo

Wzmacniacze optyczne ZARYS PODSTAW

Wzmacniacze optyczne ZARYS PODSTAW Wzmacniacze optyczne ZARYS PODSTAW REGENERATOR konwertuje sygnał optyczny na elektryczny, wzmacnia sygnał elektryczny, a następnie konwertuje wzmocniony sygnał elektryczny z powrotem na sygnał optyczny

Bardziej szczegółowo

Wzmacniacze optyczne

Wzmacniacze optyczne Wzmacniacze optyczne Wzmocnienie sygnału optycznego bez konwersji na sygnał elektryczny. Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze opracowanie chronione jest prawem autorskim.

Bardziej szczegółowo

Wprowadzenie do światłowodowych systemów WDM

Wprowadzenie do światłowodowych systemów WDM Wprowadzenie do światłowodowych systemów WDM WDM Wavelength Division Multiplexing CWDM Coarse Wavelength Division Multiplexing DWDM Dense Wavelength Division Multiplexing Współczesny światłowodowy system

Bardziej szczegółowo

VI. Elementy techniki, lasery

VI. Elementy techniki, lasery Światłowody VI. Elementy techniki, lasery BERNARD ZIĘTEK http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet a) Sprzęgacze czołowe 1. Sprzęgacze światłowodowe (czołowe, boczne, stałe, rozłączalne) Złącza,

Bardziej szczegółowo

Światłowodowy wzmacniacz erbowy z płaską charakterystyką wzmocnienia

Światłowodowy wzmacniacz erbowy z płaską charakterystyką wzmocnienia Tomasz P. Baraniecki *, Marcin M. Kożak *, Elżbieta M. Pawlik, Krzysztof M. Abramski Instytut Telekomunikacji i Akustyki Politechniki Wrocławskiej, Wrocław Światłowodowy wzmacniacz erbowy z płaską charakterystyką

Bardziej szczegółowo

LASERY NA CIELE STAŁYM BERNARD ZIĘTEK

LASERY NA CIELE STAŁYM BERNARD ZIĘTEK LASERY NA CIELE STAŁYM BERNARD ZIĘTEK TEK Lasery na ciele stałym lasery, których ośrodek czynny jest: -kryształem i ciałem amorficznym (również proszkiem), - dielektrykiem i półprzewodnikiem. 2 Podział

Bardziej szczegółowo

Zjawiska nieliniowe w światłowodach Wykład 8 SMK Na podstawie: J. Siuzdak, Wstęp do współczesnej telekomunikacji światłowodowej

Zjawiska nieliniowe w światłowodach Wykład 8 SMK Na podstawie: J. Siuzdak, Wstęp do współczesnej telekomunikacji światłowodowej Zjawiska nieliniowe w światłowodach Wykład 8 SMK Na podstawie: J. Siuzdak, Wstęp do współczesnej telekomunikacji światłowodowej Dla dużych mocy świetlnych dochodzi do nieliniowego oddziaływania pomiędzy

Bardziej szczegółowo

Światłowodowy pierścieniowy laser erbowy

Światłowodowy pierścieniowy laser erbowy Marcin M. Kożak *, Tomasz P. Baraniecki *, Elżbieta M. Pawlik, Krzysztof M. Abramski, Instytut Telekomunikacji i Akustyki, Politechnika Wrocławska, Wrocław Światłowodowy pierścieniowy laser erbowy Przedstawiono

Bardziej szczegółowo

PODSTAWY FIZYKI LASERÓW Wstęp

PODSTAWY FIZYKI LASERÓW Wstęp PODSTAWY FIZYKI LASERÓW Wstęp LASER Light Amplification by Stimulation Emission of Radiation Składa się z: 1. ośrodka czynnego. układu pompującego 3.Rezonator optyczny - wnęka rezonansowa Generatory: liniowe

Bardziej szczegółowo

n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A / B 2 1 hν exp( ) 1 kt (24)

n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A / B 2 1 hν exp( ) 1 kt (24) n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A 1 2 / B hν exp( ) 1 kt (24) Powyższe równanie określające gęstość widmową energii promieniowania

Bardziej szczegółowo

1. Wzmacniacze wiatłowodowe oparte na zjawisku emisji wymuszonej (lasery bez sprz enia zwrotnego).

1. Wzmacniacze wiatłowodowe oparte na zjawisku emisji wymuszonej (lasery bez sprz enia zwrotnego). Wzmacniacze światłowodowe, Wykład 9 SMK J. Siuzdak, Wstęp do współczesnej telekomunikacji światłowodowej, WKŁ W-wa 1999 1. Wzmacniacze światłowodowe oparte na zjawisku emisji wymuszonej (lasery bez sprzężenia

Bardziej szczegółowo

Trzy rodzaje przejść elektronowych między poziomami energetycznymi

Trzy rodzaje przejść elektronowych między poziomami energetycznymi Trzy rodzaje przejść elektronowych między poziomami energetycznymi absorpcja elektron przechodzi na wyższy poziom energetyczny dzięki pochłonięciu kwantu o energii równej różnicy energetycznej poziomów

Bardziej szczegółowo

Parametry i technologia światłowodowego systemu CTV

Parametry i technologia światłowodowego systemu CTV Parametry i technologia światłowodowego systemu CTV (Światłowodowe systemy szerokopasmowe) (c) Sergiusz Patela 1998-2002 Sieci optyczne - Parametry i technologia systemu CTV 1 Podstawy optyki swiatlowodowej:

Bardziej szczegółowo

ELEMENTY SIECI ŚWIATŁOWODOWEJ

ELEMENTY SIECI ŚWIATŁOWODOWEJ ELEMENTY SIECI ŚWIATŁOWODOWEJ MODULATORY bezpośrednia (prąd lasera) niedroga może skutkować chirpem do 1 nm (zmiana długości fali spowodowana zmianami gęstości nośników w obszarze aktywnym) zewnętrzna

Bardziej szczegółowo

Stanowisko do badania zjawiska tłumienia światła w ośrodkach materialnych

Stanowisko do badania zjawiska tłumienia światła w ośrodkach materialnych Stanowisko do badania zjawiska tłumienia światła w ośrodkach materialnych Na rys. 3.1 przedstawiono widok wykorzystywanego w ćwiczeniu stanowiska pomiarowego do badania zjawiska tłumienia światła w ośrodkach

Bardziej szczegółowo

Ćwiczenie 2. Badanie strat odbiciowych i własnych wybranych patchcordów światłowodowych. LABORATORIUM OPTOELEKTRONIKI

Ćwiczenie 2. Badanie strat odbiciowych i własnych wybranych patchcordów światłowodowych. LABORATORIUM OPTOELEKTRONIKI LABORATORIUM OPTOELEKTRONIKI Ćwiczenie 2 Badanie strat odbiciowych i własnych wybranych patchcordów światłowodowych. Cel ćwiczenia: Zapoznanie studentów ze zjawiskami tłumienności odbiciowej i własnej.

Bardziej szczegółowo

2007-10-27. NA = sin Θ = (n rdzenia2 - n płaszcza2 ) 1/2. L[dB] = 10 log 10 (NA 1 /NA 2 )

2007-10-27. NA = sin Θ = (n rdzenia2 - n płaszcza2 ) 1/2. L[dB] = 10 log 10 (NA 1 /NA 2 ) dr inż. Krzysztof Hodyr Technika Światłowodowa Część 2 Tłumienie i straty w światłowodach Pojęcie dyspersji światłowodów Technika zwielokrotnienia WDM Źródła strat tłumieniowych sprzężenia światłowodu

Bardziej szczegółowo

Pomiar tłumienności światłowodów włóknistych

Pomiar tłumienności światłowodów włóknistych LABORATORIUM OPTOELEKTRONIKI Ćwiczenie 4 Pomiar tłumienności światłowodów włóknistych Cel ćwiczenia: Zapoznanie studentów z parametrem tłumienności światłowodów oraz ze sposobem jego pomiaru Badane elementy:

Bardziej szczegółowo

Ćwiczenie 3. Badanie wpływu makrozagięć światłowodów na ich tłumienie.

Ćwiczenie 3. Badanie wpływu makrozagięć światłowodów na ich tłumienie. LABORATORIUM OPTOELEKTRONIKI Ćwiczenie 3 Badanie wpływu makrozagięć światłowodów na ich tłumienie. Cel ćwiczenia: Zapoznanie studentów z wpływem mikro- i makrozgięć światłowodów włóknistych na ich tłumienność.

Bardziej szczegółowo

Sprzęganie światłowodu z półprzewodnikowymi źródłami światła (stanowisko nr 5)

Sprzęganie światłowodu z półprzewodnikowymi źródłami światła (stanowisko nr 5) Wojciech Niwiński 30.03.2004 Bartosz Lassak Wojciech Zatorski gr.7lab Sprzęganie światłowodu z półprzewodnikowymi źródłami światła (stanowisko nr 5) Zadanie laboratoryjne miało na celu zaobserwowanie różnic

Bardziej szczegółowo

LABORATORIUM OPTOELEKTRONIKI

LABORATORIUM OPTOELEKTRONIKI LABORATORIUM OPTOELEKTRONIKI ĆWICZENIE 1 ŹRÓDŁA ŚWIATŁA Gdańsk 2001 r. ĆWICZENIE 1: ŹRÓDŁA ŚWIATŁA 2 1. Wstęp Zasada działania półprzewodnikowych źródeł światła (LED-ów i diod laserowych LD) jest bardzo

Bardziej szczegółowo

1 Źródła i detektory. I. Badanie charakterystyki spektralnej nietermicznych źródeł promieniowania elektromagnetycznego

1 Źródła i detektory. I. Badanie charakterystyki spektralnej nietermicznych źródeł promieniowania elektromagnetycznego 1 I. Badanie charakterystyki spektralnej nietermicznych źródeł promieniowania elektromagnetycznego Cel ćwiczenia: Wyznaczenie charakterystyki spektralnej nietermicznego źródła promieniowania (dioda LD

Bardziej szczegółowo

SPECYFIKACJA ZASIĘGU POŁĄCZEŃ OPTYCZNYCH

SPECYFIKACJA ZASIĘGU POŁĄCZEŃ OPTYCZNYCH Lublin 06.07.2007 r. SPECYFIKACJA ZASIĘGU POŁĄCZEŃ OPTYCZNYCH URZĄDZEŃ BITSTREAM Copyright 2007 BITSTREAM 06.07.2007 1/8 SPIS TREŚCI 1. Wstęp... 2. Moc nadajnika optycznego... 3. Długość fali optycznej...

Bardziej szczegółowo

PL B1. POLITECHNIKA WROCŁAWSKA, Wrocław, PL

PL B1. POLITECHNIKA WROCŁAWSKA, Wrocław, PL PL 217542 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 217542 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 395085 (22) Data zgłoszenia: 01.06.2011 (51) Int.Cl.

Bardziej szczegółowo

IV. Transmisja. /~bezet

IV. Transmisja.  /~bezet Światłowody IV. Transmisja BERNARD ZIĘTEK http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet 1. Tłumienność 10 7 10 6 Tłumienność [db/km] 10 5 10 4 10 3 10 2 10 SiO 2 Tłumienność szkła w latach (za A.

Bardziej szczegółowo

Media transmisyjne w sieciach komputerowych

Media transmisyjne w sieciach komputerowych Media transmisyjne w sieciach komputerowych Andrzej Grzywak Media transmisyjne stosowane w sieciach komputerowych Rys. 1. kable i przewody miedziane światłowody sieć energetyczna (technologia PLC) sieci

Bardziej szczegółowo

Reflektometr optyczny OTDR

Reflektometr optyczny OTDR Reflektometr optyczny OTDR i inne przyrządy pomiarowe w technice światłowodowej W prezentacji wykorzystano fragmenty prac dyplomowych Jacka Stopy, Rafała Dylewicza, Roberta Koniecznego Prezentacja zawiera

Bardziej szczegółowo

Właściwości transmisyjne

Właściwości transmisyjne Właściwości transmisyjne Straty (tłumienność) Tłumienność np. szkła technicznego: około 1000 db/km, szkło czyszczone 300 db/km Do 1967 r. tłumienność ok. 1000 db/km. Problem Na wyjściu światłowodu chcemy

Bardziej szczegółowo

II. WYBRANE LASERY. BERNARD ZIĘTEK IF UMK www.fizyka.umk.pl/~ /~bezet

II. WYBRANE LASERY. BERNARD ZIĘTEK IF UMK www.fizyka.umk.pl/~ /~bezet II. WYBRANE LASERY BERNARD ZIĘTEK IF UMK www.fizyka.umk.pl/~ /~bezet Laser gazowy Laser He-Ne, Mechanizm wzbudzenia Bernard Ziętek IF UMK Toruń 2 Model Bernard Ziętek IF UMK Toruń 3 Rozwiązania stacjonarne

Bardziej szczegółowo

Wzbudzony stan energetyczny atomu

Wzbudzony stan energetyczny atomu LASERY Wzbudzony stan energetyczny atomu Z III postulatu Bohra kj E k E h j Emisja spontaniczna Atom absorbuje tylko określone kwanty energii przechodząc ze stanu podstawowego do wzbudzonego. Zaabsorbowana

Bardziej szczegółowo

1. Nadajnik światłowodowy

1. Nadajnik światłowodowy 1. Nadajnik światłowodowy Nadajnik światłowodowy jest jednym z bloków światłowodowego systemu transmisyjnego. Przetwarza sygnał elektryczny na sygnał optyczny. Jakość transmisji w dużej mierze zależy od

Bardziej szczegółowo

Optotelekomunikacja 1

Optotelekomunikacja 1 Optotelekomunikacja 1 Zwielokrotnienie optyczne zwielokrotnienie falowe WDM Wave Division Multiplexing zwielokrotnienie czasowe OTDM Optical Time Division Multiplexing 2 WDM multiplekser demultiplekser

Bardziej szczegółowo

Właściwości światła laserowego

Właściwości światła laserowego Właściwości światła laserowego Cechy charakterystyczne światła laserowego: rozbieżność (równoległość) wiązki, pasmo spektralne, gęstość mocy spójność (koherencja). Równoległość wiązki Dyfrakcyjną rozbieżność

Bardziej szczegółowo

Politechnika Warszawska Wydział Elektryczny Laboratorium Teletechniki

Politechnika Warszawska Wydział Elektryczny Laboratorium Teletechniki Politechnika Warszawska Wydział Elektryczny Laboratorium Teletechniki Skrypt do ćwiczenia T.09 Określenie procentu modulacji sygnału zmodulowanego AM 1. Określenie procentu modulacji sygnału zmodulowanego

Bardziej szczegółowo

Optotelekomunikacja. dr inż. Piotr Stępczak 1

Optotelekomunikacja. dr inż. Piotr Stępczak 1 Optotelekomunikacja dr inż. Piotr Stępczak 1 dr inż. Piotr Stępczak Falowa natura światła () ( ) () ( ) z t j jm z z z t j jm z z e e r H H e e r E E β ω β ω Θ ± Θ ± 1 0 0 1 0 1 1 zatem 0 n n n n gr λ

Bardziej szczegółowo

Autokoherentny pomiar widma laserów półprzewodnikowych. autorzy: Łukasz Długosz Jacek Konieczny

Autokoherentny pomiar widma laserów półprzewodnikowych. autorzy: Łukasz Długosz Jacek Konieczny Autokoherentny pomiar widma laserów półprzewodnikowych autorzy: Łukasz Długosz Jacek Konieczny Systemy koherentne wstęp Systemy transmisji światłowodowej wykorzystujące podczas procesu transmisji światło

Bardziej szczegółowo

Zjawiska w niej występujące, jeśli jest ona linią długą: Definicje współczynników odbicia na początku i końcu linii długiej.

Zjawiska w niej występujące, jeśli jest ona linią długą: Definicje współczynników odbicia na początku i końcu linii długiej. 1. Uproszczony schemat bezstratnej (R = 0) linii przesyłowej sygnałów cyfrowych. Zjawiska w niej występujące, jeśli jest ona linią długą: odbicie fali na końcu linii; tłumienie fali; zniekształcenie fali;

Bardziej szczegółowo

Systemy transmisji o bardzo dużych zasięgach i przepływnościach Wykład 19 SMK

Systemy transmisji o bardzo dużych zasięgach i przepływnościach Wykład 19 SMK Systemy transmisji o bardzo dużych zasięgach i przepływnościach Wykład 19 SMK Literatura: J. Siuzdak, Wstęp do telekomunikacji światłowodowej, WKŁ W-wa 1999 W nowoczesnych systemach transmisji (transoceanicznych)

Bardziej szczegółowo

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2013/2014. Zadania z teleinformatyki na zawody III stopnia

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2013/2014. Zadania z teleinformatyki na zawody III stopnia EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2013/2014 Zadania z teleinformatyki na zawody III stopnia Lp. Zadanie 1. Dla wzmacniacza mikrofalowego o wzmocnieniu

Bardziej szczegółowo

Wykład XIV: Właściwości optyczne. JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Technologii Ceramiki i Materiałów Ogniotrwałych

Wykład XIV: Właściwości optyczne. JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Technologii Ceramiki i Materiałów Ogniotrwałych Wykład XIV: Właściwości optyczne JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Technologii Ceramiki i Materiałów Ogniotrwałych Treść wykładu: Treść wykładu: 1. Wiadomości wstępne: a) Załamanie

Bardziej szczegółowo

1. Technika sprzęgaczy i ich zastosowanie

1. Technika sprzęgaczy i ich zastosowanie . Technika sprzęgaczy i ich zastosowanie Sprzęgacze światłowodowe są podstawowymi elementami rozgałęźnych sieci optycznych (lokalnych, komputerowych, telewizyjnych) dowolnej konfiguracji. Spełniają rolę

Bardziej szczegółowo

WYZNACZANIE STAŁEJ PLANCKA Z POMIARU CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH DIOD ELEKTROLUMINESCENCYJNYCH. Irena Jankowska-Sumara, Magdalena Krupska

WYZNACZANIE STAŁEJ PLANCKA Z POMIARU CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH DIOD ELEKTROLUMINESCENCYJNYCH. Irena Jankowska-Sumara, Magdalena Krupska 1 II PRACOWNIA FIZYCZNA: FIZYKA ATOMOWA Z POMIARU CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH DIOD ELEKTROLUMINESCENCYJNYCH Irena Jankowska-Sumara, Magdalena Krupska Cel ćwiczenia Celem ćwiczenia jest wyznaczenie

Bardziej szczegółowo

III.3 Emisja wymuszona. Lasery

III.3 Emisja wymuszona. Lasery III.3 Emisja wymuszona. Lasery 1. Wyprowadzenie wzoru Plancka metodą Einsteina. Emisja wymuszona 2. Koherencja ciągów falowych. Laser jako źródło koherentnego promieniowania e-m 3. Zasada działania lasera.

Bardziej szczegółowo

Lasery półprzewodnikowe. przewodnikowe. Bernard Ziętek

Lasery półprzewodnikowe. przewodnikowe. Bernard Ziętek Lasery półprzewodnikowe przewodnikowe Bernard Ziętek Plan 1. Rodzaje półprzewodników 2. Parametry półprzewodników 3. Złącze p-n 4. Rekombinacja dziura-elektron 5. Wzmocnienie 6. Rezonatory 7. Lasery niskowymiarowe

Bardziej szczegółowo

Systemy i Sieci Radiowe

Systemy i Sieci Radiowe Systemy i Sieci Radiowe Wykład 3 Media transmisyjne część 1 Program wykładu transmisja światłowodowa transmisja za pomocą kabli telekomunikacyjnych (DSL) transmisja przez sieć energetyczną transmisja radiowa

Bardziej szczegółowo

UMO-2011/01/B/ST7/06234

UMO-2011/01/B/ST7/06234 Załącznik nr 9 do sprawozdania merytorycznego z realizacji projektu badawczego Szybka nieliniowość fotorefrakcyjna w światłowodach półprzewodnikowych do zastosowań w elementach optoelektroniki zintegrowanej

Bardziej szczegółowo

Lekcja 19. Temat: Wzmacniacze pośrednich częstotliwości.

Lekcja 19. Temat: Wzmacniacze pośrednich częstotliwości. Lekcja 19 Temat: Wzmacniacze pośrednich częstotliwości. Wzmacniacze pośrednich częstotliwości zazwyczaj są trzy- lub czterostopniowe, gdyż sygnał na ich wejściu musi być znacznie wzmocniony niż we wzmacniaczu

Bardziej szczegółowo

Postawy sprzętowe budowania sieci światłowodowych

Postawy sprzętowe budowania sieci światłowodowych Postawy sprzętowe budowania sieci światłowodowych włókno rozgałęziacze (sprzęgacze) nadajniki odbiorniki wzmacniacze optyczne rutery i przełączniki optyczne Prezentacja zawiera kopie folii omawianych na

Bardziej szczegółowo

Ćwiczenie 1. Parametry statyczne diod LED

Ćwiczenie 1. Parametry statyczne diod LED Ćwiczenie. Parametry statyczne diod LED. Cel ćwiczenia. Celem ćwiczenia jest zapoznanie się z podstawowymi właściwościami i charakterystykami diod LED. Poznanie ograniczeń i sposobu zasilania tego typu

Bardziej szczegółowo

KONWERTER RS-485 TR-43

KONWERTER RS-485 TR-43 LANEX S.A. ul. Ceramiczna 8 20-150 Lublin tel. (081) 444 10 11 tel/fax. (081) 740 35 70 KONWERTER RS-485-43 IO-D Listopad 2005 LANEX S.A., ul.ceramiczna 8, 20-150 Lublin serwis: tel. (81) 443 96 39 1.

Bardziej szczegółowo

Pomiary w instalacjach światłowodowych.

Pomiary w instalacjach światłowodowych. Pomiary w instalacjach światłowodowych. Pomiary metodą transmisyjną Pomiary tłumienności metodą transmisyjną Cel pomiaru: Określenie całkowitego tłumienia linii światłowodowej Przyrządy pomiarowe: źródło

Bardziej szczegółowo

TŁUMIENIE ŚWIATŁA W OŚRODKACH OPTYCZNYCH

TŁUMIENIE ŚWIATŁA W OŚRODKACH OPTYCZNYCH TŁUMIENIE ŚWIATŁA W OŚRODKACH OPTYCZNYCH Jednym z parametrów opisujących właściwości optyczne światłowodów jest tłumienność. W wyniku zjawiska tłumienia, energia fali elektromagnetycznej niesionej w światłowodzie

Bardziej szczegółowo

RZECZPOSPOLITAPOLSKA(12) O PIS PATENTOWY (19) PL (11)

RZECZPOSPOLITAPOLSKA(12) O PIS PATENTOWY (19) PL (11) RZECZPOSPOLITAPOLSKA(12) O PIS PATENTOWY (19) PL (11) 167324 (13) B1 (21) Numer zgłoszenia: 288879 Urząd Patentowy (22) Data zgłoszenia: 29.01.1991 Rzeczypospolitej Polskiej (51) IntCl6: H04B 10/24 H04B

Bardziej szczegółowo

LABORATORIUM Pomiar charakterystyki kątowej

LABORATORIUM Pomiar charakterystyki kątowej Ćwiczenie 6 LABORATORIUM Pomiar charakterystyki kątowej Opracował: Grzegorz Wiśniewski Zagadnienia do przygotowania Opisz budowę złączy światłowodowych. Opisz budowę lasera w tym lasera półprzewodnikowego.

Bardziej szczegółowo

Rezonatory ze zwierciadłem Bragga

Rezonatory ze zwierciadłem Bragga Rezonatory ze zwierciadłem Bragga Siatki dyfrakcyjne stanowiące zwierciadła laserowe (zwierciadła Bragga) są powszechnie stosowane w laserach VCSEL, ale i w laserach z rezonatorem prostopadłym do płaszczyzny

Bardziej szczegółowo

ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI

ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 1 ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 15.1. CEL ĆWICZENIA Celem ćwiczenia jest poznanie podstawowych właściwości wzmacniaczy mocy małej częstotliwości oraz przyswojenie umiejętności

Bardziej szczegółowo

MIKROFALOWEJ I OPTOFALOWEJ

MIKROFALOWEJ I OPTOFALOWEJ E-LAB: LABORATORIUM TECHNIKI MIKROFALOWEJ I OPTOFALOWEJ Krzysztof MADZIAR Grzegorz KĘDZIERSKI, Jerzy PIOTROWSKI, Jerzy SKULSKI, Agnieszka SZYMAŃSKA, Piotr WITOŃSKI, Bogdan GALWAS Instytut Mikroelektroniki

Bardziej szczegółowo

UNIWERSYTET MARII CURIE-SKŁODOWSKIEJ W LUBLINIE

UNIWERSYTET MARII CURIE-SKŁODOWSKIEJ W LUBLINIE UNIWERSYTET MARII CURIE-SKŁODOWSKIEJ W LUBLINIE Projekt Zintegrowany UMCS Centrum Kształcenia i Obsługi Studiów, Biuro ds. Kształcenia Ustawicznego telefon: +48 81 537 54 61 Podstawowe informacje o przedmiocie

Bardziej szczegółowo

II. Badanie charakterystyki spektralnej źródła termicznego promieniowania elektromagnetycznego

II. Badanie charakterystyki spektralnej źródła termicznego promieniowania elektromagnetycznego 1 II. Badanie charakterystyki spektralnej źródła termicznego promieniowania elektromagnetycznego Cel ćwiczenia: Wyznaczenie charakterystyki spektralnej termicznego źródła promieniowania (lampa halogenowa)

Bardziej szczegółowo

Instytut Mikroelektroniki i Optoelektroniki Politechniki Warszawskiej. Zakład Optoelektroniki. Laboratorium Elementów i Systemów Optoelektronicznych

Instytut Mikroelektroniki i Optoelektroniki Politechniki Warszawskiej. Zakład Optoelektroniki. Laboratorium Elementów i Systemów Optoelektronicznych Instytut Mikroelektroniki i Optoelektroniki Politechniki Warszawskiej Zakład Optoelektroniki Laboratorium Elementów i Systemów Optoelektronicznych Instrukcja do ćwiczenia: BADANIE PARAMETRÓW PASYWNYCH

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA

POLITECHNIKA POZNAŃSKA POLITECHNIKA POZNAŃSKA INSTYTUT ELEKTROTECHNIKI I ELEKTRONIKI PRZEMYSŁOWEJ Zakład Elektrotechniki Teoretycznej i Stosowanej Laboratorium Podstaw Telekomunikacji Ćwiczenie nr 6 Temat: Sprzęgacz kierunkowy.

Bardziej szczegółowo

Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7

Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi zastosowaniami wzmacniacza operacyjnego, poznanie jego charakterystyki przejściowej

Bardziej szczegółowo

Przewaga klasycznego spektrometru Ramana czyli siatkowego, dyspersyjnego nad przystawką ramanowską FT-Raman

Przewaga klasycznego spektrometru Ramana czyli siatkowego, dyspersyjnego nad przystawką ramanowską FT-Raman Porównanie Przewaga klasycznego spektrometru Ramana czyli siatkowego, dyspersyjnego nad przystawką ramanowską FT-Raman Spektroskopia FT-Raman Spektroskopia FT-Raman jest dostępna od 1987 roku. Systemy

Bardziej szczegółowo

Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska

Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska Opracowanie na postawie: Frank Karlsen, Nordic VLSI, Zalecenia projektowe dla tanich systemów, bezprzewodowej transmisji danych cyfrowych, EP

Bardziej szczegółowo

Transmisja bezprzewodowa

Transmisja bezprzewodowa Sieci komputerowe Wykład 6: Media optyczne Transmisja bezprzewodowa Wykład prowadzony przez dr inż. Mirosława Hajdera dla studentów 3 roku informatyki, opracowany przez Joannę Pliś i Piotra Lasotę, 3 FD.

Bardziej szczegółowo

Pomiar energii wiązania deuteronu. Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu

Pomiar energii wiązania deuteronu. Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu J1 Pomiar energii wiązania deuteronu Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu Przygotowanie: 1) Model deuteronu. Własności deuteronu jako źródło informacji o siłach jądrowych [4] ) Oddziaływanie

Bardziej szczegółowo

Telekomunikacja światłowodowa

Telekomunikacja światłowodowa KATEDRA OPTOELEKTRONIKI I SYSTEMÓW ELEKTRONICZNYCH Wydział Elektroniki, Telekomunikacji i Informatyki Politechnika Gdańska 80-233 GDAŃSK, ul.g.narutowicza 11/12, tel.(48)(58) 347 1584, fax.(48)(58) 347

Bardziej szczegółowo

Uniwersytet Warszawski Wydział Fizyki. Światłowody

Uniwersytet Warszawski Wydział Fizyki. Światłowody Uniwersytet Warszawski Wydział Fizyki Marcin Polkowski 251328 Światłowody Pracownia Fizyczna dla Zaawansowanych ćwiczenie L6 w zakresie Optyki Streszczenie Celem wykonanego na Pracowni Fizycznej dla Zaawansowanych

Bardziej szczegółowo

POMIARY TŁUMIENIA I ABSORBCJI FAL ELEKTROMAGNETYCZNYCH

POMIARY TŁUMIENIA I ABSORBCJI FAL ELEKTROMAGNETYCZNYCH LŁ ELEKTRONIKI WAT POMIARY TŁUMIENIA I ABSORBCJI FAL ELEKTROMAGNETYCZNYCH dr inż. Leszek Nowosielski Wojskowa Akademia Techniczna Wydział Elektroniki Laboratorium Kompatybilności Elektromagnetycznej LŁ

Bardziej szczegółowo

Właściwości optyczne. Oddziaływanie światła z materiałem. Widmo światła widzialnego MATERIAŁ

Właściwości optyczne. Oddziaływanie światła z materiałem. Widmo światła widzialnego MATERIAŁ Właściwości optyczne Oddziaływanie światła z materiałem hν MATERIAŁ Transmisja Odbicie Adsorpcja Załamanie Efekt fotoelektryczny Tradycyjnie właściwości optyczne wiążą się z zachowaniem się materiałów

Bardziej szczegółowo

Przejścia promieniste

Przejścia promieniste Przejście promieniste proces rekombinacji elektronu i dziury (przejście ze stanu o większej energii do stanu o energii mniejszej), w wyniku którego następuje emisja promieniowania. E Długość wyemitowanej

Bardziej szczegółowo

Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza napięcia REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU

Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza napięcia REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU R C E Z w B I Ł G O R A J U LABORATORIUM pomiarów elektronicznych UKŁADÓW ANALOGOWYCH Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza

Bardziej szczegółowo

Akustyczne wzmacniacze mocy

Akustyczne wzmacniacze mocy Akustyczne wzmacniacze mocy 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z budową, sposobem projektowania oraz parametrami wzmacniaczy mocy klasy AB zbudowanych z użyciem scalonych wzmacniaczy

Bardziej szczegółowo

Ćwiczenie nr 65. Badanie wzmacniacza mocy

Ćwiczenie nr 65. Badanie wzmacniacza mocy Ćwiczenie nr 65 Badanie wzmacniacza mocy 1. Cel ćwiczenia Celem ćwiczenia jest poznanie podstawowych parametrów wzmacniaczy oraz wyznaczenie charakterystyk opisujących ich właściwości na przykładzie wzmacniacza

Bardziej szczegółowo

WSTĘP DO ELEKTRONIKI

WSTĘP DO ELEKTRONIKI WSTĘP DO ELEKTRONIKI Część IV Czwórniki Linia długa Janusz Brzychczyk IF UJ Czwórniki Czwórnik (dwuwrotnik) posiada cztery zaciski elektryczne. Dwa z tych zacisków uważamy za wejście czwórnika, a pozostałe

Bardziej szczegółowo

Wykład 5: Pomiary instalacji sieciowych

Wykład 5: Pomiary instalacji sieciowych Sieci komputerowe Wykład 5: Pomiary instalacji sieciowych Media optyczne Wykład prowadzony przez dr inż. Mirosława Hajdera dla studentów 3 roku informatyki, opracowany przez Joannę Pliś i Piotra Lasotę,

Bardziej szczegółowo

I we. F (filtr) U we. Rys. 1. Schemat blokowy układu zasilania odbiornika prądu stałego z sieci energetycznej z zastosowaniem stabilizatora napięcia

I we. F (filtr) U we. Rys. 1. Schemat blokowy układu zasilania odbiornika prądu stałego z sieci energetycznej z zastosowaniem stabilizatora napięcia 22 ĆWICZENIE 3 STABILIZATORY NAPIĘCIA STAŁEGO Wiadomości wstępne Stabilizatory napięcia stałego są to układy elektryczne dostarczające do odbiornika napięcie o stałej wartości niezależnie od zmian w określonych

Bardziej szczegółowo

Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0..

Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0.. Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg.... Godzina... Polaryzacja światła sprawdzanie prawa Malusa Początkowa wartość kąta 0.. 1 25 49 2 26 50 3 27 51 4 28 52 5 29 53 6 30 54

Bardziej szczegółowo

Wzmacniacze operacyjne

Wzmacniacze operacyjne Wzmacniacze operacyjne Cel ćwiczenia Celem ćwiczenia jest badanie podstawowych układów pracy wzmacniaczy operacyjnych. Wymagania Wstęp 1. Zasada działania wzmacniacza operacyjnego. 2. Ujemne sprzężenie

Bardziej szczegółowo

Ponadto, jeśli fala charakteryzuje się sferycznym czołem falowym, powyższy wzór można zapisać w następujący sposób:

Ponadto, jeśli fala charakteryzuje się sferycznym czołem falowym, powyższy wzór można zapisać w następujący sposób: Zastosowanie laserów w Obrazowaniu Medycznym Spis treści 1 Powtórka z fizyki Zjawisko Interferencji 1.1 Koherencja czasowa i przestrzenna 1.2 Droga i czas koherencji 2 Lasery 2.1 Emisja Spontaniczna 2.2

Bardziej szczegółowo

spis urządzeń użytych dnia moduł O-01

spis urządzeń użytych dnia moduł O-01 Cel ćwiczenia Celem ćwiczenia jest poznanie wybranych reprezentatywnych elementów optoelektronicznych nadajników światła (fotoemiterów), odbiorników światła (fotodetektorów) i transoptorów oraz zapoznanie

Bardziej szczegółowo

(12) OPIS PATENTOWY (19) PL (11) (13) B1

(12) OPIS PATENTOWY (19) PL (11) (13) B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 164795 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 287577 (22) Data zgłoszenia: 30.10.1990 (51) IntCl5: H04B 10/16 H04B

Bardziej szczegółowo

Ćwiczenie nr 5 Doświadczenie Franka-Hertza. Pomiar energii wzbudzenia atomów neonu.

Ćwiczenie nr 5 Doświadczenie Franka-Hertza. Pomiar energii wzbudzenia atomów neonu. Ćwiczenie nr 5 Doświadczenie Franka-Hertza. Pomiar energii wzbudzenia atomów neonu. A. Opis zagadnienia I. Doświadczenie Franka-Hertza W 1914 roku James Franck i Gustav Hertz przeprowadzili doświadczenie,

Bardziej szczegółowo

Systemy i Sieci Radiowe

Systemy i Sieci Radiowe Systemy i Sieci Radiowe Wykład 4 Media transmisyjne część Program wykładu Widmo sygnałów w. cz. Modele i tryby propagacji Anteny Charakterystyka kanału radiowego zjawiska propagacyjne 1 Transmisja radiowa

Bardziej szczegółowo

Politechnika Warszawska

Politechnika Warszawska Politechnika Warszawska Wydział Elektryczny Laboratorium Teletechniki Skrypt do ćwiczenia T.03 Podstawowe zasady modulacji amlitudy na przykładzie modulacji DSB 1. Podstawowe zasady modulacji amplitudy

Bardziej szczegółowo

RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19)PL (11) (13) B1

RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19)PL (11) (13) B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19)PL (11)175879 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 308877 (22) Data zgłoszenia: 02.06.1995 (51) IntCl6: H03D 7/00 G 01C

Bardziej szczegółowo

KONWERTER RS-232 TR-21.7

KONWERTER RS-232 TR-21.7 LANEX S.A. ul. Ceramiczna 8 20-150 Lublin tel. (081) 444 10 11 tel/fax. (081) 740 35 70 KONWERTER RS-232 TR-21.7 IO21-7A Marzec 2004 LANEX S.A., ul.ceramiczna 8, 20-150 Lublin serwis: tel. (81) 443 96

Bardziej szczegółowo

!!!DEL są źródłami światła niespójnego.

!!!DEL są źródłami światła niespójnego. Dioda elektroluminescencyjna DEL Element czynny DEL to złącze p-n. Gdy zostanie ono spolaryzowane w kierunku przewodzenia, to w obszarze typu p, w warstwie o grubości rzędu 1µm, wytwarza się stan inwersji

Bardziej szczegółowo

γ6 Liniowy Model Pozytonowego Tomografu Emisyjnego

γ6 Liniowy Model Pozytonowego Tomografu Emisyjnego γ6 Liniowy Model Pozytonowego Tomografu Emisyjnego Cel ćwiczenia Celem ćwiczenia jest zaprezentowanie zasady działania pozytonowego tomografu emisyjnego. W doświadczeniu użyjemy detektory scyntylacyjne

Bardziej szczegółowo

Systemy laserowe. dr inż. Adrian Zakrzewski dr inż. Tomasz Baraniecki

Systemy laserowe. dr inż. Adrian Zakrzewski dr inż. Tomasz Baraniecki Systemy laserowe dr inż. Adrian Zakrzewski dr inż. Tomasz Baraniecki Lasery światłowodowe Źródło: www.jakubduba.pl Światłowód płaszcz n 2 n 1 > n 2 rdzeń n 1 zjawisko całkowitego wewnętrznego odbicia Źródło:

Bardziej szczegółowo

KONWERTER RS-422 TR-43

KONWERTER RS-422 TR-43 LANEX S.A. ul. Ceramiczna 8 20-150 Lublin tel. (081) 444 10 11 tel/fax. (081) 740 35 70 KONWERTER RS-422 TR-43 IO-43-2C Marzec 2004 LANEX S.A., ul.ceramiczna 8, 20-150 Lublin serwis: tel. (81) 443 96 39

Bardziej szczegółowo

Przejścia optyczne w strukturach niskowymiarowych

Przejścia optyczne w strukturach niskowymiarowych Współczynnik absorpcji w układzie dwuwymiarowym można opisać wyrażeniem: E E gdzie i oraz f są energiami stanu początkowego i końcowego elektronu, zapełnienie tych stanów opisane jest funkcją rozkładu

Bardziej szczegółowo

Lasery budowa, rodzaje, zastosowanie. Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego.

Lasery budowa, rodzaje, zastosowanie. Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego. Lasery budowa, rodzaje, zastosowanie Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego. Budowa i zasada działania lasera Laser (Light Amplification by Stimulated

Bardziej szczegółowo

PL B1. POLITECHNIKA LUBELSKA, Lublin, PL BUP 01/18. SŁAWOMIR CIĘSZCZYK, Chodel, PL PIOTR KISAŁA, Lublin, PL

PL B1. POLITECHNIKA LUBELSKA, Lublin, PL BUP 01/18. SŁAWOMIR CIĘSZCZYK, Chodel, PL PIOTR KISAŁA, Lublin, PL RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 230198 (13) B1 (21) Numer zgłoszenia: 420259 (51) Int.Cl. G01N 21/00 (2006.01) G01B 11/00 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22)

Bardziej szczegółowo

FM - Optyka Światłowodowa

FM - Optyka Światłowodowa FM - Optyka Światłowodowa Materiały przeznaczone dla studentów Inżynierii Materiałowej w Instytucie Fizyki Uniwersytetu Jagiellońskiego 1 Cel ćwiczenia Ćwiczenie to jest zestawem kilku krótkich eksperymentów

Bardziej szczegółowo

WIECZOROWE STUDIA NIESTACJONARNE LABORATORIUM UKŁADÓW ELEKTRONICZNYCH

WIECZOROWE STUDIA NIESTACJONARNE LABORATORIUM UKŁADÓW ELEKTRONICZNYCH POLITECHNIKA WARSZAWSKA Instytut Radioelektroniki Zakład Radiokomunikacji WIECZOROWE STUDIA NIESTACJONARNE Semestr III LABORATORIUM UKŁADÓW ELEKTRONICZNYCH Ćwiczenie Temat: Badanie wzmacniacza operacyjnego

Bardziej szczegółowo

POMIARY WYBRANYCH PARAMETRÓW TORU FONICZNEGO W PROCESORACH AUDIO

POMIARY WYBRANYCH PARAMETRÓW TORU FONICZNEGO W PROCESORACH AUDIO Politechnika Rzeszowska Katedra Metrologii i Systemów Diagnostycznych Laboratorium Elektroniczne przyrządy i techniki pomiarowe POMIARY WYBRANYCH PARAMETRÓW TORU FONICZNEGO W PROCESORACH AUDIO Grupa Nr

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 7 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

Pomiar drogi koherencji wybranych źródeł światła

Pomiar drogi koherencji wybranych źródeł światła Politechnika Gdańska WYDZIAŁ ELEKTRONIKI TELEKOMUNIKACJI I INFORMATYKI Katedra Optoelektroniki i Systemów Elektronicznych Pomiar drogi koherencji wybranych źródeł światła Instrukcja do ćwiczenia laboratoryjnego

Bardziej szczegółowo